
Towards the predictive analysis of cloud systems
with e-Motions

Patŕıcia de Oliveira, Antonio Moreno-Delgado,
Francisco Durán, and Ernesto Pimentel

University of Málaga, Spain
{patricia,amoreno,duran,ernesto}@lcc.uma.es

Abstract. Current methods for the predictive analysis of software sys-
tems are not directly applicable on self-adaptive systems as cloud sys-
tems, mainly due to their complexity and dynamism. To tackle the diffi-
culties to handle the dynamic changes in the systems and their environ-
ments, we propose using graph transformation to define an adaptive com-
ponent model and analysis tools for it, what allows us to carry on such
analyses on dynamic architectures. Specifically, we use the e-Motions sys-
tem to define the Palladio component model, and simulation-based anal-
ysis tools for it. Adaptation mechanisms are then specified as generic
adaptation rules. This setting will allow us to study different mech-
anisms for the management of dynamic systems and their adaptation
mechanisms, and different QoS metrics to be considered in a dynamic
environment.

Keywords: Cloud Systems; Predictive analysis; Graph-Transformation
Systems

1 Introduction

Performance analysis is becoming one of the most important processes for the
development of information systems. In fact, having the capability of predicting
problems related with performance constraints, scalability issues or reliability
risks when the system is being modeled is highly appreciated. This kind of pre-
dictive information about Quality of Service (QoS) metrics allows the adoption
of decisions during the design phase, even before the system has been imple-
mented or deployed, so mitigating the impact of bad designs. In order to get
precise analysis of a system, we need an appropriate model both of the applica-
tion itself and of the context where it is going to be deployed. The more accurate
the model is, the more precise the prediction. The same techniques may also help
in the calibration of quality parameters, providing support to estimate optimal
values for them.

On the other hand, Cloud Computing [1] has experienced a high growth in
the last few years, and the development of cloud applications is now presenting
new challenges. In this context, the Cloud can be considered as an environ-
ment providing different and heterogeneous services which can be combined and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/132743232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


reused to build new applications. This opens up countless possibilities, but also
includes a very high level of uncertainty. In fact, the intrinsic dynamism of the
Cloud has immediate consequences on the QoS of these applications. The phys-
ical infrastructure (computational resources and network capabilities) on which
applications are executed directly influence their non-functional requirements,
and therefore it also influence on their QoS.

Currently, cloud providers offer their services guaranteeing certain QoS levels
by means of Service Level Agreements (SLAs), which can be seen as a unilateral
contract from the provider to the customer. As a consequence, cloud users typi-
cally choose the most popular provider, even when it is not the most adequate
alternative for their applications. Thus, having the possibility of carrying out
a rigorous analysis and predicting, at design time, the QoS offered by different
providers could be crucial to make a convenient selection among the wide exist-
ing vendors offer. Moreover, it may lead to a radical change in the mechanisms
for cloud applications management, with effective options to improve the QoS
of the applications while reducing costs. Thus, predictive analysis may provide
information about the behaviour of an application even before being deployed on
a given environment, and this knowledge may be essential to achieve an actual
and efficient deployment, and a rapid adaptation to workload changes [6, 15].

A number of different approaches have been used to make this kind of analy-
sis, including techniques based on stochastic networks, Petri nets and statistical
methods. Among these, statistical methods offer the possibility of making per-
formance estimations at (relatively) low cost for complex systems, thanks to the
expressiveness of the specification languages, and, although they may exhibit
certain imprecision, the margins are acceptable. Unfortunately, current predic-
tive analysis tools do not deal in a satisfactory way with dynamic architectures,
which characterize cloud platforms. This is the case of Palladio Architecture
Simulator [11], a predictive software analysis which predicts QoS properties (per-
formance and reliability) from software architecture models, and widely used in
both industry and academia. Palladio only supports the modeling of static ar-
chitectures, thus providing no support for systems which dynamically adapt to
context changes, which is the case in cloud scenarios.

In order to overcome the limitations previously mentioned of current perfor-
mance analysis tools, we propose to extend the approach presented in [14], where
authors use the e-Motions [16] system to implement the Palladio behavior. This
specification is executable and introduces the possibility of adding new features
and capabilities to Palladio through the definition of new e-Motions rules repre-
senting the dynamic behaviour of self-adaptation mechanisms, and in particular,
cloud features related with elasticity (scalability, QoS, and cost). In this way, our
approach will allow us a predictive analysis based on simulations for dynamic
systems, and in particular for applications deployed on cloud platforms.

