
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2353–2357

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.113

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.113 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Efficient OpenCL-based concurrent tasks offloading on

accelerators

A.J. Lázaro-Muñoz1, J.M. González-Linares1, J. Gómez-Luna2, and N. Guil1

1 Dep. of Computer Architecture, University of Málaga , Spain
alazaro,jgl,nguil@uma.es

2 Dep. of Computer Architecture and Electronics, University of Córdoba, Spain
el1goluj@uco.es

Abstract
Current heterogeneous platforms with CPUs and accelerators have the ability to launch several
independent tasks simultaneously, in order to exploit concurrency among them. These tasks
typically consist of data transfer commands and kernel computation commands. In this paper
we develop a runtime approach to optimize the concurrency between data transfers and kernel
computation commands in a multithreaded scenario where each CPU thread offloads tasks to
the accelerator. It deploys a heuristic based on a temporal execution model for concurrent
tasks. It is able to establish a near-optimal task execution order that significantly reduces the
total execution time, including data transfers. Our approach has been evaluated employing
five different benchmarks composed of dominant kernel and dominant transfer real tasks. In
these experiments our heuristic achieves speedups up to 1.5x in AMD R9 and NVIDIA K20c
accelerators and 1.3x in an Intel Xeon Phi (KNC) device.

Keywords: OpenCL, Command Queue, Concurrency, Tasks scheduling, Commands Overlapping

1 Introduction

Some Application Programming Interfaces (API) such as CUDA [3] and OpenCL [1] provide fea-
tures to overlap communication between CPU (namely the host) and accelerator (the device)
with computation by employing CUDA streams or OpenCL command queues (CQ), respec-
tively. Overlapping commands simultaneously increases kernel productivity1 and accelerator
use by reducing idle periods between kernel executions. Given a set of tasks, the achieved pro-
ductivity depends on the order the tasks are offloaded as the scheduling policy affects the final
overlapping degree. This fact is illustrated in Figure 1 where the execution time-line of four
offloaded tasks employing two different orders is shown. Notice that in this example transfers
from host to device (HtD) and device to host (DtH) can also overlap.

1Kernel productivity is defined as the number of kernels executed per time unit.

1

This space is reserved for the Procedia header, do not use it

Efficient OpenCL-based concurrent tasks offloading on

accelerators

A.J. Lázaro-Muñoz1, J.M. González-Linares1, J. Gómez-Luna2, and N. Guil1

1 Dep. of Computer Architecture, University of Málaga , Spain
alazaro,jgl,nguil@uma.es

2 Dep. of Computer Architecture and Electronics, University of Córdoba, Spain
el1goluj@uco.es

Abstract
Current heterogeneous platforms with CPUs and accelerators have the ability to launch several
independent tasks simultaneously, in order to exploit concurrency among them. These tasks
typically consist of data transfer commands and kernel computation commands. In this paper
we develop a runtime approach to optimize the concurrency between data transfers and kernel
computation commands in a multithreaded scenario where each CPU thread offloads tasks to
the accelerator. It deploys a heuristic based on a temporal execution model for concurrent
tasks. It is able to establish a near-optimal task execution order that significantly reduces the
total execution time, including data transfers. Our approach has been evaluated employing
five different benchmarks composed of dominant kernel and dominant transfer real tasks. In
these experiments our heuristic achieves speedups up to 1.5x in AMD R9 and NVIDIA K20c
accelerators and 1.3x in an Intel Xeon Phi (KNC) device.

Keywords: OpenCL, Command Queue, Concurrency, Tasks scheduling, Commands Overlapping

1 Introduction

Some Application Programming Interfaces (API) such as CUDA [3] and OpenCL [1] provide fea-
tures to overlap communication between CPU (namely the host) and accelerator (the device)
with computation by employing CUDA streams or OpenCL command queues (CQ), respec-
tively. Overlapping commands simultaneously increases kernel productivity1 and accelerator
use by reducing idle periods between kernel executions. Given a set of tasks, the achieved pro-
ductivity depends on the order the tasks are offloaded as the scheduling policy affects the final
overlapping degree. This fact is illustrated in Figure 1 where the execution time-line of four
offloaded tasks employing two different orders is shown. Notice that in this example transfers
from host to device (HtD) and device to host (DtH) can also overlap.

