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ABSTRACT

A Workf low for Simulation and Visualization 
Of  Seismic Wave Propagation Using SeisSol, 

VisIt and Avizo.

Luca Passone

Ground motion estimation and subsurface exploration are main research areas in 

computational seismology, they are fundamental for implementing earthquake engineering 

requirements and for modern subsurface reservoir assessment. In this study we propose a 

workflow for discretizing, simulating and visualizing near source ground motion due to 

earthquake rupture. For data generation we use an elastic wave equation solver called SeisSol 

based on the Discontinuous Galerkin formulation with Arbitrary high-order DERivatives 

(ADER-DG). SeisSol is capable of  highly accurate treatment of  any earthquake source 

characterization, occurring on geometrically complex fault systems embedded in geologically 

complicated earth structures. We then visualize the results with two tools: VisIt (“a free 

interactive parallel visualization and graphical analysis tool for viewing scientific data”) and 

Avizo (“The 3D Analysis Software for Scientific and Industrial data”). We investigate each 

approach, include our experiences from model generation to visualization in highly 

immersive environments and conclude with a set of  general recommendations for 

earthquake visualization.
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I.Introduction

According to [1], the prediction of  near-source ground motion relies primarily on three 

factors: (1) an appropriate earthquake source characterization that captures the 

spatiotemporal variation of  the rupture process; (2) the accurate calculation of  wave 

propagation through a three-dimensional complex Earth structure; (3) the correct treatment 

of  site effects in the shallow near-surface region underneath the observation site. We claim 

that this is true from a purely computational point of  view, but gaining information and 

insight from the gigabytes of  data produced by such models is essentially the ultimate goal 

of  any scientific simulation. This is of  paramount importance when we consider the impact 

of  such estimations: from oil exploration to construction standards, end users and their 

monetary investments revolve around understanding and applying the computed predictions 

in meaningful and concrete projects.

Today there are many visualization tools capable of  delivering extremely engaging 

experiences over vast amounts of  data: scientist and engineers can dig deep in the areas that 

interest them the most. As it is common in many fields, there are many approaches, each 

with their own strength and weaknesses, that can be used to achieve similar results but 

differing in the amount of  effort, investment, interactivity and ease of  use. Here we present 

a summary of  our experiences in visualizing fault-rupture models based on simulations 

generated by SeisSol. SeisSol features many key elements that are important for scientific 

software: high portability (runs on IBM, Intel and AMD architectures), highly scalable 

(simulations using up to 65,536 cores have been done on BlueGene/P) and extremely 

flexible (large numbers of  parameters can be adjusted).
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SeisSol’s output is in the form of  seismograms, which provide only a point-like description 

of  the ground shaking. Seeing the dynamics of  waves interacting with the local geology and 

topography, helps to understand the space-time distribution of  the shaking pattern and its 

dependency on the geological structure. To this extent, snapshots in time, or better yet 

movies, contribute to unraveling the generation and characteristics of  seismic wavefields.

We use complicated (i.e. more realistic) excitation functions instead of  simple point-source/

point-forces to demonstrate the large impact of  the space-time evolution of  the rupture on 

the propagating wavefield.

This study starts by introducing hardware resources used for computational and 

visualization, explaining how they are used and their specifications. The next section is 

dedicated to analyzing the software tools: it describes roles, usage and where appropriate, 

performance evaluations and comparison amongst different solutions. We then go on to 

describe an end to end example from mesh generation to visualization concluding with 

advice and common pitfalls in earthquake visualization and our outlook for the future.
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II.Related Work

Even though modern advances in software and hardware have paved the way for new ways 

of  visualizing data, according to [2], in the scientific visualization community, animation 

tools are still not widely adopted. Many legitimate reasons exist for this lack of  adoption; 

cost, training, not appropriate for all situations, etc, but the standard static 2D images of  

PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration) do not allow for time 

dependent data to be displayed effectively, on top of  this they do not contribute to 

understanding the complex interactions happening beneath the subsurface. Recently there 

have been more examples of  efforts concerned with visualizing single events [2-5], examples 

of  specialized codes[6, 7] and some captivating animations using off  the shelf  software such 

as Maya [2, 8].

One major shortcoming in the aforementioned and in literature is the lack of  reusability and 

reproducibility. Almost all publications do not make scripts and parameters available for the 

reader to reuse; this makes it very hard to reproduce the experiment, and, in many cases, 

problems and issues already encountered and solved need to be tackled once again leading to 

a slow down of  the scientific process.

There is also a limited number of  efforts concerned with bringing topographical and 

scientific earthquake data to stereoscopic environments; [9] has done extremely interesting 

and innovative work in these areas using custom software designed specifically for the 

KeckCAVE [10], allowing scientists to load and explore multidimensional data in an 

immersive environment.
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III.Hardware Resources

Both computational and visualization of  large data sets require state of  the art resources: 

from mesh generation, through the elastic wave solver, post-processing and finally the 

visualization itself, all parts involved need to be able to cope with the vast data amounts 

going in, and be capable of  providing input required for the next component. An overview 

of  the hardware follows.

III.I.Computational facilities

III.I.I.Shaheen

Shaheen, the fulcrum of  the scientific modeling process, is a 16 rack IBM BlueGene/P 

supercomputer; each contains 1024 quad-core PowerPC 450 compute nodes running at 

850MHz with 4GB of  RAM, for a total of  64TB.

I/O on Blue Gene/P is provided via quad-core PowerPC 450 I/O nodes also clocked at 

850MHz equipped with 4GB of  RAM. The 16 racks are further subdivided into four rows: 

row 0 has 16 I/O nodes per rack whereas rows 1-3 have 8 I/O nodes per rack.

Control of  Shaheen is moderated via an IBM Power p550 Express “service node”. The 

service node contains 8 processing cores operating at 4.2GHz and is provided with 64GB 

RAM.

With the above configuration, KAUSTs Blue Gene/P installation is capable of  220 Teraflops 

of  peak performance[11], placing it at 34th fastest supercomputer in the world[12] providing 
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all the processing power that SeisSol needs to produce accurate simulations in relative short 

times. 

III.I.II.Neser Cluster

Neser is an Intel Xeon cluster composed of  128 IBM System x 3550 compute nodes. Each 

node is equipped with 2 quad-core Intel "Harpertown" E5420 CPUs and 32GB of  shared 

physical memory running Novell SUSE Linux Enterprise Server (SLES 10 SP3). Its main 

focus is to support primary computation with general-purpose pre- and post-processing 

power.

Neser and Shaheen have high speed connections to the same storage cluster, requiring no 

data transfer between the two. Each node connects to one of  eight switches via 1 Gbit/s 

ethernet connections, which in turn connect via thirty-two 1 Gbit/s ethernet to main storage 

and four 1Gbit/s ethernet connections to the metadata server. This means that, if  we use 

VisIt for visualization, once the data is produced by the simulation it never needs to leave the 

cluster (more on this later).

