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ON THE BEST CHOICE OF A DAMPING SEQUENCE
IN ITERATIVE OPTIMIZATION METHODS

A bstract

L.N . VASERSTEIN

1. Iterative procedure

xt = (1 - at)xt-1 + atyt = xt-1 + at(yt - xt-1),

f([xt-1,yt]) - f(X) <- e(f(xt-1) - f(X))

Some iterative methods of mathematical programming use a damping
sequence {cat} such that 0 _< at < 1 for all t, at - 0 as t - oo, and

at = oo . For example, at = 1l(t + 1) in Brown's method for solving
matrix games. In this paper, for a model class of iterative methods, the
convergente rate for any damping sequence {cet } depending only on time t
is computed . This computation is used to find the best damping sequence .

Let L be a real affine space (so L with an origin fixed is the same as a real
vector space) . For any points x and y in L, let [x, y] denote the closed interval
with the ends x and y . For any real-valued function f on a subset X of L, let
f(X) denote its infimum on X .
On a non-empty subset X of L, we consider an iterative procedure of the

form

where 0 < at < 1, 1 < t < T + 1, and [yt , xt_1] C X.
Here the total number T of iterations is either finite or infinite (T = oo) ; in

the second case t runs over all natural numbers .
The objective of the procedure, starting at a point xo of X, is to minimize

a convex bounded from below function f on X. (We call f convex on X, if its
restriction on every interval contained in X is convex) .
To reach this objective, at each step t, one tends to choose yt in X, so that f

decreases when one starts to move from xt_1 to yt . The choice of yt depends,
in general, on f, x t_1, and t. We abstract ourselves from any concrete rule of
choosing yt , and just assume that the choice was good enough . Namely, we fix
a number 0 in the interval 0 <_ 0 < 1 and consider the class of iterative methods
such that
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for all integers t in the interval 1 < t < T + 1 .
Note that according to (1), after a good direction yt - xt_ 1 is chosen, we

do note minimize f on the interval [xt-1, yt], but -make a step from x t_ i in
direction to y t , with a "stepsize" at depending only on t .

Iterátive procedures of the form (1) can be used not only for minimization
of convex functions (see, for example, [4]) . Sometimes they can be used for
minimization of a not necessary convex bounded from below function g on X,
because, for an arbitrary g, its infimum g(X) is equal to f(X), where f is the
largest convex function on X such that f < g everywhere on X . This f exists
for any g, because the supremum of any set of convex functions on an interval
is convex . This approach is feasible, if directions satisfying the condition (2)
can be easily chosen .

Also the procedures of the form (1) can be used to search for a convex subset
X,,,, of X. For example, this X,, coilld be a point where a function on X
reaches a critical value . The search for X., can be reduced to minimization
of a convex function f as follows . Pick a distance p on L invariant under all
translations and such that p(x, x + (y - x)a) = p(x, y)a for all x and y in L
and all real numbers a >_ 0 . (So, when an origin 0 in L is fixed, (L, p(0, -)) is
a linear normed space in the sense of Day . [3] .) Then f = p(X., .) is a convex
non-negative function on L and X,,, consists of the points which minimize f.
The condition (2) for such f takes the form

(3)

	

p(X., [xt-l, yt]) < ep(X., xt-1) for all t,1 < t < T + 1 .

The distance p(Y, Z) between two subsets of a metric space is defined to be
the infimum of all p(y, z), where y E Y and z E Z .

Speaking of the convergente rate, minimization on the interval [xt_1, yt] un-
der the condition (2) would give the exponential convergente

f(xt) - f(X) < et (f(xo) - f(X ))-

Avoiding computation of stepsize (there is no line search in (1)), we will
obtain (for the best damping sequence) a slower convergente

f(xt) -
f(X) < C(1 - 0)-Zt -1 (see Theorem 3 (b, c) below) .

One cannot get a better convergente assuming that X is convex, and f is a
convex function defined on the whole L (see the remarks in Sections 2 and 3
below) .

Slow convergente of methods of the form (1) is sometimes compensated by
their resistance to errors and data perturbations . The methods can be useful
when data are uncertain and a precise solution is not feasible . See, for example,
Belen'ky et al [1], where Robinson [5] result on the convergente of Brown's
method [2] is generalized and applications to linear programming are given.
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2. Convergence when a damping sequence is fixed

We fix the total number T >_ 1 (T is an integer or oo) of iterations, and a
real number F. We impose the following condition on the function f and the
procedure (1) :

(4)

	

f(yt) - f(X) < F for 0 < t < T + 1,

	

where yo = xo .

