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Abstract. We present a performance per watt analysis of CUDAlign
4.0, a parallel strategy to obtain the optimal alignment of huge DNA se-
quences in multi-GPU platforms using the exact Smith-Waterman method.
Speed-up factors and energy consumption are monitored on different
stages of the algorithm with the goal of identifying advantageous sce-
narios to maximize acceleration and minimize power consumption. Ex-
perimental results using CUDA on a set of GeForce GTX 980 GPUs
illustrate their capabilities as high-performance and low-power devices,
with a energy cost to be more attractive when increasing the number of
GPUs. Overall, our results demonstrate a good correlation between the
performance attained and the extra energy required, even in scenarios
where multi-GPUs do not show great scalability.
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1 Introduction

The advent of the Human Genome Project has brought to the foreground of
parallel computing a broad spectrum of data intensive biomedical applications
where biology and computer science join as a happy alliance between demanding
software and powerful hardware. Since then, the bioinformatics community gen-
erates computational solutions to support genomic research in many subfields
such as gene structure prediction [5], phylogenetic trees [32], protein docking
[23], and sequence alignment [12], just to mention a few of an extensive list.

Huge volumes of data produced by genotyping technology pose challenges
in our capacity to process and understand data. Ultra high density microarrays
now contain more than 5 million genetic markers, and next generation sequenc-
ing is enabling the search for causal relationship of variation close to the single
nucleotide level. Furthermore, current clinical studies include hundreds of thou-
sands of patients instead of thousands genetically fingerprinted few years ago,
transforming bioinformatics into one of the flagships of the big data era.

In modern times of computing, when data volume pose a computational
challenge, the GPU immediately comes to our minds. CUDA (Compute Unified
Device Architecture) [21] and OpenCL [31] have established the mechanisms
for data intensive general purpose applications to exploit GPUs extraordinary
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power in terms of TFLOPS (Tera Floating-Point Operations Per Second) and
data bandwidth. Being GPUs the natural platform for large-scale bioinformatics,
researchers have already analyzed raw performance and suggest optimizations
for the most popular applications. This work extends the study to energy con-
sumption, an issue of growing interest in the HPC community once GPUs have
recently conquered the green500.org supercomputers list.

Our work focuses on biological sequences alignment in order to find the degree
of similarity between them. Within this context, we may distinguish two basic
approaches: Global alignment, in an attempt to align the entire length of the
sequence when a pair of sequences are very similar in content and size, and local
alignment, where regions of similarity between the two sequences are identified.
Needleman-Wunsch (NW) [20] proposed a method for global comparison based
on dynamic programming (DP), and Smith-Waterman (SW) [30] modified the
NW algorithm to deal with local alignments. Computational requirements for
SW are overwhelming, so researchers either relax them using heuristics as in the
well-know BLAST tool [16], or rely on high performance computing to shorten
the execution time. We have chosen commodity GPUs to explore the latter.

The rest of this paper is organized as follows. Section 2 completes this sec-
tion with some related work. Section 3 describes the problem of comparing two
DNA sequences. Section 4 summarizes our previous studies. Sections 5 and 6
introduce our infrastructure for measuring the experimental numbers, which are
later analyzed in Section 7. Finally, Section 8 draws conclusions of this work.

2 Related Work

SW has become very popular over the last decade to compute (1) the exact
pairwise comparison of DNA/RNA sequences or (2) a protein sequence (query)
to a genomic database involving a bunch of them. Both scenarios have been
parallelized in the literature [8], but fine-grained parallelism applies better to
the first scenario, and therefore fits better into many-core platforms like Intel
Xeon Phis [13], Nvidia GPUs using CUDA [26], and even multi-GPU using
CUDAlign 4.0 [27], which is our departure point to analyze performance, power,
energy and cost along this work.

On the other hand, energy consumption is gaining relevance within sequence
alignment, which promotes methodologies to measure energy in genomic se-
quence comparison tools.

In [4], it is minimized the power consumption of a sequence alignment acceler-
ator using application specific integrated circuit (ASIC) design flow. To decrease
the energy budget, authors reduce clock cycle and scale frequency.

Hasan and Zafar [9] present performance versus power consumption for bioin-
formatics sequence alignment using different field programmable gate arrays
(FPGAs) platforms implementing the SW algorithm as a linear systolic array.

