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ON THE BEST CHOICE OF A DAMPING SEQUENCE
IN ITERATIVE OPTIMIZATION METHODS

L.N. VASERSTEIN

Abstract

Some iterative methods of mathematical programming use a damping
sequence {0} such that 0 € oy € 1 forall &, a; —» G as ¢t — oo, and
3 .o = oo For example, oy = 1/(i + 1} in Brown’s method for solving
matrix games. In this paper, for a model class of iterative methods, the
convergence rate for any damping sequence {o } depending only on time ¢
is computed. This computation is used to find the best damping sequence.

1. Iterative procedure

Let L be a real affine space {so L with an origin fixed is the same as a real
vector space}. For any points z and y in L, let [z, y] denote the closed interval
with the ends = and y. For any real-valued function f on a subset X of L, let
F{X) denote its infimum on X.

On a non-empty subset X of L, we consider an iterative procedure of the
form

{1) zy = (1 — ajeimy + e = 21 ey — 2009 ),

where0 € a; < 1,1 <t < T+ 1, and [y, z1] C X.

Here the total number T of iterations is either finite or infinite (T' = o0); In
the second case ¢ runs over all natural numbers.

The objective of the procedure, starting at a point zg of X, is to minimize
a convex bounded from below function f on X. {(We call f convex on X, if its
restriction on every interval contained in X is convex},

To reach this objective, at each step ¢, one tends to choose y, in X, so that f
decreases when one starts to move from z,_; to y;. The choice of y, depends,
in general, on f, z;_;, and t. We abstract ourselves from any concrete rule of
choosing 3, and just assume that the choice was good enough. Namely, we fix

a number § In the interval 0 < # < 1 and consider the class of iterative methods
such that

(2) Fllze-1,m]) — f(X) S 8(f(ze—1) — F(X))
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for all integers ¢ in the interval 1 < ¢ < T + 1.

Note that according to (1), after a good direction y, — z,_; is chosen, we
do note minimize f on the interval [z,_;,y:], but make a step from 2, in
direction to y., with a “stepsize” a, depending only on &.

Iterative procedures of the form {1} can be used not only for minimization
of convex functions {see, for example, [4]). Sometimes they can be used for
minimization of a not necessary convex bounded from below function g on X,
because, for an arbitrary g, its infimum ¢{X) is equal to f(X), where f is the
largest convex function on X such that f < g everywhere on X. This f exists
for any g, because the supremum of any set of convex functions on an interval
is convex. This approach is feasible, if directions satisfying the condition (2)
can be easily chosen.

Also the procedures of the form (1) can be used to search for a convex subset
XKoo of X. For example, this X, could be a point where a function on X
reaches a critical value. The search for X, can be reduced to minimization
of a convex function f as follows. Pick a distance p on L invariant under all
translations and such that ple, ¢ + {y — 2)a} = p{z,y}e for all z and y in L
and all real numbers & > 0. (So, when an origin 0 in L 1s fixed, (L, p(0,)) is
& linear normed space in the sense of Day [3].) Then f = p(X.,,-) is a convex
non-pegative function on L and X, consists of the points which minimize f.

The condition (2) for such f takes the form
(3} A Xo, [2em1,4e]) € 0p( X, zi—s Y forall 1 <t < T+ 1.

The distance p(¥, Z) between two subsets of a meiric space is defined to be
the infimum of all p(y, z), where y € Y and 2 € Z. :

Speaking of the convergence rate, minimization on the interval [z,_;,¥,] un-
der the condition {2} would give the exponential convergence

flze) = F(X) < 8 (f{zo) - F(X))-

Avoiding computation of stepsize (there is no line search in (1)), we will
obtain (for the best damping sequence) a slower convergence

Fl@e}— F(X) < C(1 — )%t (see Theorem 3 (b, ¢) below).

One cannot get a better convergence assuming that X is convex, and f is a

convex function defined on the whole L (see the remarks in Sections 2 and 3
below).

