-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Malaga

Component-wise Application Migration
in Bidimensional Cross-Cloud Environments

Jose Carrasco, Francisco Durdn and Ernesto Pimentel
University of Mdlaga, Mdlaga, Spain
{josec,duran,ernesto} @Qlcc.uma.es

Keywords:
Cloud Applications, Migration, Cross-Cloud, Trans-Cloud, Brooklyn, Standards, TOSCA

Abstract:
We propose an algorithm for the migration of cloud applications’ components between different
providers, possibly changing their service level between IaaS and PaaS. Our solution relies on three
of the key ingredients of the trans-cloud approach: a unified API, agnostic topology descriptions,
and mechanisms for the independent specification of providers. We show how our approach allows
us to overcome some of the current interoperability and portability issues of cloud environments
to propose a solution for migration, present an implementation of our proposed solution, and

illustrate it with a case study and experimental results.

1 INTRODUCTION

In recent years, Cloud Computing
[Armbrust et al., 2010] has experienced a growth
in the demand of its services [Youseff et al., 2008].
As an answer to this demand, vendors have de-
veloped their own cloud solutions, offering similar
resources through their own APIs, defining their
own non-functional requirements, quality of
service (QoS) specifications, service level agree-
ments (SLA), and add-ons. This heterogeneity
has derived into many interoperability and
portability restrictions, and provokes situations
where cloud developers are often locked-in
specific services from cloud providers.

Recent advances in the management of
the connections between components de-
ployed using different technologies and
vendors |[Kritikos and Plexousakis, 2015
[Paraiso et al., 2012, |Grozev and Buyya, 2014
have solved most of the interoperability issues.
We have witnessed the development of deploy-
ment platforms with the ability to distribute
modules of applications using services from
different providers, with the goal of using the
better alternative for each of the individual
components and for the operation of our appli-
cations. The last step in this direction is the
possibility of deploying applications combining

services from IaaS and PaaS levels, possibly by
different vendors in trans-cloud environments
|[Carrasco et al., 2016]. The selection of the ven-
dor or service level to deploy an application from
among the multitude of cloud offerings is indeed
a challenge (see, e.g., [Androcec et al., 2015
[Moustafa et al., 2016, Brogi et al., 2014]). The
decision is indeed non-trivial, and the context
and required knowledge may change while
applications are running.

Once an application is running, its man-
agement requires mechanisms to ensure that
the chosen cloud providers are delivering the
promised computing resources
[Zheng et al., 2014]. For example, developers may
decide today to use a PaaS provider for a partic-
ular module because it is more cost effective, or
because it requires less management effort, but
tomorrow they may decide to move some compo-
nent to IaaS level because their needs or busi-
ness model may require more control over vir-
tual machines (VM), e.g., for a better integration
with their enterprise’s infrastructure, or because
they need to increase the security level of their
services. Unfortunately, moving an application’s
component between different providers is prob-
lematic, and it is more difficult between different
abstraction levels, since changes in these decisions

require some development efforts [Petcu, 2011

https://core.ac.uk/display/132743067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Di Martino, 2014], in order to adapt the compo-
nents to new service requirements and their inte-
gration with other application’s components, run-
ning in other providers.

A migration process requires the orches-
tration of the entire cloud environment where
the application is running, to accomplish the
correct movement of components. This process
is even more complicated if the current cloud
interoperability and portability problems are
taken into account. As a result, migration
in the cloud opens a lot of new key issues
related to cloud resources and applications’
components control. In fact, migration is still
an unresolved topic which has been widespread
studied by both academia and industry (see, e.g.,
[Jamshidi et al., 2013al, [Zhao and Zhou, 2014]).
There have been several proposals for what
is usually called live migration of cloud ap-
plication’s components [Binz et al., 2011},
Duran and Salatin, 2016, Boyer et al., 2013],
where components of an application, which are
already running in some providers, are moved
to different vendors or locations. However,
these proposals present significant restrictions,
mainly due to the portability of the compo-
nents between different vendors, but also to
their interoperability, which forces to provide
ad-hoc solutions. Furthermore, these solutions
are limited to one specific service level (cf.
[Durdn and Salatin, 2016, Boyer et al., 2013],
Zeginis et al., 2013]).

Migration of individual components or en-
tire applications may indeed be unavoidable over
time, because of changes in the offered services,
prices, security policies, or simply because a
provider just stops providing its services. Once
developers can take advantage of the features
of different kinds of services, they will be inter-
ested as well in optimizing the cloud resources
usage and improve their applications’ perfor-
mance. We propose an orchestration algorithm
to reach migration of a component between dif-
ferent providers in an agnostic way, what means
that it is not bound to any service level, either
TaaS or PaaS, of any particular provider. This al-
lows developers to deal with vendor lock-in issues,
facilitating the adaptation of the running appli-
cations according to their own needs, by mov-
ing just the necessary application’s components
to another services, independently of the target
abstraction level, TaaS or PaaS.

In order to ensure the agnosticity of our
proposal, the algorithm is built over trans-

cloud (or bidimensional cross-cloud) con-
cepts [Carrasco et al., 2016). Specifically,
[Carrasco et al., 2016] uses the TOSCA standard
to model agnostic applications’ topologies, which
do not use any specifics of the target providers
over which they will be deployed. The infor-
mation related to the cloud service level, IaaS
or PaaS, is added by means of a mechanism
independent of the topology description: policies.
The trans-cloud environment processes these
specifications and uses an homogeneization API,
which unifies TaaS and PaaS services of different
vendors, to orchestrate the deployment of the
application over the required cloud services.