Zou et al. [33] analyze performance and power for SW on FPGA, CPU and
GPU, declaring the FPGA as the overall winner. However, they do not measure
real-time power dynamically, but simplify with a static value for the whole run.
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Moreover, they use models from the first and second Nvidia GPU generations
(GTX 280 and 470), which are, by far, the most inefficient CUDA families as far
as energy consumption is concerned. Our analysis measures watts on physical
wires and using Maxwell GPUs, the fourth generation where the energy budget
has been optimized up to 40 GFLOPS/W, down from 15-17 GFLOPS/W in the
third generation and just 4-6 GFLOPS/W in the previous ones.

3 DNA Sequence Comparison

A DNA sequence is represented by an ordered list of nucleotide bases. DNA
sequences are treated as strings composed of characters of the alphabet σ =
A, T,G,C. To compare two sequences, we place one sequence above the other,
possibly introducing spaces, making clear the correspondence between similar
characters [14]. The result of this placement is an alignment.

Given an alignment between sequences S0 and S1, a score is assigned to
it as follows. For each pair of characters, we associate (a) a punctuation ma,
if both characters are identical (match); or (b) a penalty mi, if the characters
are different (mismatch); or (c) a penalty g, if one of the characters is a space
(gap). The score is the addition of all these values. Figure 1 presents one possible
alignment between two DNA sequences, where ma=+1, mi=1 and g=2.

Fig. 1. Example of alignment and score.

3.1 Smith-Waterman

The SW algorithm [30] is based on dynamic programming (DP), obtaining the
optimal pairwise local alignment in quadratic time and space. It is divided in
two phases: calculate the DP matrix and obtain the alignment (traceback).

Phase 1. This phase receives as input sequences S0 and S1, with sizes |S0| =m
and |S1| =n. The DP matrix is denoted Hm+1,n+1, where Hi,j contains the score
between prefixes S0[1..i] and S1[1..j]. At the beginning, the first row and column
are filled with zeroes. The remaining elements of H are obtained from Eq. 1.

Hi,j = max


Hi−1,j−1 + (ifS0[i] = S1[j]then ma else mi)
Hi,j−1 + g
Hi−1,j + g
0

(1)
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In addition, each cell Hi,j contains information about the cell that was used
to produce the value. The highest value in Hi,j is the optimal score.

Phase 2 (traceback). The second phase of SW obtains the optimal local align-
ment, using the outputs of the first phase. The computation starts from the cell
that has the highest value in H, following the path that produced the optimal
score until the value zero is reached.

Figure 2 presents a DP matrix with score = 5. The arrows indicate the
alignment path when two DNA sequences with sizes m = 12 and n = 8 are
compared, resulting in a 913 DP matrix. In order to compare Megabase sequences
of, say, 60 Million Base Pairs (MBP), a matrix of size 60,000,001 × 60,000,001
(3.6 Peta cells) is calculated.

Fig. 2. DP matrix for sequences S0 and S1, with optimal score = 5. The arrows
represent the optimal alignment.

The original SW algorithm assigns a constant cost g to each gap. However,
gaps tend to occur together rather than individually. For this reason, a higher
penalty is usually associated to the first gap and a lower penalty is given to the
remaining ones (affine-gap model). Gotoh [7] proposed an algorithm based on
SW that implements the affine-gap model by calculating three values for each
cell in the DP matrix: H , E and F, where values E and F keep track of gaps in
each sequence. As in the original SW algorithm, time and space complexities of
the Gotoh algorithm are quadratic.

3.2 Parallel Smith-Waterman

In SW, most of the time is spent calculating the DP matrices and, therefore, is a
candidate process to be parallelized. From Eq. 1, we can see that cellHi,j depends
on three other cells: Hi−1,j , Hi−1,j−1 and Hi,j−1. This kind of dependency is
well suited to be parallelized using the wavefront method [22], where the DP
matrix is calculated by diagonals and all cells on each diagonal can be computed
in parallel.

Figure 3 illustrates the wavefront method. In step 1, only one cell is calculated
in diagonal d1. In step 2, diagonal d2 has two cells, that can be calculated in
parallel. In the further steps, the number of cells that can be calculated in
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parallel increases until it reaches the maximum parallelism in diagonals d5 to d9,
where five cells are calculated in parallel. In diagonals d10 to d12, the parallelism
decreases until only one cell is calculated in diagonal d13. The wavefront strategy
limits the amount of parallelism during the beginning of the calculation (filling
the wavefront) and the end of the computation (emptying the wavefront).