The prediction of QoS metrics is one of the most relevant issues when gath-
ering knowledge of applications and their environments, compared to other solu-
tions presented in the literature [6]. However, existing prediction methods do not
consider specific cloud metrics and, therefore, they are not capable of managing



other particular cloud features, such as self-provisioning on demand, measured
usage, network access, resource pooling, and elasticity. Properties related to scal-
ability, elasticity and efficiency are essential to achieve a dynamic adaptation in
a cloud scenario, specifically for resource allocation and pay-per-use. Thus, we
need to take into account these new metrics [3], and also a taxonomy of different
sources of uncertainty present in the models of self-adaptive systems and the
different ways of managing them [15].

The proposed approach is based on the definition of a number of transforma-
tion rules, modeling different mechanisms of cloud policies for elasticity, where
different QoS metrics are considered in a dynamic environment. In particular,
we focus on two scalability strategies usual in cloud environments, such as in-
creasing CPU replicas (resource provisioning) and load balancing (reacting to
workloads).

The remainder of this paper is structured as follows. Section 2 provides some
background on the Palladio and e-Motions frameworks, also introducing a mo-
tivating example to illustrate our approach. Section 3 presents the adaptation
rules defined in e-Motions and shows how they are woven with the Palladio sys-
tem to enrich its capabilities to analyse dynamic systems. We wrap up with some
conclusions and future work in Section 5.

2 Palladio and its e-Motions Specification

This work is based on two Model-Driven Engineering (MDE) frameworks, namely
Palladio and e-Motions. We use Palladio [11] for the modelling and performance
analysis of component-based systems, and e-Motions [16] to specify Palladio’s
operational semantics and the adaptation of Palladio systems over time, what
allows us to simulate and analyze Palladio-like adaptive systems. In this section,
we provide some background on both frameworks to ground the discussion that
will follow. We introduce our case study to illustrate the main ideas of Palladio,
and illustrate the use of e-Motions on its definition of Palladio.

2.1 Palladio Architecture Simulator

Palladio [11] is a mature modeling language for modeling component-based
and service-oriented software systems, with a focus on the prediction of extra-
functional properties of systems based on their constituting components. Pal-
ladio relies on model-driven software development techniques for its definition
and uses automated transformations into different prediction models or simu-
lation systems. The DSL used by Palladio is provided by its metamodel, the
Palladio Component Model (PCM) [4]. The semantics of the models, and of
the non-functional properties to be analysed, is encapsulated in the respective
transformations.

Palladio models are composed of four different artefacts, provided by cor-
responding developer roles involved in a CBSE development process [5]: Com-
ponent specifications (by component developers), assembly model (by software



Fig. 1. Components repository

(a) Load balancer (b) Server node

Fig. 2. Components’ SEFFs

architects), allocation model (by system developers), and usage model (by busi-
ness domain experts). We illustrate these artefacts on a very simple case study,
originally published in [2], that specifies a load balancer.

Component specifications. Component developers specify and implement
parametric descriptions of components and their behavior. Fig. 1 shows the
Palladio Component repository for our example, with components LoadBalancer
and ApplicationServer, and their dependencies. In it we can observe that there
is an interface implemented by two different components. The first one represents
the load balancer and the second one the component itself. Note that there
are two Requires relations between LoadBalancer and IApplicationServer,
which means that in the system model, the node containing such component
(the front-end node) has to be connected to two nodes.



Fig. 3. Assembly model

Fig. 4. Allocation Model

Components’ services are described with service effect specifications (SEFF),
which abstractly model the externally visible behaviour of a service with resource
demands and calls to required services. Fig. 2 shows the SEFFs of these com-
ponents. Fig. 2(a) shows that the control flow in the LoadBalancer component
may branch into one of two flows, each of them with an external call action to a
different node. Each branch can be associated with a particular branch probabil-
ity to indicate the likelihood of a particular branch being taken. This is the kind
of information required to perform execution-time analysis on the component’s
behaviour as is standard in software performance engineering (see, e.g., [18]).

