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Esteban Pérez-Wohlfeil, Oscar Torreno, and Oswaldo Trelles(B)

Department of Computer Architecture, University of Malaga,
Boulevard Louis Pasteur 35, Malaga, Spain

ortrelles@uma.es

Abstract. Traditional comparisons between metagenomes are often
performed using reference databases as intermediary templates from
which to obtain distance metrics. However, in order to fully exploit the
potential of the information contained within metagenomes, it becomes
of interest to remove any intermediate agent that is prone to introduce
errors or biased results. In this work, we perform an analysis over the
state of the art methods and deduce that it is necessary to employ fine-
grained methods in order to assess similarity between metagenomes. In
addition, we propose our developed method for accurate and fast match-
ing of reads.
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1 Introduction

New DNA acquisition methods have lowered sequencing costs up to a point
where genomic research is producing an exponential growth in the number of
sequenced samples, specially in the field of metagenomics. A metagenome is
defined as an uncultured sample directly recovered from its original environ-
ment. Traditional metagenomic analysis comprises the comparison of one or
multiple metagenomic samples against a reference database in order to find out
the genomic composition, and to perform further analyses such as functional
annotation. However, comparisons performed with a reference database do not
fully exploit the data contained in metagenomes (e.g. species that are unknown
or highly evolved that do not exactly correspond to those contained) and can
lead to errors. For instance, reads belonging to samples that are not present in
the reference database will most likely be aligned to their closest representatives.
Furthermore, the results of the metagenomic comparison will probably change
if the reference database is changed. Thus, the scenario of a direct comparison
between metagenomes is gaining interest in order to produce results that are not
biased by reference databases.
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2 Background

Current methods developed in the field of metagenome-metagenome comparison
are mostly based on analyzing the k-mer diversity of the samples (e.g. Com-
pareads [1] or the more recent SIMKA [2]). Alignment-free methods have been
reviewed several times (e.g. [3,4]) over the last decades, showing a persistent
improvement in the characterization of distributions and handling of random
matches. In this line, a variety of statistics have been proposed to compare
genomic communities, such as the D2 statistic [5] or the Jaccard index [6]. In
particular, most of the metagenomic comparison software use a variant –if not
directly– of the Jaccard index (e.g. MASH [7] or SIMKA, along with other eco-
logical distances). This index accounts for the number of shared k-mers between
samples divided by the total number of different k-mers.

As shown in [8], analyses based on alignment-free methods can yield fairly
accurate estimations of the similarity between samples. While such estimations
are mostly used to perform classification of species, they do not serve to ensure
relatedness of the reads that compose the metagenomes. In this line, COM-
MET [9] computes the number of shared reads (instead of k-mers) to produce
a read-level similarity. However, the results of COMMET are very sensitive to
the used parameters, and still do not show insight on the true correspondence
between reads. Figure 1 shows an example where an incorrect classification of
reads takes place due to the lack of inter alignments between shared k-mers. On
the other hand, methods based on ungapped alignments such as BOWTIE [10]
can not model evolutionary events such as insertions or deletions, which com-
prise a recurrent scenario in metagenomic studies. Typical gapped alignment
approaches (e.g. BLAST [11]) often require large execution times and are not
specifically designed to align reads to reads.

In this work, we show that the current software approaches for metagenomes
comparison are coarse-grained, and that an exhaustive, gapped and fast align-
ment is required to improve both the assessment of similarity in metagenomes
and the execution times.

3 Methods

The proposed method “IMSAME” (Incremental Multi Staged Alignment of
MEtagenomes) performs an incremental alignment procedure, illustrated as
follows:

1. A hash table of 12-mers is computed for the reference metagenome. The
k-mer size is fixed at 12 nucleotides for three reasons: (a) providing sensitivity
while retaining robustness [12]; (b) enabling the use of the algorithm without
needing to parameterize the k-mer size, which often leads to strongly different
results when changed; and (c) avoid the loss of candidate gapped alignments
due to seed size to maximize results. In particular, the imposition of a fixed
k-mer size avoids including parameters that are not intrinsically related to
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the problem (i.e. similarity between samples) that is being solved. Thus, 12
was chosen as a fixed, highly-sensitive but still robust k-mer size.