Slow convergence of methods of the form (1) is sometimes compensated by
thelr resistance to errors and data perturbations. The methods can be useful
when data are uncertain and a precise solution is not feasible. See, for example,
Belen'ky et al [1], where Robinson [5] result on the convergence of Brown’s
method (2] is generalized and applications to linear programming are given.
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2. Convergence when a damping sequence is fixed

We fix the total number T > 1 (T is an integer or oo) of iterations, and a
real number F. We impose the following condition on the function f and the
procedure (1)

(4) Fyp) - fIX) £ Flor 0 £t < T+1, where yo = 4.

When f is bounded from above (as well as from below) this condition holds
autornatically for a suffictently large F.

Theorem 1. Fiz & in the inferval 0 < 8 <1, T < 00, F > 0, and 2 sequence
{ar} €[0,1)7. Set dg =1 and

dy = max{di—1(1 — ar + @B}, 0d (1 —a) + o), 1<t<T+1

Then for any L end X, any f convez orn X, and any iterative procedure (1)
satisfying the conditions (2} and (4}, we have

flzg) - (X)L Fdy, 0Zt<T+1

Moreover, there ave L, X, [ as above and @ procedure (1) safisfying (2}, (4)
such that for all i
flzy) - f{X) = Fd,.

Proof: Note that a “procedure {1)"is determined by a starting point g and a
sequence ¥y in X such that [y, z¢_1] C X, since the sequence {a,} is fixed. We
prove the first conclusion by induction on t. When t =8, f{zp) — f{X) < Fdp
by {4).

Let now ¢ » 1 and we have proved that f{z, ;) — f(X} £ Fd,_;. The
function g(a) = f(z,_3 + afy, — 1)) on the interval [0,1] is convex and
9{0} = flziwr) € f(X)+ Fdi-y. Moreover g(1) = f(y) < f(X} + F by (4)
and g([0,1]} < f(X) + 9Fd;—; by (2).

It foilows that

fzea +alye—2ea}) = glo} <
< max((1 — a}g{[0, 1]} + ag(1), (1 — @)9{0) + a¢([0,1])) <
S X))+ Fmax((l — @)fdi—1 +a,(1 —a)di—; + abd—, )} for all a.
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In particular, when a = @y we obtain our conclusion: f{z,) — f(X) < Fd,.
See Figure 1, where f(X) = 0.

I -1 \
Fd, Fd,
BFd‘ ; /\ .

X) fiX)

Xy .1 ¥

!

Figure 1: Upper bound for f on the interval [z, 1,3

Now we want to construct L, X, f, and a procedure such that f(z,)— f{X) =
= Fd, for all t. Let L be a (T + 1)-dimensicnal real affine space, spanned by
its T'+ 2 points y;, —1 £ ¢ < T + 1, in general position (so y; does not belong
to the affine subspace spanned by all y, with 5 < ¢, where -1 < t < T+ 1).
Set zpg ;== yo and 7, := xrg oy —zy—1) for 1 £t <« T+ 1. Set X :=
g1}V (Ui<icrs1Ze-1.11))- Set Fy—1) = 0 and f(ye) = F. For any « in the
interval 0 < @ £ 1 and any ¢ in the interval 0 € ¢ < T+ 1, we set

(1 — Q)Sth + F when gdg(l — O!g+1) + Gt 2
FU1 —a)ay + ayega) = Z di(l — ara(1 — a}},

((1 — a)d; + abd,)F otherwise .
Then f is a convex function on X, f{X) =0, and f(z;)=d forallt. B

Remark. We could give a similar example with X In plane L, see Figure
2. But the {T + 1)-dimensional example above can be easily modified to an
example with a convex X. Namely our function f on X can be extended to a
convex function f' on the convex huil

X'={zel:d= Z'y(z):c}

{here and below 7 ranges over all non-negative functions on X taking only
finitely many non-zero values and such that Y v(z) = 1, so 3 y{(a)z is a
convex linear combination of points in X) of X as follows:

Fa) =) Ha)f(@): Y olz)e =),
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Figure 2 {see the remark)

At a small cost, an example with a convex f defined en the whole L can be
constructed. Namely, for any ¢ > 0 we can construct a convex function f = f.
on L and a procedure {1}, (2}, {4) such that f{z;} — f{X) > F(d; — ¢) for all
t. Indeed, let L and {y:}_1<i<T+41, {Z:}o<i<T+1 be as above. We define f on
the line R_; = {{1 —a)y—1 + oo : v real } as follows: f{{1 — a)y—1 + ayy) =
max{0,«F). For any t in the interval 0 € ¢ < T +1, we define a convex function
f on the line By = {{1 — a&)z; + aysy1 = @ real } as follows.