III.I.III.Workstation

The workstation is mainly used for post-processing and visualization. It runs Fedora 11, with 

23GB of  RAM, 2 quad core Intel Xenon CPU X5550 clocked at 2.67GHz, Nvidia GPU 

Quadro FX 4800 with 1.5GB of  RAM, 1TB of  Hard Disk space and a 23in Dell P2310H 

monitor with a resolution of  1920x1080.

III.I.IV.Laptop

We use an Apple MacBook with 4GB RAM, 2.2GHz Intel Core 2 Duo, Intel GMA X3100 

with 144MB of  VRAM and 7200RPM Hard Disk to test Avizo and VisIt’s performance on 

less powerful machines.
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III.II.Showcase Visualization Laboratories

The Showcase [13] visualization laboratories offer state of  the art equipment for many kinds 

of  visualization, from tiled display walls to 3D stereoscopic displays it caters for many users. 

In our work we utilize three of  the tiled displays: AESOP, OptiPortal and NexCAVE. 

AESOP is a 40-tile display wall featuring 46” NEC ultra-narrow bezel panels, each having a 

resolution of  1360x768 pixels powered by 10 compute servers, enabling large scale, near-

seamless 41.7 megapixel HD images without use of  projection. OptiPortal is a scalable 12-

tile display of  1920x1080 HD screens powered by 3 compute servers with a total resolution 

of  24.8 megapixel. The NexCAVE is a 21-tile modular 3D environment system using JVC 

X-pol LCD displays with 11 computer servers.

All the compute servers have two quad-core i7-950 clocked at 3.07GHz, 6GB of  main 

memory, nVidia GT200b and 10Gb ethernet connections to storage.

Each space will serve different needs as we will see later in the study.
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IV.Simulation and Visualiza-
tion Pipeline

This chapter is concerned with describing the pipeline’s components, from the large software 

components to the scripts that are used to bring them together. For the simulation, we used 

code for 3D wave propagation that handles complicated, physically realistic earthquake 

rupture models embedded in 3D geology to allow us to simulate real events. For 

visualization, we looked at software packages that are multi platform, 3D enabled and 

capable of  running atop our infrastructure.

Figure 1 is used as a guidance to understand this section.
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Geological model

We start off with a geological model 
from an area where we have an 
accurate understanding of the 
underlying substrate.

Gambit
The model is discretized using 
Gambit and the tetrahedral mesh is 
generated.

Metis

The mesh is subdivided with Metis 
in n parts with n equal to the number 
o f p r o c e s s o r s r u n n i n g t h e 
computation.

SeisSol
SeisSol carries out the computation 
and produces pickpoint f i les 
containing acceleration data. 

Postprocessing for 
visualization

These scripts transform the data into 
formats readable by VisIt and Avizo.

VisIt / Avizo

In this stage the data is visualized in 
the visualization packages and in 
some case exported for video 
rendering.

ImageMagick and 
FFmpeg

Once the visualization software has 
exported all the frames, they are cut 
and composed into a movie.

Avizo / VideoBlaster / 
VB.3 / mplayer

The visualization laboratory enables 
for highly immersive experiences 
with the data.

Figure 1: Workflow from the geological model to the visualization laboratories.
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IV.I.Building a geological model

The geological model is the first important step for accurate simulation and visualization of  

an earthquake event: its discretization and subsequent meshing procedure are the 

foundations of  the entire simulation and visualization workflow. The model generally falls 

into two categories: (1) it is built based on an area where we have an accurate understanding 

of  the substrate and, for example, we want to estimate surface ground motion, (2) it is built 

on an area for which we have estimates of  the geological confirmation and we want to 

validate their accuracy, used primarily for exploration and reservoir characterization.

Once we have built the model, the subsequent step is meshing. The coarseness of  the mesh 

controls two important aspects of  the simulation: accuracy and compute time required. We 

will see in the section how to find the balance between the two.

Finally we will conclude by explaining how to subdivide the mesh for SeisSol and a 

performance analysis of  an example.

IV.I.I.GAMBIT

GAMBIT is a geometry and mesh generation software for computational fluid dynamics 

(CFD) analysis [14]. In our workflow it is responsible for geometric construction of  the 

tetrahedral mesh of  the domain. It is also capable of  mesh quality examination and the very 

important boundary zone assignment that SeisSol uses for characterizing different materials: 

the earth subsurface is composed of  multiple geological formations, each with different 

characteristics that are used for parameterizing the computation.

Since the acquisition of  Fluent (the company behind GAMBIT) by ANSYS, support has 

gradually been dropped and plans of  moving onto ANSYS ICEM CFD[15] and/or 

Cubit[16] are undergoing.
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IV.I.II.Meshing

The size of  the mesh elements is of  paramount importance because it affects the two major 

attributes of  a simulation: quality of  the output and the time it takes to achieve it. To 

generate an adequate mesh for the study we need to first calculate the wavelength (λ) of  our 

signal using the wave velocity (c) and frequency (f). This can be simply calculated with the 

formula:

 λ =
c
f

 [Eq. 1]

We choose the frequency based on the range of  interest of  our simulation, for our example 

we are interested only in frequencies below 2Hz. The velocity information of  the elastic 

medium, comes from the geological data; we need to chose between P- and S- wave velocity. 

In a seismic event, there two main types of  body waves[17]: (1) P-waves which have low 

amplitude and high velocity and (2) S-waves which have high amplitude and low velocity. 

Since S-waves are slower than P-waves [18], they govern [Eq. 1] as the smaller wavelength 

requires smaller tetrahedra. Assuming S-wave velocity of  3400m/s the wavelength in the 

domain of  interest is 1700m. According to [19], for a realistic simulation with order 5 

accuracy we need 2 elements per wavelength. With this last piece of  information we arrive to 

the conclusion that tetrahedra composing the mesh should have edges no longer than 850m.

While generating the mesh, we need to take into consideration a common problem for high 

order methods: the absorbing boundary condition. By definition, “at absorbing boundaries, 

no waves are supposed to enter the computational domain and the waves traveling outward 

should pass the boundary without reflections”[20]. It is well documented in literature that it 

is very difficult to fulfill this definition in high order methods, especially in corners and for 

grazing incidence of  waves [20-22], where a grazing wave is one which travels almost parallel 

21



to a surface. Attempts at implementing the perfectly matched layered technique from [23] 

have shown good results but are still not perfect. For this reason, we use a more “brute 

force” method that leverages on the ability of  ADER-DG (a description can be found in 

section III.III) to use coarsening meshes without suffering from numerical instability. As 

shown by [24], SeisSol does not suffer from reflections even with very aggressive coarsening 

parameters. We use this to our advantage and divide our meshes in two areas: the area of  

interest where the tetrahedra respect the dimensions specified above and where we place the 

pickpoints (described in section III.IV), and a padding area where the tetrahedra have a very 

aggressive coarsening function to reduce the amount of  overhead computation. The extent 

of  the latter is governed by the speed of  the fastest wave and the desired length of  the 

seismogram: if, for example, the area of  interest is 2 x 2 x 2 km3, the earthquake is located in 

the middle, the P-wave travels at 1km/s and we require a 2 second seismogram, we define a 

3 x 3 x 3 km3 domain where the excess part is meshed coarsely.

