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ABSTRACT 

This thesis represents a major contribution to wideband and high gain inkjet-

printed antennas on paper.  This work includes the complete characterization of the 

inkjet printing process for passive microwave devices on paper substrate as well as 

several ultra-wideband and high gain antenna designs.  The characterization work 

includes the electrical characterization of the permittivity and loss tangent for paper 

substrate through 10 GHz, ink conductivity data for variable sintering conditions, 

and minimum feature sizes obtainable by today’s current inkjet processes for 

metallic nanoparticles.   

For the first time ever, inkjet-printed antennas are demonstrated that operate over 

the entire UWB band and demonstrate gains up to 8dB.  This work also presents the 

first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced 

production costs, and a novel slow wave log periodic dipole array which shows 

minimizations of 20% in width over conventional log periodic antennas. 
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1. INTRODUCTION 

As electronics technology has progressed, market demands have caused devices to 

become smaller, lighter weight, and lower cost than ever before. One of the 

promising areas of research that is allowing advances in these three areas is 

fabrication on low cost organic substrates such as paper and polymers using the 

inkjet printing process.  Organic and polymer substrates offer the unique 

advantages of being much cheaper, lighter, and in the case of organics more 

environmentally friendly in processing and disposal than current substrates such as 

silicon and FR-4.  They have the additional advantage of providing flexibility.  

Coupled with inkjet printing of silver nanoparticles – a technology that has recently 

brought ink conductivities close to that of bulk metals [1]– cheap and flexible 

devices can be fabricated quickly and at minimal cost. Another major advantage is 

that inkjet printing on organic and polymer substrates can be run reel to reel or roll 

to roll making the transition from the lab to large scale production easier and more 

cost effective than wafer by wafer processing [2].  Increased demands for wearable 

devices used for medical monitoring, cheap and flexible RFID tags for inventory 

tracking, and disposable, environmentally friendly devices all can be met using this 

new fabrication strategy. 

Flexible device fabrication has been around since the early 1960’s when light weight 

solar cells and ribbon cabling were required for satellite and space shuttle 

applications [2]. And by the early 1970’s, thin film transistor (TFT) matrix displays 

on polymer substrates had been produced. But, up until the early 2000’s, flexible 
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substrates had mainly been used for low frequency screen technology and cabling. 

Recent research has moved toward being able to create high frequency devices such 

as MHz TFT’s, antennas for RFID, and other microwave devices to eventually allow 

entire systems such as radio transceivers to be fabricated on flexible and organic 

substrates [3].  But in order to make this happen, the complexities of inkjet printing 

conductive structures on flexible substrates and using these substrates for 

applications at frequencies far beyond current use have to be overcome. 

1.1 Objectives 

This thesis tackles the challenges of advancing antenna design on organic substrates 

using the inkjet printing of conductive structures with silver nanoparticle inks – 

using paper as the primary substrate.  The main areas of focus include:  

 Organic and polymer substrate characterization for microwave frequencies 

including: 

o Photo Paper, Kapton, and Polyethylene (PET) 

 Inkjet printing of conductive structures on flexible and organic substrates 

 The design of wideband and ultra-wideband (UWB) inkjet-printed antennas  

 Applying inkjet-printed antennas to real-world problems 

The results of this work bring together the basic building blocks of fabrication and 

characterization to produce some of the first ever UWB antennas printed on paper 

as well as several applied antenna designs to address real world problems. 
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1.2 Challenges  

Since organic and polymer substrate use at microwave frequencies and the inkjet 

printing of conductive structures with silver nanoparticle inks are relatively new 

fields [2], there are several basic foundations that need to be built to allow for 

successful device fabrication which include a few main areas:  

 Characterizing flexible substrates at microwave frequencies to determine 

their material properties 

 Designing reliable processes for inkjet printing conductive structures on 

organic and polymer substrates which requires tuning of 

o Ink/Substrate compatibility 

o Ink layer thickness 

o Sintering temperature 

 Finding effective ways to measure structures as connector mounting on thin 

and temperature sensitive materials is an issue 

 Designing antennas which exploit benefits of thin organic substrates 

While other issues do come up, these are the main areas that will be explored in this 

thesis as these are the main problems that need to be solved for inkjet printing on 

organic and polymer substrates to become an effective and reliable fabrication 

technique. 
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1.2.1 Substrate Characterization 

Currently very few flexible substrates are available that are characterized for 

microwave frequencies. The majority of flexible polymer substrates that are 

electrically characterized are used in discrete capacitor fabrication as a dielectric 

layer and are therefore only characterized for a few hundreds of megahertz.  And, 

organics such as paper have only recently been characterized through 2GHz [4] 

which is still not high enough for many microwave applications such as the Wifi 

(5GHz) and UWB (3.1 – 10.6) bands.  To allow for accurate modeling of microwave 

circuits and antennas using these substrates, it is critical to characterize the relative 

permittivity εr and loss tangent tanδ of these materials for higher frequencies. 

1.2.2 Inkjet Fabrication on Organic and Polymer Substrates 

Several fabrication processes have been used for fabricating on flexible substrates 

including inkjet printing, screen printing, photolithography, and shadow masking 

[4], [5], [6].  Inkjet printing silver nanoparticle inks which is used in this work is a 

relatively new process and therefore has no distinct method or prior recipe to 

follow.  Before being able to design antennas and microwave structures for this 

process, the process limitations need to be discovered and the process needs to be 

characterized.  For example, ink droplet size and formation is a function of the ink 

viscosity, surface tension, temperature, transducer waveform, and a variety of other 

variables. And, the conductivity of the final structures is a function of the ink 

droplets as well as substrate surface roughness, sintering temperature, number of 

layers printed, etc…  The vast array of variables and the recent adaptation of 
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inkjetting to printing microwave structures means much experimenting is required 

to develop reliable and effective processes. 

1.3 Contributions 

 A fully characterized process for inkjet printing: This thesis demonstrates 

characterization of inkjet printing for microwave devices including feature 

size realization on Dimatix and Microfab printers, ink conductivity of Cabot 

and UTDots silver nanoparticle ink with a variety of sintering methods, and 

characterization of the permittivity and loss tangent of Paper, Kapton, and 

PET. 

 The smallest UWB antenna realized with inkjet printing: In this thesis, a 

paper-based UWB antenna is proposed that is sixteen times smaller than 

current inkjet-printed UWB antennas. 

 The highest gain antenna realized with inkjet printing: A Vivaldi antenna on 

paper that demonstrates 8dB gain – 5 dB higher than currently published 

paper-based antennas – is demonstrated. 

 A novel design for miniaturization of the log periodic antenna: Slow wave 

structures are used to minimize the width of a log periodic by 20% which is 

implemented on a paper-based inkjet-printed log periodic. 
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1.4  Thesis Organization 

• Chapter 2 of the thesis gives an overview of the inkjet-printing process and 

discusses the current status of the inkjet-printed antenna field including a summary 

of the current inkjetted antennas in literature along with applications that have 

been addressed. 

• Chapter 3 discusses the characterization of two separate inkjet printing processes 

using a Microfab Jetlab II and Dimatix inkjet printing system.  The chapter then 

discusses the microwave characterization of several organic and polymer 

substrates. 

• Chapter 4 includes the design, simulation, and measurement of several wideband 

and ultra-wideband antennas using fractal patterns to reduce size, and decrease 

fabrication cost. 

• Chapter 5 discusses the design, simulation, and measurement of three directive 

wideband antennas including two renditions of the antipodal Vivaldi and a log 

periodic that provide high gain on paper substrates. 
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2.  REVIEW OF LITERATURE 

This chapter gives an overview of the inkjet printing process and its employment in 

the fabricating of RF and microwave devices.  It discusses the role that flexible 

substrates have played in device fabrication, including a justification on why they 

are beneficial in certain cases over standard microwave substrates.  It then delves 

into the details of the inkjet printing process and how it has evolved into a process 

for fabricating microelectronics. And finally, previous work in inkjet-printed 

antennas on organic and polymer substrates is reviewed which provides a 

foundation for the work presented in this thesis. 

2.1 Polymer and Organic Substrates 

Organic and polymer substrates such as paper possess a wide array of benefits 

when it comes to microwave device and antenna fabrication.  These substrates have 

recently become of interest in the literature.  For example, Yang et al. have been 

using paper as a substrate for low-frequency RFID tag printing [7], [8], [9], [4], 

Mohammed et al. have demonstrated a patch antenna on Kapton [10], and Hyung et 

al. have demonstrated a monopole on PET [11].  However, only Yang et al. have 

characterized the substrate up to 2.4GHz [4]. 

Paper, Kapton, and Polyethylene are widely used materials in many fields which 

means they are much cheaper than typical microwave substrates.  Paper is 

referenced as being one of the cheapest materials currently produced on the planet 

[12].  As a comparison, paper substrate is nearly one hundred times cheaper than an 
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equivalent sized FR4 substrate.  These substrates are also extremely light weight 

and much more pliable than current microwave substrates lending them as better 

substrates for applications such as wearable antennas where weight and conformity 

to the body are important issues. 

 Aside from the obvious benefits of these substrates, there are several physical 

characteristics which make them interesting prospects for antennas, microwave 

systems, and packaging.  Many organic and polymeric substrates have a low 

permittivity [12].  While low permittivity increases the size of antennas, it has the 

benefits of enhancing the bandwidth and decreasing surface wave propagation 

which in turn enhances an antenna’s radiation performance [13].  The substrates 

are also inherently insulating so losses due to substrate conductivity are negligible 

unlike silicon substrates.  However, there are also a few physical characteristics 

which are considered disadvantages.  One being that the dielectric losses in paper 

are higher than standard microwave substrates as paper has not been tailored for 

microwave operation [12].  It is also important to design structures that are able to 

perform on substrates that flex as unlike FR4 and Rogers material, organic and 

polymer substrates are flexible – if used properly though, this can be used to the 

designers advantage. 

One of the major advantages that makes fabricating on polymer and paper 

substrates such a promising process is that system on package (SOP) designs can be 

realized.  SOP is a fabrication technique where components are integrated vertically 

as well as horizontally by using multiple layers and connections by vias or proximity 
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coupling which translates to appreciable size reductions in packaging .  It is also 

very easy to form cavities in these substrates using wet etching or laser cutting 

allowing IC’s to be embedded within the stack-up. With this concept the DC wiring, 

interconnects, and antennas can all be integrated into a multi-layer paper or 

polymer package with minimum size and weight.  And, in the case of polymer 

packaging, the package is already inherently hermetically sealed. 
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2.2 The Inkjet Printing Process 

 The inkjet printing process has become an area of interest in the fabrication world 

over the last 10 year due to the fact that inkjet printing can be used on a wide array 

of substrates and can deposit almost any material that can be put into a liquid form 

[1].  Inkjet printing is a lithography free process which removes the need for masks, 

exposure equipment, and etching which leads to large time cuts and cost reductions 

in the fabrication process.  It is mainly used as an additive process which means it 

deposits the material that will be part of the final structures, but, resist-like material 

can also be deposited for use as an etching mask and removed after etching.  The 

inkjet printing process has been used to create light emitting diodes, TFT’s, 

conducting lines, and liquid crystal displays [1].  