1Kernel productivity is defined as the number of kernels executed per time unit.

1

This space is reserved for the Procedia header, do not use it

Efficient OpenCL-based concurrent tasks offloading on

accelerators

A.J. Lázaro-Muñoz1, J.M. González-Linares1, J. Gómez-Luna2, and N. Guil1

1 Dep. of Computer Architecture, University of Málaga , Spain
alazaro,jgl,nguil@uma.es

2 Dep. of Computer Architecture and Electronics, University of Córdoba, Spain
el1goluj@uco.es

Abstract
Current heterogeneous platforms with CPUs and accelerators have the ability to launch several
independent tasks simultaneously, in order to exploit concurrency among them. These tasks
typically consist of data transfer commands and kernel computation commands. In this paper
we develop a runtime approach to optimize the concurrency between data transfers and kernel
computation commands in a multithreaded scenario where each CPU thread offloads tasks to
the accelerator. It deploys a heuristic based on a temporal execution model for concurrent
tasks. It is able to establish a near-optimal task execution order that significantly reduces the
total execution time, including data transfers. Our approach has been evaluated employing
five different benchmarks composed of dominant kernel and dominant transfer real tasks. In
these experiments our heuristic achieves speedups up to 1.5x in AMD R9 and NVIDIA K20c
accelerators and 1.3x in an Intel Xeon Phi (KNC) device.

Keywords: OpenCL, Command Queue, Concurrency, Tasks scheduling, Commands Overlapping

1 Introduction

Some Application Programming Interfaces (API) such as CUDA [3] and OpenCL [1] provide fea-
tures to overlap communication between CPU (namely the host) and accelerator (the device)
with computation by employing CUDA streams or OpenCL command queues (CQ), respec-
tively. Overlapping commands simultaneously increases kernel productivity1 and accelerator
use by reducing idle periods between kernel executions. Given a set of tasks, the achieved pro-
ductivity depends on the order the tasks are offloaded as the scheduling policy affects the final
overlapping degree. This fact is illustrated in Figure 1 where the execution time-line of four
offloaded tasks employing two different orders is shown. Notice that in this example transfers
from host to device (HtD) and device to host (DtH) can also overlap.

1Kernel productivity is defined as the number of kernels executed per time unit.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/132743487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.113&domain=pdf

2354 A.J. Lázaro-Muñoz et al. / Procedia Computer Science 108C (2017) 2353–2357Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

Figure 1: Concurrent execution of the same four tasks on a accelerator using two different
orders.

The previous example shows that the order in which tasks are submitted to a device might
have an important impact on the total execution time. Assuming several tasks are simulta-
neously available for offloading, finding the optimal order would require to test all possible
orderings to choose the one resulting in the shortest execution time. However, this brute-force
approach is not feasible in runtime since testing all possible combinations for N independent
tasks involves evaluating N ! different orderings. In this paper this issue is addressed by propos-
ing a runtime approach that selects a near-optimal ordering for concurrent task offloading using
OpenCL CQs.

2 Asynchronous command execution in OpenCL

A CQ is a software queue used by the host application to submit commands to the device. The
proposed scheme to manage CQs is shown in Figure 2 for devices with two DMA engines such
as AMD R9 and NVIDIA K20c. This scheme depicts how three tasks are launched using three
OpenCL CQs. Two queues are employed for HtD and DtH commands because each DMA
engine independently executes the commands. Although in this example only one CQ (CQ2)
is employed to submit kernel execution commands, Concurrent Kernel Execution (CKE) could
be feasible by using different CQs per kernel command. Notice that in this scheme the host
thread submits commands in task order (all the commands of a task sequentially).

