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Abstract. Deep learning models are currently being applied in several
areas with great success. However, their application for the analysis of
high-throughput sequencing data remains a challenge for the research
community due to the fact that this family of models are known to work
very well in big datasets with lots of samples available, just the opposite
scenario typically found in biomedical areas. In this work, a first approx-
imation on the use of deep learning for the analysis of RNA-Seq gene
expression profiles data is provided. Three public cancer-related data-
bases are analyzed using a regularized linear model (standard LASSO)
as baseline model, and two deep learning models that differ on the fea-
ture selection technique used prior to the application of a deep neural
net model. The results indicate that a straightforward application of
deep nets implementations available in public scientific tools and under
the conditions described within this work is not enough to outperform
simpler models like LASSO. Therefore, smarter and more complex ways
that incorporate prior biological knowledge into the estimation proce-
dure of deep learning models may be necessary in order to obtain better
results in terms of predictive performance.
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1 Introduction

In the last years, artificial neural networks have raised back interest of the
research community on this family of Machine Learning (ML) models under
the tag “deep learning” [11]. Behind this recent interest, there are well-known
companies, such as Google or Microsoft among other private and public enti-
ties, that have made big investments to succeed applying deep neural networks
into several Artificial Intelligence (AI) areas [6,9,10,15]. The implementation of
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new initialization and training procedures for this ML models [8], supported by
the high computing resources available at these entities, has finally allowed to
overcome the barrier that artificial neural networks were facing ten years ago.

Deep learning is actively used today in a wide range of fields, including
Bioinformatics and Computational Medicine. Its strength working with graphical
information has motivated many researches in the last few years to incorporate
this ML models in their works. Thus, it has been successfully applied in medical
image processing, where deep convolutional neural network have been proven to
be robust pixel classifiers [3–5]. Indeed, solving image classification problems is
not the only way deep learning can assist biomedical researches. As some recent
works show [12,18], deep neural networks are being used for predictive model-
ing, using RNA-Seq data as input. We may ask ourselves, though, whether the
use of deep learning, when it comes to produce predictive models, is as straight
forward as it is in other kind of problems.

Despite the increasing amount of papers referencing the use of deep learning
models in biomedical related areas, the authors of this work consider that there is
still a long way to go in order to achieve a relevant improvement with respect to
classical models in certain applications, like predicting the outcome for patients
with gene expression datasets. This work aims to provide a first approximation of
how to use a multi-layer feed-forward artificial neural network to analyze RNA-
Seq gene expression data. For this purpose, three public RNA-Seq dataset are
considered in order to predict the vital status of a patient at time t. Two deep
learning models, which differ in the feature reduction procedure applied, are
compared to a standard linear model with l1-regularization (LASSO with homo-
geneous priors). Furthermore, feature selection, models estimation, selection and
evaluation are performed using an honest validation scheme.

The rest of the article is organized as follows. Section 2 describes the datasets
and ML models considered within the analysis as well as a description of the
validation strategy used to compare the performance of the models. Then, Sect. 3
shows the results obtained with each model on the studied datasets. Finally,
Sect. 4 provides some conclusions for this work.

2 Materials and Methods

2.1 Datasets

Free-public RNA-Seq gene expression datasets can be easily downloaded from
The Cancer Genome Atlas (TCGA) website1. In particular, this work analyzes
three datasets that have already been pre-processed to take into account batch
effects and normalized through the RSEM procedure [13]. The first dataset is
linked to Breast Invasive Carcinoma (BRCA) containing 199 cases and 1013
controls. The second database contains 81 cases and 245 controls of Colon Ade-
nocarcinoma (COAD). The last dataset corresponds to a joint cohort of Kid-
ney Chromophobe, Kidney renal clear cell carcinoma and Kidney renal papil-
lary cell carcinoma (KIPAN) with 267 cases and 753 controls. Each sample in
1 https://cancergenome.nih.gov/.

https://cancergenome.nih.gov/
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Table 1. Information of the RNA-Seq datasets: number of samples (N ), number of
genes (P) and class distribution (control = 0, cases = 1).

Name N P Controls Cases

BRCA 1212 20021 1013 199

COAD 326 19467 245 81

KIPAN 1020 20144 753 267

these datasets is finally described by approximately 20000 genes after applying
a sanity check procedure where those genes that appeared to be constant across
the sample are removed. Additionally, a log2(exp + 1) transformation of the
genes expression levels was performed to make their distribution look as close
as possible to a normal distribution. Table 1 shows the overall description of
each dataset where the event of interest considered is the vital status of a given
patient (0 = “alive” are controls, 1 = “dead” are cases).