2.2.1  Inkjet Printing Techniques 

 Inkjet printing is a relatively simple concept.  A liquid ink is loaded into a reservoir 

which feeds a nozzle as seen in Figure 1.  As the nozzle or substrate is moved 

horizontally, one of several methods is used 

to eject a drop of ink from the nozzle which 

then hits and adsorbs to the substrate.  By 

moving the nozzle and ejecting droplets at 

the correct points, patterned features are 

created.  Inkjet printing comes in several 

varieties.  A simple taxonomy of the 

different processes is shown in Table 1.   
 

Figure 1: Ink Jetting Technique 

Substrate

Transducer

Reservoir

Expelled
Dropplet
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Table 1 : Taxonomy of Inkjet Printing Techniques 

Thermal Inkjet

Piezo Inkjet

Electrostatic Inkjet

Acoustic Inkjet

Piezo Inkjet

Thermal Inkjet

Drop on Demand

Continuous

Inkjet Printing Techniques

 

The two main differences between inkjet printing techniques are drop on demand 

(DOD) and continuous inkjet printing.  Continuous inkjet printing works by 

continuously ejecting drops from the reservoir at a constant frequency by setting up 

an acoustic wave with a transducer.  When the drops exit the reservoir it is given an 

electrostatic charge using charging plates. It is then either directed towards the 

substrate or into a collection bin with a pair of electrodes.  This method allows for 

patterning without turning off the jet which helps mitigate clogging of the nozzle 

due to ink drying and inconsistent excitation of the ink, and allows for faster fly 

velocities [1]  – which is the velocity at which the substrate moves past the nozzle.  

This process is best suited for commercial printing as it is usually only compatible 

with one type of ink and requires inks that can be electrostatically charged [14]. 

DOD printing is similar to continuous printing in that a transducer generates a 

pressure wave in the ink reservoir which ejects a drop of ink. However, a signal is 

only sent to the transducer when a drop is required instead of continuous operation.  

DOD printing allows for a wider range of inks with varying viscosities and surface 

tensions to be accounted for by changing the signal to the transducer and can print 
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at higher resolutions [1].  But, clogging is still a prominent issue due to the 

inconsistent waveform applied to the reservoir and ink drying.  Continuous and 

DOD printing are shown in Figure 2. 

 
 

Figure 2: Continuous vs. DOD Inkjet-Printing 

 

Within each type of printing, several types of actuators are used including thermal, 

piezo, electrodynamic, and acoustic.  Thermal and piezo actuators work by inducing 

a pressure wave in the reservoir which expels as drop from the nozzle while 

electrodynamic and acoustic actuators work by disrupting the surface tension of the 

meniscus formed at the end of the nozzle causing a drop to jet towards the substrate 

[14].  Thermal actuators are typically used in commercial and office inkjet printers 

where the same ink is used.  This allows the thermal expansion properties of the ink 

to be controlled which results in consistent jetting.  For research projects where 

many different types of inks with different thermal properties may be used, Piezo 

systems are more common.  Acoustic systems are nearly exclusive to continuous jet 

printers found in industrial production and are an extension of the piezo nozzle as 

Substrate

Transducer

Reservoir

Catcher

Charge Plate

Directing Plate

Substrate

Transducer

Reservoir
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the acoustic wave is generated with a piezo crystal [1]. Figure 3 demonstrates the 

different types of actuators available. 

 
 

Figure 3: Inkjet Actuator Types 

 

2.2.2 Conducting Inks 

The ink is perhaps the most important part of the inkjet printing process as the 

properties of the ink effect dispensing from the nozzle as well as droplet formation 

on the substrate.  The viscosity, surface tension, thermal properties, and chemical 

compatibility with substrates and dissolved material are all very important in 

creating a reliable printing process.  There are two main types of inks used in inkjet 

printing: dye-based, and pigment-based.  Dye based inks dissolve the delivered 

material into solution and evaporate the solvent away upon deposition while 

pigment based inks disperse the material to be delivered throughout the ink using 

dispersing agents to prevents clustering [15].   

While there are several types of conductive inks such as PEDOT:PSS [16], organic 

complex-based silver, and metallic nanoparticle [1], the inks used in this thesis are 

Substrate

Pressure Wave

Meniscus

Pressure Wave

Meniscus

Thermo Actuator

Bubble

Piezo Actuator

Meniscus
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silver nanoparticle-based inks with an organic coating which can have conductivity 

near that of bulk silver under the correct processing conditions.  Metallic 

nanoparticle inks are a very recent creation, with the earliest published work 

starting around eight years ago.  These inks have allowed for realization of high 

frequency conducting structures on polymer and organic substrates.  The reason 

nanoparticle inks are such a large leap forward for pigment-style inks is that when 

the ink is deposited on the substrate, the silver particles are in close proximity but 

are not one continuous conductor.  This means the conductivity is rather low.  

Sintering or heating of the substrate is required to burn away the dispersant coating 

and melt the particles together to obtain high conductivities.  Silver nanoparticles 

have the unique property of having a melting point much lower than that of bulk 

silver which is 960° C [15].  This is due to the high surface to volume ratio and 

allows for inkjet printing on substrates with much lower processing temperatures 

such as paper and polymers since sintering can occur as low as 80° C.  

Conductivities have been reported up to 105 S/m [15] whereas conductive polymer 

inks of the past were around 101 S/m.  An example of pre and post-sintered ink is 

shown in Figure 4. 

 
 

Figure 4: Sintering Effect on Nanoparticle Inks 

 

Another important quality of an ink beyond conductivity is substrate wetting.  The 

nanoparticles are dispensed in a solvent, dispersant, and a series of buffers which 

Substrate
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have a specific surface energy.  When the ink droplet hits a substrate that is non-

porous, the difference in surface energies between the droplet and substrate either 

cause the droplet to spread and wet the surface, or contract into ball on the surface.  

This quality is usually defined by the wetting angle θ, which is the angle at which the 

droplet contacts the substrate [14].  Too high of a wetting angle and the droplet 

tends to “bounce” when it hits the substrate, and too low of a wetting angle causes 

large amounts of drop spreading which smears features and lowers conductivity as 

the silver particles are farther apart.  An illustration is shown in Figure 5 of a droplet 

coming in contact with the substrate at wetting angle θ.  The importance of wetting 

angle means different inks must be formulated for different substrates. However, if 

a porous substrate is used such as paper, the ink is absorbed by the pores and 

wetting is not as much of an issue.  For this reason, paper is the main substrate used 

in this thesis. 

 
 

Figure 5: Wetting Angle of Ink on Substrate 

 

2.2.3 Printers 

There are several printers available for inkjet printing silver nanoparticle inks and 

they are best classified as single and multi-nozzle systems.  Single nozzle systems 

such as the Microfab Jetlab [17] printers pass the substrate on an x-y moveable 
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stage under the nozzle as the pattern is jetted.  The drop spacing and position is 

determined by the movement of the stage and can be controlled down to several 

microns or less [1].  An illustration is shown in Figure 6. 

 
 

Figure 6: Single Nozzle Printing Technique 

 

Multi-nozzle systems such as the Dimatix [18] and Ulvac M-Series [19] are more 

complex in configuration but benefit from faster print times and higher reliability 

with up to 16 nozzles jetting at once.  Mutli-nozzle systems work by aligning all 

nozzles in a row and angling them at what is called the “sabre angle”.  The sabre 

angle determines the y-spacing of the drops, while the movement of the print head 

along the substrate in the x-direction determines the x-spacing.  This is shown in 

Figure 7. 

 
 

Figure 7: Multi Nozzle Printing Technique 

 

Inkjet Print Head

Substrate

Platten
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Currently the commercially sold multi nozzle systems for research purposes contain 

up to sixteen nozzles which reduces print time and ruined samples from nozzle 

clogging tremendously. 
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2.3 Inkjet Printed Antennas 

The first published inkjet-printed antennas started to appear in literature around 

2007 and were geared towards RFID integration on flexible substrates.  RF 

identification for supply chain management, pharmaceutical tracking, inventory 

control, and other applications is a fast growing market [12].  And, with such a large 

potential market base, a successful RFID tag needs to be cheap, effective, and 

preferably environmentally friendly due to the large volume that will be produced.  

These demands are all able to be met using paper or polymer based inkjet-printed 

tags which are flexible, cheap, and green [12].  

Because of this, nearly all inkjet-printed antenna research up until now has focused 

on RFID based antennas and RFID antenna-based sensors.  A table of all inkjet-

printed antennas found in literature is shown below in Table 2.  As shown, the 

majority of the antennas operate in the UHF band specifically from 400 – 900 MHz 

which is where the American and European RFID bands exist [20]. 

The rest of this section will focus on applications of published inkjet-printed 

antennas to show the state of the printed antenna field and justify the work 

performed in this thesis as a contribution to current work. 
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Table 2 : List of Inkjet-printed Antennas and their Properties 

Antenna Type 
Frequency 

(MHz) 
~ Gain 
(dBi) 

Bandwidth 
(MHz) 

Size (cm^2) Material 

Dipole over AMS [21] 400 3.5 4 100 x 100 Paper 

Wideband Dipole [22] 433 N/A 250 8 x 15 Paper 

Meandered Dipole [20] 854 1.94 190 12.5 x 5 Paper 

Quadratic Bowtie [23] 865 1.33 30 9.2 x 3.2 Paper 

CPW Monopole [24] 904 0.7 220 8.5 x 8 LCP 

Z-monopole [25] 904 N/A 132 5 x 5.6 Paper 

Saw RFID Tag [20] 2450 1.9 100 4.2 x 1.4 Paper 

Transparent Patch [26] 2500 N/A 100 15 x 17 Polyethylene 

Proximity Fed Patch [27] 4900 N/A 150 3 x 4.5 Kapton 

Patch Array [28] 5000 N/A 400 2.5 x 2 Kapton 

UWB Monopole [29] 2e3 – 8e3 N/A 6000 5.8 x 5.8 Paper 

 

2.3.1 Simple Sensor-Integrated Inkjet-printed Antennas 

A huge advantage of RFID over other technologies – specifically passive RFID – is 

that it can be remotely poled and powered by a wireless reading device meaning no 

battery replacement or power cords.  By integrating sensors into RFID based 

antenna systems, large amounts of sensors can be distributed and interrogated 

cheaply and with minimal hassle. 

Yang et al. have demonstrated an entirely passive printed RFID-based gas sensor 

which can detected ammonia (NO3) and other noxious gasses (NOx) by integrating 

single-walled carbon nanotubes (SWCNT’s) between the arms of a printed bowtie-

like dipole antenna operating at 900MHz [7].  As the gas hits the SWCNT’s, their 

impedance and reactance nearly double which causes backscatter from the antenna 
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to change due to a mismatch in SWCNT impedance and the antenna impedance.  

This allows the polling device to perform real-time gas level monitoring by watching 

the back-scatter from these RFID sensors.  The gain for the antenna is not published 

leaving efficiency difficult to infer from the results. 

Vyas et al. have demonstrated yet another SWCNT based gas sensor which utilizes a 

patch antenna loaded with a SWCNT stub at the top radiating edge of the patch [9].  