Figure 2: Launching scheme for devices with two DMA engines.

Since the memory transfer and kernel commands belonging to a task are launched to different
CQs, inter-task dependencies must be inserted employing OpenCL events. In Figure 2 we show
these dependencies. For the sake of clarity, they are only shown for task 0. Thus, when a HtD
or K command is submitted by the host thread (indicated as HS0 or KS0) an OpenCL event is
also associated to this command (indicated as E0 or E1 in Figure 2). These events can be used
to query the status of the command, that is, if it is queued, submitted, running, or finished. Red
and green arrows are drawn to indicate, respectively, the moments when the event is submitted
and completed. Hence, the K0 command execution is delayed until E0 reaches the completed
state. Similarly, the DtH0 command execution does not start until E1 is completed.

In case of devices with only one DMA engine, our command mapping scheme uses two CQs.
All transfer commands are sent to CQ0 (first HtD commands, and then DtH commands) while

2

Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

K commands are sent to CQ1.

3 Task reordering

Taking into account the OpenCL task submission schemes already explained, we propose a
model with three FIFO software queues to simulate the computation of a group of tasks (TG)
that are simultaneously available for offloading. Each queue is devoted to the simulation of a
different command type. Figure 3 shows our model for a device with two DMA engines. In
this figure, the head of each queue has been highlighted with a blue dotted rectangle. Thus,
HtD2, K1 and DtH0 commands are being executed (or ready to be executed). Similarly, white
boxes represent commands that have already been executed, while the remaining commands
are waiting for the fulfillment of the implicit (FIFO) and explicit dependencies. Since there
exist dependencies among the commands belonging to a task, these software queues are not
independent. Green arrows between commands from different queues represent dependencies
due to ordering inside each task.

Figure 3: Model for simulation of concurrent task execution on accelerators.

The simulation performed by our model is based on a previous calculation of the execution
time of each OpenCL command. Thus, we have improved the transfer model presented by
Werkhoven et al. [4] to cope with arbitrary overlapping factors between HtD and DtH transfers.
In addition we have used a simple kernel execution model [2] that is suitable for the experiments
presented in this paper. If necessary, a more complex framework could be used.

3.1 Task reordering runtime

The search for an optimum order to offload an arbitrary group of tasks must be performed at
runtime. Brute-force approaches are not feasible because computation of the execution time for
all possible orderings might be very high. Thus, we propose a heuristic based on the estimated
execution times calculated by our model. It tries to minimize the inactivity periods of a device
when a group of tasks is submitted by looking for the ordering with the highest number of
commands that can be concurrently executed according to the device hardware restrictions.

The heuristic starts with the selection of the first task. It is selected among tasks with a
short HtD command and a long K command when compared to the remaining tasks in RT
(set of remaining task to order). This way, device inactivity is reduced at the beginning of the
execution and, in addition, overlapping options for the following tasks are leveraged. The first
selected task, Tini, is added to OT (set of ordered tasks) and removed from RT .

While there are tasks available in RT , tasks selection is accomplished by looking for the best
fit between the remaining K commands of the previously selected tasks and the HtD command
of the new task, and between the remaining DtH commands of the previously selected tasks
and the K command of the new task.

3

 A.J. Lázaro-Muñoz et al. / Procedia Computer Science 108C (2017) 2353–2357 2355Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

Figure 1: Concurrent execution of the same four tasks on a accelerator using two different
orders.

The previous example shows that the order in which tasks are submitted to a device might
have an important impact on the total execution time. Assuming several tasks are simulta-
neously available for offloading, finding the optimal order would require to test all possible
orderings to choose the one resulting in the shortest execution time. However, this brute-force
approach is not feasible in runtime since testing all possible combinations for N independent
tasks involves evaluating N ! different orderings. In this paper this issue is addressed by propos-
ing a runtime approach that selects a near-optimal ordering for concurrent task offloading using
OpenCL CQs.