2. After the hash table for the reference metagenome is computed, the query
metagenome is then loaded and distributed to n threads. The algorithm is
capable of working with any number of threads, from 1 to as many as the
system allows to, thus enabling a massively parallel computation and large
reduction of execution times compared to traditional software.

3. Each thread follows a multi-staged alignment step to compute gapped align-
ments:
(a) Firstly, the matching 12-mer words between query and reference (hits)

are computed.
(b) A fast, first-approach ungapped alignment is performed for every hit. This

is performed by linearly extending the hit in both forward and backward
directions and keeping the starting and ending positions that yield the
highest score. In this sense, the ungapped alignment continues until a
negative score is reached, but the highest one is reported as the final
alignment. Every ungapped alignment with an expected value less than
the given threshold (typically, near zero, being default 10−5) is considered
as candidate for an exhaustive gapped alignment.

(c) If such ungapped alignment exists, then the gapped alignment is com-
puted using the Needleman-Wunsch global alignment algorithm between
the reads that share the particular alignment. To speed up the Needleman-
Wunsch algorithm computation time, a heuristic approach is used to
enable gap insertion. The heuristic approach uses the stored maximum
scores in the given row and column to insert gaps in case the diagonal
score decays.

If the alignment produced in the multi-staged alignment step yields a high per-
centage of identity and coverage1 (default 80% for both), the pair of reads are
considered to be similar (and thus, shared between samples). In order to compute
a global similarity measure between metagenomes, two approaches are consid-
ered: (1) the number of shared reads is divided by the total number of reads
in the two samples, i.e. the Jaccard-index is computed at read level as shown
in Eq. 1:

J(a, b) =
ra ∩ rb
ra ∪ rb

(1)

where a and b are the metagenomes being compared, ra and rb are the reads
contained in a and b respectively, and J(a, b) is the Jaccard-index at read level.
In the second approach (2) the percentage of reads from a contained in b is
calculated to indicate the proportion of a that is contained in b. The resulting
alignments are optionally written to disk to enable manual verification.

1 Considering coverage as the length of the alignment divided by the length of the
query read.
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Fig. 1. Two modified reads (Sample reads 1 and 2) are depicted as an example of
problems that could arise from k-mer-based approaches used in software such as COM-
MET. Notice that the 3 colored k-mers (surrounded by brackets with IDs) are found
in both sequences but in different places. In this example, COMMET would classify
the sample read 1 as being equal to sample read 2 since it requires T non over-
lapping k-mers of length K to accept the equalness. The match is accepted even
with varying parameters for K ≤ 30 and T ≤ 3, which includes default parame-
ters. The sample read 1 has been extracted from the 16S reads contained in the
sample run SRR029687 (https://www.ebi.ac.uk/metagenomics/projects/SRP000319/
samples/SRS000998/runs/SRR029687/results/versions/1.0). Sample read 2 has been
extracted from the full collection of reads contained in the same run.

4 Results and Discussion

In order to show the difficulty of assessing similarities between two metagenomes,
a comparison was performed using two samples from the Human Microbiome
Project database (HMP). In particular, the runs SRS014475 (in advance M1) and
SRS015062 (M2), which correspond to reads extracted from the throat of healthy
humans. The details of the sequencing machine used, filtering and trimming
protocols can be found at the HMP website2. Both metagenomes were compared
using COMMET and our proposed approach by computing the number of shared
reads and the Jaccard Index. MASH and SIMKA were not included since they
do not offer a read-level similarity measure. Additionally, a gapped BLASTn
run was executed with a minimum expected value in the alignments of 10−5 to
contrast results in terms of the number of shared reads and the Jaccard Index.
COMMET was run using different parameters (the k-mer size ranging from 20
to 30 and the number of non overlapping k-mers t needed to accept a match
ranging from 2 to 3). The proposed method was run using default parameters (5
for open gap penalty and 2 for extension, +4 and −4 for match and mismatch,
respectively).
2 http://hmpdacc.org/HMASM/#data.