By activating the SWCNT’s with ammonia gas, the resonant frequency of the patch 

shifted by nearly 1% (50MHz in 6.8GHz), allowing for sensing of gas flow over the 

sensor.  The only issue with the sensor is that an air gap was required between the 

patch substrate which was paper and the ground plane as the high losses in the 

paper substrate would dampen the resonance otherwise.  This makes antenna 

fabrication appreciably more difficult.  Again, gain has not been measured for this 

antenna. 

2.3.2 Printed Circuit Integrated Inkjet-printed Antennas 

Advancing beyond simple sensor-integrated printed antennas, printed circuit 

boards (PCB’s) have been inkjet-printed on the same substrate as the antenna 

allowing entire system integration on a single piece of paper. 

Tentzeris et al. have demonstrated a dipole printed antenna with a printed circuit 

layout on paper that integrates a battery, controller unit, and temperature sensor 

for remote temperature monitoring [8].  The RFID dipole antenna operates around 

900MHz.   The discrete circuit components are mounted using a conductive epoxy as 

solder is not compatible with paper substrates.  This is the first demonstrated 
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example of an entire package on paper substrate.  The design of the dipole allows for 

50% bandwidth operation which is quite high for a dipole.  However, some of this 

may be due to loss, and again, gain is not published so this is difficult to compare 

with highly conductive antennas.  The same temperature sensor circuitry was 

integrated with a co-planar waveguide (CPW) monopole antenna to achieve similar 

results. 

Vyas et al. have integrated circuitry in PCB form for a solar powered RFID tag with a 

printed z-shaped monopole antenna which is intended for bio-monitoring or other 

remote sensing applications which would benefit from removing a battery from the 

system [9].  The prototype proves that these sensors can be self-sustaining and 

lower cost due to paper or polymer based fabrication of the antennas and PCB’s. 

2.3.3 Fully Printed Systems 

A great demonstration of where this technology is headed is demonstrated by Chen 

et al. in which a fully integrated system is printed with aerosol jetted carbon 

nanotube FETs and inkjet-printed patch antennas to create a phased array on 

Kapton operating at 5GHz [28].  The performance of the system is measured in 

normalized power, so we don’t get a good idea of the overall efficiency, but the 

system produces working results which is a big step forward for inkjet-printed 

devices. 
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2.4 Summary 

The status of the inkjet-printed antenna field has been reviewed in this chapter.  A 

review of published inkjet-printed antennas and sensors has been presented which 

covers the majority of published data as of this writing.  While many unique antenna 

designs have been produced for the UHF RFID bands, and several novel sensors 

exploiting the inkjet printing technology have been implemented, there is still a lot 

of improvement to be made. 

Very few inkjet-printed antennas have published gain measurements, or 

comparison of radiation patterns between simulation and measurement.  This may 

be due to simulation/measurement discrepancies, and the fact that inkjet printing 

doesn’t produce highly efficient antennas because of the lower conductivities 

received from inkjet inks.  Either way, these are areas needed to be improved on for 

advancement of the inkjet-printed antenna field. 

Another observation is that there are very few wideband and UWB inkjet-printed 

antennas.  These are very important for wearable and body monitoring systems 

where high data rates are required.  The design of highly directive inkjet-printed 

antennas also has a gap to be filled as the majority of current printed antennas are 

monopole or dipole-style which offer very low directivities.  The inkjet-printed 

antenna field has a long way to go, and the work in this the following chapters 

strives to fill some of the gaps presented here. 
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3. CHARACTERIZATION 

For accurate modeling and simulation of microwave devices and antennas, knowing 

the electrical properties of the substrate being used such as the electrical 

permittivity (εr) and loss tangent (tanδ), as well as the capabilities and 

characteristics of the fabrication process are essential.  In turn, accurate modeling 

drastically cuts down on design iterations due to modeling and measurement 

discrepancies.  Characterization is also important to ensure that the electrical and 

process properties are appropriate for the specific application being designed for.  

Usually these properties are available from the manufacturer for typical RF 

substrates.  However, for this thesis, unusual substrates such as paper, Kapton, and 

PET are being utilized so characterization is necessary. The work in this chapter 

includes the electrical characterization of several polymer and organic substrates; 

Polyethylene, Kapton, and Photo Paper – which is the main substrate of interest – 

along with the process characterization of two inkjet printing fabrication 

techniques. 

3.1 Inkjet Printing Process 

Two separate inkjet printing processes have been investigated in this thesis due to 

the availability of printers.  The first printer is the Microfab Jetlab II which is a single 

nozzle drop on demand (DOD) printer that uses piezo actuation of a glass tube for 

dispensing.  The second is the Dimatix 8120 which is a sixteen nozzle DOD printer 

that uses MEMS-based piezo actuation for drop dispensing.   
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3.1.1 Microfab Jetlab II Printing 

The Microfab Jetlab II is the initial printer utilized for printing microwave structures 

and antennas.  The inks provided by UTDots [30] have been formulated individually 

for Kapton, PET, and Paper.  The Jetlab II works by feeding a glass tube with a 

reservoir of ink. The glass tube is surrounded by piezo material and the reservoir is 

connected to a pressure/vacuum line which adjusts the static force at the end of the 

nozzle which allows for different viscosity inks.  Figure 8 shows droplet formation 

from the end of the glass tube over time as the piezo contracts.  By using image 

analysis software provided with the printer, it has been found that the droplet 

volume is approximately 51pL which is near the 60pL specification for the piezo 

nozzle used. 

 
 

Figure 8: Ink Droplet Formation 

 

In order to obtain the circular droplet shown in Figure 8, the back pressure, 

waveform fed to the piezo, and the ink temperature all need to be set correctly. 

Small differences in barometric pressure, humidity, and room temperature require 

the settings to be changed almost daily.  An image of imperfect droplets as well as 

the effects on printed structures is shown in Figure 9.  The two images on the left 

show droplets with satellites – or secondary droplets forming with the primary drop 
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– and the image on the right shows the effects of imperfect droplets on the edge of a 

structure.  Where there should be a clean edge near the middle of the image, it is 

smeared, and smatterings of ink are seen on the left hand side where no ink should 

appear.   This spatter extends nearly 200um from the printed structure. Getting the 

perfect droplet is quite difficult with this printer and the silver nanoparticle inks. 

And, once the perfect drop has been attained, maintaining that droplet during the 

printing process remains an issue as this printer has no automatic cleaning cycles.  

Clogging and distorted droplets are very common occurrences. 

 
(a) (b) (c) 

 

Figure 9: Poor Ink Droplet Formation 
 
 

Once a good droplet is attained, several calibration structures are printed to test the 

capabilities of the printer.  Figure 10 (top) shows a 10 x 10 array of individual 

droplets spaced 500 um apart.   The droplets diameter on average is 100um.  

Attempts to print multiple drops on top of each other to increase the conductivity 

causes the drops to widen. 

The second calibration structure shown in Figure 10 (bottom) is a 5 x 5 array of 2 x 

5 droplet rectangles.  The droplets are spaced 50um center to center, so there is an 

overlap.  However, the average drop width on this run is 82um as compared to 

100um in the previous case, though the 



P a g e  | 28 

 

same parameters as the 10 x 10 array are used.  This shows that the printing 

process lacks complete consistency. 

A final calibration structure is a printed line shown in Figure 11.  As shown, the line 

consists of an array of dots which are spaced 100um 

apart.  The first few drops are out of line which is 

caused by a transient in the printing.  Whenever the 

jet first starts, it takes several drops to reach a steady 

state printing condition.  This causes several problems 

when it comes to printing structures that have dis-

joint features as the jet stops and starts while 

traveling between features. 

Several attempts have been made at printing 

transmission lines and basic antennas but the large 

structures being printed (several centimeters in 

length) had too many difficulties with the nozzle 

clogging and dis-joint features having transient edge 

effects.  The printer worked well for smaller 

structures such as the calibration structures, but the 

large structures required much more tuning, 

experimentation with other inks that could help 

reduce clogging, and cleaning cycle abilities to keep the head free of debris during 

printing. 

 

 
Figure 10: Calibration Structures 

 
Figure 11: Transient Effects 
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3.1.2 Dimatix 2830 Printing 

After attempts with the Microfab printer, the focus moved to the Dimatix 2830 – a 

printer that has shown promising results in several published inkjet-printed 

antennas [9], [8], [12].   The Dimatix printer has a 16 nozzle cartridge which is much 

closer to that of a traditional inkjet printer.  Instead of filling a reservoir for each 

printing session, a cartridge is filled with the ink which could be removed and re-

used between sessions.  The nozzles are basically holes etched in a silicon substrate 

with a piezo actuator in each individual nozzle that expands to expel the droplet of 

ink.   These nozzles require little to no adjustment to print properly as long as the 

same settings for ink temperature and waveform are retained.  The print nozzle 

ejects 1 – 10 pL drops which are 50-60 times smaller than the drops from Microfab 

nozzles which decreases errors and increases precision. The printer is able to print 

with the nozzle much closer to the substrate which greatly decreases drop 

inconsistency, as drops ejected as satellites or on an angle have very little time to 

stray away from the center of the nozzle before hitting the substrate.  Regular 

cleaning cycles remove the issue of nozzle clogging by cleaning the nozzles after 

every few minutes of printing.  An image of four of the six jets working correctly is 

shown in Figure 12.  Two of the nozzles – one on the far left and one second from 

the right – are clogged.  Even though the nozzle on the right is working, it cannot be 

used in printing as only consecutive nozzles can be used.  So in this case, the three 

next to each other in the middle are used to print.  With a new cartridge, finding 

more than 5 consecutive nozzles working is difficult. 
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Figure 12: Dimatix Drop Watcher 

 

The Dimatix printer has produced more reliable results than the Microfab printer 

with the similar printed structures.  Figure 13 shows individual drops on paper 

from a 10pL cartridge along with a printed line using Cabot Silver Nanoparticle ink 

[31].  The diameter of the drops averages 43um, and the width of the line with 20um 

spacing between drops is about 60um.  Notice there are little to no transient effects 

on these structures like seen in the Microfab printer which is attributed to closer 

nozzle spacing to the substrate and in-print cleaning cycles. 

                                                                              
 

Figure 13: Dimatix 10pL Calibration Structures 
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An array of droplets using the 1pL cartridge is 

shown in Figure 14.  It can be seen that the drop 

sizes are nearly half the diameter of the 10pL 

cartridge allowing for much better features to be 

attained. 

Several test structures with gaps are printed to test 

the minimum spacing that can be achieved with the 

10 pL cartridge.  Figure 15 shows a 50 and 100um gap as specified in the layout of 

the design.  Notice that due to spreading of the drops, the gaps are 30, and 64um 

respectively, which can then be used to adjust the printing parameters to match the 

input design.  The edge roughness is on the order of 10um.  

  
 

Figure 15: Minimum Spacing Pattern 

   

Gaps of less than 30um are very difficult to achieve with the 10pL cartridge as ink 

bleeding between the two structures becomes an issue.  Smaller gaps down to 10um 

can be attained by using a 1pL drop, but the sizes of the antennas printed for this 

 
 

Figure 14: Dimatix 1pL Calibration 
Structures 
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thesis do not require such small gaps and therefore the characterization will be 

limited to the 10pL cartridge. 