2 Asynchronous command execution in OpenCL

A CQ is a software queue used by the host application to submit commands to the device. The
proposed scheme to manage CQs is shown in Figure 2 for devices with two DMA engines such
as AMD R9 and NVIDIA K20c. This scheme depicts how three tasks are launched using three
OpenCL CQs. Two queues are employed for HtD and DtH commands because each DMA
engine independently executes the commands. Although in this example only one CQ (CQ2)
is employed to submit kernel execution commands, Concurrent Kernel Execution (CKE) could
be feasible by using different CQs per kernel command. Notice that in this scheme the host
thread submits commands in task order (all the commands of a task sequentially).

Figure 2: Launching scheme for devices with two DMA engines.

Since the memory transfer and kernel commands belonging to a task are launched to different
CQs, inter-task dependencies must be inserted employing OpenCL events. In Figure 2 we show
these dependencies. For the sake of clarity, they are only shown for task 0. Thus, when a HtD
or K command is submitted by the host thread (indicated as HS0 or KS0) an OpenCL event is
also associated to this command (indicated as E0 or E1 in Figure 2). These events can be used
to query the status of the command, that is, if it is queued, submitted, running, or finished. Red
and green arrows are drawn to indicate, respectively, the moments when the event is submitted
and completed. Hence, the K0 command execution is delayed until E0 reaches the completed
state. Similarly, the DtH0 command execution does not start until E1 is completed.

In case of devices with only one DMA engine, our command mapping scheme uses two CQs.
All transfer commands are sent to CQ0 (first HtD commands, and then DtH commands) while

2

Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

K commands are sent to CQ1.

3 Task reordering

Taking into account the OpenCL task submission schemes already explained, we propose a
model with three FIFO software queues to simulate the computation of a group of tasks (TG)
that are simultaneously available for offloading. Each queue is devoted to the simulation of a
different command type. Figure 3 shows our model for a device with two DMA engines. In
this figure, the head of each queue has been highlighted with a blue dotted rectangle. Thus,
HtD2, K1 and DtH0 commands are being executed (or ready to be executed). Similarly, white
boxes represent commands that have already been executed, while the remaining commands
are waiting for the fulfillment of the implicit (FIFO) and explicit dependencies. Since there
exist dependencies among the commands belonging to a task, these software queues are not
independent. Green arrows between commands from different queues represent dependencies
due to ordering inside each task.

Figure 3: Model for simulation of concurrent task execution on accelerators.

The simulation performed by our model is based on a previous calculation of the execution
time of each OpenCL command. Thus, we have improved the transfer model presented by
Werkhoven et al. [4] to cope with arbitrary overlapping factors between HtD and DtH transfers.
In addition we have used a simple kernel execution model [2] that is suitable for the experiments
presented in this paper. If necessary, a more complex framework could be used.

3.1 Task reordering runtime

The search for an optimum order to offload an arbitrary group of tasks must be performed at
runtime. Brute-force approaches are not feasible because computation of the execution time for
all possible orderings might be very high. Thus, we propose a heuristic based on the estimated
execution times calculated by our model. It tries to minimize the inactivity periods of a device
when a group of tasks is submitted by looking for the ordering with the highest number of
commands that can be concurrently executed according to the device hardware restrictions.

The heuristic starts with the selection of the first task. It is selected among tasks with a
short HtD command and a long K command when compared to the remaining tasks in RT
(set of remaining task to order). This way, device inactivity is reduced at the beginning of the
execution and, in addition, overlapping options for the following tasks are leveraged. The first
selected task, Tini, is added to OT (set of ordered tasks) and removed from RT .

While there are tasks available in RT , tasks selection is accomplished by looking for the best
fit between the remaining K commands of the previously selected tasks and the HtD command
of the new task, and between the remaining DtH commands of the previously selected tasks
and the K command of the new task.