When f is bounded from above (as well as from below) this condition holds
autoxnatically for a suficiently large F.

Theorem 1 . Fix 0 in the interval 0 <_ 0 < 1, T _< oc, F > 0, and a sequence

{at} E [0, 1]T. Set do := 1 and

dt := max(dt_ 1 (1 - a t + ate), Bdt _ 1 (1 - al ) + ce t),

	

1 < t < T + 1 .

Then for any L and X, any f convex on X, and any iterative procedure (1)
satisfying the conditions (2) and (4), we have

xt )-f(X)<Fdt, 0<t<T+1.

Moreover, there are L, X, f as aboye and a procedure (1) satisfying (2), (4)
such that for all t

xt) - f(X) = Fdt .

Proof. Note that a "procedure (1)"is determined by a starting point xo and a
sequence y t in X such that [y t , xt_1] C X, since the sequence {at} is fixed . We
prove the first conclusion by induction on t. When t = 0, f(xo ) - f(X) _< Fdo
by (4) .

Let now t > 1 and we have proved that f(xt-1) - f(X) <_ Fdt_ 1 .

	

The
function g(a) _= f(xt_1 + a(yt - xt _ 1» on the interval [0,1] is convex and
g(0) = f(xt_1) < f(X) +Fdt - 1 . Moreover g(1) = f(y t ) < f(X) + F by (4)
and g([0,1]) < f(X) + BFdt_1 by (2) .

It follows that

f(xt-1 + a(yt - xt-1)) = g(a) C
< max((1 - a)g([0,1]) + ag(1), (1 - ca)g(0) + ag([0,1])) <

< f(X) +Fmax((1 - a)edt_1 + a, (1 - a)dt_1 + aedt-1) for all a.
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In particular, when a = at, we obtain our conclusion : f(xt) - f(X) <_ Fdt .
See Figure 1, where f(X) = 0.

X'= {XEL :x'=Y7?'(x)x}

yt

f'(x') := inf(r y(x)f(x) : 57 y(x)x = M') .

Figure 1 : Upper bound for f on the interval [xt-1, yt]

Now we want to construct L, X, f, and a procedure such that f(x t ) -f(X) =
= Fdt for all t . Let L be a (T -}- 1)-dimensional real afine space, spanned by
its T + 2 points yt , -1 <_ t < T + 1, in general position (so yt does not belong
to the afine subspace spanned by all y9 with s < t, where -1 < t < T + 1) .
Set xo := yo and x t := xt_1 + at (yt - xt-1) for 1 <_ t < T -F 1 . Set X :=

iy-1} U (U1<t<T+1[xt-1,yt]) . Set f(y_1 ) = 0 and f(yo) = F. For any a in the
interval 0 < a < 1 and any t in the interval 0 < t < T + 1, we set

(1 - a)9Fdt + F when 9dt(1 - tat+1) + at+1 >

f(( 1 - a)xt + ayt+1) _

	

> dt (1 - at+1(1 - a)),
j ((1 - a)dt + aOdt)F otherwise .

Then f is a convex function on X, f(X) = 0, and f(x t ) = dt for all t .
Remark. We could give a similar example with X in plane L, see Figure

2 . But the (T -}- 1)-dimensional example above can be easily modified to an
example with a convex X. Namely our function f on X can be extended to a
convex function f' on the convex hull

(here and below -y ranges over all non-negative functions on X taking only
finitely many non-zero values and such that 1: 7(x) = 1, so E-y(x)x is a
convex linear combination of points in X) of X as follows :
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2

Figure 2 (see the remark)

At a small cost, an example with a convex f defined on the whole L can be
constructed . Namely, for any s > 0 we can construct a convex function f =. fE
on L and a procedure (1), (2), (4) such that f(x t ) - f(X) >_ F(d t - e) for all
t . Indeed, let L and {yt}_1<t<T+1, {xt}o<t<T+1 be as above. We define f on
the line R_ 1 = {(1 - a)y_1 + ayo : a real } as follows : f((1 - a)y_1 + ayo ) =
max(0, aF). For any t in the interval 0 < t < T+1, we define a convex function
f on the line Rt = {(1 - a)x t + ayt+1 : a real } as follows .
When 9dt(1-at+1)+at+1 >_ dt(1-at+1(1-®)), weset f((1-a)xt+ayt+1) _

max(f(xt)-af(x t )(1-0)(F-Bf(x t )+sF)f(sF), Fa +(1-a)(Bf(xt)-Fe))
(see Figure 3) .

y5

Figure 3

y 2
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Otherwise, we set f((1 - ca)x t + ayt+1) = max(((1 - ce) + c¿9)f(xt), f(x t )9)
(see Figure 4) .