When 9d1(1-0ﬁg+1)+0(;+1 = df(1—0g+1(1 —8)), we set, f((l—ﬂf)l't +(ly£+1) =
max{f{zy) — af(z)(1 - O)F —0f(x:) +eFY/(cF), Fa+(1-a)(f(z:)— Fe})

(See Figure 3)
\ F/
(XI }

8f(x,) 0 fix, )
ef(x,;_Fe/
fX) =0 ftX} =0
Xy Yi+l
o =0 a=1

Figure 3
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Qtherwise, we set f{{1 — a)z; + ayr1) = max{((1 — &) + af) f{zy), f(z:)8)
(see Figure 4).

X

8fix, ) 8Ax,)
fX) =0 fx) =0
: Xy Y41
a = o=l
Figure 4

Then |f(z,) — Fdy| < Fe¢ for all {. Now we can extend f from the union
X = Up<i<T+1X: of all lines X, to a convex function f on the affine space L
spanned by the union. Replacing X by ifs convex hull, we can arrange X to
be convex.

Theorem 2. Under the conditions of Theorem I assume that T = cc. Set

Qoo = limsup o, end dy, ;= limsupd,. Then:

(a) if Do) @ = +o0, then do < T_—;:_m;
in particular, when oy = 0, 1. a; — 0, then dy = 0. de. dy — 0, ie
Flz) = AX) uniformiy for oll L, X, f as above and all procedures {13}, (2},
(4) with fized § and F;

(8) if 3 1oy @ < 00, then 0 < doo = SUPyerctoo Tlloe iy (1 — y + @,8);

(¢) if oo > 0, ther doy 2 ap > 0; when, moreover, ay — aq, > 0, then
di = doo = @oo/{l — 8+ cuf);

(d) if X contains an inierval [x,y] and a poind z sirictly inside |z,y] such
that flz/2,y/2) = f(X) # f{z), then in the cases (b} and (c) there is a
procedure (1), {2}, {4} such thal f(x,) does not converge 1o f{X).

Proof: {a) We take any o such that o > a4 for all # > t5. We have to
prove that do, € af{1 - 6+ a8). Let i > 1y,
Ifd; > af{l — 8 + &), then using that o > a1 we conclude that

dy 2 oy (1 =8+ 0,08), e (1 —opys) + o < dy.
On the other hand, by the definition,

degy 2= max{d(l — ooy +0e418), 04, (1 — g1}t oy S Hdo(l — g} + oot
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So dt+1 <di.
If dy <af(1 — 6+ af), then

81 — argr)de + oy S 1~ ogqi)a/(1— 8 +ab) +oryy <
<1 —awaf(l — 8+ af) +a=af(l -8+ ab) (using again that a > o).

. So d:+1 § 8d3(1 — Q'H-l) + a1 = 0,’/(1 -8+ &9).

Thus, either dy € &/(1 — 8 + @) for all sufficiently large £ (which implies
the inequality do, < o /{1 — 8+ af) which we are proving), or the sequence {d,}
is monotone for all £ > t; and consequently, dy — do.

In the last case, for any limit point oy of the sequence {a;} (of course,
g < e < ) we have:

doe = max{de{l — ag + ap#), 8doo{1 — ap) + ag).

When ap # 0, it follows that dy = 8d{1 — ap) + @, hence d, =
ag /{1 — 6 + apf) and ap = G-