2.2 Methods

This work uses two different machine learning models to learn a given dataset
D = {xi, yi} of N samples, where i ∈ [1,N], xi represents a vector of P genes
expression level describing the i -th sample, and yi is the class label for the i -th
sample. On one hand, a linear model is used assuming that the independent
variable yi can be represented as a linear combination of the dependent vari-
ables xi. On the other hand, another model that enables to capture non-linear
relationships is also considered as a possible alternative to linear models in order
to push forward the predictive performance of this family of models. Next, we
describe the models considered in this work:

– Lasso: this model is the baseline model in this work and corresponds to
a standard LASSO model [16] with homogeneous priors. LASSO is a well-
known linear model in the bioinformatics community and it is widely used for
several and diverse tasks. LASSO tries to optimize the minimization problem
depicted in Eq. 1:

min
β

N∑

i=1

(yi − f(xi,β))2 + λ

P∑

j=1

|βj | (1)

In contrast to linear or logistic regression, this model includes an l1-penalty
term to set as many features as possible to zero unless the data tells us
not to do it. Moreover, this term is controlled by a regularization parame-
ter λ (λ = 0 would exactly correspond to the objective function in linear
or logistic regression). Therefore, LASSO is an embedded method that per-
forms feature selection at the same time that the model is adjusted to data.
The R package glmnet [7] has been used to estimate a LASSO model due to its
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Fig. 1. General architecture of a multi-layer feed-forward artificial neural network to
perform binary classification. The input layer composed of P genes expression levels is
connected to units of subsequent k-hidden layers through synaptic weights ωk

ij .

easy interface that automatically allows to learn the regularization parameter
λ through cross-validation.

– DeepNets: among the different deep learning models available, a multi-
layer feed-forward artificial neural network was chosen to learn existing non-
linearities between the input and output spaces. Figure 1 shows the classical
architecture of these artificial neural networks. In concrete, it shows an archi-
tecture of K + 1 layers (one input layer and K hidden layers) and a vector
U = {U0, U1, ..., Uk} representing the number of units in the 0 -th layer (input
layer) and the k -th hidden layer, respectively.

In this type of models, it can be easily inferred that the number of para-
meters to be learned ωk

ij (synaptic weights), where k ∈ [1,K], i ∈ [1, Uk] and
j ∈ [1, Uk−1], increases drastically in comparison to the number of parameters
β of the standard LASSO. The more layers and the more neurons per layer
we add, the more number of parameters ωk

ij will be obtained and needed to be
learned. Conversely, this number remains equal to the number of genes in the
input space for the LASSO model. Therefore, deep nets require to introduce
strategies to avoid overfitting such as regularization or dropout. Regulariza-
tion aims to impose some constraint in the optimization procedure, being
the l1-penalty (lasso penalty: set as many ωk

ij as possible to zero) or the l2-
penalty (ridge penalty: avoid setting ωk

ij to high values) the most known and
used ones. The dropout strategy [14] aims to “disconnect” some of those links
between neurons of different layers to decrease the number of parameters that
needs to be learned. Both strategies are complementary and applicable jointly.
The R package h2o [1] has been used in this work to fit a deep net to data using
regularization and dropout strategies thus dealing with overfitting issues.
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Table 2. Subset of deep nets’ parameters included in the h2o framework implementa-
tion. A list with the name of each parameter tuned within a random search procedure
is provided. For each studied dataset and parameter, a list of tried values (in brackets)
or range of values (in squared brackets) is shown.

Parameter BRCA COAD KIPAN

Activation function {Rectifier, Tanh, Maxout}
Number of hidden layers {2, 3, 4}
Number of units per layer [10, 200]

L1 regularization [0.001, 0.1]

L2 regularization [0.001, 0.1]

Input dropout ratio [0.001, 0.1]

Hidden dropout ratios [0.001, 0.1]

Furthermore, two different feature dimensionality reduction techniques
were applied prior to estimating a deep net in order to reduce the input space
and, therefore, the number of parameter to be learned:

• DeepNeti: this procedure applies a univariate t-test to compare if the
difference of genes expression levels in controls and cases are statistically
significant. Genes under a p-value threshold of 0.001 are retained and
then given to a correlation feature reduction procedure that gets rid of
highly correlated genes until the number of retained genes is similar to
the average number of genes kept in the standard LASSO.

• DeepNetii: this procedure uses a standard LASSO model to retrieve the
most important genes for the given outcome.

In both cases, the selected genes are given as input to fit a deep net to data,
discarding the remaining genes from the analysis. Additionally, a random
search was performed to tune some parameters linked to a deep net model
in h2o, where Table 2 shows the parameters considered to be tuned together
with their respective ranges for each dataset analyzed.