3.1.3 Printer Comparison 

Two printers have been discussed, and the Dimatix is chosen as the printer to be 

used for the inkjet-printed antennas, since it is more suited to large structure 

printing and has the capabilities to produce smaller features.  A comparison of the 

two printers is presented in Table 3.  As shown, the Dimatix has clear advantages 

due to smaller drop size leading to better feature definition, more nozzles, in-

process nozzle cleaning to prevent clogging, and closer nozzle positioning to the 

substrate to allow for better drop precision. 

Table 3: Printer Comparison Chart 

 Dimatix 2800 Microfab Jetlab II 

Drop Volume 1-10 pL 50-60 pL 

Minimum Feature 28 um 80 um 

Minimum Spacing 30 um Not Reliable 

Number of Nozzles 16 1 

Cleaning During Printing Yes, Automatic No, Manual 

Nozzle Minimum Height 0 um 1 mm 
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3.1.4 Conductivity 

Conductivity of printed silver nanoparticles is one of the major issues encountered 

with inkjet printing.    When silver nanoparticles are deposited on the substrate, 

they form an agglomeration of silver particles 10-50nm in size.   The structure at 

this point is not conductive as the particles are not a continuous body – similar to a 

metal trace with millions of hairline fractures that prevent electron flow.  It is 

required to melt the particles together in order to achieve conductivities high 

enough to produce efficient antennas.  Several methods have been used in the 

literature including heat sintering, laser sintering, and UV and microwave exposure.  

Along with sintering methods, several other variables play a role in the final 

conductivity of the printed structures, such as: 

 Number of ink layers printed 

 Surface roughness of the substrate 

 Ink properties (viscosity, metal concentration by weight, surface tension) 

The following sub-section provides a detailed study into heat and laser sintering of 

silver nanoparticle inks on polymer and organic substrates to determine the best 

methods of achieving highly conductive structures while reducing cost and 

fabrication time. 

3.1.4.1 Heat Sintering 

 

Heat sintering is one of the most common methods of annealing or melting 

nanoparticle inks to form continuous conducting structures.  Metallic nanoparticles 
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exhibit a unique property in which their small size decreases their melting point to 

temperatures as low as 80°C which is important when printing on substrates such 

as paper and plastic which cannot handle high temperatures.  A series of 

conductivity tests are performed using photo paper and PET as substrates using 

Cabot Silver Nanoparticle ink [31] and UTDots Silver Nanoparticle ink [30].  To test 

conductivity, a series of traces are printed on both substrates using 1 – 5 layers of 

ink.  The substrates are then placed in an oven in air at atmospheric pressure using 

different times and temperatures for curing.  The resistance of the traces is then 

measured using the four point method on a Cascade probing station.  Figure 16 

shows the sheet resistance of the traces for 1 – 5 layers of ink on paper at 

temperatures of 100 – 200°C for one hour.  An important note is that all structures 

printed in this section use a 10pL cartridge with 20um drop spacing.  It can be seen, 

as sintering temperature and number of ink layers printed increases, conductivity 

increases as well.  The higher temperatures increase conductivity by burning off 

more of the polymer coating that is used as a dispersant coating and melting the 

particles together.  Printing more layers helps by increasing the density of particles 

in a given area so that when melted together, the nanoparticles form less of a porous 

and more of a uniformly solid structure. 
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Figure 16: Sheet Resistance Vs. Temperature for Cabot Ink 

 

Figure 17 shows a comparison of sheet resistance between 5 layers of UTDots and 5 

layers of Cabot ink on paper versus temperature.  As shown, the inks exhibit very 

similar properties in temperature curing except at lower temperature which is due 

to a different polymer coating used as a dispersant on the silver nanoparticles, and 

different mean particle sizes.  A second study was run using sintering time as the 

independent variable to determine the shortest times allowed to obtain highly 

conductive structures using Cabot ink on paper.  Figure 18 shows the results of 

sintering over time at 120 and 200°C.   
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Figure 17: Cabot Vs. UT Dots Sheet Resistance Vs. Temperature 

  
 

Figure 18: Cabot Ink Sheet Resistance Vs. Time 
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As seen, sintering at higher temperatures greatly decreases the amount of time 

required to reach the final conductivity values achievable at that temperature, as 

well as dramatically increasing overall conductivity.  The tradeoff is that substrates 

such as PET have glass transition temperatures near 120°C, and therefore must not 

be processed at these temperatures as warping and deformation will occur. 

In order to extract the conductivity from the sheet resistance, the layer thicknesses 

are needed.  As the surface roughness on polymer and organic substrates is higher 

than the thickness of the conductors, 1-5 layers of ink were printed on glass which 

has a smooth surface, and then are sintered at 200°C for 1 hour.  The traces were 

then measured using a Dekktak profilometer.  The results are as shown in Figure 19. 

  
 

Figure 19: Thickness of Printed Cabot Ink Layers on Glass 
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yields the conductivity of the sintered nanoparticle inks which will be discussed in a 

following section. 

3.1.4.2 Laser Sintering 

 

One of the main issues with heat sintering 

is that many plastic and organic substrates 

cannot handle the high heats required to 

melt nanoparticles together.  For example, 

a sheet of paper sintered at 200°C is shown in Figure 20, and it can be seen that the 

paper has started to burn.  This is where laser sintering has a huge advantage.  With 

laser sintering which is shown in Figure 21, a laser is passed over the deposited 

nanoparticles, and heats the particles with very little heating of the substrate.  The 

majority of the heat is absorbed by the particles themselves and does not penetrate 

to the substrate if the laser power is held low enough.  

A study of sheet resistance versus laser 

power is performed using the same inkjet-

printed structures as the heat sintering 

study, and the results of laser sintering 

versus heat sintering are reported.  As 

shown in Figure 22, laser sintering 

achieves sheet resistances as low as heat 

sintering at 200°C with lower powers and 

much quicker times.  The laser achieves the same sheet resistance in 10 – 20 

 
 

Figure 20: Paper 120C (Left) 200C (Right) 

  
 

Figure 21: Laser Sintering 
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seconds that requires one hour in an oven at 200°C, and, the substrate remains in an 

unaltered state.  The one issue is alignment of the laser with the printed pattern, but 

this can be taken care of with printed alignment marks and careful alignment. 

  
 

Figure 22: Laser Vs. Heat Sintering for 5 Layers of Cabot Ink 

 

3.1.4.3 Conductivity Summary 

 

In this section, the conductivity of printed test structures is characterized over 

several variables of the inkjet-printing process including layers printed, sintering 

time, temperature, and laser sintering.  The thickness of the structures is also tested 

using a profilometer with traces printed on a smooth glass surface in order to relate 

sheet resistance to conductivity (σ) using the following equation: 
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The following table contains the estimated conductivities for the previously tested 

structures.  The conductivities for sintering at 120 and 200°C are very similar to 

published values in [32]. 

Table 4: Inkjet Ink Conductivities 

# Layers Sintering - 120°C Sintering - 200°C Laser 

1 5.45e5 1.6e6 - 

2 1.11e6 4.9e6 - 

3 1.16e6 5.56e6 - 

4 1.52e6 1.3e6 - 

5 2.1e6 1.2e7 1.1e7 

Published 3e5 (1 layer) 3e6 (1 layer)  

 

As seen in the table, using the correct sintering parameters can lead to conductivies 

above 1e7 which is only five times lower than bulk silver at 6.4e7 S/m.  Introducing 

more printed layers, or sintering at higher temperatures can bring inks even closer 

to bulk silver conductivities, but at an increased cost.  The results from this section 

prove that silver nanoparticle inks are suitable for implementing microwave 

frequency structures and antennas. 
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3.2 Substrate Characterization 

The lack of available substrate characterization data on polymer and organic 

substrates is a major obstacle in using them for the fabrication of microwave 

structures.  Since these are not common microwave substrates, the first issue is that 

manufacturers have not put in the effort to characterize them for electrical 

permittivity (εr) and loss tangent (tanδ) past low MHz frequencies, and for some 

substrates such as photo paper, the electrical properties are not provided at all.  The 

second issue is that most polymer and organic substrates have widely varying 

parameters based on manufacturer processing techniques, batch quality, substrate 

thickness, and other factors.  For example, Dupont publishes the relative 

permittivity of Kapton at 1kHz, and the values of permittivity range between 2.8 and 

3.8 depending on a variety of factors [33].  Therefore, whenever using a new flexible 

substrate such as paper, Kapton, PET, or others, the electrical properties must be 

characterized. 

Several methods have previously been used to characterize microwave substrates 

ranging from resonant cavities, transmission line resonators, and group velocity 

measurements of microstrip and co-planar waveguide structures [34].  Following 

sections in this chapter elaborate on the methods used to measure the relative 

permittivity of Photo Paper, PET, and Kapton.  This data is essential for the design of 

antennas on these substrates. 
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3.2.1 Ring Resonator Technique 

One of the most common substrate characterization methods is to use a two-port 

microstrip ring resonator to extract the permittivity and loss tangent of a substrate.  

A ring resonator is shown in Figure 23 where l is the microstrip feed length, G is the 

capacitive coupling gap between feed line and ring, C is the circumference of the 

ring, and W is the width of the microstrip line.  The ring resonates whenever the 

circumference is equal to one wavelength or multiples of one wavelength [35].  This 

is expressed in (2). 

 
 

Figure 23: Ring Resonator 

 

   = 2 r  (2) 

From the resonant frequencies, the relative permittivity can be extracted using the 

geometry of the microstrip lines, and the circumference of the ring.  The velocity of 

propagation, Vp in a microstrip line is well known through (3), where εeff is the 

effective permittivity due to inhomogeneous dielectric common to the microstrip 

structure  [36]: 
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  ( ) =
 

√    ( )
 (3) 

And, relating the velocity of propagation to the wavelength we get: 

  ( ) =
 

 √    ( )
 (4) 

 

From these equations     ( ) can be calculated.  Since the fields in a microstrip line 

are quasi-TEM due to the inhomogeneous dielectric of microstrip structure, the 

relative permittivity of the substrate becomes a function of the permittivity of the 

substrate and the geometry of the microstrip line shown in Figure 24 along with the 

equation to extract the relative permittivity. 

 
 

Figure 24: Microstrip Structure 
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Once the relative permittivity versus frequency is extracted, the quality factor Q of 

the each of the resonance peaks denoted by n = (1, 3, 5, …) can be used to extract 

the total losses αtot in the resonator which are composed of conductor αc, dielectric 

αd, and radiation losses respectively αr [35].  

    , =   ,    ,    , =
8.686 f √    

  
 [

  

           
] (7) 

The conductor (αc) and radiation (αr) losses can be extracted with a series of 

empirical formulas or simulators and removed from the total loss which leaves only 

the dielectric loss.  In this work, Agilent’s line-calc program is used to extract the 

conductor and radiation losses.  With the conductor and radiation losses removed 

from the total loss, (8) can be used to relate the dielectric loss to loss tangent [35]. 