Therefore only the following case remains: d; — 4 and oy — G. We have
{0 prove now that do, = 0. Assuming that do, # 0, we obtain that do = 0 (a
contradiction) as follows. For all sufficiently large 7,

dyy = max(dy(l ~ @rp1 + @4418),0d{1 — o) +ag) =
=d{l — o1 + @ 418) 2 8di(1 — op1) + 044,

hence
doo = de 1152, 44(1 ~a,(1 — 8)) = 0,

because the series ¥, diverges.
(b) By the definition of d,, we have

dig1 2 de{l — ey + @i ),

hence
di 2 d T2 (1 —ai(l — 8)) =: ¢y

whenever ¢t > s, and ¢,4, > ¢, for all s. Therefore

dy :=limsupd, > limsupe, = sup ¢; =: €xo-
f<i< o0

Since 3" a, converges, ¢, > 0 for sufficiently large s and d,/c, — 1. So

Ao = Coo-

{c) By the definition of d;,

digr 2 0d{l ~ ayqs} + ey 2 apgr, hence dog 2 0o,
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Suppose now that a; — @ > 0. In the view of (a), it remains to prove
only that
liminfd, 2 au /{1 ~ 0 + 8oy, ).

We pick any o < &y and want to show that
liminfdy 2 af{l — 6 + fe).

Pick ¢, such that &, > a for all t > to. For t > ¢y, if d; < af(1 — 9+ fa), then
d {9(1 Ct‘H..]) + [LTEN ] > d;, hence dt-!-l > dt
On the other hand, if d, > a/{1 — 8 + o) for some ¢, then

def(1 — i) + ¢ 2 of(1 — 8 + 8a), heace deyy > af(1 — 8 4 a).

Thus, either d; > a/(1 — § + fa) for sufficiently large ¢, which implies the
wanted inequality liminf d, 2> a/{1— 8 +8a), or the sequence {d,} is monotone
(non-decreasing). _

In the last case, df — doo < af{1 — 6 + 8a) < @o(l — 6 + o), which
contradicts to equality doo = max{doc{l — ap + ao8), doo{l — @) + rg) with
Qo = Qoo Observed in (2) above. '

(d) Among those w in fz, y] where the function f reaches its minimal value,
re. f{w) = f(X}, we take the point 2’ closest to z.

Replacing, if necessary, the interval [z, y] by a subinterval centered around
z', we assume that ' = /2 + y/2, f(u) — f(X) < F for all v in [z,y] and
f{{1 —~aj)z +ay) > f(X) whenever 1/2 < o < 1.

When the condition {b} holds,i.e. 3 o, < 0o, our procedure will take place
in the interval [2/, y]. Note that f(2) = f{[z',y]) = f{X) and f{u) > f(X) for
u # @' in the interval [2',y]. Let s be the smallest ty such that a, < 1 for all
t > tp. If s =1, we take zp = y. Otherwise, ay,_; = 1, and we set 29 = y; = o'
for t < s and y, = y. In both cases, z,_; =y. Weset y, =2’ fort > s. Then
the condition (2) holds for all ¢ with § = @, and for all £ 2> 5 we have

zy—a =T_ (1 —o){z—2'), soz, = 25 =2 + I {1 — a;){z — 'y #£ 2’

Thus, f(z:} —~ flz) > f(X).
If the condition {c) holds, i.e. }im sup a; = oy > 0, then we pick a
sequence {s{1)} of natural numbers such that: s(i} < s(i + 1),

43 30! a{i+1r—1 1 .
2 oy < 2% and IR —ag) < 5 for alli.
We set o = ' = y, for all t outside {s(£}},yy2i41) = ¥, and Yoz = 2
for all . Then 2, = fiy + (1 — S}z, where: B, = 1/2 when t < s(1); Bay =
(14 ay1))/2; 1/2 < By when s(1) <t < s(2);

1 s(i) {2} 1 1
)83(2)—1 = 5 + Ht 3())4_1(1 at) <z 2 + 4

By2y = 63(2)—1(1 —ay2)) {1 — asn2/4)/2.
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Induction on ¢ shows:

1/2 < 8 {14 3060/2)/2 for {2 — 1} £t < 5(2i) and fygzi_y) <
1/2 + oo /4, (1 + 30:00/2)/2 < By < 1/2 for 5(2i) <t < 5(2i + 1) and
Bsaizy—1 22 1/2 — axo /4.

So al /8 < |Bsiy — 1/2] € Borgo/4 for all 4.

Therefore imsup f; > 1/2 + @2/8 > 1/2, hence limsup f(z;) > f{z'} =
FX).