Our migration algorithm relies on the trans-
cloud infrastructure for the management of each
application module and the interaction with the
used cloud services, to stop, restart or move the
necessary components independently of the ser-
vice level, TaaS or PaaS, the cloud technology or
any other dependencies. In order to preserve the
architecture consistency and avoid unexpected
situations during the migration, a certain strat-
egy has to be applied while the components are
being operated.

The rest of this paper is structured as follows.
Preliminaries about trans-cloud deployment and
its current implementation are presented in Sec-
tion 2} The proposed migration algorithm is de-
scribed in Section [3] Details on the implementa-
tion of the algorithm are presented in Section
together with some experimental results. In Sec-
tion [bl, we compare our proposal to other related
work. Finally, Section [f] conclude the paper and
presents some plans for future work.

2 AN OVERVIEW OF
TRANS-CLOUD

In this section we provide an overview of trans-
cloud and its main capabilities. These concepts
are illustrated with a running case study, which
will be later used to show the use of the our pro-
posal in Section [3]and to evaluate it in Section [

2.1 The Softcare Case Study

Softcare is an application for the social inclusion
of elderly people and for the management of their
medical problems. The application was devel-
oped by Atos Spain in the context of the Sea-
Clouds project [Brogi et al., 2015]. Softcare is a

% & SoftcareWs

% % q SoftcareDB T

ﬁ ForumDB T

MultimediaDB T
% 3

Figure 1: Brooklyn-TOSCA Softcare’s topology

& Forum

% }& SoftcareDashboa... %

&7 Muttimedia

cloud-based clinical, educational, and social ap-
plication, based on state-of-the-art technology.
As depicted in Figure [I} the application is
composed of seven modules: four web mod-
ules over respective Tomcat servers, namely Soft-
wareDashboard, SoftwareWS, Multimedia, and Fo-
rum (note the Tomcat icons), and three MySQL
databases, namely SoftcareDB, MultimediaDB,
and ForumDB (note the database icons). The
Softcare Dashboard component provides the main
graphical user interface, which depends on the Fo-
rum, Multimedia and SoftcareWS modules. Forum
adds a forum service to the web platform, Mul-
timedia is responsible for managing the offered
multimedia content, and SoftcareWS contains the
application’s business logic. The databases Fo-
rumDB, MultimediaDB and SoftcareDB store, re-
spectively, the forum’s messages, the multimedia
content, and the rest of the application’s data.

2.2 Trans-Cloud Concepts

The main goal of the trans-cloud management is
to allow developers to deploy their applications by
using available services and resources offered by
different providers, at TaaS or PaaS levels, accord-
ingly each applications needs and preferences.

Trans-cloud reduces significantly the portabil-
ity and interoperability related issues, liberating
developers from the usual infrastructure limita-
tions while defining their applications. The ap-
proach relies on three main ideas:

Agnostic topology description. The
knowledge about applications’ components, con-
figurations, interrelations, etc. is specified using
agnostic descriptions, without details about cloud
providers.

Target services specification. Target
providers are specified independently of topolo-
gies, which allows maintaining agnostic and
reusable topology descriptions. It provides a key
flexibility to define what services, IaaS or PaasS,
will be used to deploy each specific component.

Unified API. Trans-cloud defines an homo-
geneization API where IaaS and PaaS services
management is unified under a common inter-
face. This API mitigates the cloud heterogene-

ity and provides a vendor general solution, with-
out depending on tools, frameworks or technolo-
gies to manage laaS and PaaS services. Then,
once a topology has been defined and the target
providers have been specified, the API uses differ-
ent mechanisms, clients, drivers, etc., to operate
with the selected services, TaaS or PaaS, to carry
out the application deployment.

These concepts are not just useful for enabling
a unified cloud management, they provides an
essential basis for carrying out the migration of
components: Target locations can be added in a
later phase to an application description, and the
underlying API is in charge of the management
of the necessary resources (using drivers for the
cloud technologies and connectors).

2.3 A Trans-Cloud

Implementation

The trans-cloud tool presented in
[Carrasco et al., 2016] is based on the TOSCA
standar(ﬂ for the description of agnostic
topologies. Specifically, it builds on the
Brooklyn-TOSCA open project for enabling an
independent specification of the used services,
and on the Apache Brooklyn project to provide a
common APIT for the unified management of IaaS
and PaaS services. Figure [2] shows an overview
of the proposal in [Carrasco et al., 2016].

The open-source Apache Brooklyn project is a
multi-cloud application management platform for
the management of the provisioning and deploy-
ment of cloud applications. It provides a com-
mon API that enables cross-computing features
through a unified API. Although the current of-
ficial release of Brooklyn only handles IaaS ser-
vices, as can be seen in Figure [2| Brooklyn’s API
was extended in [Carrasco et al., 2016] with new
mechanisms for the management of PaaS services.
Behind its current API, we have allocated the
behavior to describe PaaS providers and mecha-
nisms to control application components on them.
Our extension to provide support for PaaS ser-
vices builds on the genericity and flexibility of
Brooklyns API, which has the independency be-
tween application descriptions and cloud services
used in their operation as one of its goals. Ini-
tially, CloudFoundry-based platforms, like Piv-
otal Web Services, IBM Bluemix, etc., were in-

L TOSCA (Topology and Orchestration Specifica-
tion for Cloud Applications) is an OASIS standard
for the description of cloud applications, the corre-
sponding services and their relationships.

ingur™
- TOSCA

Brooklyn

Topology

Application Management

]
L
]
]

1aa$ sevices Integration
[(clouds) I PaaS services Integration]
T

1
=

¥

Paas ‘ H ‘ Paas ‘

- -L-w Lw

Figure 2: Trans-cloud approach

¥

tegrated, to prototype the PaaS support, and to
allow components to be deployed using both TaaS
and PaaS.