    =
  ,   √    ,  (  ,  1)

8.686   , (    ,  1)
     [

  

           
] (8) 
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 As characterization work began before the ink-jetting process had been 

characterized, a shadow masked sputtering process is used to fabricate the ring 

resonator on a PET substrate. 

To fabricate a prototype ring resonator for 

testing, sputtered gold was used on PET and 

Kapton with a laser cut shadow mask. The ring 

resonator is shown in Figure 25.  Due to the 

limitations on sputtering thickness (1um), and 

large minimum gap size (100um) was required. 

This large gap reduced coupling to the ring, and 

hence the insertion loss of the resonator was near the noise floor which made 

dielectric loss tangent extraction impossible.  The return loss of the resonator is 

shown in Figure 26, which is used to extract the permittivity of the PET.  While the 

results are in the range of published PET values, the loss tangent was not able to be 

extracted due to the lack of coupling from large gap sizes required by the sputtering 

process. 

 

 

 

 

 

 
 

Figure 25: Fabricated PET Ring Resonator 
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Figure 26: PET Ring Resonator Return Loss 

 

 
 

Figure 27: PET Ring Resonator Permittivity 
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Due to the poor results of the sputtering process, and a lack of other processes in 

our lab to fabricate ring resonators with small gaps on PET, Kapton, or Paper, it was 

decided to move on to another type of resonator that would be easier to fabricate – 

the microstrip T-Resonator 

3.2.2 T-Resonator Technique 

The T-Resonator, while not as common as the ring resonator in characterization, is 

much simpler to fabricate as it consists of a microstrip transmission line with an 

open circuit stub.  The structure of the T-Resonator is shown in Figure 28.  Due to 

the open circuit stub with length d, a null occurs in the transmission whenever d is 

an odd multiple of a quarter wavelength [37] which is caused by the reflected wave 

being 180° out of phase once it returns from the open end of the stub.   

 
 

Figure 28: Microstrip T-Resonator 

 

f , =
nc

4 √    

 (9) 

The equation for resonance is shown in (9) where n is the resonance index (1, 3, 5, 

…), c is the speed of light in vacuum, L is the length of the open circuit stub, and εeff  

W

d
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is the effective permittivity of the microstrip line [37].  However, due to the 

parasitics of the T-junction and fringing fields at the end of the open circuit stub, a 

correction factor for the length of the stub needs to be incorporated when 

calculating εeff.  A method for doing this is presented in [37].  Shown in (10), k is the 

correction factor which includes the junction and open circuit effects on the 

resonant frequency. 

    , =
nc

4(   )f , 
 (10) 

Using the relations of relative to effective permittivity in a mirostrip (5) – (6) in 

section 3.2.1, the permittivity of the substrate can be extracted. 

The Q-factor of the resonance peaks can be used to extract the loss tangent of the 

substrate.  The loaded Q-factor is calculated in (11), and then needs to be converted 

to the unloaded Q-factor (12). which de-embeds the loading caused by the 

measurement equipment [37].  

    =
f , 

       
 (11) 

 

     =
    

√1  2  10  /  
 (12) 

 

In (11), Ql-n is the Q-factor for the nth resonance, fr,n is the resonant frequency, and 

BW3dB-n is the 3-dB bandwidth.  In (12), La is the insertion loss at resonance which is 
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used to de-embed the loading effects.  The total losses in the microstrip resonator 

(13)  can then be extracted [38]. 

    , =   ,    ,    , =
8.686 f , √    , 

      
 [

  

           
] (13) 

 

There are a variety of methods to extract conductor and radiation losses, however in 

this work, Agilent’s Line-calc utility is used to subtract these two losses from the 

total loss leaving only the dielectric losses.  The dielectric loss can be directly 

converted to loss tangent through (14) using standard microstrip loss equations 

given in [34].  

    =
  ,   √    ,  (  ,  1)

8.686   , (    ,  1)
 (14) 

To fabricate the T-Resonators, the same sputtering process which was used in the 

previous section was used for Kapton and PET.  However, paper had heating and 

degradation issues when used in the high vacuum sputtering process, so inkjet 

printing was used to fabricate the paper based resonator instead as at this time the 

process had been characterized. 

One of the issues that arose with Kapton and PET was that the substrates were very 

thin which required thin transmission lines for the T-Resonator to have a 

characteristic impedance near 50Ω. This leads to high conductor losses in the 

resonator. The lower the conductor loss, the better the interference by the open 

circuit stub, and the easier it is to distinguish resonant peaks. Paper can be heat 
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bonded together to form a thicker layer which means wider transmission lines and 

less conductor loss.  The substrate dimensions and corresponding microstrip width 

are shown in Table 5. 

Table 5: Resonator Dimensions 

Material Thickness (in) Thickness (um) 
Microstrip Width 

(mm) 
Stub Length d 

(mm) 

Photo Paper 0.062 230 1.05 48 

Polyethylene 0.007 177.8 0.40 48 

Kapton HN 0.005 127.0 0.28 45 

 

 The paper-based T-Resonator is shown in Figure 29 along with the TRL calibration 

lines.  The stub was designed to have resonances at odd intervals of 1 GHz (1, 3, 5 

…), with the intent of measuring the permittivity and loss tangent up to 10 GHz.  

While more frequency points would have been better, 

a lower resonant frequency would require a longer 

stub which is more difficult to fabricate and can cause 

more uncertainty in extracting conductor loss.  The 

measured insertion loss is shown in Figure 30.  

 

 

 
 

Figure 29: Microstrip T-Resonator 



P a g e  | 51 

 

 
 

Figure 30: Paper T-Resonator Insertion Loss 

 

Using the aforementioned technique of extracting substrate permittivity, Figure 31 

was attained which shows the relative permittivity vs. frequency.  The data has been 

compared to the results in (reference) and shows good agreement at the measured 

frequencies.  Dispersion is relatively high over the frequency range, but this can be 

expected as paper is an organic substrate and has not been tailored for microwave 

use. 
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Figure 31: Extracted Relative Permittivity of Photo Paper 

 

Following the extraction of the relative permittivity, the extraction of the loss 

tangent was performed which is shown in Figure 32.  The loss tangent is within 

reasonable range to previously published data which leads us to believe our 

extraction was accurate. 

 
 

Figure 32: Extracted Loss Tangent of Photo Paper 
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The Kapton and PET resonators both had very high 

edge rougness due to the shadow masking process 

used with sputtering which made it very difficult to 

accurately model conductor loss and therefore loss 

tangent extraction was not performed on these 

substrates.  However, the relative permittivity was 

extracted for both materials and is shown in Figure 34.  

A close up comparison of the fabricated microstrip 

lines showing the high edge roughness with sputtering 

and low roughness in inkjet printing is shown in Figure 

33.  

 
 

Figure 34: Extracted Permittivity of Kapton and PET 
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Figure 33:  Top  – Sputtered Line, 
Bottom - Printed Line 
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3.2.3 Transmission Line Method 

One of the drawbacks of the T-Resonator method for extracting the loss tangent is 

that extracting conductor losses from a nanoparticle ink on a pourous material such 

as paper is very difficult due to variable surface roughness.  Therefore, a 

transmission line method is used as well to extract the dielectric losses on paper in 

which the transmission line is 

fabricated from laser-cut 

aluminum foil which allows for 

easy conductor loss extraction.  

The laser cut lines have a 

known thickness and conductivity as well as known edge roughness which the 

inkjet and sputtering processes do not have. 

In this method, the insertion loss for two different lengths of transmission line is 

measured which is shown in Figure 36.  The difference in insertion loss between the 

two lines is then divided by the difference in length d which de-embeds the end 

effects of the connectors.  This total loss per unit length is again the combination of 

conductor, radiated, and dielectric losses from (13).  Using the same methods 

described in 3.2.2, the dielectric loss is isolated from the total loss of the 

transmission line.  From the dielectric loss, the loss tangent is extracted using (14).  

A smoothing function was used on the data to reduce noise.  The loss tangent is then 

compared with the published and T-Resonator data in Figure 37.  As seen, the loss 

tangent data from the tansmission line method is in proximity to the loss from the T-

 
 
 

Figure 35:  Transmission Line Loss Tangent Extraction 
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Resonator.  This confirms that the loss tangent is near 0.05 over the UWB frequency 

band. 

 

Figure 36: Insertion Loss of Two Lengths of Transmission Line 

 

Figure 37: Loss Tangent Comparison Between Methods 
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3.3 Summary 

As demonstrated in this chapter, the characterization of the inkjet printing process 

is performed and several techniques were used to investigate the electrical 

parameters of Paper, Kapton, and Polyethylene.  The measured electrical properties 

are close to published data in the frequencies where data has been published on 

these substrates.  While these substrates have high dispersion over the 1 – 8GHz 

frequency range, proper design can help to lessen the effects of dielectric loss.  The 

inkjet-printing process has been tuned to produce conductivities near that of bulk 

metals, and feature sizes for structures and spacing of approximately 50um are able 

to be obtained.  With the results of characterization, it is shown that high frequency 

antenna and microwave design using this process is realizable.    The results of this 

section will allow for modeling and simulation of the antennas designed in the 

following chapters.   
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4. INKJET-PRINTED FRACTAL 
ANTENNAS 

The characterization work in the previous chapter builds the foundation for 

designing antennas on polymer and organic substrates using the inkjet printing 

process.  As stressed earlier, inkjet printing on polymer and organic substrates is 

important due to: low cost, light weight , disposability, environmental compatibility, 

and flexibility.  And, due to the fact that paper is the cheapest and most promising 

substrate for these applications, it is the chosen substrate for all antennas fabricated 

in this thesis. 

As discussed in Chapter 2, a major deficiency in the inkjet-printed antenna field is 

the lack of wideband and directive antennas.  Using inkjet-printed antennas for 

wearable, high data rate, and energy harvesting applications requires expanding 

beyond the existing RFID antennas. These futuristic applications require antennas 

that have high gain and ultra-wideband performance.  The work in this chapter 

blends the advantages of inkjet printing with wideband fractal antenna design to 

produce omnidirectional wideband antennas and prove that inkjet printing is an 

effective process for wearable and high data rate applications.  The two antennas 

discussed in this chapter are the Serpinski fractal monopole antenna which is 

intended for 2.4GHz operation and an extension of the Serpinski monopole antenna 

to allow for ultra-wideband (3 – 10.6GHz) operation. 

  



P a g e  | 58 

 

4.1 2.4 GHz Sierpinski Fractal Monopole 

Wideband monopole antennas demonstrated in the literature [39], [40], [41], use a 

variety of shapes such as triangles and circles to better match the antenna and feed 

line (CPW, microstrip) impedances. Since inkjet printing is a planar process, it is 

very easy to feed antennas with microstrip or CPW lines and for this work, a 

microstrip-fed monopole is chosen.  Some common microstrip-fed monopoles from 

literature are shown in Table 6. 