Figure 4

Then lf(x t ) - Fdt 1 <_ Fe for all t.

	

Now we can extend f from the union
X = Uo<t<T+1Xt of all lines Xt to a convex function f en the affine space L
spanned by the union . Replacing X by its convex hull, we can arrange X to
be convex .

Theorem 2 . Under the conditions of Theorem 1 assume that T = oo. Set
a,~,. := limsupa t and d,,, := limsupd t . Then:

(a) if Etó1 at = +oo, then d,, <-
in particular, when a,, = 0, ¡ .e .

	

cet -> 0, then d,, = 0 .

	

¡.e.

	

dt -> 0, i . e.
f(xt ) -> f(X) uniformly for all L, X, f as above and all procederes (1), (2),
(4) with fixed 9 and F;

(b) af jt=1 at < oo, then 0 < d, = supo<_t<+. dtII

	

t+1(1 - as + a99) ;
(c) if a <>, > > 0, then d,,, >_ a,, > 0, when, moreover, at -> a,,,, > 0, then

dt ---> d,, = a<,/(1 - 9 + a<,9) ;
(d) if X contains an interval [x, y] and a point z strictly inside [x, y] such

that f(x/2, y/2) = f(X) :~ f(z), then in the cases (b) and (c) there is a
procedure (1), (2), (4) such that f(x t ) does not converge to f(X) .

Proof. (a) We take a.ny a such that a > a t for all t > to . We have to
prove that d. < a/(1 - 9 + a9) . Let t > to .

If dt > a/(1 - 9 + a9), then using that a > cet+1 we conclude that

dt > at+1 /(1 - 0 + at+10),

	

Le. dt 9(1 - cet+1) + at+1 <- dt .

On the other hand, by the definition,

dt+1 :=max(dt(1 - cat+l+cat+10),9dt(1-at+1)+at+1) <9dt(1-at+1)+cet+1 .



So dt+1 < dt .
If dt < a/(1 - 0 + ceo), then

9(1 - at+1)dt + at+1 0 6(1 - at+1)a/(1 - 0 + a9) + at+1 <
< 9(1 - a)a/(1 - 0 + n0) + a = a/(1 - 0 + cYB) (using again that a > at+1) .

So dt+1 <- Bd t(1 - at+1) + at+1 < a/(1 - 0 + ao) .
Thus, either dt <_ al(1 - 0 + a9) for all sufilciently large t (which implies

the inequality d,, < a/(1-0+ n9) which we are proving), or the sequence {dt }
is monotone for all t > to and consequently, d t --4 d~. .

In the last case, for any limit point ao of the sequence {at } (of course,
cti o < a,, . < a) we have :

hence

hence

d,,. = max(d<,(1 - ao + ao8), 6d,,,(1 - ao) + ceo) .

When ao qÉ 0, it follows that d,,, = Bd<,(1 - ca o ) + ao , hence d,,,
ao/(1 - 0 + ao0) and ao = ate .

Therefore only the following case remains : dt -> d,, and at -+ 0 . We have
to prove now that d,, . = 0 . Assuming that d,, z~ 0, we obtain that d,,, = 0 (a
contradiction) as follows . For all suf$ciently large t,

dt+1 := max(dt (1 - at+1 -I- at+1e), Bdt(1 - at+1) + at+1) =
= dt(1 - cet+1 + at+1e) ? 9d,(1 - at+1) + at+1,

d. = dt IIs°t+1( 1 - a9(1 - B)) = 0,
because the series E at diverges .

(b) By the definition of dt , we have

whenever t > s, and c9+1 > c 9 for all s . Therefore

d,, := lim sup dt >_ lim sup c t =

	

sup

	

ct =: c.,, .
o<t<OO

Since r' a9 converges, c9 > 0 for sufficiently large s and djc9
d,>. = COO .