Fig. 3. The wavefront method.

4 CUDAlign implementation on GPUs

GPUs calculate a single SW matrix using all many-cores, but data dependencies
force neighbour cores to communicate in order to exchange border elements. For
Megabase DNA sequences, the SW matrix is several Petabytes long, and so,
very few GPU strategies [11, 26] allow the comparison of Megabase sequences
longer than 10 Million Base Pairs (MBP). SW# [11] is able to use 2 GPUs
in a single Megabase comparison to calculate the Myers-Miller [15] linear space
variant of SW. CUDAlign [26] obtains the alignment of Megabase sequences with
a combined SW and Myers-Miller strategy. When compared to SW#, CUDAlign
presents shorter execution times for huge sequences on a single GPU [11].

Comparing Megabase DNA sequences in multiple GPUs is more challenging.
GPUs are arranged logically in a linear way so that each GPU calculates a subset
of columns of the SW matrix, sending the border column elements to the next
GPU. Asynchronous CPU threads will send/receive data to/from neighbor GPUs
while GPUs keep computing, that way overlapping the required communications
with effective computations whenever feasible.

4.1 CUDAlign versions

CUDAlign was implemented using CUDA, C++ and pthreads. Experimental
results collected in a large GPU cluster using real DNA sequences demonstrate
good scalability for up to 16 GPUs [27]. For example, using the input data set
described in section 5, execution time was reduced from 33 hours and 20 minutes
on a single GPU to 2 hours and 13 minutes on 16 GPUs (14.8x speedup).
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Table 1 summarizes the set of improvements and optimizations performed
on CUDAlign since its inception, and Table 2 describes all stages and phases for
the 4.0 version, the one used along this work.

Table 1. Summary of CUDAlign versions.

Version Major contributions Ref.

1.0 Compares on GPUs sequences of unrestricted size using the affine [24]
gap model of SW. It provides the optimal score and the end
coordinates of the optimal alignment, but not the full alignment.

2.0 Incorporates the Myers-Miller (MM) algorithm to retrieve [25]
the full alignment of two sequences in linear space.

2.1 Improvements on six stages: 1-3 run on GPUs, 4-6 on CPUs. [26]

3.0 Multi-GPU for SW phase 1 to distribute the DP matrix, [29]
and overlap computations with communications to the CPU.

4.0 Multi-GPU for SW phase 2, including Pipeline Traceback (PT) [27]
and Incremental Speculative Traceback (IST) to estimate
the point where optimal alignment will cross border columns.

MASA Multi-platform Architecture for Sequence Aligner, enabling versions [28]
to run on (1) a serial CPU, (2) multicore CPU using OmpsSs,
(3) manycore GPU using CUDA, and (4) Xeon Phi using OpenMP.

Table 2. Summary of CUDAlign 4.0 stages, including the SW phase it belongs to and
the processor where it is executed.

Stage Description Phase Who

1 Obtains the optimal score. 1 GPU

2 Partial traceback. 2 GPU

3 Splitting partitions. 2 GPU

4 Myers-Miller with balanced splitting and orthogonal exec. 2 CPU

5 Obtaining the full alignment. 2 CPU

6 External visualization (optional). 2 CPU

5 Experimental setup

We have conducted an experimental survey on a computer endowed with an Intel
Xeon server and an Nvidia GeForce GTX 980 GPU from Maxwell generation.
See Table 3 for a summary of major features.

For the input data set, we have used real DNA sequences coming from the
Nacional Center for Biotechnology (NCBI) [19] database. Results shown in Table
4 use sequences from assorted chromosomes, whereas Tables 5 and 6 use as input
a pair of sequences from the chromosome 22 comparison between the human
(50.82 MBP - see [18], accession number NC 000022.11) and the chimpanzee
(37.82 MBP - see [17], accession number NC 006489.4).

To execute the required stages on a multi-GPU environment, we performed
two modifications in CUDAlign 4.0: (1) a subpartitioning strategy to fit each
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Table 3. Characterization of the infrastructure used along our experimental analysis.