Assembly model. Software architects assemble components from the repos-
itory to build applications. Fig. 3 shows how the components LoadBalancer and
ApplicatonServer are composed. The biggest square surrounding the boxes
represents the entire environment. For each provides relation in the repository
model, a provided role is created for the container containing such component.

Allocation model. System deployers model the resource environment and
the allocation of components from the assembly model to different resources of
the resource environment. Fig. 4 shows the allocation model for our case study,
where we can see how each of the components is allocated in a different node.



Fig. 5. Usage Model

Fig. 6. Response time analysis by Palladio

Usage model. Domain experts specify a systems usage in terms of workload
(i.e., the number of concurrent users), user behaviour (i.e., the control flow of user
system calls), and parameters (i.e., abstract characterisations of the parameter
instances users utilise). Given the usage model definition in Fig. 5, tasks will
arrive following an exponential probability distribution with rate parameter 3.9
time units (Exp(3.9)), which means that tasks will arrive every ≈ 0.256 time
units in average.

The analysis of this system with the Palladio Bench produces the graph in
Fig. 6, producing a mean response time 4.0197 for 100 observations. Notice that
with the workload used the system get overloaded, producing increasingly bigger
response times as time passes. In the specification of the Palladio models, the
parameters specified are fixed, and cannot be changed along executions. For
instance, the arrival rate for work arrivals has been established in Exp(3.9), the
demand of CPU for the processing of the internal action in the servers is set to
300, and the number of CPU replicas in each server is 1. With our proposal, these
parameters can be changed, as the architecture or allocation of components, at
run time.



2.2 The e-Motions System

e-Motions [16] is a graphical framework that supports the specification, simula-
tion, and formal analysis of real-time systems. It provides a way to graphically
specify the dynamic behaviour of DSLs (Domain-Specific Language) using their
concrete syntax, making this task very intuitive. The abstract syntax of a DSL
is specified as an Ecore metamodel, which defines all relevant concepts and their
relations in the language. Its concrete syntax is given by a GCS (Graphical Con-
crete Syntax) model, which attaches an image to each language concept. Then,
its behaviour is specified with (graphical) in-place model transformations.

e-Motions provides a model of time, supporting features like duration, peri-
odicity, etc., and mechanisms to state action properties. From a DSL definition
e-Motions generates an executable Maude [7] specification which can be used for
simulation and analysis.

The in-place model transformations used to specify the behavior of systems
are defined by rules, each of which represents a possible action of the system.
These rules are of the form [NAC]∗ × LHS→ RHS, where LHS (left-hand side),
NAC (negative application conditions) and RHS (right-hand side) are model
patterns that represent certain (sub-)states of the system. The LHS and NAC
patterns express the conditions for the rule to be applied, whereas the RHS
represents the effect of the corresponding action if its conditions are satisfied.
Thus, the action described in RHS can be applied, i.e., a rule can be triggered, if
a match of the LHS is found in the model and none of its NAC patterns occurs.
A LHS may also have positive conditions, which are expressed, as any expression
in the RHS, using OCL (Object Constraint Language). If several matches are
found, one of them is non-deterministically chosen and applied, giving place to
a new model where the matching objects are substituted by the appropriate
instantiation of its RHS pattern. The transformation of the model proceeds by
applying the rules on sub-models of it in a non-deterministic order, until no
further transformation rule is applicable.

In e-Motions, a DSL is defined by providing a metamodel, which defines its
syntax, and a set of graph transformation rules, which define its behavior. These
DSL definitions can then be used for simulation and analysis. For instance, we
can perform reachability analysis, model checking, and statistical model checking
of the DSLs defined using e-Motions (see [17] and [8]).

Palladio is a DSL, and has been specified in [14] using the visual facilities of
the e-Motions system [16]. As for any DSL, the e-Motions definition of Palladio
includes its abstract syntax (the PCM), its concrete syntax, and its behavior. Its
concrete syntax is provided in e-Motions by a GCS model in which each concept
in the abstract syntax being defined is linked to an image. These images are
used to graphically represent Palladio models in e-Motions, which uses the same
images that the PCM Bench to represent these concepts. Its behavior is defined
by graph transformation rules, thus becoming explicit at a very high level of
abstraction.