(c) By the definition of dt ,
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dt+1 >- dt(1 - at+1 + at+1e),

dt+1 ? Bdt(1 - cat+1) + at+1 at+1, hence d,, > a,, .

1 . So
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Suppose now that at -> a,,. > 0 . In the view of (a), it remains to prove
only that

lim inf dt > cae/(1 - 0 -F 9a,,.) .

We pick any a < a,,, and want to show that

lim inf dt > a/(1 - 8 + Ba) .

Pick to such that at > a for all t >_ to . For t >_ to , if dt < a/(1 - 0 + Ba), then
dt 0(1 - at+1) + at+1 >_ dt, hence dt+> >- dt .

On the other hand, if dt > a/(1 - 0 -{- Ba) for some t, then

dt0(1 - at) + at > a/(1 - 0 + Ba), hence dt+1 > a/(1 - 0 + Ba) .

Thus, either dt > a/(1 - 0 + Ba) for sufficiently large t, which implies the
wanted inequality liminf dt > ce/(1-0+Ba), or the sequence {dt } is monotone
(non-decreasing) .

In the last case, dt -> d,>. < a/(1 - 0 + 9a) < a,>.(1 - 0 + ®a,,,), which
contradicts to equality d,.,, = max(d,>.(1 - ao -}- ao0), Bd,,.(1 - ao ) + ao) with
ao = a., observed in (a) above .

(d) Among those w in [x, y] where the function f reaches its minimal value,
i .e . f(w) = f(X), we take the point x' closest to z .

Replacing, if necessary, the interval [x, y] by a subinterval centered around
x', we assume that x' = x/2 + y/2, f(u) - f(X) <_ F for all u in [x, y] and
f((1 - a)x -f- ay) > f(X) whenever 1/2 < a <_ 1 .

When the condition (b) holds, Le .

	

at < oo, our procedure will take place
in the interval [x', y] . Note that f(x') = f([x',y]) = f(X) and f(u) > f(X) for
u :~ x' in the interval [x', y] . Let s be the smallest to such that at < 1 for all
t > to . If s = 1, we take xo = y. Otherwise, a9_i = 1, and we set xo = yt = x'
for t < s and ys = y . In both cases, x s - 1 = y . We set yt = x' for t > s . Then
the condition (2) holds for all t with 0 = 0, and for all t > s we have

xt - x, = IIi-s( 1 - aZ)(z - x'), so xt -> x. = x' + II°_9(1 - ai)(z - x)

	

x' .

Thus, f(xt) -> f(x.) > f(X) .
If the condition (c) holds, i .e . lim sup at = acc) > 0, then we pick a

sequence {s(i)} of natural numbers such that : s(i) < s(i + 1),

2 < a9(i) < 3 2°° , and IIt~°(i)+1 (1 - at) < 3
for all i .

We set xo = x' = y t for all t outside {s(i)}, ys(2i+1) = y, and ys(2i) = x
for all i . Then xt = /lty + (1 - ft )x, where : flt = 1/2 when t < s(1) ; fis(1) _
(1 + a,,( 1))/2 ; 1/2 < /Pt when s(1) < t < s(2) ;

Qs(2)-1 = 2 +
as(1) II s(2)-1+1( 1 - at) :5

1
2 +4;

f9(2) = ay(2)-1(1 - a9(2)) < (1 - a,>~2/4)/2 .



Then:

Induction en i shows :
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1/2 < flt < (1 + 3a,,../2)/2 for s(2i - 1) < t < s(2i) and Q9(2%_1) <
1/2 + a~./4, (1 + 3a<,/2)/2 < Ot < 1/2 for s(2i) < t < s(2i + 1) and

Ñs(2i+1)-1 » 1/2 - a,,,/4 .

So a2 /8 < ¡,d9(t) - 1/21 < 3a,,/4 for all i .00
Therefore lim sup /dt > 1/2 + a.2/8 > 1/2, hence lim sup f(x t) > f(x') =

f(X).
Thus, f(x t ) does not converge to f(X). s
Remark .

	

If X does not contain any interval [x, y] with x 9~ y, then,
evidently, x t = xo for all t and any procedure (1) ; moreover, the condition (2)
with t = 1 implies that f(xo ) = f(X) .

Example . Let 0 = 0 in Theorem 1 . When ca t = 1/(t + 1) for all t, then
dt = 1/(t+ 1) for all t . In the next section we will see that this {C¿t} is the best
sequence when 0 = 0 .