Brooklyn-TOSCA is an open project with the
goal of extending Brooklyn with the capability of
deploying and managing applications and cloud
resources through TOSCA concepts. Brooklyn-
TOSCA promotes an initiative to build agnostic
TOSCA topologies by means of expressing the
target services using TOSCA policies.

Listing [I] shows Softcare’s TOSCA YAML
topology schema, where just some elements are
described to illustrate the agnostic-based applica-
tion description. As we can see in lines 29-37, this
definition follows the Brooklyn-TOSCA initiative
that allows target cloud services to be specified by
means of policies (brooklyn.location). In this case,
we can see how two groups have been defined to
be deployed on IaaS, specifically on AWS (Ire-
land’s cluster) and SoftLayer (London’s cluster).
This mechanism allows the separation between
topology description and the providers specifica-
tion. In fact, if we decided to re-deploy the ap-
plication, but using different providers, we would
just need to change the corresponding locations,
without modifying the original topology, as we
can see in Listing 2] where Pivotal (Paa$) is used
to deploy some of the components.

As we will see in the following section, the
trans-cloud approach provides a set of useful ba-
sic mechanisms to build an agnostic algorithm to
reach the migration of application’s component.

3 MIGRATION ALGORITHM

In this section, we present our algorithm for
the agnostic reconfiguration of cloud applications’
components. It effectively connects the compo-
nents as required, stopping, starting, releasing
and provisioning necessary cloud resources and
respecting the functional dependencies.

DU W N

K1

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

26

27
28
29
30
31

32
33
34
35

36
37

tosca_definitions_version:
tosca_simple_yaml_1_0_0_-wd03

topology_template:
node_templates:
SoftcareDashboard:
type: org.apache.brooklyn.entity.webapp.
tomcat.TomcatServer

requirements:
— endpoint_configuration:
node: SoftcareWS

— endpoint_configuration:
node: Forum

— endpoint_configuration:
node: Multimedia

SoftcareWS:
type: org.apache.brooklyn.entity.webapp.
tomcat.TomcatServer

requirements:
— endpoint_configuration:
node: SoftcareDB

SoftcareDB:
type: org.apache.brooklyn.entity.database.
mysql.MySqlNode

groups:
add_compute_locations:
members: [SoftcareDB, ForumDB,
MultimediaDB, Forum)]
policies:
— brooklyn.location: aws—ec2:eu—west—1
add_-web_locations:
members: [SoftcareDashboard, SoftcareWS,
Multimedial
policies:
— brooklyn.location: softlayer:lon02

Code 1: Softcare’s TOSCA description

3.1 Description of the Algorithm

Before presenting the algorithm itself in Sec-
tion we provide in this section some insights
into how the algorithm works on our case study.
Specifically, we describe its operation step by step
by looking at how the Forum component of the
Softcare case study can be migrated.

Let us assume that the Softcare application
has been described and deployed following the
trans-cloud approach. That is, there is an ag-
nostic description of it and its components, e.g.,
using TOSCA, as in Section 2] In that descrip-
tion, the only reference to the concrete locations

©

10

groups:
add_compute_locations:
members: [SoftcareDB, ForumDB,
MultimediaDB, Forum]
policies:
— brooklyn.location: aws—ec2:eu—west—1
add_web_locations:
members: [SoftcareDashboard, SoftcareWS,
Multimedia]
policies:
— brooklyn.location: pivotal—ws

Code 2: Adding new locations to web modules

on which the components were to be deployed, or
even whether they were using [aaS or PaaS ser-
vices, were given as policies in the specification of
the groups of the components. The trans-cloud
infrastructure is in charge of hiding the manage-
ment of the application’s components and the
vendors and the abstraction levels. In fact, this
infrastructure does not only manage the module
to be deployed or migrated, but also the related
cloud resources. It identifies interdependencies
between components and is in charge of handling
them, both in the deployment and the migration
process, ensuring the integrity of the topology.

Given the deployment plan used for the Soft-
care application in Section 23] let us assume that
the Forum component is running in AWS EC2
(TaaS). Now, assume we want to move it to Piv-
otal Web Services (PaaS). The sequence of steps
followed by the migration process are depicted in
the diagram in Figure The diagram shows a
Migration Orchestrator element that receives a
migration request to move the Forum component
to Pivotal Web Services, and is in charge of con-
trolling the migration process.

Once the migration request is received, the
migration orchestrator stops all elements that
have functional dependencies with the Forum
component—Forum’s parents—to avoid scenar-
ios where a component is working without some
of its dependencies. Finding all parents of a
module might be a complex and expensive task,
since functionalities are defined as connections
which are configured and stablished using differ-
ent mechanisms, for example, environment vari-
ables, configuration files, etc. However, in the
trans-cloud approach, there is a complete descrip-
tion of the application’s topology, where all the
relations and dependencies are specified.

