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2 Universidad de Holgúın, Grupo de Procesamiento de Datos Biomédicos (GPDB),
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Abstract. This paper proposes a generic architecture for devising in-
teractive neurological assessment tests, aimed at being implemented on
a touchscreen device. The objective is both to provide a set of software
primitives that allow the modular implementation of tests, and to con-
tribute to the standardization of test protocols. Although our original
goal was the application of machine learning methods to the analysis of
test data, it turned out that the construction of such framework was a
pre-requisite to collect enough data with the required levels of accuracy
and reproducibility. In the proposed architecture, tests are defined by
a set of stimuli, responses, feedback information, and execution control
procedures. The presented definition has allowed for the implementation
of a particular test, the Finger-Nose-Finger, that will allow the exploita-
tion of data with intelligent techniques.

Keywords: Software architecture, touchscreen devices, neurological tests,
machine learning, Finger-Nose-Finger test.

1 Introduction

In this paper we propose a framework for the implementation of neurological
tests to assess coordination diseases, such as Parkinson’s and cerebellar ataxia.
The final aim of this research is the assessment of the disease stage, as well
as the recommendation of specific test protocols, through the analysis of test
results by computational intelligence methods. We have found that the lack of
standardized test protocols and software platforms is a severe obstacle for such
objective, thus the motivation to undertake the proposed architecture.

Nowadays the presence of touchscreen devices is pervasive in health-related
applications such as monitoring personal activity [8], at-home assessment of
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health variables [6], and support to diseases diagnosis [12,17]. Touchscreen de-
vices are also introduced in hospitals for patient monitoring, diagnostic eval-
uations, and interfacing to larger information systems [9]. The most common
touchscreen devices are smartphones and tablets and, in particular, devices with
Android Operating System (OS) are very popular. Undoubtedly, the reduced
cost, size, and power consumption are key factors in this upsurge. Similar rea-
sons can be given for the inclusion of built-in electronic components into different
mHealth [5,11,18] applications.

Several tests have been developed for or adapted to touchscreen devices,
simplifying the communication between users and computing systems. In the
coordination assessment area, which plays an important role in the neurological
examination, touchscreen devices have been used to record the movement of
upper limbs, in evaluation tasks such as circle tracing [12], Archimedean Spiral
[10,13], and handwriting/drawing [4]. The obtained accurate data about the
disease progression contribute to the design of objective clinical scales with high
sensitivity, the evaluation of therapies, and the exploration of early symptoms.

Although several tests have been proposed and validated for ataxia assess-
ment, they are configured with different application protocols, implemented on
heterogeneous devices, and based upon disparate techniques for recording the
results [1,2,3,7,15]. To the best of our knowledge, no module or architecture has
been proposed to standardize the implementation of neurological coordination
tests using touchscreen devices and external sensors. This lack of standardiza-
tion is a severe hindrance to the accurate analysis of collected data, as well as
to the development of new coordination tests.

Here we present a modular and portable architecture to implement coordi-
nation tests, focused on a main touchscreen device (tablet) that can integrate
different external devices (sensors, programmable boards, etc.). The control de-
vice manages all tests execution, acquires data from its own sensors (touchscreen,
accelerometer, etc.) and from external devices, and integrates and saves data.
The main elements that such an architecture must manage are the following:

– Data from touchscreen devices and external sensors.
– Stimuli events (visual, sound and haptic) and feedback information.
– Control logic of the implemented neurological tests.
– Data persistence.

The Finger-Nose-Finger (FNF)—often used in neurological examinations and
evaluated in previous work [14,16]—is here implemented using the proposed
architecture. All along the paper, this test is used as a proof of concept, by
presenting a detailed definition of each one of its elements in the architecture.

In Section 2 we present the basic definitions that shape the implementa-
tion of a generic neurological test, resulting in a key module within the whole
framework. The interaction between tests, sensors, and graphical user interface is
explained in Section 3, by providing a global view on the proposed architecture.
Although the framework is intended to be portable, some remarks are pointed
out in Section 4 regarding implementation requirements. Finally, in Section 5
the conclusions and directions for future research are discussed.
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2 Coordination tests

In this section we propose the general scheme of a neurological coordination
test. Our goal is to improve the accuracy of data acquisition by minimizing the
dependence on specialists’ subjectivity. Many of the neurological coordination
tests can be automated, thus we construct the necessary infrastructure; in doing
so, our final aim will be to approach a standardization of tests that will be both
general and flexible to accommodate a wide range of tests.