3 . The best damping sequence

Now we want to find the best damping sequence {at}, that is, the one
whicll gives the minimal value for dT (when T is finite) in Theorem 1 . The
following theorem claims, among other things, the existente and uniqueness
of such a sequence and its independence en F and T (when T dncreases, new
members are added to the sequence, but old members stay the same) .

Theorem 3. For a fixed 0 in the interval [0,1] leí us define inductively a
sequence {At} = {At(9)} by A1 = 1/2 and

At+1 = At(1 - At + 9A,)/(1 - (1 - 20)A2 ) for t > 1 .

(a) the sequence {At(B)} strictly decreases to 0; when 0 < 1 we have

At(9) = (1- 0)/((t + 1)(1- 0)2 + 02 In (t) + Bct(0)/(1- B)2 )

with -7 < ct(9) < 3 for all t and 0, when 0 = 1 we have

A t (1) = (3/A t(1/3) - 2)-1 /2 = (2t + In (t)/2 + 27ct(1/3)/8)-1/2 ;

(b) the sequence Dt(9) := At+1(9)/(1 -0+At+1(9)(28-1)) decreases
strictly io 0 and has the form

Dt(9) = ((1 - 0)2 t + 82 In (t + 1) - 20 + 202 + 1 + ee t(9)/(1 - e)2)-1

when 0 < 1 ; otherwise, Dt(1) = 1 for all t;
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(c) for any L, X, f, T, 0, F as aboye and any procedure (1),(2),(4), with
{at } = A,(e) we have

f(x t ) - f(X) < FD t(0), 0 < t < T -}- 1 ;

(d) for arbiirary T, F > 0, 0 < 1, {at} E [0,1] T there exisís L, X, f,
and a procedure (1),(2),(4) such that f(xt ) - f(X) >_ FD t(0) for all t in the
interval 0 _< t < T+ 1, and íhe inequality is sirici for each t such that a9
A,,(6) for come s < t.

Proof.. (a) Assume that for some t we have shown that 0 < At <_ 1/2 (for
t = 1, this is the case), and let us show that then 0 < At+, < At . Indeed the
inequalities 0 < At < 1/2 and 0 <_ 0 <_ 1 imply that 1 > (1-B)At > (1-28)At,
hence

where

0 < At+l/At = (1 - At (1 - 0))/(1 - At(1 - 29)) < 1, so 0 < At+, < At .

Let A,,. be the limit of the monotone sequence {At } . Then A,,, > 0 and

A<,. = A<,(1 - A,,~(1 - B))/(1 - A2 (1-20»,00

hence A,,,, = 0, because 1 - a(1 - 0) < 1 - a2 (1 - 20) for any a in the interval
0<n<1/2 .

Let us now find the asymptotic of the sequence{At } when 0 < 1 . Set
x t = 1/A t . Then x, = 2 < xt for all t, and the defining equality for At takes
the form

xt+1 = xt + (1 - 0) + 02/(xt - 1 + 9) .

This can be rewritten as follows :

(5 )

	

yo = 0, yt+, = yt + 02 /((1 - 6)t + yt),

yt : = xt - (t + 1)(1- 0), y , = 28, y2 = e(2 + 30)/(1 + 0) .

It is clear from (5) that yt >_ 0 for all t and that yt+, - yt <- 0 2 /(1 -0)t .
So for t > 2 we obtain :

yt
02

	

t-i

	

B(2 + 30)

9=3

	

3=2
o2

	

ft-, dt

	

o2

	

0
< 1-9

	

í +38_

	

1
-9

In (t-1) +30< 1-B (In(t)+3) .

The obtained inequality yt < 0( In (t) + 3)/(1 - 0) holds also for t = 1 .



that
On the other hand, substituting this upper bound for y t into (5), we obtain

yt+1 - yt = B2 /((1 _ 9)t + yt) = e2/(1 - 9)t - 92yt/(1 _ 9)t((1 - 9)t + yt)
> 92 /( 1 - 9)t - 03( In

	

(t) + 3)/t2 (1 - 9)3 .