2.3 Validation Strategy

A known and valid evaluation strategy is always required in order to estimate
generalization error and compare the performance of the models considered in
the analysis. In particular, this work implements Z repetitions of k-fold cross-
validation, where Z = 20 and k = 10. For a given repetition, this evaluation
strategy divides the complete dataset into k non-overlapping folds of equal sizes
and applies an iterative procedure that uses k − 1 folds to fit the models and
the unseen fold left apart to test the performance (rotating train and test folds
on each iteration). The utilization of this validation strategy rather than other
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Algorithm 1. Pseudocode of our methodological approach
1: dataset ⇐ {“BRCA”, “COAD”, “KIPAN”} //choose one option
2: model ⇐ {“lasso”, “deepnet”} //choose one option
3: filtering ⇐ {“ttest − cor”, “lasso”} //choose one option
4: X ⇐ load design matrix(dataset)
5: Y ⇐ load outcome(dataset)
6: partitions ⇐ load partitions(dataset)
7:
8: for Z = 1 → 20 do
9: folds ⇐ get folds(partitions, Z)
10: for k = 1 → 10 do
11: Xtrain ⇐ get design matrix(X, folds, k, “train”) //training data
12: Xtest ⇐ get design matrix(X, folds, k, “test”) //test data
13: Y train ⇐ get outcome(Y, folds, k, “train”)
14: Y test ⇐ get outcome(Y, folds, k, “test”)
15:
16: if (model==“deepnet”) then
17: retained genes ⇐ apply filtering(Xtrain, Y train, filtering)
18: Xtrain ⇐ Xtrain[, retained genes]
19: end if
20:
21: fitted ⇐ fit model(Xtrain, Y train,model) //performs model selection internally
22: predictions ⇐ predict(fitted,Xtest)
23: measures[k] ⇐ performance(Y test, predictions)
24: end for
25: results[Z] ⇐ mean(measures)
26: end for
27:
28: print(results)

well-known strategies such as leave-one-out, bootstrapping, holdout, etc., is moti-
vated on (i) its simplicity and small computational resources needed, and (ii)
the proved that there is no universal unbiased estimator of the variance of k-
fold cross-validation [2]. Algorithm 1 contains a high-level description of the
methodological approach used to carry out the analysis.

The Area Under the Curve (AUC) was computed to compare the perfor-
mance of each model since the three studied datasets are highly imbalanced (see
Table 1). Additionally, both the number of genes retained by each of the feature
reduction procedures considered and the total time (in minutes) required to exe-
cute the validation strategy described were computed to open a discussion over
the results.

3 Results

This work has analyzed three cancer-related RNA-Seq datasets using the models
described in Sect. 2.2. The quantitative results are shown in Table 3. In general, it
can be seen that the predictive performance in terms of AUC is relatively poor
independently of the model used. On two out of three databases, BRCA and
COAD, the performance measured by the AUC is not over 0.65, and particularly
in the COAD dataset the prediction of the vital status of a patient from RNA-Seq
gene expression profiles turned out to be quite difficult (AUC under 0.6, close to
random predictions). Conversely, the predictive performance of a simple linear
model on the KIPAN dataset seems to be good with AUC values around 0.77.
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Table 3. Average AUC results and number of retained genes for 20 repetitions of
10-fold cross-validation over each RNA-Seq dataset using the three models proposed:
standard Lasso, DeepNeti and DeepNetii. 95% CI and standard deviation are shown
for the AUC and #genes columns respectively. The last column shows the total number
of minutes required for the corresponding analysis.

Dataset Model AUC #genes time (mins.)