3

2356 A.J. Lázaro-Muñoz et al. / Procedia Computer Science 108C (2017) 2353–2357
Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

Device
Task MM BS FWT FLW CONV VA MT DCT

Dominance DK DK DK/DT DK DK DT DT DT

AMD
R9

HtD
(ms)

0.97-2.57 0.08-1.29 1.29-2.57 0.05-0.07 0.09-0.37 0.65-3.86 2.57-5.15 2.57-5.15

Kernel
(ms)

1.80-9.02 2.98-5.57 2.59-5.47 7.77-10.08 1.51-14.58 0.05-0.30 0.29-3.59 0.95-1.89

DtH
(ms)

0.14-1.18 0.16-2.17 1.18-2.35 0.09-0.16 0.09-0.37 0.30-1.81 2.36-4.70 2.35-4.71

Table 1: Range of execution times of HtD, K and DtH commands for real tasks in AMD R9.

4 Experimental results

Table 1 resumes the selected real tasks for the experiments alongside their classification as dom-
inant kernel tasks (DK) or dominant transfer tasks (DT). These tasks have been selected from
NVIDIA and AMD OpenCL SDK and are the following: Matrix Multiplication (MM), Black
Scholes (BS), Fast Walsh Transform (FWT), Floyd Warshall (FLW), Separable Convolution
(CONV), Vector Addition (VA), Matrix Transposition (MT) and Discrete Cosine Transform
(DCT). In order to increase the variability of the benchmarks, each task has been executed
using several sets of parameters. In Table 1 the range of execution times for the commands
belonging to the real tasks using the different sets of parameters is shown for AMD R9 device.
These real tasks have been combined in several benchmarks. Thus, in benchmark BK0 every
task is transfer dominant, BK25 has a 25% of kernel dominant tasks and so on.

In the experiments we consider T sets of independent tasks with T taking values of 4 and
6. In each set, a batch of N dependent tasks is available with N taking values of 1, 2 or 4.
The T ·N tasks are randomly selected from the corresponding benchmark. Two experimental
setups, using two or three CQs as indicated in Section 2, are defined to establish how good is
the order calculated by the heuristic compared to all possible tasks orders.

NoReorder setup. A thread asynchronously submits the commands of T ·N tasks, tak-
ing into account the imposed dependencies between task belonging to the same batch. Each
experiment randomly selects the T · N tasks and carries out fifteen executions of all possible
tasks permutations ((T !)N). No reordering is applied to these tasks (the standard offloading
method is followed).

Heuristic setup. This setup considers T worker threads launching N consecutive tasks per
thread. Thus, the maximum number of concurrent tasks in a TG is T . For each experiment,
the same tasks selected for the NoReorder setup are employed. Workers write OpenCL API
calls corresponding to the tasks launching in a common buffer. Dependencies between the tasks
launched by a worker are enforced by imposing that a new task is not written in the buffer until
the previous task has completely finished. Host proxy thread reads the common buffer, applies
the heuristic to calculate a better tasks order, and submits the commands of reordered tasks.
Finally, once the host proxy thread submits the HtD command of the last task belonging to
the current TG, it polls again the common buffer and repeats the cycle.

Figures 4.a, 4.b and 4.c depict the achieved results by real benchmarks in AMD R9, NVIDIA
K20c and Intel Xeon Phi (KNC) devices respectively. The results show the speedup achieved
by the geometric mean (cross symbol) and the minimum (blue rectangle) execution times of
the NoReorder setup with respect to the maximum execution time (blue rhombus) of the same
setup. This way, we can visualize the range of speedup values achieved for all possibles task
orders permutations in the NoReorder setup (vertical segment with blue rectangle and rhombus
end points). All possible permutations has been evaluated for the NoReorder setup using four
workers (T=4) and N=1, 2 and 4. In case of T=6, all the permutations are run for N=1 but
only a subset containing the 5% of all possible permutations are used for N=2. As Xeon Phi has
only one DMA engine, experiments have been conducted with all the possible permutations for
N=1 (N=2 and N=4 produce the same speedup results). In addition, the speedup achieved