Thus, f(z;) does not converge to f{X). B

Remark. If X does moi contain any interval [z,y] with = # y, then,
evidently, z; = x¢ for all { and any procedure {1}; moreover, the condition {2)

with ¢ = 1 implies that f(ze) = f(X).

Example. Let § = 0 in Theorem 1. When &, = 1/(t + 1) for all £, then
dy = 1/(t + 1} for alt £. In the next section we will see that this {a,} is the best
sequence when § = {.

3. The best damping sequence

Now we want to find the best damping sequence {0y}, that is, the one
which gives the minimal value for dr (when T is finite) in Theorem 1. The
following theorem claims, among other things, the existence and uniqueness
of such a sequence and iis independence on F and T (when 7 ncreases, new
members are added to the sequence, bul old members stay the same).

Theorem 3. For a fized § in the interval [0,1] let us define mnductively a
sequence {4} = {4,(8)) by A, = 1/2 end

A1 = Al — A+ 843/(1 — (1~ 28)A4%) for t > 1.

Then:
(e} the sequence {A,(8)} strictly decreases to 0; when & < 1 we have

A8y = (1 -/t + 1)1 - 6 + 8% 1n (1) + 8c,(6)/(1 — 6)%)
with —7 < ¢{0) <3 for allt and 8; when 8 =1 we have
A1) = (3/A4(1/3) — 2)7Y? = (2t + In (1)/2 + 27e,{1/3)/8) /%,

(b} the sequence D (8) := A 1(8)/(1 — 8+ A1 {9)280 — 1)} decreases
strictly 16 0 and has the form

D) =((1 -8t +8ln(t+1)—20+26° + 1+ 8¢,(8)/(1 -6y}

when § < 1; otherunse, D,(1) =1 for all t;
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(¢} for any L, X, f, 7,8, F as above and any procedure (1),(2),{4), with
{a} = A(8) we have

Hz) = fIX) S FD,(6), 0 <t < T+ 1

(d} for arbitrary T,F > 0, 8 < 1, {a;} € [0,1]7 there exists L, X, f,
and a procedure (1},(2),(4) suck that f{z,) — f(X) = FD8) for all t in the
mierval 0 €t < T + 1, and the wnequalify 13 strict for each { such that a, #
A8} for some s < 8,

Proof: (a) Assume that for some t we have shown that 0 < 4, < 1/2 (for

t =1, this is the case), and let us show that then 0 < A,y < A, . Indeed the
mequalities 0 < A; £ 1/2and 0 < 8 < 1 imply that 1 > {1-8)4, > {1-26)4?
hence

0 < Arp1fAr=(1—-A,(1-8))/{1 - 421 -28)) <1, 500 < Ay < 4.
Let 4, be the limit of the monotone sequence {4,}. Then 4., > 0 and
Aco = Aoo(l ~ Axo(1 — 8))/(1 — AL(1 — 26)),
hence Ay, = 0, because 1 — a1 — 8) < 1 — a?(1 — 26) for any « in the interval
0<a<1/2
Let us now find the asymptotic of the sequence{A,} when § < 1. Set

z; = 1/A,. Then z; = 2 < z, for all {, and the defining equality for A, takes .
the form

T =2+ {1 —8) 3 8z~ 1+ 8).
This can be rewritten as follows:
{5) Yo = 0,y =y + 6 /(3 - )t + 1),
where
Ye:=Ty — (L + 1% = 8), 1 =28, yp = (2 + 38)/(1 + §).

It is clear from (5) that y; > 0 for all ¢ and that yiy — ¥ < 82/(1 — 6)t.
So for t > 2 we obtain:

L e+
<
Ye = Z(ys Yo 1)+sz_1 921/ T S

t—1 2
dt 8
_1-6 —+38—1

ln(t—1}+35<—( In {t} + 3).

The obtained inequality ¥ < 6( In {#} 4+ 3}/(1 — 8) holds also for ¢ = 1.
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On the other hand, substituting this upper bound for y, into (5}, we cbtain
that

Yerr Yo = /(1= )t +y,) = 67 /(1 — )t — 82y /(1 - 6)t({(1 - )t + ye) 2
> 60%/(1 - ) — 6°(In (1) + 3)/t*(1 - 8)°.