The operational semantics of Palladio, i.e., its behavior, is given as a token-
based execution model, where each work that enters the system is modelled



Fig. 7. Internal Action SEFF rule

as a token that moves around the different services of the system, and inside
each service description, around the different tasks (start, stop, branch, loop,
...) in its SEFF descriptions. Each of the actions that may occur in the sys-
tem are then specified by e-Motions transformation rules. For example, Fig. 7
shows the e-Motions rule that specifies the execution of an InternalAction,
like the one shown in Fig. 2(b). This rule represents a generic execution of an
internal activity by a component service, possibly using some resources, like
HDD or CPU. In Palladio, these executions present a high-level of abstrac-
tion, and the resource demands are expressed as stochastic expressions. In the
e-Motions rule, the LHS indicates if there is an internal action not completed
in the system, the RHS will execute in time rTime. The duration of this action
depends on the corresponding Palladio elements, specifically on the Parameter
Resources Demanded (PRD) and on the Processing Resource Specified (PRS).
For example, a PRS may have an initial specification of 300 work units per
second (PRS.processingRate) and 1 CPU replica (PRS.numberOfReplicas).
Tokens are served following an FCFS strategy by using a queue associated to
each resource type. Only the first PRS.numberOfReplicas tokens in the queue
PRT.queue get to be executed. Once an internal action is executed, its token
is removed from the queue (PRT.queue->excluding(t)), and marked as com-
pleted, being then ‘moved’ to the following task in the service description.

The behaviour of Palladio’s core features has been specified by some 30
time-aware in-place transformation rules, corresponding to the possible model
changes. Once the whole DSL has been defined, and given a model as initial state,
it may be simulated by applying the rules describing its behaviour. However,
this model does not collect information on non-functional properties (NFPs),



and therefore is not ready for performance analysis. For this, an observer mech-
anism [19] is used to measure the non-functional properties of each of the com-
ponents in the system. Since the PCM is used as metamodel in the e-Motions
definition of Palladio, models developed using the Palladio Bench can be directly
loaded into the e-Motions tool. The complete e-Motions definition of the Palladio
DSL is available at http://atenea.lcc.uma.es/e-Motions.

3 Adaptive Palladio Systems with e-Motions

The e-Motions specification of the Palladio DSL is an executable model, with
which we can experiment and develop new features. Specifically, we have mod-
elled different types of adaptation mechanisms as transformation rules, repre-
senting possible changes in the behavior of systems and their environments.
Having adaptation rules as part of the e-Motions specification of Palladio and
the system under analysis, enables the predictive analysis of dynamic systems,
and specifically Cloud systems.

The different adaptation mechanisms available in cloud systems are classified
in [13]. Some adaptation dimensions are identified for cloud systems, and they
correspond to the resources that will be adapted, the adaptation objectives, the
adaptation techniques used, whether the adaptation is reactive or proactive, the
architecture of the adaptation engine, and the managed infrastructure. Specif-
ically, they consider three types of resources: Compute (CPU, CPU cache and
primary storage memory); Storage (non-volatile secondary storage memory); and
Network (network cards and other infrastructure that allow components to con-
nect into servers). These resources may be considered both for real and virtual
machines, and be continuously monitored to provide information to be taken
into account in the adaptation actions. Indeed, the workloads information and
the use of resources lead to decisions to increase or decrease their allocation.

Since the Palladio models the e-Motions tool operates on represent entire
system states, we can specify system adaptations in exactly the same way we
model their evolution. To illustrate this idea, we will show adaptation rules for
two of the above adaptation mechanisms. Specifically, we consider the adaptation
rules for CPU scale up and adjustment of parameters at the infrastructure level.
Some of these adaptation mechanisms may dynamically become in conflict. For
example, a failure in the satisfaction of a response time requirement may be
handled by scaling up or scaling down, what requires some way of managing
the adaptation strategies. Given our approach, managing adaptation strategies
means managing the e-Motions adaptation rules. There are several alternatives
for this, going from a distributed control, with intelligence in each of the rules, to
a centralized approach, in which a central controller gathers all the information
on the environment and decides how to proceed. To simplify our presentation,
and specifically for our case study, we assume that rules are specified so that
one adaptation mechanism is attempted after another. More precisely, we use a
token element with the name of the active adaptation mechanism, which can be
either CPU, LB, or noAdapt.