IV.I.III.ParMETIS

For SeisSol to work in a parallel environment, the mesh needs to be partitioned beforehand. 

In our workflow ParMETIS, an MPI parallel version of  METIS uses multilevel recursive-

bisection, multilevel k-way (k is the number of  sets), and multi-constraint partitioning 

schemes [25] for mesh subdivision. Amongst the advantages of  using ParMETIS we note 

that it is extremely fast, provides high quality partitions and is freely available [26]. Table 1 

shows an example of  a medium to small size layered geology replicating the one used in the 

LOH.4 test from [1]. It occupies 395MB and contains 945,422 vertices, 5,437,717 tetrahedra.
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Parts ParMETIS time I/O

128 22.520 1.590

256 24.330 1.610

512 25.900 1.660

1024 27.310 1.610

2048 28.790 1.650

4096 32.320 1.740

8192 32.140 1.660

Table 1. ParMETIS performance for domain decomposition run on the workstation.

Table 1 indicates that even when we increase the number of  parts by a factor of  64, the time 

taken to partition the tetrahedra increases by less than a factor of  1.5. In this particular case 

we stopped at 8192 partitions since according to [27], each core should have at least 1000 

elements to keep efficiency sufficiently high. In our case, a single Blue Gene/P rack (4096 

cores) would have been sufficient for the simulation.

One caveat for getting the mesh ready for ParMETIS is that a conversion from GAMBIT to 

a METIS readable file is required; in the above case an average of  24.4 seconds on top of  

ParMETIS time was taken by a matlab script to do so.

IV.II.Simulation

For the simulation component, we use SeisSol. SeisSol is an application for simulation of  

seismic wave propagation in complex 3D media[28] based on the Arbitrary high-order 

DERivatives Discontinuous Galerkin (ADER-DG) finite-element method[27]. This method 

was originally introduced in [29], highlighting the excellent wave propagation properties of  

DG; the ADER-DG approach avoids the Runge-Kutta time integration procedure by 

substituting it for the far more lightweight ADER approach studied by [30].
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SeisSol’s workflow follows a four stage process[31]: (1) a data initialization phase reads the 

input files and a preprocessed mesh; (2) computations are executed spanning multiple time 

steps and mesh cells; (3) and (4) are concerned with result analysis and output.

For the purpose of  this study we summarize the numerical approximation procedure, 

deferring the reader to [27, 32] for further details. The governing elastic wave equation for 

propagation in visco-elastic media for three dimensions leads to a first order hyperbolic 

system of  PDEs expressed in the compact form as:

 
∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= Sp  [Eq. 2]

where the vector Q=(σ xx , σ yy , σ zz , σ xy , σ xz , σ yz , u, v, w)T  is the vector of  the p unknown 

stresses and velocities related to the corresponding particle motion of  the (rock) material 

acting within each computational cell, Apq, Bpq and Cpq are the space and material dependent 

square Jacobian matrices, and Sp is the external source term not dependent on the solution 

Q. The computational domain is discretized in a conforming tetrahedral mesh of  elements 

T(m) uniquely addressed by the index m. The numerical solution of  [Eq. 2] is then 

approximated in each tetrahedron by polynomials given by a linear combination of  time 

dependent polynomial basis functions θl (ξ, η, ζ) of  degree N, and with only time-

dependent degrees of  freedom Q̂pi
(m ) (t) :

 (Qh
(m ) )p (ξ,η,ζ ,t) = Q̂pl

(m ) (t)θl (ξ,η,ζ )  [Eq. 3]
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where ξ, η and ζ are the coordinates in a reference element TE, Qh denotes the numerical 

approximation, the index p refers to the numbers of  unknowns in the vector Q and l 

indicates the lth basis function[27]. Further discussion of  DG can be found in chapter 1.1 of 

[33] and [34].

IV.II.I.Pickpoint distribution script

There are two reasons we use a script to define pickpoint location: first to avoid manually 

defining the thousands of  pickpoints required for each run, and secondly to facilitate post-

processing by defining them in a specific order.  The pickpoints distribution script takes as 

parameters the size of  the domain and the number of  pickpoints in each dimension. The 

output is an ordered list of  pickpoints locations evenly distributed in space to be included in 

the parameter file used to set up the Seisol run. The script executed with the parameters in 

[Ex. 1] represents a domain stretching 20 x 100 x 10 m3 with eight pickpoints.

 ./pickpoint_distribution.ex -10 10 -50 50 -10 0 2 2 2 [Ex. 1]

Table 2 shows how pickpoint distribution in the three dimensional domain.

x y z
-10.0 -50.0 -10.0
10.0 -50.0 -10.0
-10.0 50.0 -10.0
10.0 50.0 -10.0
-10.0 -50.0 -0.1
10.0 -50.0 -0.1
-10.0 50.0 -0.1
10.0 50.0 -0.1

Table 2: Pickpoint distribution example.

As we can see, when z is equal to 0 the script substitutes it for -0.1; This is to avoid potential 

issues when pickpoints are placed exactly at the edge of  the domain [35].
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IV.III.Visualization

Visualization can be seen as a three stage process: (1) postprocessing the output from 

SeisSol; (2) achieving the desired visuals through the tools provided by the visualization 

packages; (3) optional video generation. At each stage there are challenges and best practices, 

in the following section we will describe how to tackle each stage.

IV.III.I.Post-processing scripts

SeisSol produces three main types of  data: fine output, snapshot and receiver output. The 

parameter file enables fine tuning of  the output contents by allowing the user to define the 

variables to include, the intervals at which they should be written and their format. For the 

purpose of  our visualization needs we use the receiver output. A receiver (or pickpoint) can 

be positioned arbitrarily in space and records the velocity values u, v and w as they vary in 

time. SeisSol has a maximum number of  pickpoints set to 20,000, therefore if  we require 

higher granularity multiple runs with different pickpoint locations are necessary.

For importing data into VisIt and Avizo we need to use two distinctive file formats: VTK 

and AmiraMesh. VisIt, unlike Avizo, provides a visit_writer library and an entire document 

titled “Getting Data Into Visit” [36] with over 200 pages dedicated to helping the user 

getting started. One shortcoming of  VisIt is that it is not able to natively process VTK files 

in parallel: as our data grows in size, we want to be able to distribute the load amongst a 

larger number of  processors to decrease computation time. The only way to achieve this is 

to do a domain division during the post-processing phase and create a .visit configuration 

file that tells VisIt how to stitch the VTKs back together. We therefore make this 

assumption: SeisSol’s output will be post-processed using the same number of  processors as 

will be used for visualization. This means that the decomposition process can be run in 
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parallel (the post processing script for VTKs is MPI enabled) with the only restriction that 

the number of  processes used is less than the number of  pickpoint layers.

Figure 2. Parallel decomposition of  the domain in VisIt.