BRCA Lasso 0.65 [0.62, 0.67] 285.54 ± 25.83 501.79

DeepNeti 0.62 [0.58, 0.65] 242.02 ± 8.01 2294.83

DeepNetii 0.65 [0.63, 0.68] 285.54 ± 25.83 9768.37

COAD Lasso 0.57 [0.52, 0.63] 69.64 ± 11.63 30.89

DeepNeti 0.58 [0.54, 0.62] 37.29 ± 1.52 2699.84

DeepNetii 0.57 [0.52, 0.61] 69.64 ± 11.63 2370.15

KIPAN Lasso 0.77 [0.76, 0.78] 268.81 ± 32.54 93.60

DeepNeti 0.72 [0.68, 0.75] 201.64 ± 3.44 2633.52

DeepNetii 0.75 [0.73, 0.78] 268.81 ± 32.54 9281.08

Focusing on the models considered in this work (Lasso, DeepNeti,
DeepNetii), the results obtained across the three databases confirmed us that
the straightforward use of existing implementations of a multi-layer feed-forward
artificial neural network (such as the R package h2o) will very rarely push the
predictive performance further away compared to a simple regularized linear
model. In two out of three databases, BRCA and KIPAN, deep learning models
do not outperform the baseline model Lasso. On the other hand, in the COAD
dataset a deep learning model estimated on the retained genes after applying
a univariate t-test combined with a correlation filtering procedure turned out
to slightly improve the AUC after executing 20 repetitions of 10-fold cross-
validation (AUC from 0.57 to 0.58). Nevertheless, this tiny improvement is not
statistical significant as indicated by the overlap observed for the 95% confidence
intervals, indicating that our baseline model Lasso can also achieve similar pre-
dictive performance depending on the data used to fit the models.

Regarding the number of genes obtained after filtering reduction to finally
estimate the models, two out of the three model (Lasso and DeepNetii) are
using exactly the same average numbers since genes retained by the embedded
method Lasso are used in both cases (approximately 275 genes in BRCA and
KIPAN, or 70 genes in COAD). It turned out that the average numbers of genes
retained by Lasso is slightly higher across the three databases, although the
numbers of genes retained by the filtering procedure used in DeepNeti is close
to the one in Lasso (242 in BRCA, 37 in COAD and 202 in KIPAN), thus making
these results comparable. However, it can be highlighted the larger variability in
terms of size of the genetic signatures obtained by Lasso in contrast to a simple
t-test followed by a correlation filtering procedure. Analyzing the robustness of
the genetic signatures found is beyond the scope of this work since it would lead
to a complete different paper, although that type of analysis will constitute a
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complement to these results in order to state the (un)suitability of Lasso as
model for biomarkers discovery [17].

Running time is also an important factor to take into account when using
deep learning models. Particularly, the fitting procedure of deep learning models
considered within this work required much more time due to the number of
parameters that need to be tuned (see Table 2), in contrast to the standard Lasso
model. DeepNeti needed minimum five times more minutes (see BRCA dataset
in Table 3) to achieve similar predictive performance than Lasso, going up to
almost 100 times more minutes in the COAD dataset. The case of DeepNetii
is even worse in BRCA and KIPAN, where this model required 3 times more
minutes than the DeepNeti. Independently of the quantitative numbers, these
results clearly show us how expensive the estimation procedure of deep learning
models is in comparison to more simple models. Moreover, in this particular
analysis and under the described conditions the use of deep learning models
is not suggested since it will take minimum five times more minutes to finally
obtain similar predictive performance.

4 Conclusions

This paper has presented a first approximation on the straightforward use of
deep learning models existing implementations for the analysis of RNA-Seq
gene expression profiles databases. In concrete, it considered a multi-layer feed-
forward artificial neural network as deep learning model in combination with two
different feature reduction techniques, and a standard LASSO (regularized linear
model) as the baseline model to try to outperform. This work has used an honest
validation strategy to analyze three public cancer-related databases, where both
feature reduction and model estimation were performed in a train dataset and
the resulting fitted model was evaluated in an independent test dataset.

In general, the combination of deep learning models with the two considered
feature reduction techniques very rarely outperformed a simple standard LASSO
in terms of AUC. Furthermore, the estimation of the proposed deep learning
models required minimum five times more minutes than LASSO due to the
number of parameters that need to be tuned in such models, thus suggesting that
using deep learning under the described conditions to predict the vital status of
a patient from RNA-Seq data is not suggested. The exploration of this research
line lead us to conclude that using a simple feature reduction procedure to reduce
the number of genes and subsequently fit a deep learning model will take us much
more execution time in order to obtain similar predictive performances.

Despite the discouraging results obtained in this work, there is no need to
spread out a negative message in relation to the application of deep learning
for RNA-Seq data analysis. Conversely, there is a big hope in pushing predictive
performance forward with this type of models. To this end, this work has allowed
us to realize that smarter use of deep learning models must be done to be suc-
cessful in this research line. For instance, deep learning as stack auto-encoders
could be used to somehow compress the information of 20000 genes into fewer
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variables, thus allowing to use any other ML model with these new compressed
features as inputs. On the other hand, imposing constrains in the optimization
process of deep learning models in such a way that biological knowledge is taken
into account may lead to better results in terms of performance. Finally, finding
ways of making this type of models interpretable would be desirable from the
clinical point of view, and for this purpose using published knowledge of rela-
tionships between Single Nucleotide Polymorphisms (SNPs), genes, pathways,
proteins, etc., could be a possible way of defining the network architecture.
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