Table 6: Wideband Monopole Types 

   

Triangular Monopole [39] Circular Monopole [40] Square Monopole [41] 

 

It has also been demonstrated that fractal patterns used in antenna design can 

decrease size while increasing the antenna’s effective bandwidth [42].  Along with 

these benefits, fractals also have a unique benefit of decreasing cost in inkjet 

printing as fractal patterns decrease the amount of metallization required.  The fact 

that fractal geometries require less ink and demonstrate superior wide bandwidth 

performance with smaller sizes makes them an attractive prospect for wideband, 

low cost antenna systems. Table 7 shows several fractal patterns that have been 

used in antenna design. 
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Table 7: Fractal Pattern Examples 

 
  

Sierpinski Gasket Koch Snowflake Sierpinski Carpet 

 

By looking at Tables 6 and 7, a good match is seen between the Sierpinski fractal 

and the triangular monopole, so the Sierpinski will be used to reduce ink 

consumption and increase the bandwidth of the triangular monopole.  Table 8 

shows the progression of the Sierpinski fractal along with the ink reduction 

achieved by increasing the number of iterations of the fractal pattern.  By the third 

iteration, almost 60% reduction in ink is achieved.  As ink is the primary cost in 

inkjet-printed antennas, using fractal geometry reduces the cost to almost half of the 

fully printed structure. 

Table 8: Sierpinski Fractal Iterations 

Iteration # 0 1 2 3 

Fractal 
Progression 

    

Ink Reduction 0% 25% 43.75% 57.8% 
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4.1.1 Sierpinski Monopole Design on Paper 

The printed fractal monopole 

consists of a microstrip feed line, a 

tapered ground plane for increased 

wideband matching, and a 

Sierpinski Gasket radiating element 

which is shown in Figure 38.  The 

width of the microstrip line is 

obtained by using the characterized 

εr of photo paper which is 3.2 at 

2.4GHz, and a substrate thickness of 440um as inputs to CST’s line calculation utility. 

Several iterations of the Sierpinski Gasket monopole with a flat truncated ground 

plane are simulated to quantify the effects of adding the fractal pattern to the 

triangular monopole.  The different iterations along with the resonant frequency are 

shown in Table 9.  The return loss of the various iterations of the antenna is shown 

in Figure 39 which demonstrates the decrease in resonant frequency with the 

increase in the number of iterations of the fractal with equal antenna dimensions. 

Table 9: Triangular Monopole with Sierpinski Progression 

Iteration 0 1 2 3 

CST Model 

    

Fresonant  [GHz] 2.65 2.55 2.49 2.44 

 
 

Figure 38: Microstrip T-Resonator (Units in mm) 
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Figure 39: Return Loss for Fractal Iterations 

 

As seen by the return loss progression, the matching worsens with increased fractal 

iterations.  A technique commonly used in matching wideband antennas is to taper 

the ground plane [43], [44].  By tapering the ground plane which is shown in Figure 

38, better matching is achieved as shown in Figure 40.  It may also be noticed that 

the resonant frequency slightly decreases with the increased match.  This is caused 

by an increased distance between the top edge of the Sierpinski Gasket radiating 

element and the bottom edge of the tapered ground.  The steeper the taper, the 

larger this distance, and the lower the operating frequency will become. 
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Figure 40: Increased Match by Tapering Ground Plane 

 

As the Sierpinski Monopole is a planar monopole with truncated ground plane, the 

radiation is similar to that of a broadside radiating wire antenna or dipole.  The E 

(vertical or phi) and H (horizontal or theta) cuts are shown in Figure 41. 

 
 

Figure 41: Simulated Radiaton Pattern of Sierpinski Monopole 
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The maximum simulated gain of the antenna is 1 dBi and the pattern is nearly 

isotropic in the H-plane. 

4.1.2 Sierpinski Monopole Fabrication 

Since the Sierpinski monopole is a two layer antenna, the radiator and patterned 

ground plane will be printed separately on a sheet of photo paper, aligned, and then 

glued together with a thin layer of spray adhesive.  Two sided printing is possible, 

but as paper is thin (220um per sheet), a 50 ohm microstrip line is only 500um in 

width.  To increase the microstrip width which decreases losses, two sheets of paper 

are used increasing the microstrip width to around 1mm. The mask for the 

Sierpinski Monopole is shown in Figure 42 which incorporates the ground plane, 

radiator, and alignment marks for combining the two layers after fabrication.  The 

layers are aligned by laser cutting holes in the center of the alignment marks, and 

feeding alignment pins through the holes on each substrate.  The two substrates are 

then slid together on an alignment jig with a thin layer of spray adhesive on the back 

side of the top layer which is illustrated in Figure 43. 

 
 

Figure 42: Mask for Sierpinski Fractal Monopole 
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Once the two layers are joined together, an SMA connector is mounted with a 

conductive epoxy as soldering will burn the paper.  The entire antenna is then put in 

an oven to cure the epoxy.  The final fabricated antenna is shown in Figure 43.  

 
 

Figure 43:  Layer Alignment for Printed Structures 
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4.1.3 Sierpinski Monopole Measurements 

The fabricated Sierpinski monopole 

is shown in Figure 44.  The SMA 

connector connected with a silver 

heat cure epoxy can be clearly seen. 

In order to ensure correct 

operation of the fabricated antenna, 

the return loss is measured using a 

Agilent 8720ES 40GHz VNA and plotted against the simulated return loss in Figure 

45.  The measurements were performed in a 0.4 – 40 GHz NSI anechoic chamber at 

Rose-Hulman Institute of Technology. 

 
 

Figure 45: Mask for Sierpinski Fractal Monopole 
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Figure 44:  Fabricated Sierpinski Monopole 
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As shown, the measured return loss is very close to the simulated return loss of the 

structure.  The resonant frequency matches the simulated resonant frequency and 

the bandwidth follows simulations quite well.  There is another small dip on the 

return loss around 3.5 GHz which may be caused by parasitics from the connector 

mounting and cable radiation as the truncated ground plane may not be at perfect 

ground potential which will send return current down the outside of the cable.  

Further simulations including a connector and coax cable can be performed to 

confirm this but as the main operating band matches simulations well, this will not 

be investigated during this thesis. 

The radiation pattern is then measured in a 0.5 – 40 GHz tapered farfield chamber 

provided by King Abdullahziz City for Science and Technology, Riyadh [45], and the 

results are shown in Figure 46.  The radiation pattern at 2.4 GHz matches well with 

the simulated pattern, and the max gain of the measured antenna is 0.97 dB, which 

is very close to the max gain in dB in simulation.  The discrepancies that do appear 

in the pattern measurements may come from connector parasitics, and cable 

radiation due to the asymmetric microstrip to monopole transition.  As discussed 

earlier, return currents have the potential to flow on the outer edge of the coaxial 

cable caused by the truncated ground being at a slightly different potential than 

ground which will cause interference and decreased gain in the measured radiation 

pattern.  However, the simulated and measured results are closely related for return 

loss and radiation pattern. 
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Figure 46: Increased Match by Tapering Ground Plane 

 

4.1.4 Summary 

By implementing fractal design, the ink consumption and antenna performance of a 

2.4 GHz triangular monopole are improved.  Wideband and omni-directional 

performance is also achieved. The design has been successfully ink-jetted and the 

measured results match simulation within a margin of error.  A table comparing the 

simulated and measured results is displayed below. 

Table 10: Comparison of Measured and Simulated Sierpinski Monopole Parameters 

 Simulation Measurement 

Resonant Frequency 2.4 GHz 2.35 GHz 

Bandwidth 564 MHz 737 MHz 

Gain 1 dB 0.97 dB 

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

H-Plane Cut f = 2.4GHz

 

 

Measurement

Simulation

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

E-Plane Cut f = 2.4GHz

 

 

Measurement

Simulation



P a g e  | 68 

 

4.2  UWB Sierpinski Monopole 

The previous section demonstrates a complete fabricated wideband antenna on 

paper using fractal design to reduce ink usage and increase the antenna’s electrical 

length.  The next step is to design and fabricate a 

UWB (3.1 – 10.6 GHz) antenna to prove that large 

bandwidths can be covered by paper-based inkjet-

printed antennas.  This is important as wearable 

antennas for high data rate applications can exploit 

the UWB band using very low emission rates for 

high data throughput – up to 500Mbps at 10 

meters [46]. Several methods have been used to 

improve the impedance bandwidth of the 

monopole.  One application demonstrated in the 

literature to which the Sierpinski Gasket ink reduction technique can be applied is 

the incorporation of a tapered triangular matching network (grey) to a square 

microstrip monopole [47].  The tapered matching network greatly extends the 

impedance bandwidth of the monopole allowing for bandwidths of nearly a decade.  

The design of the proposed antenna is shown in Figure 47. Another consideration 

for this antenna is that the currently published UWB inkjet-printed antenna has 

radiating element dimensions of 6 x 6 [29] cm, so the dimensions of the radiating 

element of this antenna should be smaller.  As shown in Figure 47, the radiating 

element dimensions are 1.5 x 1.35 cm which is around 16 times smaller than the 

currently published inkjet-printed UWB antenna.  This is due to the fact that the 

                          
 

Figure 47:  UWB Monopole Design 
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operating frequency of the previously published antenna works down to 2 GHz 

instead of 3.1 GHz, and because the fractal design allows this monopole to be a 

factor smaller than non-fractal matched UWB monopoles. 

4.2.1 UWB Sierpinski Monopole Design 

The antenna is composed of a microstrip feed line, a tapered transition into a 

monopole using the Sierpinski fractal, and a tapered ground plane to aid in 

extending the impedance bandwidth of the antenna.  The 

width of the microstrip line and substrate thickness are 

again 1.1 mm and 440 um respectively as the substrate 

used is two layers of photo paper – one for the top 

radiating element and one for the ground plane.  When 

designing the antenna, several variables were taken into 

account: the height of the monopole (h), the width of the 

monopole (w), and the angle of the taper (θ). 

The height of the monopole is selected to be one quarter wavelength on a paper 

substrate which is near 15mm, and the triangular taper is chosen to be an isosceles 

triangle which fixes the width of the monopole.  To determine the best transition 

angle for wideband impedance matching, the ground tapering angle is swept from 0 

to 60°.  Simulation results of the sweep in Figure 49 show that the optimum angle is 

near 45° meaning the gap between the monopole and ground taper is 15°. 

 
 

Figure 48: UWB Monopole 

h

w

Theta



P a g e  | 70 

 

 
 

Figure 49: Sweep of Ground Tapering Angle on UWB Monopole 

 

The simulations for the ground tapering include the fractal pattern in the triangular 

impedance matching section of the monopole which is used to decrease ink usage 

and the lower operating frequency of the antenna as shown in the previous section.  

The simulation in Figure 50 shows the effects of not including the fractal in the 

matching network.  As shown, the fractal pattern lowers the lowest operating 

frequency by about 200 MHz and enhances match while keeping the high end of the 

operational band the same. 
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Figure 50: Fractal vs. Non Fractal Matching Network 

 

The radiation pattern of the UWB monopole is similar to that of a microstrip 

monopole, or dipole having a somewhat isotropic pattern in the H-Plane, and a 

doughnut shaped pattern in the E-Plane.  The radiation patterns for several 

frequencies over the UWB band are shown below.  As seen, there is not a large 

variation in pattern over the operating range.  The maximum gain over the 

frequency range however does change which is common for antennas with such 

bandwidth because of electrical size and pattern interference at different 

frequencies which is displayed in Figure 52. 