As we can see in Figure 2, VisIt can display each of  the zones assigned to engine processes 

by using different colors. This is useful as not all domains require the same computation 

time to complete [37]; it gives the user good visual feedback and allows for fine tweaking of  

performance by modifying the extents of  each zone. Even though the conversion process 

may seem extremely I/O bound, we can see in Table 3 that parallelizing still has its 

advantages.
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Open / CloseOpen / Close Keep openKeep openKeep open

Processors Time (s) E Time (s) E X reference

1 226.63 1.00 37.54 1.00 6.04

2 133.77 0.85 19.84 0.95 6.74

4 75.90 0.75 11.40 0.82 6.66

8 45.00 0.63 8.39 0.56 5.36

Table 3. Parallel performance of  post-processing script running on the workstation with hot caches.
“E” represents parallel efficiency for the specific method. 

“X reference” is the speedup of  “Keep Open” over “Open/Close” using the
same numbers of  processors. Data shown is for 15,625 pickpoints over 1,000 timesteps.

The post-processing (for both VTK and AmiraMesh) takes a single time step from each 

pickpoint and writes it to a consolidated file containing all the values for that particular point 

in time, effectively pivoting the data. We have two options: (1) the main loop opens one 

pickpoint file at a time, seeks to the last read position, reads the data and closes the file for 

every time step (the “Open / Close” column in Table 3), (2) if  the user is able to change the 

maximum number of  open files, we adjust the operating system limit to a higher value and 

keep the files open (the “Keep Open” column in Table 3).

The generation of  AmiraMesh files does not benefit from parallelization and suffers from 

the same operating system “limitation”, but has a much smarter way of  defining pickpoint 

locations in space: since in our simulations they are equally spaced, an AmiraMesh file only 

needs to have the bounding box limits and the number of  points along each axis, this saves a 

considerable amount of  space and I/O time. Table 4 shows the space savings that 

AmiraMesh can achieve over VTK for a visualization output of  15,625 pickpoints with 1500 

timesteps. 
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Binary(in Megabytes) ASCII(in Megabytes) Savings(in %)

AmiraMesh 546 2969 81.6

VTK 816 4300 81.0

Savings (in %) 33.1 31.0

Table 4. Space comparison between AmiraMesh and VTK format.

IV.III.II.Visualization tools

PGV and PGA maps are excellent tools for estimating a maximum considered event, but to 

see the dynamics of  waves, interacting with the local geology and topography, helps to 

understand the space-time distribution of  the shaking pattern and its dependency on the 

geological structure. By visualizing earthquakes in high resolution and 3D environments will 

help to unravel the generation and characteristics of  the seismic wavefield. When moving 

from seismograms to (for example) volume rendering, the observer needs to deal with a 

whole new set of  challenges. These challenges range from transfer function generation to 

importing data, in this section we focus on how Avizo and VisIt tackle these common 

problems and the tools available to the observer to analyze the wavefield.

IV.III.II.I.VisIt

VisIt was developed by the Department of  Energy (DOE) Advanced Simulation and 

Computing Initiative (ASCI) to visualize and analyze the results of  terascale simulations [38]. 

Visualization is just part of  the VisIt repertoire: data exploration, comparative and 

quantitative analysis, visual debugging and presentation graphics are all part of  the package. 

VisIt is built on top of  3 main pillars: Qt widget library for the user interface, Python for 

programmatic scripting and the Visualization ToolKit (VTK) for data storage and 

visualization algorithms[39]. VisIt is easily extendible with user created plug-ins, it provides a 

C++ and Java interface to add visualization support to existing applications and is able to 

read a large amount of  mesh types for visualizing both 2D and 3D data. VisIt distinguishes 
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itself  with its distributed and parallel architecture that exploits the Viewer-Engine paradigm: 

The viewer runs on a local desktop machine and is ideally equipped with a high end graphics 

card capable of  rendering quality visuals; the engine itself  can be run either locally or on the 

same massively parallel machine that produced the data. The latter case has two key 

advantages: (1) data does not need to be moved to the visualization workstation eliminating 

the need of  vast amounts of  local storage and (2) high performance computing resources 

(thousands of  processors and better I/O) can be used for the intensive data processing 

routines.

IV.III.II.II.Avizo

Avizo, first commercialized in 2007, is a powerful tool for visualizing, manipulating and 

understanding scientific and industrial data[40]. Avizo is available in 5 editions (Standard, 

Earth, Wind, Fire and Green) plus an optional eXtension module. The reason for this 

segmentation is to deliver a tailored user interface and a specific feature set depending on the 

nature of  the data. It also offers a programmatic scripting interface (Tcl), and it is capable of 

processing very large, out-of  core data sets interactively.

Avizo is built on top of  Open Inventor [41] which incorporates a very important extension: 

ScaleViz[42]. ScaleViz allows for tiled display and 3D VR visualization by using a distributed 

scene graph strategy: a master node is responsible for managing scene graph synchronization 

and driving the visualization, while the slave nodes run render agents (Open Inventor 

Render Units) that manage the parallelized GPU accelerated rendering of  the image. 

Although Avizo is not open source nor inexpensive to acquire, its features are very 

interesting if  we need the immensely larger pixel count of  a tiled display or want to 

experience the interactivity and immersive capabilities of  a 3D VR environment.
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IV.III.II.III.Avizo and VisIt comparison

PGV and PGA maps are excellent tools for estimating a maximum considered event, but to 

see the dynamics of  waves, interacting with the local geology and topography, helps to 

understand the space-time distribution of  the shaking pattern and its dependency on the 

geological structure. By visualizing earthquakes in high resolution and 3D environments will 

help to unravel the generation and characteristics of  the seismic wavefield. When moving 

from seismograms to (for example) volume rendering, the observer needs to deal with a 

whole new set of  challenges. These challenges range from transfer function generation to 

importing data into the visualization tools, and in this section we focus on how Avizo and 

VisIt tackle these common problems and the tools available to the observer to analyze the 

wavefield.

IV.III.II.IV.Transfer function

As highlighted by [43], “The design of  the transfer function that maps amplitudes to 

opacities and colors in the volume rendering algorithms is not an easy task for the 

interpreter” and small changes have a big impact on the final images. Both VisIt and Avizo 

come with a range of  presets which offer a good base to start from, but a non negligible 

amount of  time needs to be spent designing a transfer function that is capable of  presenting 

the data effectively. Both offer visual tools that help the user create such functions, but have 

substantially different qualities. At first first glance the Avizo editors looks powerful, but it 

has major issues when dealing with values of  many digits. If  we look at Figure 3, we can see 

that the “Key Value” text box (in the center) can barely fit one digit, and any attempts at 

modifying the contents truncates an arbitrary amount of  digits. This affects the definition of 

both colors and opacity values. The Location scrollbox somewhat offsets this shortcoming 

by allowing to pick one of  256 equally spaced points along the color space and alpha 

gradients, but on the other hand, there is no center point with an even subdivision, requiring 
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two mirrored points. The interpolation between alpha value points is a very nice feature and 

allows for smooth gradients without too much refinement (once the key values are set in 

place) and the histogram provides a useful preview of  how much of  the data falls under a 

particular color/gradient combination. Finer control can be achieved by editing the raw 

colormap file: written in AmiraMesh ASCII format, its content is a four column array with 

red, green, blue and alpha values and of  length equal to the number of  points in the 

“Location” scrollbox.