Since each of the components of an application
may be running on services of different providers,
either TaaS or PaaS, an operation on them will

Migration
[Orchestramr] [Dashboard] [Forum J [ForumDB J

A
stop(parents(Forum))}

stop

stopAndReleasing(Forum)

stop &
.| releasing
start

connection data
restablishment

connect{children(Forum))

migrate(Forum, Pivotal-ws) --------------

restart{Forum)

connection
restablishment

o

Figure 3: Forum migration process

be dependent on its specific case. For example,
to stop a server that is running on a VM in IaaS,
probably a specific command should be executed
on the VM using ssh, or, if the piece of software is
running on a PaaS environment, a concrete REST
web service of the platforms API should be called
to stop the piece of software. However, thanks
to its unified API, which hides the cloud hetero-
geneity, the trans-cloud approach greatly simpli-
fies the management of different cloud services.

Once all parents have been stopped, the next
step is stopping the component that has to be mi-
grated, the Forum component in this case (Step 2
in Figure [3). However, only stopping the compo-
nent is not enough, since the resources that are
being used by the Forum component in AWS will
not be used again once the component is moved
to its new location, and therefore it is also neces-
sary to release all the associated resources. Again,
the trans-cloud capabilities allows our algorithm
to be designed without worrying about the risks
of managing different providers, since it allows
us to stop the application component and release
the associated cloud resources independently of
the vendor or the abstraction.

Once the component is stopped, and the cloud
resources have been released, a new instance of
the Forum component is started in the new lo-
cation (Step 3). Once more, the trans-cloud
mechanisms are key to accomplish this task in
a very straightforward way. The agnostic topol-
ogy of the application contains all the information
about the structure of the application, which is
used, together with the information on the tar-
get providers, by the unified API, to deploy the
component: The description of any component
(Forum) is provided by the original topology, and

the new target location (Pivotal Web Service) is
given as an argument of the operation.

With the component started in its new loca-
tion, it is still necessary to re-establish the con-
nections of its functional dependencies to main-
tain the structural integrity of the application
(Step 4). In our example, once the Forum compo-
nent in running in Pivotal, it is necessary to re-
establish its connection with the ForumDB com-
ponent. The trans-cloud environment is able to
analyze the application topology, find the neces-
sary relations for the newly migrated component
and re-establish the connections with the other
components in the topology independently of the
cloud environments where the components are
running. For our example, since Pivotal offers
PaaS services, connections between components
are modeled using environment variables.

The last step consist in restarting all applica-
tion’s elements stopped in Step 1. The trans-
cloud mechanisms makes the restarting of the
necessary components and the re-establishment of
their connections (Steps 5 and 6) straightforward.
The topology of the application is analized and
the parents of the Forum component (Dashboard)
are restarted. The new Forum component’s end-
point, which is provided now by Pivotal Web Ser-
vices, is used to re-establish the connection.

3.2 Algorithm Specification

As we have seen in the previous section, the trans-
cloud approach provides the necessary ingredi-
ents for the definition of an agnostic migration
algorithm, where the diversity of the cloud and
the complex management of applications’ com-
ponents is delegated to the different mechanisms
provided by the trans-cloud infrastructure.

Our migration algorithm is specified in Algo-
rithm [T} It is completely agnostic, it is just a
process orchestrator. Given an application, the
component to be migrated, and the target loca-
tion for such component, the migration orchestra-
tor defines an operational plan for the migration
process, delegating the management of each con-
crete application’s component and bound cloud
resource to trans-cloud mechanisms.

The operation MIGRATE(q, ¢,[) receives as in-
put the application to operate on a, the compo-
nent to be migrated ¢, and the target location I.
Before migrating a component, it is necessary to
stop all its input dependencies (lines 2-3). STOP-
PARENTS (lines 10-13) is a recursive procedure
that stops all the ancestors of a given component

Algorithm 1 Migration Algorithm

Input: a: application

Input: c: component to migrate

Input: [: new location for the component
1: procedure MIGRATE(a, c, 1)

2: for parent: parents(a,c) do

3: STOPPARENTS(a, parent)

4: stopAndReleaseResources(a, c)

5: start(a, c,1)

6: for child : children(a,c) do

7 restablishRelations(a, c, child)

8: for parent: parents(a,c) do

9: RESTARTPARENTS(a, parent)
10: procedure STOPPARENTS(a, c)
11: for parent: parents(a,c) do
12: STOPPARENTS(a, parent)

13: stop(a, c)

14: procedure RESTARTPARENTS(a, ¢)
15: restart(a, c)

16: for child : children(a,c) do

17: reestablishRelations(a, ¢, child)
18: for parent: parents(a,c) do
19: RESTARTPARENTS(a, parent)

following a top-down strategy, that is, it stops a
component once all its parents have been previ-
ously stopped. The stop(a, ¢) operation (line 15),
provided by the trans-cloud infrastructure, stops
an application’s component.

Once all parents have been stopped, the
component to be migrated is stopped and
all bound resources are released using the
stopAndReleaseResources(a,c) operation pro-
vided by the trans-cloud infrastructure (line 4).
Then, the target component is started in its new
location and all its connections are re-established
(lines 6-8). Thanks to the trans-cloud operations
start(a,c,l) and reestablishRelations(a, ¢, child),
the new component can be deployed and started
in its location, hiding the complexity of man-
aging the different services, and inspecting the
application’s topology to find and manage the
relations in order to accomplish the reconnection
between the target component and its children.

Finally, all components that were stopped
in previous steps have to be restarted
(lines 9-10). Again, a recursive function,
RESTARTPARENTS(a, parent) (lines 17-22),
which follows a bottom-up strategy to avoid
unexpected behaviors and wrong results, is in
charge of re-starting all the stopped ancestors.
This procedure ensures that all dependencies of
a component are available before restarting it,
and thus concluding the migration process.