  

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

2 4 6 8 10 12

R
et

u
rn

 L
o

ss
 [

d
B

] 

Frequency [GHz] 

No Fractal Fractal



P a g e  | 72 

 

 
 

 
 

 
 

 
Figure 51: Simulated Pattern for UWB Monopole 
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Figure 52: Simulated Gain vs. Frequency of the UWB Monopole Antenna 
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4.2.2 UWB Monopole Measurements 

 

The fabricated UWB monopole is shown to the 

right in Figure 53. After fabrication, the return 

loss is measured using an Agilent 8720ES 

40GHz VNA to ensure correct operation.  As 

seen in Figure 54, the operating frequency is 

from 3.4 – 10.6 GHz which is slightly off from 

the simulated 3.1 – 11 GHz operating range.  

But, as the antenna is very dependent on alignment of the top and bottom layers and 

alignment is only accurate to several hundred microns when gluing multiple pieces 

of paper together (see Figure 43), the results are satisfactory and the antenna will 

work for the UWB band. 

 
 

Figure 54: UWB Monopole Return Loss Measurement 
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Figure 53: Fabricated UWB Monopole 
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The measured gains and radiation patterns for several frequencies are shown in 

Figure 55.  As seen, the simulated and measured patterns are very similar having 

omni-directional radiation in the H-Plane, and dipole-like radiation in the E-Plane.    

Some non-symmetries are present which is in the most likely case is due to cable 

radiation which is a common problem in coaxial cable antenna measurements.   As 

the cable and SMA connector are not modeled in the simulation, this is a very likely 

source of error. 
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Figure 55: Simulated vs. Measured Gain and Radiation Pattern of UWB Monopole 

 

The measured and simulated maximum gain vs. frequency is shown in Figure 56.  As 

seen the gain pattern follows well at the lower frequency band but higher by 2dB 

from 9-11 GHz.  This is a trend that is seen in several of the antenna measurements, 

and is attributed to a calibration error in the measurement chamber around this 

frequency. 

 
 

Figure 56: Max Realized Gain vs. Frequency 
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4.2.3 Summary 

As shown in return loss and radiation pattern measurements, the UWB monopole 

with fractal matching network exhibits positive gains and below -10dB return loss 

over the UWB band with the exception of the lower end of the band which starts at 

3.4 GHz – though the gain is still positive down to 3 GHz.   A second version of the 

UWB monopole is discussed in the following section which addresses this issue. 
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4.3 UWB Sierpinski Monopole Version 2 

As demonstrated in the previous section, an inkjet-printed UWB monopole sixteen 

times smaller than currently published inkjet-printed UWB antennas was achieved, 

and the Sierpinski Gasket pattern was used to lower the operating frequency and 

decrease ink usage.  The only issue was that during fabrication, the lower operating 

frequency was shifted from 3.1 to 3.4 GHz.  Several issues including alignment 

offsets most likely attributed to this problem. 

A second version of the monopole was designed 

which exhibits slightly better low end matching 

by truncating the ground taper.  This creates a 

larger gap between the radiator and ground 

plane which lowers the lowest operating 

frequency.  The second version is shown in 

Figure 57. 

The return loss for the second version of the 

UWB monopole is compared against the first in 

Figure 58.  As seen, the low end performance has a better match while the high end 

does not suffer from the truncation of the ground plane. 

 

 

 

 
 

Figure 57: Version 2 UWB Monopole Antenna 
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Figure 58: First and Second Version of the UWB Monopole 

 

4.3.1 UWB Sierpinski Monopole Version 2 Measurements 

Again, the return loss and radiation pattern 

are measured to confirm the operation of the 

antenna. As seen in Figure 60, the return loss 

matches the simulation much better, and the 

lower end operation point is 3.15 GHz.  The 

higher end however, is at -8dB at 10.6GHz – 

the upper end of the UWB band – which 

corresponds to a VSWR of 2.25.  Several specifications allow for the VSWR to be 

below 3, meaning around 70% power transmitted over the band.   
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Figure 59: Fabricated UWB Monopole V2 
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Figure 60: UWB Monopole Version 2 Return Loss Measurement 

 

The radition pattern and gain are measured to quantify the operation of the second 

version of the UWB monopole.  Several selected patterns over the operating range of 

the antenna are displayed below which show a good agreement between the 

measured and simulated patterns.  The gain vs. frequency is displayed in Figure 62, 

which shows a better gain around 9 GHz than the simulated antenna, and positive 

gains over the entire UWB band. 
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Figure 61: UWB Monopole Version 2 Pattern Measurements 

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

H-Plane Cut f = 3.2GHz

 

 

Measurement

Simulation

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

E-Plane Cut f = 3.2GHz

 

 

Measurement

Simulation

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

H-Plane Cut f = 8GHz

 

 

Measurement

Simulation

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

E-Plane Cut f = 8GHz

 

 

Measurement

Simulation

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

H-Plane Cut f = 12GHz

 

 

Measurement

Simulation

-15

-15

-5

-5

5 dB

5 dB

90o

60o

30o
0o

-30o

-60o

-90o

-120o

-150o

180o
150o

120o

E-Plane Cut f = 12GHz

 

 

Measurement

Simulation



P a g e  | 83 

 

 
 

Figure 62: UWB Monopole Version 2 Gain Vs. Frequency 

 

4.3.2 Summary 

This chapter has discussed two versions of a microstrip fed UWB monopole that 

uses a Sierpinski fractal pattern to reduce ink usage and decrease the lowest 

operating frequency allowing for device minimization.  Both antennas operate with 

a VSWR of under 2.25 over the UWB band and show positive gains from 3 – 11GHz.  

The patterns are nearly isotropic in the H-Plane and similar to a Dipole in the E-

Plane.  The antenna has been able to cover the UWB band with a 16x smaller 

footprint than currently published inkjetted UWB antennas on paper. 
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5. DIRECTIVE UWB PRINTED 
ANTENNAS 

While the antennas demonstrated in Chapter 4 exhibit wideband operation, their 

omnidirectional behavior restricts them to applications where communication 

range is not important.  On the other hand, several applications such as long-range 

communications, directional receiving/transmitting to base stations, and energy 

harvesting require higher gains and directional beam antennas.   

As already discussed in Chapter 1, there are currently no published directional, high 

gain antennas that have been inkjet-printed in general, let alone on paper.  The 

highest published gain from an inkjet-printed antenna is around 3 dB which is 

shown earlier in Table 2.  The work in this chapter focuses on producing directional 

and high gain antenna s that also demonstrate ultra-wide bandwidth.  The aim is to 

demonstrate that inkjet printing is a viable fabrication method that may be 

extended to applications requiring gains above several dB. 

In order to achieve high gains and wide bandwidth, several antennas such as log 

periodic dipole arrays, horns, cavity backed spirals, and Vivaldi antennas have 

previously been demonstrated.  Since inkjet printing is currently a planar process, 

Vivaldi antennas and log periodic dipole arrays are an optimum choice. 

The antennas presented in this section include two variations on a Vivaldi antenna 

intended to operate over the entire FCC UWB band, and a planar log periodic dipole 
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array which is used for energy harvesting in the American UHF television band.  The 

target is to achieve gains above 5dB using inkjet-printing on a paper substrate.  
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5.1 UWB Antipodal Vivaldi 

The first high gain directional antenna designed is an antipodal Vivaldi with a 

microstrip feed.  The vivaldi is a balanced traveling wave antenna in which different 

frequencies radiate at different distances along the tapered arm structure.  A 

traveling wave antenna works by radiating it’s energy before reflections occur 

meaning there is no standing wave on the structre.  Theoretically the vivaldi’s 

lowest operating frequency is where the largest gap is equal to one half wavelength 

of the lowest operating frequency.  The highest opearting frequency is infinite as the 

arm seperation goes to zero – though this will not happen in reality. 

As the vivaldi is a balanced antenna, the 

feed needs to be a balanced, or differential 

input to the two arms with the currents 

being 180° out of phase.  As the 

measurement equiptment available is 

unbalanced, a balun is required to convert 

from the SMA input to differential input.  As 

shown in Figure x, a microstrip input 

accepts the unbalanced signal, and a 

tapered ground plane to differential pair feeds the balanced arms. 

 

 

 

 
 

Figure 63: UWB Antipodal Vivaldi 
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5.1.1 Antipodal Vivaldi Design 

The first step in designing the antipodal vivaldi is to design the microstrip to 

differential pair transition.  This is done in CST by feeding the microstrip and 

differential pair ends with waveguide ports and looking at the insertion and return 

loss as the ground tapering radius is varied.  Figure 65 shows the insertion loss for 

the final microstrip to differential pair transition. 

 
 

Figure 64: Vivaldi Transition 

 

 
 

Figure 65: Vivaldi Transition Return and Insertion Loss 
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After obtaining a good transition, the arms are attached to the transition and the 

taper, which is exponential in this case, is optomized to produce the best return loss 

over the UWB band.  The equation of the taper is shown in (15) where x is the in the 

direction of the length of the antenna, and y is in the direction of the width of the 

antenna. 

  =  0.5     (   ) (15) 

Figure 66 below shows the effect of different values of α on the tapered arms of the 

vivaldi and Figure 67 shows the corresponding return loss.  As shown, the case 

where α = 0.055 yields a return loss of less than -10dB over the entire UWB range, 

and even works down to 2.1GHz under -8.5dB.  Therefore, α = 0.055 is chosen as the 

taper curve. 

     
 

Figure 66: α = 0.04 (Left), 0.055 (Middle), 0.07 (Right) 
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Figure 67: Return Loss for Different Alpha Values 

 

A simulated radiation pattern in the middle of the band which is 6 GHz is shown 

below in Figure 68.  Notice the high gain produced by the simulated antenna which 

is near 6.5dB.  The simulated gain vs. frequency is shown in Figure 69.  

     
 

Figure 68: Vivaldi Radiation Pattern at 6 GHz 
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Figure 69: Vivaldi Gain vs. Frequency 

 

As seen, the simulated gain at the start of the UWB band is near 4 dB and averages 

5.5 dB over the bandwidth of the antenna.  From 4 – 12 GHz the gain is very stable 

varying by only 1 dB. 
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5.1.2 Antipodal Vivaldi Measurements 

The final fabricated vivaldi is 

displayed in Figure 70.  The 

same alignment methods 

were used as discussed in 

Section 4.1.2 to align the two 

halfs of the antenna. 

The return loss is first 

measured using an Agilent 8720ES 40GHz VNA in an anechoic chamber.  The 

measured return loss is displayed in Figure 71. 

 
Figure 71: Vivaldi Measurement Vs. Simulation 
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Figure 70: Fabricated Vivaldi 
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As seen, the return loss goes above -10dB near 5 GHz and 7 GHz which does not 

match the simulation.  After placing the antentenna on a light table and inspecting 

the alighment, it is found that the upper and lower layers are displaced horizontally 

by 200um.  By entering these parameters into the simulation and re-simulating, and 

using a frequency dependent permittivity a closer simulation result is obtained. 