Figure 3. Avizo’s transfer function editor showing the predefined seismic colormap.

Figure 4 may lead into believing that VisIt offers much of  the same controls as Avizo, but 

this is hardly true. Starting from the top, we can see how the process of  distributing colors is 

simplified with the help of  the “Align” button which distributes the colors uniformly, and an 

“Equal” checkbox which smoothes the colors by avoiding harsh contrasts. The opacity can 
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be defined in three ways: (1) loaded from the color table, (2) freeform, (3) Gaussian. The 

color table tested did not have opacity functions that interested us, the freeform lets the user 

“draw” by hand on the histogram and although this is not arbitrary it provides a quick way 

to test out potential candidates. After some visual tests we realized that an inverted Gaussian 

opacity function fitted our needs very nicely. This can be achieved by using two Gaussian 

functions with the means at the extremities of  the color domain (0 for the left and 1 for the 

right), and the width (for simplicity VisIt does not use variance) just shy of  the middle. 

Unlike Avizo that provides numeric feedback of  each point’s position, VisIt is not as 

“scientific”, we therefore need to explore the attributes file containing the transfer function 

information to check for exact symmetry. 

Figure 4. Visit’s transfer function editor showing a transfer function.
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The file is in XML format, and rather than containing values at equidistant points it stores 

information at the user specified points and lets the program do the interpolation. For each 

Gaussian control point five details are stored: the position of  the mean, height, width, x bias 

and y bias. This allows for very quick modification and enables for exact symmetry around 

the middle point, in contrast Avizo requires a script to be created if  fine control is to be 

achieved as more points need to be specified.

As mentioned earlier, even small changes to the transfer function have very noticeable 

effects in the outcome of  the visualization. Figure 5 highlights this point by comparing two 

radically different images, obtained by only changing the width of  the Gauss opacity transfer 

function from 0.495 to 0.5. 

Figure 5. Comparison of  two widths for the Gauss opacity transfer function for the w component at depth.
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IV.III.II.V.Visualization portability

Since VisIt and Avizo are deployed across different machines, it is important to decouple 

data from the parameters used to create the visualization. In Avizo, for example, it is possible 

to export a network template (more on this later), making it very easy to replicate the same 

visualization achieved on the workstation in the visualization laboratories. This also makes 

comparing different runs much easier as it is possible to apply the same visualizations and 

transfer functions defined in precedence. VisIt has a similar function but calls it a session 

file.

IV.III.II.VI.Validation

Ensuring that we are visually representing the data in the correct manner can be thought of  

a two stage process: (1) an overall visual inspection can be done to make sure the 

visualization resembles the intended outcome, (2) pick nodes and analyze the orientation is 

correct. For this we use a well known source model, a strike slip point source which radiates 

symmetrically for each component.

Figure 6. Point source strike slip viewed at depth for the u, v and w components.

Figure 6 shows the radiation amplitude patterns for each component of  the 3D vector, and 

conforms with what we expect from literature [17].
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From this we can then use a visual picking tool to extract the value of  a node close to the 

surface. We can then compare the value read from the visualization tool with the raw data 

from SeisSol to ensure the parameters given to SeisSol and the parameters given to the post-

processing tool match in a “end to end” testing manner.

IV.III.II.VII.Frame generation

Basic video frames exporting is easily accomplished by both packages. This can be done in 

various formats and sizes, but producing a compelling fly over of  the data can quickly 

become a long and tedious process. Avizo and VisIt have orthogonal approaches when it 

comes to this: the former uses a DemoMaker object which can be used to create Events that 

act on components, the latter uses a keyframing approach where visit interpolates the frames 

in between. On top of  the above, both offer a scripting interface for maximum flexibility. 

Although the Avizo’s model takes a little more time to get used to, it has a much more 

powerful GUI platform than VisIt; if  more fine control is needed then it boils down to a Tcl 

(for Avizo) versus Python, Java or C++ (for Visit) which is beyond the scope of  this study.

IV.III.II.VIII.Data import

Importing data into Avizo was very simple: we picked a format (AmiraMesh) that Avizo 

supports well, looked at some examples and created a small C program (hoping to parallelize 

it in the future) that converted from SeiSol output to Avizo input. VisIt was much more 

difficult to deal with. After some efforts trying to use the prepackaged .silo writer 

unsuccessfully, we turned to the VTK format. Although VTK files are easy to write and 

somewhat well documented, the mesh type used within the VTK files affects which plots 

VisIt is able to visualize. To achieve maximum compatibility, we need to write a curvilinear 

mesh. This requires the points to be specified in a particular order, and to make post-
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processing easier, we need to take this into consideration when creating the PARMETER file 

for SeisSol and define the pickpoint list accordingly.

IV.III.II.IX.Visualization paradigms

Avizo works by instantiating objects and forming networks between them. Once data is 

imported, you can right click on the visual object and bring up a menu of  all the operations 

that can be done it. Avizo supports two ways of  displaying the networks of  objects: (1) tree 

view and (2) graph view. The graph view is much easier to handle when there is only a 

limited number of  objects, but the edges can quickly become messy and difficult to follow 

for complicated networks (especially when experimenting). A pane below the network pool 

shows all the properties for a selected object to enable the user to adjust the parameters.

Figure 7. Comparison between Avizo’s graph view, Avizo’s tree view and Visit’s view for volume rendering 
of  time dependent data of  the w component.

Visit only supports a tree view of  the visualization, but it is simpler and more compact 

compared to Avizo’s. Properties are changed in separate windows brought up by double 

clicking on the plots or the operators, but even though these setting are hidden away it seems 

that there are less pixels dedicated to the visualization when compared to Avizo. A great 

feature that VisIt has over Avizo is the ability to distribute plots over an arbitrary number of  

windows and “lock” their views and time. For example, if  we wish to explore u, v and w 

together with the same view port at the same moment, we can open three windows and lock 

them together so a change in any one of  them is automatically propagated to the others. 
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This also becomes extremely useful if  we want to test different transfer functions, different 

plots or any combination of  parameters and get instant side by side comparisons.

IV.III.II.X.Performance

Performance evaluation is a very difficult subject. There are many parameters that do not 

have direct mappings between the two packages, but we try to put together a fair test for 

both applications and report the result.

The benchmark is based on a 15,625 pickpoint data set simulated in SeisSol over 1500 points 

in time. The pickpoint files have been converted respectively in AmiraMesh and VTK binary 

formats for Avizo and VisIt. Almost identical transfer functions have been defined paying 

special attention to setting matching limits and similar opacity function to recreate near equal 

workloads. The plot chosen was a volume render with 200 slices viewed directly from above. 

Compute engine caches were cleared and both programs were set off  to try to get through 

as many time slices as possible on the workstation on a single processor.

VisIt Avizo VoltexHighQuality Avizo Voltex

fpm

fps

1060 44 57

17.67 0.73 0.95

Table 5. Number of  frames rendered per minute and per second.