https://www.ebi.ac.uk/metagenomics/projects/SRP000319/samples/SRS000998/runs/SRR029687/results/versions/1.0
https://www.ebi.ac.uk/metagenomics/projects/SRP000319/samples/SRS000998/runs/SRR029687/results/versions/1.0
http://hmpdacc.org/HMASM/#data


78 E. Pérez-Wohlfeil et al.

Table 1 shows the number of reads reported to be included from the sample
M1 in M2 using our proposed method, COMMET and BLASTn as a reference.
Notice that COMMET was run with only one thread since it requires a SGE
cluster to run in parallel, which unfortunately is a resource not available at our
testing facilities. On the other hand, BLASTn and IMSAME were run using
30 threads since the computation of gapped alignments requires more execution
time and their parallelization strategy does not need a specific cluster platform.
Although COMMET is reporting a higher number of matched reads for the exe-
cution k = 2 and t = 2 compared to the rest of the applications, it is hard to
assess whether these results represent the real similarity between the samples,
since a slight change of parameters significantly changes the number of shared
reads. On the other hand, our approach showed a higher number of matches than
BLASTn with high percentage of identity and coverage (over 80%). Additionally,
the gapped alignments were written to the output file to enable careful exam-
ination. The proposed method uses the percentage of identity and coverage as
indicators of the alignment quality. The parameter values are on the researchers
choice depending on the precision they wish to obtain. However, new quality
indicators can be easily incorporated. Furthermore, the parameters on which
COMMET is based do not allow to set up an experiment with ease, since the
recommended size of k and t can strongly change depending on several factors
such as the type of reads that are being compared, the type of metagenomes, the
machine used to sequence the samples, etc. In the case of BLASTn, the default
parameters do not facilitate the insertion of gaps in small sequences, thus pro-
ducing almost ungapped results. In this sense, the developed method is strictly

Table 1. The number of matched reads is depicted depending on the program used
and the set of parameters, along with the time in minutes and the Jaccard similarity
index. COMMET is able to compute faster, but the results show high variation with a
standard deviation of 188,239 in the number of reads compared to that of IMSAME,
31,326.

Program Reads matched Time (minutes) Jaccard index

BLASTn -evalue 10−5 428,366 469 0.28

BLASTn -evalue 10−5 -k 20 391,350 213 0.26

BLASTn -evalue 10−5 -k 30 364,889 243 0.24

IMSAME -p 80 -evalue 10−5 546,157 45.5 0.36

IMSAME -p 90 -evalue 10−5 513,079 56.4 0.34

IMSAME -p 95 -evalue 10−5 483,537 158 0.32

COMMET -k 20 -t 2 626,788 45.89 0.41

COMMET -k 20 -t 3 335,513 46.84 0.22

COMMET -k 30 -t 2 311,718 0.58 0.20

COMMET -k 30 -t 3 177,353 1.2 0.11
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intended for metagenome-metagenome comparison scenarios, and thus a flexible
set of penalty costs should be used to model evolutionary events.

5 Conclusions

In this work we showed the strengths and weaknesses of current metagenome-
metagenome comparison software. In addition, we performed an analysis of com-
mon approaches for metagenomic studies (BLAST and COMMET) at read level.
We showed that COMMET is able to run very fast, but producing highly variable
results whose validity is hard to assess in terms of the precise assignation of reads.
In addition, we showed that there is no specific software for fine-grained reads to
reads alignment. The developed method is able to compute gapped alignments
between reads, enabling the modelling of the highly variable microbial commu-
nities present in metagenomes. Our approach is able to take advantage of the
massively parallel architectures that are available nowadays, which enables our
software to compute in reasonable times while maintaining a sensitive and robust
detection of matches. We also present an incremental aligning method to reduce
running times composed of alignment-free methods, gapped-free methods and
finally gapped alignments. Additionally, the developed method is able to report
the results at read level, reporting the alignments and thus enabling a careful
examination. In terms of future work, we are aiming to produce a distance met-
ric between metagenomes to approximate the number of species present based
on clustering methods.
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