From the engineering point of view, we grouped the tests in touch-screen-pure
tests and touch-screen-non-pure tests. The former only need the touchscreen de-
vice for its execution, whereas the latter need more than one device, thus making
its design more complex. Even if a test proper does not use the touchscreen to
show stimuli or capture responses, this device is used to show information about
the test, to control the execution and to manage data captured. Despite differ-
ences among tests, there is a set of common characteristics presented in all of
them, namely stimuli, responses, feedback information and execution control:

Stimuli are signals provided by the system to the user, intended to generate a
definite response. They can consist of visual, audible or haptic events. They
are always present in coordination tests, since at least the start stimulus must
exist, if the user’s expected actuation can be assumed from the context. In
general, more than one stimulus occurs. The general execution of the test,
the start, the end, and the rhythm of expected tasks are guided by stimuli,
which are the reference to assess the timing and accuracy of responses.

Responses comprise the user’s actuations driven by stimuli. They are captured
using different devices, such as touchscreens, inertial sensors, keyboard but-
tons, etc. Responses can be continuously polled at a specific sample rate or
consist of discrete events depending on subjects’ performance velocity, usu-
ally guided by either constant or fixed stimuli, respectively. There may also
exist other kind of responses, e.g. the occurrence (or not) of a certain action
during a time interval, or other more specific accomplishments of subjects.
More complex tests can present all of these responses types.

Feedback information acts as an assessment, just after the response, and
is usually aimed at both showing a reference and helping to improve re-
sponse accuracy. Just like stimuli, it can include visual, audible and/or hap-
tic signals. Feedback information allows to explore different neurological be-
haviours, for instance improvement due to learning or deterioration caused
by fatigue. It can be enabled or disabled in the same test depending on the
examination goal, e.g. when trials are intended to be independent.

Execution control defines the flow of test actions, by specifying the sequence
of stimuli, response measurements, and feedback signals. In addition, this
module may pre-process responses and saves all results. The execution con-
trol is the kernel of the tests, and it must guarantee that all functionalities
occur exactly on time, avoid delays, and accurately perform data acquisition.

Based on these common characteristics, we can represent the neurological
test execution in a block diagram (Figure 1). When a test starts, the execution
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Fig. 1. Execution model of a coordination test.

control block activates a run-loop that owns the precise definitions of the test
execution protocol, so as to launch stimuli and feedback information when ap-
propriate. Each neurological test is executed by means of the necessary routines,
which can be grouped into five categories: show stimuli, response acquisition,
response pre-processing, provide feedback information, and save data. Not al-
ways the execution order matches this enumeration, since some complex tests
may include repetitions, iterations, and back tracking, so the run-loop is far from
linear. Coordination tests start by a stimulus, and finish when some condition
is reached. Some common stop conditions include timeout reached, number of
responses achieved, number of correct responses achieved, number of wrong re-
sponses achieved, and other more specialized conditions for specific tests. All
stop conditions are managed by a run-loop controller. The run-loop has a state
machine to execute the above mentioned five routines in a coordinated way, as
well as to finish the test execution when a stop condition occurs.

In coordination assessment, a session often combines one or several tests into
a configuration that we call evaluation protocol. For instance, the same test can
be configured as a sequence of short repetitive tasks, to evaluate the capacity to
learn specific simple movements; or repeated without feedback in long repetitive
tasks, in order to train some more complex responses; or a protocol designed to
globally evaluate the coordination state could include a combination of different
tests comprising non repetitive tasks. The philosophy of defining protocols is
intended to guarantee the extensibility of the proposed architecture, by providing
constructive blocks that can serve as modules of sophisticated configurations.

As a proof of concept, we have defined all the elements that are necessary
to implement the FNF test. A particular protocol, that is often found in clinical
practice, is configured as three slightly modified repetitions of the test. The
stimulus consists in a red cross drawn on the screen. Driven by the presentation
of such visual stimulus, the subject is expected to touch the red cross, so that
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the responses include the point actually touched (if any) and the time spent.
After the user touches the screen, a yellow circle is drawn on the screen just
at the place of the patient’s response, providing visual feedback information.
The stop condition is defined as ten taps, i.e. each one of the three instances
of the test ends when the subject touches the screen ten times. In the first test
instance, the stimulus will be placed on the centre of the screen. In the second
test occurrence, the stimuli will alternatively be placed at each corner of the
screen, moving to the next position after each response, following a clock wise
rotation. In the third repetition, the stimulus position will be randomly chosen
with a uniform distribution over the screen area. The proposed scheme allows the
clinician to easily select a pre-defined protocol, or even to design new protocols
by combining and defining different tests.