The radiation pattern and gain are then measured to confirm the radiation 

properties of the antenna which are shown in Figures 72 and 73 respectively.  As 

shown, the radiation patterns match very well with the simulation, and the gain vs. 

frequency follows a very similar pattern to the simulation with a maximum gain of 

8.6dBi.  This is nearly 3 times higher than the highest gain of paper-based inkjet-

printed antennas in literature. 
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Figure 72: Vivaldi Radiation Pattern 
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Figure 73: Vivaldi Gain vs. Frequency 

 

 

5.1.3 Summary 

The inkjet-printed antipodal Vivaldi, while failing to meet the simulated return loss, 

performs well over the entire UWB band with an average gain of 6.6 dBi over the 

band.  It has the highest gain for currently publicized inkjet-printed antennas on 

paper, and provides a good solution for long range communications, energy 

harvesting, and many others.  
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5.2 UWB Antipodal Vivaldi Version 2 

The measurements for the first antipodal 

Vivaldi show that several changes need to be 

made to match the antennas impedance 

better over the UWB band which will 

produce better gains.  The time domain 

signal in Figure 75 shows that there is a 

small reflection at the transition (0.2 – 0.6 

ns) and a large reflection at the end of the 

Vivaldi (1.25ns) when the arms terminate 

which is expected as there is a discontinuity.  

In order to reduce the reflections occurring at the end of the Vivaldi, a smooth curve 

will be applied to the termination which should help eliminate abrupt changes.  

 
 

Figure 74: UWB Antipodal Vivaldi V2 

     
 

Figure 75: Vivaldi Version 1 Time Domain Signal 
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5.2.1 UWB Antipodal Vivaldi V2 Design 

In order to enhance the frequency response of the Vivaldi, the ends of the arms are 

given a radius which smooths the discontinuity at the end.  This can be seen in 

Figure 74.  Due to the curved ends, the taper rate needs to be optimized to receive 

the best performance over the UWB band.  The taper in this case is decreased from 

0.055 to 0.05 which yields the following return loss.  As seen it has a much better 

return loss and operates from 2.2 through 11 GHz.  The time domain signals in 

Figure 77 shows the smaller end reflection from the smoother transition. 

     
 

Figure 76: Vivaldi V2 vs. V1 Return Loss 
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Figure 77: Minimized Time Domain Reflections 
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5.2.2 UWB Antipodal Vivaldi V2 Measurement 

 

The final fabricated vivaldi is displayed in Figure 78.  The same alignment methods 

were used as discussed in Section 4.1.2 to align the two halfs of the antenna, except 

this time, the alignment pins are cross shaped instead of circular which allows for 

more precise alignment. 

 
 

Figure 78: Fabricated Vivaldi V2 

 

The return loss is first measured using an Agilent 8720ES 40GHz VNA in an anechoic 

chamber.  The measured return loss is displayed in Figure 79. 
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Figure 79: Vivaldi V2 Return Loss Measurements 
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Figure 80: Vivaldi V2 Radiation Pattern Measurements 
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Figure 81: Vivaldi V2 Gain Measurements 

 

The average in-band gain for UWB is 6.2dB which is only 0.4dB lower than the first 

version of the vivaldi and the gain is much more stable at the high end meaning the 

performance for this antenna is better for use over the entire UWB band. 

5.2.3 Summary 

Two separate antipodal Vivaldi antennas have been designed and measured with 

successful results.  The gains have both surpassed all published inkjet-printed 

antennas at this time.  The next steps will be to reduce ink usage and size for these 

antennas to make them more commercially viable solutions. 
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5.3 Applied Log Periodic Dipole Array with Slow Wave Structures 

A series of inkjet-printed antennas have been investigated in the previous section, 

and a final applied antenna will be presented in this section which is used for energy 

harvesting from the UHF TV band in the U.S.  As time goes on, many low cost and 

low powered sensors have appeared on the market that can be used as remote self-

powered sensors operating off of scavenged energy. 

The principle for this application is 

using a high gain antenna to 

capture energy from local 

television towers in the UHF band, 

rectify the signal, and charge a 

super capacitor or small battery so 

sensors can operate indefinitely 

without external power or battery 

replacement. 

For this application, a log periodic dipole array is chosen as the log periodic dipole 

array is directive and wideband – as energy captured is a product of the gain and 

bandwidth of the antenna wideband operation increases energy capture.  As the 

antenna will be designed in the 400 – 600 MHz range, minimization techniques will 

need to be used to reduce the size of the antenna.  The log periodic is chosen over 

the Vivaldi for exactly this reason – dipole arms are much easier to minimize than 

the traveling wave structure of the Vivaldi. 

     
 

Figure 82: Energy Harvesting from UHF Band 
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5.3.1 Log Periodic Dipole Array Design 

The log periodic dipole array is shown in Figure 83.  It is a traveling wave antenna 

meaning that over a certain frequency band, one pair of arms is active while the 

others act as directors and reflectors 

similar to a Yagi Uda parasitic 

antenna.  However, instead of 

radiating in the direction of wave 

travel on the antenna, the antenna 

radiates backwards.   

If the antenna is viewed as an infinite 

array of isotropic radiators with equal 

spacing, a case where the angle α goes 

to zero, the far field pattern can be represented by (16) where N is the number of 

radiators, K equivalent to 2π/λ, d is the spacing between elements, and α is the 

relative phase shift between elements [48]. 

| | =  1  ∑             

   

   

 
(16) 

The magnitude of radiation is maximum when the quantity in the exponent is zero, 

meaning:   

 =  cos  
  

  
 (17) 

When there is no phase shift, meaning α = 0,   = +/- 90, it produces a broadside 

radiation pattern.  If the phasing of the array is lagging, the beam shifts forwards, 

     
 

Figure 83: Log Periodic Design 



P a g e  | 106 

 

and if the phase is leading, the beam shifts backwards.  In the active region, the 

phase shift between elements is: 

 =        (18) 

The π comes from the 180° phase shift between elements and Kd is the free space 

phase shift due to travel time of the wave between the elements.  As d is typically 

around a quarter wavelength in the active region, α leads by 90°.  This produces a 

backwards firing beam typical of the log periodic. 

In designing the log periodic (Reference Figure 83), the spacing and length of the 

elements are determined τ, the ratio of lengths between adjacent elements, and  , 

the relative spacing coefficient whereas [48]: 

   =
1

2
(     )  

(19) 

 

cot  =
4 

1   
 

(20) 

A typical rule is that as τ approaches 1, meaning adjacent arms are identical in 

length, the gain increases, though there is an optimum spacing   that will give the 

highest gain for any given τ. 

The bandwidth of the antenna is a function of the longest and shortest elements, the 

longest element setting a lower bound on the frequency of operation and the 

shortest element setting an upper bound.  In order to decrease the element lengths 

and keep the same operating frequencies, a slow-wave minimization technique 
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which staggers the inductance and capacitance of the dipole arms, similar to that of 

a stepped impedance filter on a transmission line, will be used.  Meandering the 

arms causes cross polarization, so using the stepped L-C approach will give better 

radiation characteristics for the antenna [49].  Figure 84 shows different L-C 

staggered diploes and the corresponding return loss is displayed in Figure 85.  

   
 

 
 

 
 

Figure 84: Stepped Capacitor 400% Dipole Width (Top), 200% (Middle), 0% (Bottom) 

   

 
 

Figure 85: Return Loss for Stepped Capacitor Dipoles 
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As shown by simulation results, stepped impedance arms yield up to 23% length 

reduction using a 4 to 1 step width ratio. 

For the final version of the printed log periodic, a 2 to 1 ratio for stepped impedance 

is used.  The target capture frequency is 525MHz, so arms with resonance of 450 – 

550MHz are used.  A value of 0.93 for τ, and   was parametrically swept over a 

confined range of 0.11 to 0.16 which yields a directivity of 6 – 9 in design tables to 

find the best match and gain for 450 – 550 MHz.  The optimum   is 0.11 which yields 

the antenna in Figure 86. 

 
 

Figure 86: Final Log Periodic 
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The simulated return loss is shown in Figure 87.   

 

 
 

Figure 87: Log Periodic Simulated Return Loss 

 

As seen by the return loss, the antenna operates from 480 – 550 MHz.  The gain vs. 

frequency is displayed in Figure 88. 

 

 
 

Figure 88: Log Periodic Simulated Gain 
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A simulated radiation pattern is shown below. 

 

 
 

 
Figure 89: Log Periodic Simulated Radiation Pattern 
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5.3.2 Log Periodic Measurements 

The final fabricated log periodic is displayed in Figure 90.  As seen, the infinite balun 

runs along the top of the feed line and the center conductor wraps around to the 

opposing side 

 

 
 

Figure 90: Fabricated Log Periodic 

 

To feed the log periodic, and infinite balun is used.  This is where a coaxial cable is 

run along the top of one side of the log periodic, directly over the feed line.  The 

outside of the coaxial cable is soldered to the feed line, and the inner conductor is 

wrapped around to the opposite side of the feed line.  This allows currents to flow 

on the bottom feed line and top feed line/outside of the outer conductor.  But, these 
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currents will not cause radiation on the cable due to the truncation of the lower feed 

line. 

The return loss is measured on a Rhode and Scwartz 8 GHz VNA and is displayed 

below.  As seen, the main resonance point follows the simulation very well, and the 

second resonance point which is not of interest falls 50MHz from the simulation. 

 
 

Figure 91: Log Periodic Simulated and Measured Return Loss 

 

The pattern is not measured for this antenna as it was not able to be transported to 

Saudi Arabia in time.  However, the maximum gain vs. frequency is measured and 

plotted against simulated gain vs. frequency below using an anechoic chamber, 

signal generator, and spectrum analyzer with a known receive antenna.  As shown, 

the gain is very close to the simulation, and the gain pattern follows very well. 
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Figure 92: Log Periodic Simulated and Measured Gain 

 

5.3.3 Summary 

As demonstrated, an inkjet-printed log periodic dipole has been designed using slow 

wave structures to minimize the arm widths by 20%.  The antenna is fabricated and 

the measurements show good agreement with the simulated results.  Further 

miniturization can be done and will be pursued in future work. 
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6. CONCLUSIONS 

6.1 Conclusions 

The work presented in this thesis first tackles the characterization of the ink-jet 

fabrication process and several polymer and organic substrates for microwave 

frequency operation including paper, Kapton, and PET.  The characterization data is 

then used in the design of several wideband, and wideband high-gain antennas for 

fabrication on paper based substrates. 

The fabricated antennas that were measured proved include the smallest UWB 

antenna to date that has been inkjetted along with three antennas reporting higher 

gains than ever before published for inkjet printed antennas. 

The applications of the antennas created in this work can extend to wearable, high 

data rate, and long range applications, as well as energy harvesting for remote self-

powered sensor networks. 

6.2 Future Work 

The work in this thesis is a gateway into the design and implementation of fully 

integrated ink-jetted systems on paper.  This includes the fabrication of actives, 

sensors, passives, along with packaging all using the inkjet printing process on 

paper and other polymer and organic substrates to create low-cost, flexible, and 

disposable systems.  
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