

Evaluation of Losses in a Bidirectional Wireless Power Transfer System for Electric Vehicles

A. Triviño, J. M. González-González, J. A. Aguado

atc@uma.es

Department of Electrical Engineering Universidad de Málaga, Spain

brought to you by

INTRODUCTION

It is important to characterize the efficiency of a COMPLETE BIDIRECTIONAL wireless charger for Electric Vehicles (EV) operating at 85 kHz.

We propose an ANALYTILICAL MODEL to predict LOSSES based on the NON-IDEALITIES of the components.

EXPERIMENTAL VALIDATION

> Electrical signals measured in the prototype:

Electrical signals	Charge	Discharge
	mode	mode
V_{inv_input} [V]	288	298
V_{inv_output} [V]	290	293
I _{inv_input} [A]	12.56	4.56
I _{inv_output} [A]	13.78	5.14
V_{rec_input} [V]	285	247
V_{rec_output} [V]	288	250
I _{rec_input} [A]	13.74	6.02
I _{rec_output} [A]	12.16	5.3

Prototype

Scheme

- > The switching frequency is 85 kHz as recommended by SAE TIR J2954.
- Supported by square coils separated 20 cm.
- The power converters are composed of CREE C2M0080120D SiC MOSFETs.
- > Specifications and parameters:

Losses computation (waveform analysis and model):

Electrical signals				
Charge mo	de	Discharge I	mode	
$L^{ch}_{in u}$ [W]	20	L_{inv}^{dis} [W]	7	
L_{rec}^{ch} [W]	23	L_{rec}^{dis} [W]	27	
$L_{con,inv}$ [W]	25	$L_{con,inv}$ [W]	3.3	
$L_{sw,inv}$ [W]	1	$L_{sw,inv}$ [W]	1	
$L_{con,rec}$ [W]	34	$L_{con,rec}$ [W]	15	
L _{coils} [W]	64	L _{coils} [W]	11	
L _{match} [W]	23	L_{match} [W]	4	

> Comparison between both methods: total losses

	Waveform analysis	Model based on non-idealities
Charging	130 W	147 W
Discharging	49 W	34 W

Charger specifications		TX-RX parameters (prototype values)	
Output	3.7 kW 300 V	L ₁ [μΗ]	240.5
fs [kHz]	85	L ₂ [μΗ]	230.6
Coils geometry		C ₁ [nF]	14.3
Primary coil [m ²]	0.75 x 0.75	C ₂ [nF]	15.6
Secondary coil [m ²]	0.5 x 0.5	R _{L1} [mΩ]	196
C2M0080120D SiC MOSFET		R _{L2} [mΩ]	143
<i>R</i> _d [mΩ]	40	R _{c1} [mΩ]	67
<i>V_{th}</i> [V]	0.98	R _{C2} [mΩ]	52
<i>C_{oss}</i> [pF]	80	Μ [μH]	54.5
<i>R_{ds}</i> [mΩ]	80	K=M $(L_1L_2)^{1/2}$	0.231

CONCLUSIONS

This paper presents a model to predict the losses in a bidirectional ICPT wireless charger for EV:

1. Supported by the non-idealities of the components.

2. Verified with the analysis of waveforms.

For the comparison, a prototype according to the SAE TIR J2954 has been built.

➤ The results present small differences between both approaches, which are assumed to be due to measurement errors.