3 Architecture

In this section we describe the global architecture, which is focused on two critical
elements: the execution control and the sensor data acquisition. The execution
control manages the stimuli and the feedback information, according to the test
definition as described in the previous section. Depending on the kind of stimuli
and the feedback information, different low-level routines must be executed, such
as simple or complex draw procedures, audio playback, writing to communication
ports, and so on. The sensor data acquisition handles the reading of sensors in
the main device via character devices and of external sensors via communication
ports. The punctual execution and coordination of all these tasks, at the instants
defined by the test, is crucial for accuracy of results.

The functionality of both execution control and data acquisition is imple-
mented by an architecture that is supported by three levels, namely Graphical
User Interface, Protocol Management and Test Execution, as shown in Figure 2.

3.1 Graphical User Interface

The Graphical User Interface (GUI) is a communication layer between users
(medical staff and subjects) and the Protocol Management. Routines in this
layer are aware of entities defined by the context, which are involved in the
neurological evaluation, such as subject and evaluation clinical protocol. This
layer implements functionalities to allow the clinician to select those contex-
tual entities and introduce other important information such as hand used, eyes
state (open/close), study type (training/evaluation/rehabilitation), study title
or required comments. It is the responsibility of this layer to call the correct
protocol type and transfer to Protocol Management all information to perform
the evaluation.

Following our implemented example, in the Graphical User Interface imple-
mentation for the FNF protocol we present on the screen a widget that allows
the user to select basic contextual data of the test, namely:

– The hand that will be used in the execution of tests, left or right.
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Fig. 2. Architecture diagram.

– Basic personal data of the patient.
– Choice of protocol, as described in the previous section.
– Type of protocol: evaluation in this case.

3.2 Protocol Management

The layer Protocol Management implements the mechanisms to control the eval-
uation protocol execution, manage communication with the main device sensors
and external sensors, and save study results. For each evaluation protocol, there
exists a block named Manage Protocoli, i = 1, 2, . . . , n, which controls the ex-
ecution of the protocol by calls to one or more associated tests from the Test
Execution layer.

The execution of an evaluation protocol begins with a call from the GUI to
the related Manage Protocol block. A test start screen is shown via GUI using
the associated test block in the Test Execution layer. The corresponding Manage
Protocol routine dispatches the next test to be executed in the Test Execution
layer, releases the control and waits for the end of the current running test. At
the end of each test, pre-processing routines are called to pack test results and
the control is returned to the Manage Protocol routine to dispatch the next
test. Finally, when an evaluation protocol is complete, Persistence mechanisms
are called to save the results of evaluation protocol performance. Inside this
layer, there is an additional Block named Sensors comprising sub-blocks Blocki,
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i = 1, 2, . . . ,m that group the routines to use the involved sensors. Sensors can be
heterogeneous with specific commands and different protocol communications.

The process just described can be better understood with the implemented
example. In the case of the FNF test, the test start screen shows summary
information about the test and a countdown to prepare the subject and foster
their concentration. Then, the Manage Protocol block shows stimuli, measures
the subject’s responses and shows feedback information when appropriate. The
need for result pre-processing is apparent when observing that subjects often
lack accuracy touching the target, and then they try to correct their responses
with fast taps around the target. Therefore, when the test ends, a pre-processing
routine must split the correction touches from the valid response ones. Regarding
the usage of sensors by the FNF test, the current implementation is only based
upon the touchscreen, but in a more advanced version, we plan to include inertial
sensors to assess the tremor and other variables related to movement.

3.3 Test Execution

The Test Execution is the layer that owns the mechanisms to actually perform
the tests, by implementing the logic of each test. Tests are represented in the
diagram by blocks named Testi, i = 1, 2, . . . , t, each one consisting of different
stimuli, feedback information and response acquisition mechanisms. They also
run with different execution logic, by defining a sequence of tasks, an end con-
dition, and related information about the execution, as described in Section 2.