Fig. 8. Increase CPU Replicas Rule

Figs. 8 and 9 show the e-Motions rules modelling these two adaptation mech-
anisms. In these rules, three elements control the application of an adaptation
action: a threshold for the average response time of the system (rT.rTime),
a batch size used as the minimum time interval between adaptation actions
(tBS.batchSize), and the token that indicates the adaptation rule to be trig-
gered (token.name). These parameters are configurable and can be established
by the designer according to the system requirements.

Fig. 8 shows the IncreaseCPUReplicas rule that models the scale up adapta-
tion mechanism by increasing the number of CPU replicas in a node (rContainer).
If the adaptation mechanism is set to CPU (token.name = ‘CPU’), the batch
countdown reaches zero (tBS.countDown = 0.0), and the average response time
of the last batch-size elements is greater than the threshold (rt.rTime > 0.6),
then the number of replicas is increased. Note that if the number of replicas
reaches its maximum value (5), then the adaptation mechanism is set to LB.

Fig. 9 shows the rule that changes the probability branch of a LoadBalancer

component (see Fig. 2(a)). Again, if the adaptation mechanism is set to LB, the
batch countdown reaches zero, and the average response time of the last batch
size elements is greater than the threshold, then the probabilities assigned to the
branches are changed.

The adaptation mechanisms implemented by these rules are very simple, but
show the potential of the approach. The average response time for execution
of the Palladio example presented, under ideal conditions, is 0, 3 time units.
We define the average system response time threshold is the rT.rTime < 0, 6.
The time interval between adaptation actions defined was tBS.batchSize = 10
and, to establish adaptation control, we understand that increasing the number



Fig. 9. LoadBalancer Rule

of CPU replicas is less costly than a load balancer adaptation. Thus, our sys-
tem was modeled to trigger a CPU adapted as a first alternative to unwanted
system changes, i.e, the system starts with a token.name = ‘CPU’. With this
parameters, the results shown by the system with and without the adaptation
mechanism on are depicted in Fig. 10. The applications of the adaptation rules
are represented by the vertical lines. The IncreaseCPUReplicas rule is applied
by the first time at time 1.2. After that, it is applied again at times 11.2 and 21.2,
when the batch countdowns reach 0. While without the adaptation mechanism
the response times shown by the system grows very rapidly, with the adaptation
mechanism its behavior gets stable quite soon.

4 Related Work

In this section, we discuss other approaches that use predictive strategies, most
of them for performance prediction at runtime or at design time.

Huber et al. propose in [12] a DSL to describe the behavior of self-adaptive
systems based on strategies, tactics and actions. This work is part of the Descartes
project, which uses Palladio PCM for their design time phases. However, they
focus on runtime performance analysis, not in predictive analysis of applications
at design time.

SimuLizar [2] is an extension of Palladio for the performance analysis of self-
adaptive systems at design time. However, the simulation scope is limited to only
a set of rules that are triggered between the static environment models, which
prevents from testing all possible reachable states of the systems.

D-Klaper [10] is a tool for model-driven performance engineering which can
be applied to self-adaptive systems. It uses an intermediate language to provide
software design models, which can then be analyzed. However, the D-Klaper lan-



Fig. 10. Internal Action SEFF rule

guage does not support the modeling of adaptation rules, nor the transformation
of input models.

MEDEA [9] is an approach that proposes the performance prediction at the
beginning of its life cycle for this, modeled the workloads with the resource
consumption, capturing the CPU, memory and disks, and this is used to generate
executable code for real hardware and middleware deployments. The results of
the executions are presented to the expert through specific context views that
indicate whether the design meets the performance requirements.

5 Conclusions and Future Work

We have presented two adaptations mechanisms by providing appropriate adap-
tation rules as graph transformation rules. We used a simple case study to apply
our adaptation rules developed in e-Motions to change the amount of resources
used during the operation of the system depending on its state. By using a pre-
liminary adaptation controller distributed in the adaptation rules, we were able
to perform simulation-based predictive analysis of adaptive systems.

For our case study we only observed the response time of the system, but
we were able to operate simulations and perform predictive analysis taking into
account different adaptation mechanisms, showing the feasibility of the approach.
So far, we have been able to model the dynamic adaptation of the system in



accordance to its continuous monitoring by creating rules for scale up CPU and
load balancing. As future work we intend to model different workflows, variable
usage, the scale in/out nodes, the scale up/down resources capacity (specifically
CPU), power on/off inactive resources, and commute some operations of the
application.