4 THE TOOL IN PRACTICE

We explain in this section how our migration al-
gorithm has been integrated into our trans-cloud
infrastructure as an effector of cloud entities. We
evaluate it by focusing in two aspects: the effort
required for moving one element to a new loca-
tion and the times taken by the execution of two
different migration scenarios.

4.1 Algorithm Implementation

As explained in Section [3.2] our migration algo-
rithm is treated like an autonomous element in-
side the trans-cloud approach. More specifically,
Algorithm [T has been developed and integrated as
a new part of the customized Brooklyn described
in Section In this way, the algorithm can be
accessed as part of the other available trans-cloud
mechanisms, to manage providers and cloud re-
sources, to operate individually with applica-
tion components and carrying out operations like
stopping, starting, restarting, etc. The trans-
cloud extended Brooklyn tool, its documenta-
tion and examples is available in github from
https://goo.gl/DzXcXr.

To be able to provide support for the manage-
ment of connections and dependencies, key for the
migration algorithm, our trans-cloud infrastruc-
ture had to be extended to enable explicit man-
agement of the functional relations of applica-
tion’s components. Brooklyn, as well as the cus-
tomized Brooklyn presented in Section [2.3] have a
limited support on the management of relations.
They read the TOSCA relationships specified in
the topology of applications and configure compo-
nents, for example, using environment variables,
or configuration files, to establish the connection
between them. However, the explicit knowledge
about the relations is not shared with the trans-
cloud API, which means that it does not offer
the operations to identify, and manage the rela-
tions and functional dependencies between appli-
cation’s component, e.g., for re-establishment the
connections, to find all component which depend
of another (parents), or retrieve all the dependen-
cies of one of them (children), which are required
to develop the proposed algorithm.

In our extended implementation of Brook-
lyn, when TOSCA relationships are processed by
Brooklyn-TOSCA to configure the component’s
relations, this information is added to the trans-
cloud API. For that, we have added new mech-
anisms, based on the official Brooklyn API, to

enable the management of relationships and to
implement operations to find the parents and chil-
dren of any component.

One of the key issues we have to solve when
implementing the support for functional depen-
dencies was the handling of Brooklyn’s compo-
sition relations. Composition relations are used,
for example, to model the relation between a clus-
ter and the servers it controls. For composition
relations, a component is in charge of the man-
agement of its sub-components. Thus, for exam-
ple, if an operation, like stopping or starting, is
applied to a cluster, it has to apply the same op-
eration (stop or start) to all its children, in or-
der to maintain the consistence of the topology.
Then, composed elements, like clusters or elastic
components can be understood and managed as a
bundle, which represent a set of sub-components.
Fortunately, the bundle behavior is perfectly com-
patible with our algorithm, since, if an operation
must be carried out on a bundle, this one will en-
sure that the same operation is applied to all its
sub-components. For example, if the migration
algorithm requires to stop a cluster, this cluster
itself ensures that all the servers, which compose
it, will also be stopped. This maintains the topol-
ogy integrity during the process, and ensures that
the algorithm orchestration is delivered to all ap-
plication’s components.

4.2 On the Effort for Migration

Whereas the migration from on-premise appli-
cations to the cloud has been studied by many
researchers [Jamshidi et al., 2013b], not much
work has been published on changes in tar-
get providers for migration. Besides, although
there is no consensus in the literature on how
to measure alternative deployments, the one used
in [Kolb et al., 2015] is, to the best of our knowl-
edge, possibly the most interesting so far. They
use their proposal to compare and analyze the
feasibility of the migration of an application us-
ing seven different vendors in terms of portability
and effort. For an application composed of mod-
ules similar to those used in our case study, in
the analysis in [Kolb et al., 2015], the deployment
steps needed for a given set of PaaS providers are
very different. Although these steps are semanti-
cally similar among vendors, they are carried out
by proprietary tools, which do not permit them
to be carried out in a standardized way. Their ex-
periments showed that, on average, a migration
may require an effort of 17 actions with a max-

https://goo.gl/DzXcXr

imum spread of 14 and a standard deviation of
5. A low number of steps is usually offset by a
complex configuration of the initial code reposi-
tory, and it makes the initial deployment of an
application a non-elementary task.

Despite the differences in effort between the
different alternatives shown in [Kolb et al., 2015],
this effort is reduced to 1 when the proposed algo-
rithm uses bidimensional cross-cloud approach to
orchestrate the migration and interact with the
different providers. This is true in our case also,
not only for migrations between the same kind of
abstraction livels, such as PaaS, but for any com-
bination of TaaS and PaaS vendors used for each
of our application’s modules, since the knowledge
to interact with a specific provider and to handle
application topologies, like relations, is encapsu-
lated inside the customized Brooklyn. So, this
allows the effort required for the migration of an
application component to be only 1. Thus, the
benefit is obvious. We only need an initial ef-
fort to specify the topology of our application in
TOSCA, and bidimensional-based algorithm al-
lows any application’s component to be migrated
between different providers, which is comparable
with—even simpler than—the effort needed to do
the orchestrate the migration process by hand.

4.3 Deployment Times

A second important issue to be illustrated is as re-
gards the quantitative level. Comparing the per-
formance or reliability of providers or abstraction
levels is not the goal of this work, it would require
a more exhaustive analysis. However, our experi-
ments show that we have not lost performance or
reliability by using a trans-cloud deployment.
We have carried out experiments with two dif-
ferent scenarios. Starting with the Softcare ap-
plication deployed with the trans-cloud approach
using different services, then the Forum compo-
nent is migrated between different providers:

Aws-to-Pivotal Forum is moved from AWS
EC2 to Pivotal Web Services.