Table 5 suggests that VisIt is considerably faster, which agrees with our feeling from using 

the softwares daily. A similar test was attempted on the laptop, with VisIt reaching 104 fpm 

(1.73 fps) and Avizo unable to run due to stability issues. This being said, we cannot help to 

point out that although the test is informative, it is by no means a definitive benchmark given 

the very diverse nature of  inputs between the two visualizations.
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IV.III.II.XI.Avizo and VisIt Compared

In Table 6 we offer a summary of  our experiences with the package.

Avizo VisIt

Transfer function Difficult to define, even from 
the raw color file.

Good GUI and raw control.

Portability

Works on all the high end 
machines and allows for 
interactivity on the tiled walls.

Works from low end 
machines, to highly parallel 
environments, but not yet 
capable of  running on the 
tiled walls.

Video generation
Cumbersome but very 
powerful even from the GUI.

Keyframing is difficult, but 
the python interface allows 
for more power.

Data import
Reliable and easy via the use 
of  AmiraMesh, and in some 
cases saved 33% disk space. 

Requires more work to get 
used to, provides good 
reference documentation.

Visualization paradigms
Offers network and tree view, 
depending on user 
preference.

Offers only tree view.

Performance
Poor Very good and highly scalable 

from a low end laptop to 
Neser’s cluster.

Table 6. Summary of  Avizo and VisIt’s features.

As we can see, the choice is dictated by the final intended outcome and where the 

visualization is going to be displayed. On a day to day basis though, most of  the time we 

found ourselves using VisIt.

IV.III.III.2D and 3D Video generation

For the generation of  the videos we use a chain of  two tools: ImageMagick [44] and 

FFmpeg [45]. Given the very large resolution of  even the smallest of  our video walls (twelve 

HD monitors), it takes many pixels to make effective usage of  these facilities. It makes no 

sense driving such tiled walls with just one stretched HD stream, we could just as well view it 

sitting down comfortably at a desk, or on a projector. To make the best use of  the facilities 
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we take the following steps: (1) using our visualization software, generate large PNGs per 

each frame having dimensions proportional to the number of  views we want to display and 

the wall they will be displayed on; (2) With ImageMagick cut the generated PNGs in order to 

fit them on the appropriate tiles; (3) Use FFmpeg to convert each sequence of  PNGs into a 

separate movie. Figure 8 shows a movie frame designed specifically for the AESOP tile wall 

with a resolution of  13600 x 3072 pixels (41.7 Megapixel).

Figure 8. A 41.7 megapixel frame from a movie designed for the AESOP display, showing multiple views 
for u, v and w.

Figure 8a. A close up of  the four volume renderers.
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Figure 8b. A close up of  the four pseudocolor plots of  the surface.

Figure 8c. Rotating volume renders for u, v, w and the magnitude of  the uvw vector

On the left side of  the frame we have four volume renders (Figure 8a), they represent u, v w 

and the magnitude of  the uvw vector. The next four (Figure 8b) are pseudocolor surface 
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plots once again representing u, v w and the magnitude of  the uvw vector. Finally the last 

column on the right is a rotating view of  the first four plots (Figure 8c).

When a 3D movie is required we make use of  the NexCAVE. The NEC monitors have 

alternate pixel rows with opposite polarization sense, with even rows assigned to the left eye 

and odd rows assigned to the right eye. VisIt can generate separate PNGs for left eye and 

right eye, which we then interlace using a python script to create a single frame at every time 

step. It is important that the source frames and the output frame are 1080 rows, as this 

guarantees perfect alignment with the correct polarized section of  the screen. Two issues 

have become really apparent with this process: (1) it is easier to give the illusions of  the 

visualization being deep into the screen rather than reaching out, (2) when straight lines 

approach being horizontal they cause very noticeable aliasing (as show in Figure 9).

Figure 9. Aliasing artifacts caused by interlaced stereo rendering for near horizontal straight lines.

The former issue is mitigated by refraining from zooming very close into the visualization, 

and avoiding stretching it beyond the visible area of  the screen. For the latter, when setting 
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up the movie we need to take care that no keyframes cause slow moving viewports with 

evident aliasing.

Avizo suffers from the same issues, but has a much more difficult set up when it comes to 

exporting a movie in 3D. Two objects are required to create the frames: MovieMaker and 

“frame.amov”. The latter should be collaborating with the former, giving the option of  

generating different flavors of  left and right stereo and interlaced output. Unfortunately this 

does not seem to have any affect on the PNG produced by the MovieMaker object. We 

decided to modify the python script to alternate between the columns on the left side and 

columns on the right side of  the image in order to achieve similar result to Visit’s. Figure 10 

shows the output of  a side by side movie generated in Avizo.

Figure 10. Side by side stereoscopic image of  a volume render produced in Avizo 

In both cases, the challenge is to make effective use of  the computational power available. 

Since we are working with huge data sets, parallelizing and distributing the computation is 

very important to complete the process in a useful time frame. For example a 3D movie 

rendered with VisIt with 15,525 data points for 1000 time frames takes over seven hours to 

render on a single workstation node. The good thing is that rendering is embarrassingly 

parallel, and several compute engines can be spawned at the same time with very good 

strong scaling attributes.
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V.Reproducing the LOH.4 
example

V.I. Introduction

An increasing number of  scientists within the research community have raised warnings 

regarding the state of  practice of  reproducible research. A special issue of  Computing in 

Science & Engineering [46] was dedicated to raising awareness of  tools for addressing 

reproducibility. In 2010 the Yale Law School formed a Roundtable on Data and Code 

sharing with the aim to layout recommendations for the community [47]. In 2011, Jarrod 

Millman organized a mini-symposium at the SIAM Conference on Computational Science & 

Engineering to further refine standards, tools and techniques [48]. One of  the tools 

mentioned in this space is VisTrails. VisTrails has two key features: it allows for the creation 

of  executable documents [49] and the innate ability to provide provenance [50]. We then 

begun looking at executable documents [51, 52], but experienced difficulties with opening 

the interactive figures. Only Figure 3 from [53] was capable of  delivering the full “executable 

document” promise. The provenance infrastructure, on the other hand, is extremely 

powerful and has many desirable features such as variable space exploration, branching of  

workflows with tagging capabilities and workflow comparison and analysis. All these features 

are then packed in a very cumbersome interface requiring multiple components just for basic 

visualization; VisTrails is also missing other important elements such as movie generation 

and 3D support. We hope these issues will be offset with the ParaView and soon to be 

released VisIt plugins.
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In order to show a fully reproducible experiment, we describe the end to end steps required 

to visualize an earthquake event based on the LOH.4 example discussed in [1, 54]. Between 

October 2000 and March 2002, a report was compiled for the Pacific Earthquake 

Engineering Research Center validating a number of  numerical methods for modeling 

earthquake ground motions over a series of  problems. The LOH.4 example is a layer over 

halfspace test with a propagating thrust dislocation source. The uppermost 1,000 m has 

Vs=2,000 m/s, Vp=4,000 m/s, density=2,600 kg/m3. The underlying halfspace has 

Vs=3,464 m/s, Vp=6,000 m/s, density=2,700 kg/m3. For both layers P- and S-wave 

attenuation (Q) are set to infinite (no attenuation).