4

Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

Figure 4: NoReorder setup is compared with the heuristic for a) AMD R9 b) NVIDIA K20c,
and c) Xeon Phi (KNC).

by our heuristic with respect to the experiment giving the maximum execution time in the
NoReorder setup (red circle) is indicated. The achieved results show that our heuristic predicts
orderings very close to the best permutation most of the time, and always better than the
mean execution time achieved by the NoReorder setup. It can be observed that our heuristic
obtains higher speedups for BK25, BK50, BK75 as these benchmarks contain different types of
tasks (kernel and transfer dominant) ergo better opportunities for command overlapping can
be found.

5 Conclusions

We have presented a new strategy based on the fact that given a set of independent tasks to
be executed in an accelerator, the tasks offloading order can have an important impact on the
total execution time. Our approach proposes a runtime heuristic that is able to find a near-
optimal order. This order obtains a high degree of overlapping between execution and transfer
commands. We have also successfully tested our proposal in a multithreaded scenario where
several worker threads are submitting real kernels to Intel, AMD and NVIDIA accelerators.

Acknowledgments

This work has been supported by the Ministry of Education of Spain (TIN2013-42253P) and
the Junta de Andalućıa of Spain (TIC-1692).

References

[1] Khronos Group. Opencl 2.0 api specification, October 2014.

[2] B. Liu, W. Qiu, L. Jiang, and Z. Gong. Software pipelining for graphic processing unit accelera-
tion: Partition, scheduling and granularity. International Journal of High Performance Computing
Applications, 2015.

[3] NVIDIA. Cuda programming guide, September 2015.

[4] B. van Werkhoven, J. Maassen, F.J. Seinstra, and H.E. Bal. Performance Models for CPU-GPU
Data Transfers. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 11–20. IEEE, May 2014.

5

 A.J. Lázaro-Muñoz et al. / Procedia Computer Science 108C (2017) 2353–2357 2357
Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

Device
Task MM BS FWT FLW CONV VA MT DCT

Dominance DK DK DK/DT DK DK DT DT DT

AMD
R9

HtD
(ms)

0.97-2.57 0.08-1.29 1.29-2.57 0.05-0.07 0.09-0.37 0.65-3.86 2.57-5.15 2.57-5.15

Kernel
(ms)

1.80-9.02 2.98-5.57 2.59-5.47 7.77-10.08 1.51-14.58 0.05-0.30 0.29-3.59 0.95-1.89

DtH
(ms)

0.14-1.18 0.16-2.17 1.18-2.35 0.09-0.16 0.09-0.37 0.30-1.81 2.36-4.70 2.35-4.71

Table 1: Range of execution times of HtD, K and DtH commands for real tasks in AMD R9.

4 Experimental results

Table 1 resumes the selected real tasks for the experiments alongside their classification as dom-
inant kernel tasks (DK) or dominant transfer tasks (DT). These tasks have been selected from
NVIDIA and AMD OpenCL SDK and are the following: Matrix Multiplication (MM), Black
Scholes (BS), Fast Walsh Transform (FWT), Floyd Warshall (FLW), Separable Convolution
(CONV), Vector Addition (VA), Matrix Transposition (MT) and Discrete Cosine Transform
(DCT). In order to increase the variability of the benchmarks, each task has been executed
using several sets of parameters. In Table 1 the range of execution times for the commands
belonging to the real tasks using the different sets of parameters is shown for AMD R9 device.
These real tasks have been combined in several benchmarks. Thus, in benchmark BK0 every
task is transfer dominant, BK25 has a 25% of kernel dominant tasks and so on.

In the experiments we consider T sets of independent tasks with T taking values of 4 and
6. In each set, a batch of N dependent tasks is available with N taking values of 1, 2 or 4.
The T ·N tasks are randomly selected from the corresponding benchmark. Two experimental
setups, using two or three CQs as indicated in Section 2, are defined to establish how good is
the order calculated by the heuristic compared to all possible tasks orders.