So, for any t > 1, we have:

In(s)+3
Yo = 252(1_
, ft ds 393 s [fIn{s)+3
A e e e

=204+821n(t)/(1-8) -3/ -0° + P In (1) + )/t —4)/(1 - 6)* >
> 6% In (t)/(1 - 8) 768 /(1 - 8)°.

Therefore, for

e 8) := (1 — 8)%(y, — 67 In (1)/(1 — 6))/8,
we obtain that

a(®) < (1 =88 In(t —1)/(1 - 8)+ 36— 8 I (1)/(1 - 8)/8 <
< (1—6)°(38)/6 = 3(1 - 8)° <3.

and

ei8) > (1~ 6)(~T6° (1 - 0)°)/6 = —76* > 7.
When ¢t = 1, we have

er(8) = (1 — 6)°(26)/6 = 2(1 — 6)°.

Thus, —7 < ¢,(8) < 3 for all ¢t and 8, hence |¢,(#}] is bounded uniformly
over all { and #.

Let us find now A,(1) in the terms of A4,(1/3). By the definition, 4, = 1/2
and A,;,1(1) = 4,(1}/(1 + A(1)*} or

1
VYL T+y

where y, := A,(1)72. Therefore

i =dand ygy =y + 24+ 1y for t 2 1
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On the other hand, for x := 1/4,(1/3) we have
Xy = 2 B.nd Iyl = Ty +2/3 + 1/(93‘:3 - 6) f()r 3 2 1.
So for z; ;= 3z, — 2 we obtain that
zg=4and zqpy =2+ 2+ 1/ fort > 1
Thus, z; =y, forall ¢ > 1, 1e.
1/A(1) = (8/A(1/3) — 2V/2 = (2t + 1n (£)/2 + 27c,(1/3}/8)}/2.

(b) This follows from the definition of D, and the part (a).

(¢) By the definition,

Dy:=Df) = Appr f(1 — 8+ 26444 — Agi)

Expressing here Ajpy = Ayq1(6) in terms of 4, = A,{6) and usmg the
definition of D;_,, we obtain:

= D-g_l(l - At + gA;) = SD,:_;(]. - A;) + A; =

= mﬂx(Dt_l(l — Ag + 91‘1;}, 9D1_1(1 — At) + At)

Moreover, Dg(#) = 1, since A;(8) = 1/2.

Therefore the sequence {d,} := {D:(8)} coincides with the sequence {d;}
of Theorem 1 when o, is taken to be A,(8) for all £. So the conclusion of
Theorem 3(c) with @ < 1 follows from Theorem 1. When € = 1 the conclusion
coincides with the condition {4}.

vglue 0.3 true cm (d) Let us define L, X, f, y,, z, as in the proof of
Theorem 1. Then f(z,) ~ f(X) = Fd,, where dy = 1 and

dg_i_l = ma:c(d;(l — Gy + Q‘1+18),9d1(1 - QH-I) + (IH_)) for t > 0.

We want to prove now that d; > D{#) for all £, and that this inequality
is strict for each ¥ such that o, # 4,(8) for some 5 < #.

Proceeding by induction on t, we assume, for some ¢, that d; > D,(8) and
in the casc of equality every o, with s <t coincides with 4,(8).

If ooy € Ayga1(8), then

diyr 2 di{1 = (1 = Oaet1) 2 D)1 — (1 — Oayy) = Dea (8).
Otherwise, i.e. when a4y > 4441(8), we have
deyy = 8dy{1 - a!-l—l) + oy 2 9Dg(9)(1 — Ag+1(9)) + Ag_H(S} = D;.;.l(g).

Thus, dy > D{8} n both cases. Furthermore, the equality dppy = Dy (6)
implies, evidently, that d, = Dy{8) and a1 = Ay1{8)})

Remark. For any ¢ > 0, an example can be constructed (see the remark
in the previous section) with a convex [ defined on the whole I and a convex
X such that f(z()— f(X) > F(D(8)—¢)for all { in the interval 0 < § < T+1,
and f{z:) — f{(X) > FDy(8) for each ¢ such that a, # A.(#) for some s < ¢.
So the sequence {A,(#)} stays the best in this restricted class of functions f.
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