The source is a finite fault with strike (𝜙) 115°, dip (𝛿) 40° and rake (𝜆) 70°, the fault size is 6 

x 6 km and the hypocenter is located at the center of  the bottom line of  the fault at position 

(0, 0, -6) km. Using the local fault-plane coordinate system (𝜁, 𝜂) aligned with strike and dip 

direction and with its origin at the top northwestern corner of  the fault, the hypocenter is 

located at (𝜁H, 𝜂H) = (3, 6) km. The fault plane is divided into 50 x 50 subfaults of  area A = 

1.44 * 104 m2 each. The source time function for the slip rate is given by equation (15) and 

the rupture velocity is constant vrup  3000 m/sec.

In terms of  fault-plane basis vectors, the slip vector is: 

 ξ̂ cos(λ) − η̂sin(λ)⎡
⎣

⎤
⎦S(ξ,η,t)  [Eq. 4]

where the slip function S has the same shape and amplitude everywhere within the fault 

surface but is time-shifted by an amount proportional to the distance from the hypocenter. S 

in given by:
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where H is the Heaviside step function, T = 0.1 sec is a smoothing factor controlling the 

frequency content and the amplitude of  the source time function, the static slip S0 is 1 meter 

and 𝜏 (the time relative to rupture arrival) is:

 τ = t −Vrup
−1 ξ − ξH( )2 + η −ηH( )2⎡
⎣

⎤
⎦
1
2
 [Eq. 6]

We will go through the simulation, post processing and visualization set up for the 

generation of  3D and high resolution movies. Before starting ensure to have a copy of  

repository [55]; the files mentioned in this section are contained in the LOH4 folder. This 

example focuses on local visualization and therefore not uses neser for postprocessing nor 

visualization.

V.II. Setting up and running SeisSol

V.II.I.Mesh generation with Gambit

First of  all we use Gambit to generate the tetrahedral mesh. Figure 11 shows the desired 

final outcome. 
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Figure 11. Cutaway of  the mesh used in the LOH.4 example. Color represents tetrahedron size.

It is a combination of  six volumes: three at the surface 1000 meters thick with fine meshes 

for higher accuracy, and three deeper volumes with coarsening tetrahedra to reduce 

computation time. The process can be summarized as follows:

• create the inner top volume (we shall call this small_1);

• create the medium top volume (we shall call this medium_2);

• proceed to subtract medium_2 from small_1;

• connect the faces that are common between the two volumes.

The final step is important to achieve a conforming mesh. The process is essentially the 

same for the rest of  the volumes, with an extra step required for the large volume in which 

the faces that interact with both inner volumes need to be split at the boundary.

Once all volumes have been created and the faces have been connected it is time to define 

the coarsening functions and mesh each volume. As mentioned in the Meshing section, the 

size of  the tetrahedra is governed by the property of  the materials. The LOH.4 test has two 

layers with the properties described in Table 7.
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Layer ρ μ λ
1 2600 10400000000 20800000000

2 2700 32400000000 32400000000

Table 7. Material properties for the LOH.4 test.

These properties are used in the the siv_LOH4.def  file, but we need to extract primary and 

secondary wave velocities via equations [7] and [8] to determine the size of  the tetrahedra.

 cp =
λ + 2µ

ρ
 [Eq. 7]

 cs =
µ
ρ

 [Eq. 8]

Layer cp cs
1 4000 2000

2 6000 3464

Table 8. P- and S-wave material velocities.

Table 8 shows the calculated velocities for the LOH.4 example, we now refer back to Eq. 1 

to determine the maximum size of  the tetrahedra. Since our area of  interest is the inner 

most volumes (small_1 and small_2) we mesh these according to the method discussed in 

section 3.1.1. and use aggressive coarsening functions for the rest. The final parameters used 

for meshing are as follows:
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Volume start size size limit growth rate

small_1 300 *** ***

medium_1 400 1000 1.15

large_1 800 1.4 5000

small_2 350 *** ***

medium_2 350 1000 1.15

large_2 800 10000 1.5

Table 9. Growth rate function parameters. “***” indicates no coarsening.

There are two more things to take into consideration when defining growth rate functions: 

first the functions need to be “attached” to surfaces. This lets the growth function know 

where the smaller tetrahedra start and ensures a conforming mesh. Secondly the numbers 

above were achieved after mildly altering the parameters in order to avoid highly skewed 

tetrahedra. Unfortunately for the latter there is no exact solution, but we have found that the 

parameters above are well suited for this particular example.

Next we need to associate the volumes with the different materials: the three surface 

volumes with fluid material 1 and the three deeper volumes with fluid material 2.

The last step is to make the three surfaces at the top reflecting (type 101) and the other nine 

at the edges absorbing (type 105).

Before exporting the mesh ensure that the solver selected is the “Generic” one.

All the commands used in the creation of  the mesh are in the LOH4.jou journaling file 

which stores the entire history of  commands. 

V.II.II.Mesh partitioning

Next we convert the mesh from .neu to .metis, and split it up into the number of  processors 

that will be used in the simulation. The matlab script neu2metis.m does exactly this. When 
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launched it asks for the mesh file name and in the conversion process provides the number 

of  tetrahedra contained in the mesh (516,663 in our case). This is important because, as we 

discussed in 3.2, we need 1,000 tetrahedra per processor to ensure good parallel efficiency; 

we therefore chose 512 partitions containing each just under 1,010 tetrahedra.

V.II.III.Source file

The last parameter we are going to discuss is the source file which stores the properties of  

the earthquake event. There are several ways of  describing the fault, but in our example we 

discretize it using 2500 points, we specify their location, strike, dip. rake and onset time 

followed by a list of  acceleration values for each point at each time step (in our case 3,501 

time steps at 0.001 intervals). The LOH.4 source is archived at:

/project/k77/passone/FSRM_loh4_individual.dat

The rest of  the parameters are beyond the scope of  this study, a working versions can be 

found in the LOH4 folder in [55].

V.II.IV.Running SeisSol

Assuming we have a working SeisSol installation, the next step is to gather all the files 

created in the previous steps into a single folder on Shaheen, and run the simulation. When 

defining the loadleveller script we need to define exactly the same number of  processes as 

the number of  partitions created with gambit. An example (batch_LOH4)  can be found in 

the LOH4 folder from the repository.

V.III.Output postprocessing

As mentioned in section 3.4 the output from SeisSol needs postoprocessing to be visualized. 

We assume that the visualization is going to be run locally, therefore the user has copied the 

pickpoints files to the local machine. The process for both Avizo (AmiraMesh formt) and 
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VisIt (VTK format) starts by creating the pickpoints.dat configuration file; to create it we 

simply append the pickpoints filenames to the output previously generated by the pickpoints 

distribution script. For our example, this will create a file with the following format:

line Value
1 -16000 2000 -16000 2000 -9000 0
2 25 25 25
3 -16000.000000 -16000.000000 -9000.000000
4 -15250.000000 -16000.000000 -9000.000000

5 -14500.000000 -16000.000000 -9000.000000

... ...
15626 1250.000000 2000.000000 -0.1

15627 2000.000000 2000.000000 -0.1

15628 LOH4_0_-pickpoint-00001-00215.dat

15629 LOH4_0_-pickpoint-00002-00215.dat

... ...
31249 LOH4_0_-pickpoint-15622-00321.dat

31250 LOH4_0_-pickpoint-15623-00320.dat

31251 LOH4_0_-pickpoint-15624-00320.dat

31252 LOH4_0_-pickpoint-15625-00320.dat

Table 10. pickpoints.dat snippets used for postprocessing scripts set up.