CPU GPU

Processor Xeon E5-2620 v4 GeForce GTX 980
8 cores @ 2100 MHz 2048 cores @ 1126 MHz

Memory 64 GB DDR4 @ 2400 MHz 4 GB GDDR5 @ 7000 MHz
256 bits, 76.8 GB/s 384 bits, 336 GB/s

Software O.S. Ubuntu 14.04.4 LTS 64 bits CUDA 8.0

partition in texture memory, and (2) writing extra rows in the file system as
marks to be used in later stages to find the crosses with the optimal alignment.
Moreover, we focus our experimental analysis on the first three stages of the SW
algorithm, which are the ones extensively executed on GPUs as Table 2 reflects.

6 Monitoring energy

We have built a system to measure current, voltage and wattage based on a
Beaglebone Black, an open-source hardware [3] combined with the Accelpower
module [6], which has eight INA219 sensors [1]. Inspired by [10], wires taken into
account are two power pins on the PCI-express slot (12 and 3.3 volts) plus six
external 12 volts pins coming from the power supply unit (PSU) in the form of
two supplementary 6-pin connectors (half of the pins used for grounding).

Accelpower uses a modified version of pmlib library [2], a software package
specifically created for monitoring energy. It consists of a server daemon that
collects power data from devices and sends them to the clients, together with a
client library for communication and synchronization with the server.

Fig. 4. Wires, slots, cables and connectors for measuring energy on GPUs.

The methodology for measuring energy begins with a start-up of the server
daemon. Then, the source code of the application where the energy wants to be
measured has to be modified to (1) declare pmlib variables, (2) clear and set the
wires which are connected to the server, (3) create a counter and (4) start it.
Once the code is over, we (5) stop the counter, (6) get the data, (7) save them
to a .csv file, and (8) finalize the counter.
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Table 4. Power, execution times and energy consumption on four GPUs for different
alignment sequences.

Sequence Stage 1 Stage 2 Stage 3
Average power (watts per GPU)

chr22 101.11 W 116.26 W 77.27 W
chr21 102.11 W 116.47 W 78.89 W
47M 104.37 W 117.12 W 76.33 W
chrY 103.25 W 119.63 W 0.00 W

Execution time (seconds) Total time
chr22 11161.92 s 185.20 s 14.25 s 11361.38 s
chr21 9687.36 s 61.49 s 11.03 s 9759.89 s
47M 6694.95 s 88.25 s 9.05 s 6792.26 s
chrY 6798.12 s 3.99 s 0.00 s 6802.11 s

Energy consumption (kilojules per GPU) Total energy Total cost(∗)

chr22 1128.63 kJ 21.53 kJ 1.10 kJ 4x 1151.27 kJ 0.1660 e
chr21 989.26 kJ 7.16 kJ 0.87 kJ 4x 997.29 kJ 0.1440 e
47M 698.82 kJ 10.34 kJ 0.69 kJ 4x 709.85 kJ 0.1024 e
chrY 701.94 kJ 0.48 kJ 0.00 kJ 4x 702.42 kJ 0.1012 e
(∗)

Energy costs are shown for all four GPUs and on an average fare of 0.13 e/kWh.

7 Experimental results

We start showing execution times and energy spent by four different sequences
on a multi-GPU environment composed of four GeForce GTX 980 GPUs. Those
sequences require around 5-6 hours on a single GPU, and the time is reduced
to less than a half using 4 GPUs. It is not a great scalability, but we already
anticipated the existence of dependencies among GPUs, thus hurting parallelism.

Table 4 includes the numbers coming from this initial experiment. We can see
that stage 1 predominates for the execution time, and that wattage keeps stable
around 100 watts for all sequences. Power goes down to less than 80 watts in the
third stage, but its weight is low (negligible for the case of the chrY sequence,
where stage 2 also takes little time).

Once we have seen the behaviour of all these sequences, we have selected just
chr22 as the more stable to characterize SW from now on.

Table 5 shows the results for chr22 when SW is executed on a multi-GPU
environment. As expected, power consumed by each GPU remains stable regard-
less of the number of GPUs active during the parallelization process. Execution
times keep showing the already announced scalability on stage 1. Those times
are somehow unstable for stage 2, and finally reach good scalability on stage 3.
Because GPUs keep computing on stage 1 most of the time, the overall energy
cost is heavily influenced by this stage. Basically, entering multi-GPU from a
single GPU execution doubles the energy cost, and then remains stable for 3
and 4 GPUs, where execution times are greatly reduces. That way, the perfor-
mance per watt ratio is disappointing when moving from single to twin GPUs,
but then evolves nicely for 3 and 4 GPUs.