Each Test block interacts with three blocks named Stimuli, Feedback, and
Reading, all three in turn comprising the same number t of sub-blocks. Thus,
a sub-block Stimulii groups the routines that show the stimuli required by the
particular i-th test, combining visual, sound and/or haptic signals, either on the
touchscreen or through external devices. The Stimuli blocks must account for
different screen drawing mechanisms (raster, double-buffer, zone painting, etc.)
as well as implement independent threads for read/write operations on commu-
nication ports. Stimuli timing is implemented in the Test either by defining them
as constant stimuli, or through triggering mechanisms, such as time intervals or
subject responses. Each sub-block Feedbacki provides feedback information re-
lated to the i-th test, if any is required. When feedback is defined, it is always
driven by the subject’s responses, thus it can be seen as an stimulus with a fixed
trigger mechanism, with the same implementation recommendations. Therefore,
the Stimuli and Feedback blocks share a block named Common Elements, which
groups basic routines to paint, write information or make calculations used by
both blocks. Finally, each sub-block Readingi contains data acquisition routines,
both from the main device or external sensors. Depending on the test type, read-
ing subject’s responses can proceed by interruptions or by constant sampling.
In order to prevent data loss, reading raw values from the main routine upon
every interruption is recommended, whereas in the latter case secondary threads
should be implemented to avoid latency in the reading process.

Using the FNF test as example, we can distinguish the following elements.
The stimuli consists in painting on the touchscreen a red cross at the position
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defined by the configuration of the test. For instance, in the first test iteration
explained above, the cross position is at the screen centre. The transition to the
next stimulus is triggered by the subject response action on the touchscreen. The
feedback information is also a draw action, namely to draw a yellow circle at the
position of the subject’s response, and hide it after two seconds. Finally, data
acquisition is accomplished by reading all events on the touchscreen, getting the
position of touch or touches, and recording the timestamp of the event.

4 Implementation

The proposed framework is mostly implementation-independent, so the paper
does not aim at a detailed description of software coding and used hardware.
However, we include in this section some comments on the requirements of both
software and hardware for a successful implementation of the architecture.

4.1 Base classes

Although the proposed architecture was designed to be general and indepen-
dent of any programming language or technology, we do consider that an object
oriented methodology is required to achieve the objectives of modularity and
reusability. Consequently, we have coded a number of classes to implement the
main functionalities of the architecture. These classes are shown in Figure 3, fol-
lowing the Unified Modeling LanguageTM, by using generic references of names
and data types to make possible any adaptation.

The ProtocolExcBase is the base class to implement the specific protocol
execution classes. This class has the runControl method to control the execution
of a set of tests using a state machine implementation. The enumeration Pro-
tocolState defines the states of the state machine and the attributes mProtocol
and mCurrentTest provide information about the order of tests execution. The
start and end methods are used to switch between tests, and saveResults allows
to access the persistence functionalities. We have implemented a protocol for
the FNF test, by constructing a new class FNFProtocolExc that inherits from
ProtocolExcBase, and then performs the custom implementations.

The class GenericSensor is the base class to implement the attributes and
hight level methods needed to use sensors that read and write data. Specific sen-
sors class implementations stem from the extension of this class. Methods in this
class are invoked from the protocols execution classes, whereas the TestExcBase
class is allowed the control of sensors by means of references. The current imple-
mentation of our example case, the FNF test, makes no use of specific sensors,
but a planned advanced version will use inertial sensors, thus requiring the con-
struction of a class that will inherit from the GenericSensor class and construct
its custom functionalities using the read and write methods of the parent class.

The actual execution of tests will be performed by classes that inherit the
basic implementation of the class TestExcBase, which comprises a set of at-
tributes and methods according to the theoretical definition of a general test,
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ProtocolExcBase

-mProtocol: Protocol
-mUsedHand: UsedHand
-mEyesState: EyesState
-mCurrentTest: integer
-mSubject: Subject

#runControl(): void
#start(): void
#end(): void
#saveResults(): boolean

GenericSensor

-mName: String
-mType: SensorType
-mState: SensorState
-mData: ByteArray

+read(): ByteArray
+write(ByteArray): boolean

TestHelpBase

#mTestHelp: TestHelp
#mTestHelpState: TestHelpState

#showHelp(): void

TestExcBase

-mTest: Test
-mTestState: TestState
-mFeedBack: boolean

#runControl(): void
#start(): void
#stimulus(): void
#reading(): void
#feedback(): void

GraphFunctions

+draw(Canvas, Painter): void

Persistence

-mProtocol: Protocol
-mSubject: Subject

+save(): boolean

«enumeration»
ProtocolState

Wait
Running
Completed

Fig. 3. Base classes diagram.

given in Section 2. We have also included a TestHelpBase class to show some
explanations and help of the related test, which can be helpful in some complex
tests. All draw operations on the touchscreen of the main device are managed by
the class GraphFunctions. Drawing techniques are strongly dependent on the
programming language and the technology, however this class must provide, at
least, high level methods to draw basic shapes (circle, cross, square, text, etc.),
whereas other drawing complex tasks should be implemented by the specific
TestExc class that requires them. In our example, the FNFTestExc class has
been built by inheriting from TestExcBase, and then implementing the custom
elements described along the paper, such as execution control routines, stimuli
routines, and other test elements.