Pivotal-to-Aws Forum is moved from Pivotal
Web Services to AWS EC2.

Each of these two migration scenarios has been
executed 10 times using our trans-cloud-based mi-
gration algorithm. The tool was instrumentalized
to gather information at each sub-task of the pro-
cess for each module. Specifically, and following
the process explained in Section[3.2] we identify in
both cases tasks Dashboard.stop, Forum.stop, Fo-
rum.start, Dashboard.restart, and gather the times

400

seconds

200

Dashboard.Stop Forum.Stop Forum.Start Dashboard.Restar

(a) Aws-to-Pivotal

600

400

seconds

200

Dashboard.Stop Forum.Stop Forum.Start Dashboard.Restar

(b) Pivotal-to-Aws

Figure 4: Forum migration process

at which they were completed (all time amounts
are in seconds).

Charts in Figure [fa] and D] show box plots for
the migration times in scenarios Aws-to-Pivotal
and Pivotal-to-Aws, respectively. Both of them
show similar times for the Dashboard compo-
nent stopping, but we can see clear delays in the
stopping and releasing of the Forum component
(Forum.stop). This delay is explained by the dif-
ferent character of the kind of the cloud resources
used, since releasing of cloud resources on laaS
(AWS EC2) (Figure is more expensive than
releasing of PaaS services (Figure .

The event Forum.start represents the re-
deployment of the Forum component in its new
location and the reconnection of its dependen-
cies. In Figure [{a] the time values for Forum.start
present smaller values and smaller data disper-
sion than in Figure[db] The reason for this is that
when the Forum component is deployed on TaaS
(AWS EC2), it requires provisioning and config-
uring a new VM, and then executing the neces-

sary commands to deploying the component, etc.
The process is much simpler in PaaS.

Finally, the Dashboard component is restarted.
Although the component is running on AWS EC2
in both cases, Dashboard.restart shows a greater
delay in Figure [4D] due to the accumulated dis-
persion in previous steps. The restart operation
is in charge of re-connecting its dependencies.

5 RELATED WORK

There is some research on the study of the
portability and interoperability issues in cloud
computing, but not much specific on compo-
nent migration. Indeed, depending on what
kind of services are involved and how they are
managed, we identify in the literature different
ways to understand the term migration (see, e.g.,
[Jamshidi et al., 2013al [Zhao and Zhou, 2014]):
migration of legacy apps, VM migration, and the
migration of app components.

The most common form of migration is the
magration of legacy applications to the cloud,
where an entire application has to be moved
to cloud environment in order to take advan-
tage of cloud features [Armbrust et al., 2010],
such as elasticity and scalability, payments
strategies, or on-demand provisioning of ser-
vices. Several studies are focused on the
adaptation [Andrikopoulos et al., 2013] and the
predictive cloud selections [Brogi et al., 2014
Qu et al., 2015, [Vu and Asal, 2012] for the ef-
ficient and robust deployment of legacy sys-
tems on cloud environments [Cai et al., 2016,
Papazoglou et al., 2007].

The second use of the term migration is in
the context of the management of virtualized re-
sources on laaS contexts, like virtual machine mi-
gration [Clark et al., 2005]. VM migration en-
ables the movement from an online server to a
new location, allowing an efficient usage and al-
location of resources on-demand, ensuring the
accomplishment of SLAs and minimizing costs.
Some proposals have tried to mitigate these issues
by providing algorithms [Kashyap et al., 2014]
Zhang et al., 2014} [Lu et al., 2015], and new met-
rics [Deshpande et al., 2014] for the evaluation,
optimization and scheduling of VM migration.

Finally, as a mnatural evolution of the
previous migration scenarios, we identify a
more abstract migration process, the live
migration of cloud application’s components.
In this context, different algorithms for

the robust movement of components among
clouds are proposed [Durdn and Salaiin, 2016,
Boyer et al., 2013]. These solutions are limited
to one specific service level. For instance, the
approach presented in [Durdn and Salaiin, 2016]
focuses on IaaS, whereas Cloud4SOA is devoted
to the management of PaaS environments.

Federated multi-clouds [Paraiso et al., 2012]
defines a PaaS federated platform to manage ap-
plications on IaaS and PaaS providers. It uses an
OASIS standard, the Service Component Arqui-
tecture, enabling the management over TaaS and
PaaS levels of different providers. They also offer
a standard-based unified provider-management,
and allow the description of application architec-
tures. However, they do not offer a robust unified
modeling mechanism to represent the knowledge
about applications, which makes the addressing
of migration and elasticity more difficult.

Some research projects and initiatives, like
jClouds, COAPS [Sellami et al., 2013] or Nu-
cleous [Kolb and Rock, 2016] have developed
generic APIs to manage services of different
providers and their own models to represent ap-
plication components and cloud services, in or-
der to address the vendor lock-in problem and
facilitate the migration of components. These
approaches focus on the simplification of con-
crete abstraction levels, e.g., jClouds unifies IaaS
services, and COAPS is centered on PaaS. We
provide a level-agnostic solution by using trans-
cloud’s homogeneization mechanisms.