NoReorder setup. A thread asynchronously submits the commands of T ·N tasks, tak-
ing into account the imposed dependencies between task belonging to the same batch. Each
experiment randomly selects the T · N tasks and carries out fifteen executions of all possible
tasks permutations ((T !)N). No reordering is applied to these tasks (the standard offloading
method is followed).

Heuristic setup. This setup considers T worker threads launching N consecutive tasks per
thread. Thus, the maximum number of concurrent tasks in a TG is T . For each experiment,
the same tasks selected for the NoReorder setup are employed. Workers write OpenCL API
calls corresponding to the tasks launching in a common buffer. Dependencies between the tasks
launched by a worker are enforced by imposing that a new task is not written in the buffer until
the previous task has completely finished. Host proxy thread reads the common buffer, applies
the heuristic to calculate a better tasks order, and submits the commands of reordered tasks.
Finally, once the host proxy thread submits the HtD command of the last task belonging to
the current TG, it polls again the common buffer and repeats the cycle.

Figures 4.a, 4.b and 4.c depict the achieved results by real benchmarks in AMD R9, NVIDIA
K20c and Intel Xeon Phi (KNC) devices respectively. The results show the speedup achieved
by the geometric mean (cross symbol) and the minimum (blue rectangle) execution times of
the NoReorder setup with respect to the maximum execution time (blue rhombus) of the same
setup. This way, we can visualize the range of speedup values achieved for all possibles task
orders permutations in the NoReorder setup (vertical segment with blue rectangle and rhombus
end points). All possible permutations has been evaluated for the NoReorder setup using four
workers (T=4) and N=1, 2 and 4. In case of T=6, all the permutations are run for N=1 but
only a subset containing the 5% of all possible permutations are used for N=2. As Xeon Phi has
only one DMA engine, experiments have been conducted with all the possible permutations for
N=1 (N=2 and N=4 produce the same speedup results). In addition, the speedup achieved

4

Efficient OpenCL tasks offloading A. J. Lazaro-Muñoz, J.M. Gonzalez-Linares, J. Gomez-Luna and N. Guil

Figure 4: NoReorder setup is compared with the heuristic for a) AMD R9 b) NVIDIA K20c,
and c) Xeon Phi (KNC).

by our heuristic with respect to the experiment giving the maximum execution time in the
NoReorder setup (red circle) is indicated. The achieved results show that our heuristic predicts
orderings very close to the best permutation most of the time, and always better than the
mean execution time achieved by the NoReorder setup. It can be observed that our heuristic
obtains higher speedups for BK25, BK50, BK75 as these benchmarks contain different types of
tasks (kernel and transfer dominant) ergo better opportunities for command overlapping can
be found.

5 Conclusions

We have presented a new strategy based on the fact that given a set of independent tasks to
be executed in an accelerator, the tasks offloading order can have an important impact on the
total execution time. Our approach proposes a runtime heuristic that is able to find a near-
optimal order. This order obtains a high degree of overlapping between execution and transfer
commands. We have also successfully tested our proposal in a multithreaded scenario where
several worker threads are submitting real kernels to Intel, AMD and NVIDIA accelerators.

Acknowledgments

This work has been supported by the Ministry of Education of Spain (TIN2013-42253P) and
the Junta de Andalućıa of Spain (TIC-1692).

References

[1] Khronos Group. Opencl 2.0 api specification, October 2014.

[2] B. Liu, W. Qiu, L. Jiang, and Z. Gong. Software pipelining for graphic processing unit accelera-
tion: Partition, scheduling and granularity. International Journal of High Performance Computing
Applications, 2015.

[3] NVIDIA. Cuda programming guide, September 2015.

[4] B. van Werkhoven, J. Maassen, F.J. Seinstra, and H.E. Bal. Performance Models for CPU-GPU
Data Transfers. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 11–20. IEEE, May 2014.

5