So, for any t > 1, we have:

Therefore, for

we obtain that

and

where yt := At(1)-2 . Therefore
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t

	

1n (s) + 3>

	

3
s=l

	

9=l

92

t

	

ds

	

393

	

t In (s) + 3> 29 + 92 1 ~(1 -0) - (1 - 0)3 - 93
11

	

s2(1 - 0)3 =

= 29 + 92 1n (t)/(1- e) - 393 /(1- B)3 + e3(( In (t) + 4)/t - 4)/(1 -
0)3 >

> 92 In (t)/( 1 - 9) - 793 /(1 - B)3 .

et(g) := (1 _ 8 ) 3(yt -
e2 In (t)/( 1 - 8))/8,

ct(B) < (1 - 9)3 (92 In (t - l)/(l - 9) + 39 - 92 In (t)/(1 - 9)/9 <

< (1- 9)3 (39)/9 = 3(1 - 9)3 < 3 .

et(0) ? (1- 8)3(-783/(1 - B)3)/9 = -794 > -7.

When t = 1, we have

e1 (B) = (1 _ 8)3(28)/9 = 2(l - 9)3 .

Thus, -7 < ct(9) <_ 3 for all t and 9, hence ~ct(8)j is bounded uniformly
over all t and 9_

Let us find now A t(1) in the terms of At (1/3) . By the definition, A1 = 1/2
and At+1(1) = At(1)/(1 + At(1) 2 ) or

1 _ yt
yt+1

	

l + yt

y1 = 4 and yt+1 = yt + 2 + 1/yt for t > 1 .
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On the other hand, for x t := 1/At (1/3) we have
x 1 = 2 and xt+1 = xt + 2/3 + 1/(9xt - 6) for t > 1 .

So for zt := 3xt - 2 we obtain that

z1 = 4 and zt+1 = zt + 2 + 1/zt for t > 1 .

Thus, zt = yt for all t > 1, Le .

1/At(1) = (3/At(1/3) - 2)1/s = (2t + In (t)/2 -f- 27ct(1/3)/8)1/2 .

(b) This follows from the definition of Dt and the part (a) .
(c) By the definition,

Dt := Dt(0) = At+1 /( 1 - 0 +20At+1 - At+1) .

Expressing here At+1 = At+1(e) in terms of At = At(0) and using the
definition of Dt _ 1 , we obtain :
Dt = 1/((1 - 0 )lAt+1 + 20 - 1) = At (1 - At + OAt )/(1 - 0 + (20 - 1)At) _

= Dt-1(1 - At + 0At ) = BDt _ 1 (1 - At ) + At =

= max(Dt _ 1 (1 - At + 0At), ODt_1 (1 - At) + At) .

Moreover, Do (0) = l, since A1 (0) = 1/2 .
Therefore the sequence {dt} := {Dt(0)} coincides with the sequence {dt }

of Theorem 1 when at is taken to be At(0) for all t . So the conclusion of
Theorem 3(c) with 0 < 1 follows from Theorem 1 . When 8 = 1 the conclusion
coincides with the condition (4) .

vglue 0.3 true cm (d) Let us define L, X, f, yt , xt as in the proof of
Theorem 1 . Then f(x t ) - f(X) = Fdt , where do = 1 and

dt+1 :=

	

max(dt (1 - at+1 + at+10), 0dt(1 - at+1 ) + cet+1) for t > 0 .

We want to prove now that dt > Dt (0) for all t, and that this inequality
is strict for each t such that a,g :~ As(0) for some s <_ t .

Proceeding by induction on t, we assume, for some t, that dt >_ Dt (0) and
in the case of equality every ce,9 with s <_ t coincides with A9 (0) .

If a¡+1 C A,+1(0), then

dt+1 > dt(1 - (1 - 0)at+1) ? Dt(0)( 1 - ( 1 - 0)ot+1) = Dt+1(0).
Otherwise, i .e . when at+1 > At+1(0), we have

dt+1 >_ Odt (1 - at+1) + at+1 >- ODt(0)(1 - At+1(0)) + At+1(0) = Dt+1(0).
Thus, dt > Dt(0) in both cases . Furthermore, the equality dt+1 = Dt+1(0)

implies, evidently, that dt =Dt(0) and cet+1 = At+1(0)) .
Remark. For any e > 0, an example can be constructed (see the remark

in the previous section) with a convex f defined on the whole L and a convex
X such that f(xt) - f(X) > F(Dt (0) - s) for all t in the interval 0 _< t < T+ 1,
and f(xt) - f(X) > FD,(0) for each t such that a 9 qÉ As(0) for some s <_ t.
So the sequence {At( 0)} stays the best in this restricted caass of functions f.
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