Projects like Roboconf [Pham et al., 2015]
and SCALES [Ranabahu et al., 2015] provide
frameworks for distributed application orches-
tration to define applications and the target
providers to manage applications in multi-cloud
platforms. Like us, both of them provide a generic
and extensible DSL-based infrastructure where
TaaS and PaaS providers can be integrated. Un-
fortunately, to deploy an application, in these so-
lutions developers must provide a number of addi-
tional elements, to specify the steps necessary to
manage the application over the target providers.
Application descriptions and target services are
very interdependent, which makes it very difficult
to modify the target providers without affecting
the application models. Like all above-mentioned
approaches, they offer some early mechanisms to
facilitate the migration of applications, but they
do not formalize any algorithm to orchestrate and
automatize this process.

6 CONCLUSIONS

We have presented an agnostic algorithm to
orchestrate the migration process for applica-
tion’s stateless component. Since it is based on
trans-cloud concepts, the algorithm is vendor,
technology and service-level neutral.

The proposed algorithm takes advantage of
these capabilities, simplifying the management of
the different cloud providers solutions, reducing
the portability and interoperability issues related
to vendor lock-in. In fact, the algorithm is totally
agnostic, and it can be applied to any stateless
application component, either it is using IaaS or
PaaS services to run. The migration process is
fully automated, the only required external inter-
vention to carry out the migration is just a mi-
gration request to initialize the process, indicat-
ing the component which has to be migrated and
the target location. Indeed, it would be treated
like an autonomous element, because it cannot
need be integrated in the application modeling
or its management lifecycle. It can be described
as a self-governing orchestrator, whether facili-
tate the implementation and its integration in a
trans-cloud system.

The current algorithm is intended for the mi-
gration of a single component of an application.
We will in the near future work on the migra-
tion of several components of the same applica-
tion, maybe all of them, in parallel. Moreover,
we plan to study the possibility of using flexibil-
ity and scalability mechanisms for the support of
autoscaling techniques to improve the reconfigu-
ration skills of the presented work.

ACKNOWLEDGEMENTS

We are grateful to our partners in the
SeaClouds project, and in particular to our
colleagues Alex Heneveld, Andrea Turli,
and the rest of Cloudsoft, and Francesco
D’Andria and Roi Sucasas from Atos Spain.
This work has been partially supported by
MINECO/FEDER projects TIN2014-52034-R
and TIN2015-67083-R, and Universidad de
Malaga, Campus de Excelencia Internacional
Andalucia Tech.

REFERENCES

[Andrikopoulos et al., 2013] Andrikopoulos, V.,
Binz, T., Leymann, F., and Strauch, S. (2013).
How to adapt applications for the cloud environ-
ment. Computing, 95(6):493-535.

[Androcec et al., 2015] Androcec, D., Vrcek, N., and
Kungas, P. (2015). Service-level interoperability
issues of platform as a service. In World Congress
on Services (SERVICES), pages 349-356.

[Armbrust et al., 2010] Armbrust, M., Fox, A., Grif-
fith, R., Joseph, A. D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.
(2010). A view of cloud computing. Communica-
tions of the ACM, 53(4):50-58.

[Binz et al., 2011] Binz, T., Leymann, F., and
Schumm, D. (2011). Cmotion: A framework for
migration of applications into and between clouds.

In Intl. Conf. on Service-Oriented Computing and
Applications (SOCA), pages 1-4. IEEE.

[Boyer et al., 2013] Boyer, F., Gruber, O., and Pous,
D. (2013). Robust reconfigurations of component
assemblies. In Intl. Conf. on Software Engineering
(ICSE), pages 13-22.

[Brogi et al., 2015] Brogi, A., Carrasco, J., Cubo, J.,
Nitto, E. D., Durén, F., Fazzolari, M., Ibrahim, A.,
Pimentel, E., Soldani, J., Wang, P., and D’Andria,
F. (2015). Adaptive management of applications
across multiple clouds: The SeaClouds approach.
CLEI FElectron. J., 18(1).

[Brogi et al., 2014] Brogi, A., Ibrahim, A., Soldani,
J., Carrasco, J., Cubo, J., Pimentel, E., and
D’Andria, F. (2014). SeaClouds: a European
project on seamless management of multi-cloud
applications. ACM SIGSOFT Sw. Eng. Notes,
39(1):1-4.

[Cai et al., 2016] Cai, Z., Li, X., and Gupta, J. N.
(2016). Heuristics for provisioning services to work-
flows in XaaS clouds. IEEE Trans. on Services
Computing, 9(2):250-263.

[Carrasco et al., 2016] Carrasco, J., Cubo, J., Durdn,
F., and Pimentel, E. (2016). Bidimensional cross-
cloud management with TOSCA and brooklyn. In
9th IEEE International Conference on Cloud Com-
puting (CLOUD), pages 951-955.

[Clark et al., 2005] Clark, C., Fraser, K., Hand, S.,
Hansen, J. G., Jul, E.; Limpach, C., Pratt, 1., and
Warfield, A. (2005). Live migration of virtual ma-
chines. In Conf. on Networked Systems Design &
Implementation (NSDI), pages 273-286.

[Deshpande et al., 2014] Deshpande, U., You, Y.,
Chan, D., Bila, N., and Gopalan, K. (2014). Fast
server deprovisioning through scatter-gather live
migration of virtual machines. In Intl. Conf.
on Cloud Computing (CLOUD), pages 376-383.
IEEE.

[Di Martino, 2014] Di Martino, B. (2014). Appli-
cations portability and services interoperability

among multiple clouds. IEEE Trans. on Cloud
Computing, 1(1):74-77.

[Durdn and Salaiin, 2016] Durdn, F. and Salaiin, G.
(2016). Robust and reliable reconfiguration of
cloud applications. J. of Systems and Software,
122:524-537.