4.2 Acquisition system

As mentioned above, the core device of the architecture is the touchscreen. Sen-
sors may either be integrated in the main device (the touchscreen itself, ac-
celerometer, gyroscope, light sensor, etc.) or be externally developed on pro-
grammable boards such as Arduino, Raspberry pi, cc2640, etc. Communication
between the main device and external sensors should be wireless, using Blue-
tooth, Low Energy Bluetooth, or other wireless technology, in order to ease the
subject’s performance, minimize wires, and isolate the subject from the main de-
vice. Also, each associated sensor must have a trust security code to be connected
to the main device. The whole hardware setting is shown in Figure 4.
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  } 
}

Fig. 4. Architecture environment, showing the main touchscreen device with manage-
ment acquisition routines, associated sensors and a subject interacting.

In order to achieve the planned functionalities, some requirements are speci-
fied on the touchscreen: more than seven screen inches, a capacitive touchscreen
with five or more activation points, double core processor, at least one gigabyte
of Random Access Memory, and integrated sensors (accelerometer, gyroscope,
light sensor, etc.). Additional requirements could be demanded by specific tests.
In the main device, the kernel of the OS is responsible for managing interrup-
tions of the integrated sensors. The raw values of sensors are available to the
user space through system call interfaces. For example, when the kernel receives
a touchscreen interruption, it writes the raw data (touch position, touch pres-
sure, touch timestamp, etc.) of the event on a character device. The routines in
the user space can then access such character device using standard libraries. We
propose implementing buffering mechanisms and multi-threads to avoid samples
loss. Any OS that includes these mechanisms is, in principle, compatible with
the proposed architecture, the most usual being Android, Windows, OS X, iOS
and GNU/Linux.

A beta version of the end-to-end architecture has been built as a proof of con-
cept, implementing the FNF test. The application was developed in the language
C++ using the Qt framework. All described base classes were implemented to
provide structures and high level methods to ease the construction of other co-
ordination tests. This implementation is cross-platform and can be ported to
Linux, OS X, Windows, and Android OSs. During the actual tests with sub-
jects, only the Android version was used in order to ensure the homogeneity
in the experiments. The characteristics of the experiments used to evaluate the
implementation and the usefulness of our proposal can be found in [14,16].
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5 Conclusions

We have proposed a generic framework for the implementation of neurological
tests that are used to assess coordination of movements. The architecture relies
on the identification of the key characteristics of a test, as well as the notion of
protocol, which is a sequence of one or more tests. The aim of the proposal is
twofold: on the one hand, it provides a modular software infrastructure that can
be used to improve automation of tests; on the other hand, it is contribution
towards the standardization of testing protocols within the clinical community.

The primary goal of our work is the application of computational intelligence
techniques to the analysis of test results, but it turned out that this goal was
hindered by the lack of both standard clinical protocols and software libraries.
This paper is thus a first step towards the integration of machine learning al-
gorithms within neurological tests. In particular, we are currently developing a
layer of cloud services that will gather information from the execution of tests in
mobile devices. The massive collected data will be processed to recommend spe-
cific tests to patients, according to the progression they show at each performed
protocol, or even to improve the configuration of protocols.
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Becerra-Garćıa, R., Pérez, L.V., Sandoval, F.: Cluster Analysis of Finger-to-nose
Test for Spinocerebellar Ataxia Assessment. In: Rojas, I., Joya, G., Catala, A.
(eds.) Advances in Computational Intelligence, pp. 524–535. No. 9095 in Lecture
Notes in Computer Science, Springer International Publishing (Jun 2015)

17. Westin, J., Dougherty, M., Nyholm, D., Groth, T.: A home environment test bat-
tery for status assessment in patients with advanced Parkinson’s disease. Computer
Methods and Programs in Biomedicine 98(1), 27–35 (2010)

18. World Health Organization: mHealth: New horizons for health through mobile
technologies. In: Second global survey on eHealth. Geneva (2011)


	Lecture Notes in Computer Science
	Introduction
	Coordination tests
	Architecture
	Graphical User Interface
	Protocol Management
	Test Execution

	Implementation
	Base classes
	Acquisition system

	Conclusions