Building on the knowledge we have gathered so far, we will specify other
mechanisms of adaptation available for cloud systems in more ambitious case
studies. We will consider other QoS metrics in addition to response time, includ-
ing not only performance metrics, such as throughput or resource usage, but also
others related to feasibility, costs, and security.

To perform the analysis of a dynamic system, it is necessary to consider their
capacity to process and manage different workflows, react through variations of
the usage, and to carry on the necessary changes when components have assigned
different workloads. Following standard techniques, we will model workloads
based on real uses of systems, and will use this information to perform our
simulations.

We will evaluate our proposal modeling real applications running in real
cloud environments, and will verify that the results produced by our predictive
analysis match the actual behavior of the real system executed in the cloud.

With this work, we try to offer the techniques and tools to allow the modeling
of self-adaptive systems, and specifically cloud infrastructure, and their analysis,
so that a better estimation of the satisfaction of the requirements of systems can
be carried on, supporting a better selection of resources and a better calibration
of the operational parameters.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (Apr 2010)

2. Becker, M., Becker, S., Meyer, J.: Simulizar: Design-time modeling and perfor-
mance analysis of self-adaptive systems. Software Engineering 213, 71–84 (2013)

3. Becker, M., Lehrig, S., Becker, S.: Systematically deriving quality metrics for cloud
computing systems. In: Proceedings of the 6th ACM/SPEC International Confer-
ence on Performance Engineering. pp. 169–174. ACM (2015)

4. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the Palladio component model. In: Proc. 6th Int’l Workshop on Software and
Performance (WOSP’07). ACM (2007)

5. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3 – 22
(2009)

6. Chinneck, J., Litoiu, M., Woodside, M.: Real-time multi-cloud management needs
application awareness. In: Proceedings of the 5th ACM/SPEC International Con-
ference on Performance Engineering. pp. 293–296. ICPE ’14, ACM (2014)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)



8. Durán, F., Moreno-Delgado, A., Álvarez-Palomo, J.M.: Statistical model check-
ing of e-Motions domain-specific modeling languages. In: Stevens, P., Wasowski,
A. (eds.) 19th International Conference Fundamental Approaches to Software En-
gineering (FASE). Lecture Notes in Computer Science, vol. 9633, pp. 305–322.
Springer (2016)

9. Falkner, K., Szabo, C., Chiprianov, V.: Model-driven performance prediction of
systems of systems. In: Proceedings of the ACM/IEEE 19th International Con-
ference on Model Driven Engineering Languages and Systems. pp. 44–44. ACM
(2016)

10. Grassi, V., Mirandola, R., Randazzo, E.: Model-driven assessment of QoS-aware
self-adaptation. In: Software Engineering for Self-Adaptive Systems, pp. 201–222.
Springer (2009)

11. Happe, J., Koziolek, H., Reussner, R.: Facilitating performance predictions using
software components. IEEE Software 28(3), 27–33 (2011)

12. Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., Kounev, S.: S/t/a: Meta-
modeling run-time adaptation in component-based system architectures. In: e-
Business Engineering (ICEBE), 2012 IEEE Ninth International Conference on.
pp. 70–77. IEEE (2012)

13. Hummaida, A.R., Paton, N.W., Sakellariou, R.: Adaptation in cloud resource con-
figuration: a survey. Journal of Cloud Computing 5(1), 1–16 (2016)

14. Moreno-Delgado, A., Durán, F., Zschaler, S., Troya, J.: Modular DSLs for flexible
analysis: An e-Motions reimplementation of Palladio. In: European Conference on
Modelling Foundations and Applications (ECMFA). pp. 132–147. Springer (2014)

15. Pérez-Palaćın, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: A taxonomy and an example of availability evaluation. In: Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering. pp.
3–14. ICPE ’14, ACM (2014)

16. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-
dependent behavior of DSLs. In: 2009 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). pp. 51–55. IEEE (2009)

17. Rivera, J.E., Durán, F., Vallecillo, A.: Formal specification and analysis of domain
specific models using Maude. Simulation 85(11-12), 778–792 (2009)

18. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Object-Technology Series, Addison-Wesley (2002)

19. Troya, J., Vallecillo, A., Durán, F., Zschaler, S.: Model-driven performance analysis
of rule-based domain specific visual models. Information & Software Technology
55(1), 88–110 (2013)