[Grozev and Buyya, 2014] Grozev, N. and Buyya, R.
(2014). Inter-cloud architectures and application
brokering: taxonomy and survey. Softw., Pract.
Ezper., 44(3):369-390.

[Jamshidi et al., 2013a] Jamshidi, P., Ahmad, A.,
and Pahl, C. (2013a). Cloud migration research:
a systematic review. IEEE Trans. on Cloud Com-
puting, 1(2):142-157.

[Jamshidi et al., 2013b] Jamshidi, P., Ahmad, A.,
and Pahl, C. (2013b). Cloud migration research:
A systematic review. IEEE Trans. on Cloud Com-
puting, 1(2).

[Kashyap et al., 2014] Kashyap, S., Dhillon, J. S,
and Purini, S. (2014). Rlc-a reliable approach to
fast and efficient live migration of virtual machines

in the clouds. In Intl. Conf. on Cloud Computing
(CLOUD), pages 360-367. IEEE.

[Kolb et al., 2015] Kolb, S., Lenhard, J., and Wirtz,
G. (2015). Application migration effort in the
cloud. In Intl. Conf. on Cloud Computing
(CLOUD), pages 41-48.

[Kolb and Rock, 2016] Kolb, S. and Réck, C. (2016).
Unified cloud application management. In World
Congress on Services Computing (SERVICES),
pages 1-8.

[Kritikos and Plexousakis, 2015] Kritikos, K. and
Plexousakis, D. (2015). Multi-cloud application
design through cloud service composition. In Intl.
Conf. on Cloud Computing (CLOUD), pages 686—
693.

[Lu et al., 2015] Lu, H., Xu, C., Cheng, C., Kom-
pella, R., and Xu, D. (2015). vhaul: Towards
optimal scheduling of live multi-vm migration for
multi-tier applications. In Intl. Conf. on Cloud
Computing (CLOUD), pages 453-460.

[Moustafa et al., 2016] Moustafa, A., Zhang, M., and
Bai, Q. (2016). Trustworthy stigmergic service
composition and adaptation in decentralized envi-
ronments. I[EEE Trans. on Services Computing,
9(2):317-329.

[Papazoglou et al., 2007] Papazoglou, M. P,
Traverso, P., Dustdar, S., and Leymann, F.
(2007). Service-oriented computing: State of the
art and research challenges. Computer, 40(11).

[Paraiso et al., 2012] Paraiso, F., Haderer, N., Merle,
P., Rouvoy, R., and Seinturier, L. (2012). A feder-
ated multi-cloud PaaS infrastructure. In Intl. Conf.
on Cloud Computing (CLOUD), pages 392-399.

[Petcu, 2011] Petcu, D. (2011). Portability and in-
teroperability between clouds: challenges and case

study. In Towards a Service-Based Internet, pages
62-74.

[Pham et al., 2015] Pham, L. M., Tchana, A., Don-
sez, D., De Palma, N., Zurczak, V., and Gibello,
P.-Y. (2015). Roboconf: a hybrid cloud orchestra-
tor to deploy complex applications. In Intl. Conf.
on Cloud Computing (CLOUD), pages 365-372.

[Qu et al., 2015] Qu, L., Wang, Y., Orgun, M. A.,
Liu, L., Liu, H., and Bouguettaya, A. (2015). CC-
Cloud: Context-aware and credible cloud service
selection based on subjective assessment and ob-
jective assessment. IEEE Trans. on Services Com-
puting, 8(3):369-383.

[Ranabahu et al., 2015] Ranabahu, A., Maximilien,
E. M., Sheth, A., and Thirunarayan, K. (2015).
Application portability in Cloud Computing: An
abstraction-driven perspective. I[IEFEE Trans. on
Services Computing, 8(6):945-957.

[Sellami et al., 2013] Sellami, M., Yangui, S., Mo-
hamed, M., and Tata, S. (2013). PaaS-independent
provisioning and management of applications in
the cloud. In Intl. Conf. on Cloud Computing
(CLOUD), pages 693-700.

[Vu and Asal, 2012] Vu, Q. H. and Asal, R. (2012).
Legacy application migration to the cloud: Prac-
ticability and methodology. In World Congress on
Services (SERVICES), pages 270-277. IEEE.

[Youseff et al., 2008] Youseff, L., Butrico, M., and
Silva, D. D. (2008). Toward a unified ontology of
cloud computing. In IEEE Grid Computing Envi-
ronments Workshop (GCE), pages 1-10.

[Zeginis et al., 2013] Zeginis, D., D’Andria, F., Boc-
coni, S., Cruz, J. G., Martin, O. C., Gouvas, P.,
Ledakis, G., and Tarabanis, K. A. (2013). A user-
centric multi-paas application management solu-
tion for hybrid multi-cloud scenarios. Scalable
Computing: Pract. and Exp., 14(1).

[Zhang et al., 2014] Zhang, W., Lam, K. T., and
Wang, C. L. (2014). Adaptive live vin migration
over a wan: Modeling and implementation. In Intl.
Conf. on Cloud Computing (CLOUD), pages 368—
375. IEEE.

[Zhao and Zhou, 2014] Zhao, J.-F. and Zhou, J.-T.
(2014). Strategies and methods for cloud mi-
gration. Intl. J. of Automation and Computing,
11(2):143-152.

[Zheng et al., 2014] Zheng, Z., Zhang, Y., and Lyu,
M. R. (2014). Investigating QoS of real-world

web services. IEEE Trans. on Services Comput-
ing, 7(1):32-39.