Smith-Waterman in Multi-GPUs 9

Table 5. Power, execution times and energy consumption on different number of GPUs
for the chr22 alignment sequence.

No. GPUs Stage 1 Stage 2 Stage 3
Average power (watts per GPU)

4 101.11 W 116.26 W 77.27 W
3 101.53 W 108.16 W 78.79 W
2 100.30 W 114.68 W 76.74 W
1 102.95 W 114.44 W 81.27 W

Execution time (seconds) Total time
4 11161.92 s 185.20 s 14.25 s 11361.38 s
3 14719.32 s 253.72 s 17.70 s 14990.76 s
2 22080.04 s 159.77 s 23.17 s 22262.99 s
1 22302.24 s 291.50 s 46.65 s 22640.40 s

Energy consumption (kilojules per GPU) Total energy Total cost(∗)

4 1128.63 kJ 21.53 kJ 1.10 kJ 4x 1151.27 kJ 0.1660 e
3 1494.60 kJ 27.45 kJ 1.40 kJ 3x 1523.44 kJ 0.1650 e
2 2214.77 kJ 18.32 kJ 1.78 kJ 2x 2234.88 kJ 0.1614 e
1 2296.22 kJ 33.36 kJ 3.79 kJ 2333.37 kJ 0.0842 e

(∗)
Energy costs are shown for all GPUs involved and on an average fare of 0.13 e/kWh.

Table 6 summarizes gains (in time reduction) and losses (as extra energy
costs) on all scenarios of our multi-GPU execution for the chr22 sequence com-
parison. Stage 3 is the more rewarding one with the highest time savings and
the lowest energy penalties, but unfortunately, SW keeps computing there just a
marginal period of time. Stage 2 sets records in energy costs, and stage 1 keeps on
an intermediate position, which is what finally characterizes the whole execution
given its heavy workload. The sweetest scenario is stage 2 using 2 GPUs, where
we are able to cut time in half and spend less energy overall. In the opposite
side, the worst case goes to stage 1 using 2 GPUs, where time is reduced just one
percent to almost double the energy spent. Finally, we have a solid conclusion on
four GPUs, with time being reduced 50% at the expense of doubling the energy
budget. Figure 5 provides details about the dynamic behaviour over time for
each of the stages when running the chr22 sequence comparison on four GPUs.

Table 6. Savings (in execution time) and penalties (in energy cost) when accelerating
SW chr22 sequence comparison on 4, 3 and 2 GPUs versus a baseline on a single GPU.

Stage 1 Stage 2 Stage 3 Total

No. Savings Penalty Savings Penalty Savings Penalty Savings Penalty
GPUs (time) (energy) (time) (energy) (time) (energy) (time) (energy)

4 49.96% 96.60% 36.47% 158.15% 69.46% 6.09% 49.82% 97.35%

3 34.01% 95.26% 12.97% 146.85% 62.06% 0.81% 33.79% 95.86%

2 1.00% 92.90% 45.20% 9.83% 50.34% -6.07% 1.67% 91.55%
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Fig. 5. Power consumption in four GPUs for stages 1, 2 and 3 of the chr22 sequence
comparison. The last chart shows the global results involving all of them.

8 Conclusions

Along this paper, we have studied GPU acceleration and power consumption
on a multi-GPU environment for the Smith-Waterman method to compute, via
CUDAlign 4.0, the biological sequence alignment for a set of real DNA sequences
coming from human and chimpanzee homologous chromosomes retrieved from
the National Center for Biotechnology Information (NCBI).

CUDAlign 4.0 comprises six stages, with the first three accelerated using
GPUs. On a stage by stage analysis, the first one is more demanding and takes
the bulk of the computational time, with data dependencies sometimes disabling
parallelism and affecting performance. On the other hand, power consumption
was kept more stable across executions of different alignment sequences, though
it suffered deviations of up to 30% across different stages.

Within a multi-GPU platform, average power remained stable and execution
times were more promising on a higher number of GPUs, with a total energy
cost which was more attractive on those last executions. Overall, we find a good
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correlation between higher performance and additional energy required, even in
those scenarios where multi-GPUs do not exhibit good scalability.

Finally, we expect GPUs to increase their role as high performance and low
power devices for biomedical applications in future GPU generations, particu-
larly after the introduction in late 2016 of the 3D memory within Pascal models.
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