A makefile in the “post_processing” folder takes care of  compiling the scripts that generate 

VTKs and AmiraMesh files. A parallel version of  the VTK generation scripts can be 

obtained by invoking make with “PAR=1” option; more details can be found in the folder’s 

README. It is worth mentioning that the scripts will write to folders called “vtks” and 

“amiramesh” above the source folder specified in the command line, we therefore advise a 

user to have a directory named “runs” structured as follows:
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Table 11. Example of  organized directory structure for three example runs.

The raw folder contains the raw output from SeisSol, whereas the amiramesh and vtks 

folders will be automatically generated upon script execution and will contain the file used 

for visualization. To start the postprocessing it is sufficient to point the script to raw folder 

(which at this point should contain the pickpoints files from SeisSol and the pickpoints.dat 

previously generated):

 ./curv_mesh_3d.ex /path/to/raw/ [Ex. 2]

V.IV.Visualization and Video Generation

In this section we describe how to visualize and create movies for the AESOP and the JVC 

3D polarized displays. For the example we chose VisIt for the visualization, but the frames 

can be generated with any tool as long as the dimensions are respected.

V.IV.I.Introduction

Before starting the visualization and creating the videos, there are some key points to keep in 

mind that will save plenty of  time later on.

|-LOH4
	 |-amiramesh
	 |-raw
	 |-vtks
|-LOH_surface
	 |-amiramesh
	 |-raw
	 |-vtks
|-point_source
	 |-amiramesh
	 |-raw
	 |-vtks
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First of  all, planning the visualization is very important, especially for the AESOP; it 

comprises of  40 monitors, therefore spending some time in front of  it sketching out the 

desired layout will help determine the resolution of  each video and its contents.

Secondly, the choice of  colors is a key factor for the “pleasantness” and usability of  the 

simulation: VisIt, for example, uses a white background by default; although this is 

acceptable on a single monitor, it dazzles the user when extended over a large area.

When generating a 3D movie, it is advisable to avoid exceeding the boundaries of  the screen 

as this flattens the effect. It is also encouraged to avoid extreme close ups as this makes the 

visualization very “deep” and can actually hinder the perception of  depth. Lastly, we would 

like to remind the reader of  the aliasing problem discussed in section 3.7.

The above is a collection of  lessons learned through trial and error, there are no hard rules 

defined by the community on the parameters values (be it colors, scale, etc.) to be used in a 

simulation. The problem with setting such rules is that each run has its own set of  unique 

features that would be very difficult to express without carefully tailoring the parameters.

V.IV.II.Opening files with VisIt

First of  all we need to open the files. If  we generated the VTKs using the parallel version of 

the postprocessing scripts, we need to open the file called “config.visit”, otherwise we simply 

open the file series (by making sure smart grouping is used). At this point is up to the user to 

formulate a compelling visualization. Good starter files for volume rendering and 

pseudocolor plots can be found in the “LOH4/visit” folder.

V.IV.III.AESOP video generation

Once we are happy with the transfer function, the viewport and (if  any) the key framing we 

can proceed to export the frames. Go to File->Save Movie, pick new simple movie and click 

54



next. Remove the default MPEG output configuration and create a new one with format 

PNG and the movie size for that particular viewport of  the movie. If, for example, we 

would like the viewport to extend over two screens side by side, then we would set the 

resolution to 2720×768. Clicking “continue” takes us to the “Chose length” screen. Since we 

are generating PNGs, the “Frames per second” field has no relevance (as each timestep in 

the vtks will correspond to one frame), but frame stride must be set to 1. For the LOH4 

example we choose 0 and 1000 for first and last frame values. The next screen is “Chose 

filename”, we would advise outputting the frames for each video in a separate folder with a 

meaningful name (e.g. u_volume, v_surface) in order to better keep track of  what has already 

been generated.

Once the vide generation has completed, the next step is to split the frames that span more 

than one screen into smaller ones. Two scripts in vis_tools (“tile.sh” and tiling.py) work 

together to split the images to the format appropriate for each monitor. Following the 

previous example, we assume that we now have a 1000 frames 2720×768 in a folder called 

u_volume. For this case a call to:

 ./tile.sh u_volume/ 2 1 [Ex. 3]

will create in the current directory the folder structure ./screens/u_volume/ and inside there 

will be 2000 files in the following format:

frame0000_000_000.png
frame0000_000_001.png

...
frame1000_000_000.png
frame1000_000_001.png

Example 4. Filename convention for tiled frames.

This script was originally intended to be able to take a full 40 monitor image and split it up 

accordingly, but can also be used (like in this case) for smaller frame parts. This means that 
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each splitting effort will start naming the files as if  they were to be positioned at the top left 

corner. This causes the next step (video encoding) to require some manual effort. The 

template for encoding is as follows:

ffmpeg -r 15 -i ./frame%04d_<column>_<row>.png -qscale 1 avi/

screen_<column>_<row>.avi 

Example 5. Encoding template for ffmpeg.

Where column and row are three digit 0 padded indexes of  the screens. A point to note here 

is hat the first and second set of  column and row ids do not need to be the same. This is 

usually the case when fragmenting smaller images that do not take up the entire wall.

Once the videos have been created they need to be copied across to the vis labs storage 

facilities in the project folder. At this point we need to first export the configuration script 

for zone 2 (AESOP display):

export CGLX_DEFAULT_CONF=/opt/kaust/config/cglx/z2-csdefault.xml

Example 6. Exporting CGLX configuration for zone 2 (AESOP display).

and then launch VB.3 with:

/usr/local/cglX/bin/csastart /home/demo/VB3.3 --rows 4 /path/to/folder/with/movies

Example 6. Template for starting the visualization in zone 2 (AESOP display).

The movie should now be playing. For troubleshooting please refer to the vb3-tips.txt guide.

V.IV.IV.3D video generation

The 3D video is to be viewed on a single JVC X-pol LCD, therefore we need to create an 

interlaced image with the left and right eye components interlaced. The process is the same 

as for the 2D videos until the video generation. Here, in the “Chose format” window we set 
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the movie size to 1920x1080, tick the “Stereo Movie” option and chose “Left/Right” for the 

stereo type. Once the frames have been generated, we use the interlacing scripts contained in 

the repository under the vis_tools folder. The shell script interlace.sh and Python script 

interlacer.py collaborate in alternating pixel rows from the left image and right image by 

composing a final output in which the even rows are for the left eye and the odd rows for 

the right eye (assuming row count begins at 0). The interlace.sh script takes in 4 arguments: 

start frame, end frame, input directory and output directory, it assumes that the files have the 

following format: left_frame%04d.png and right_frame%04d.png. The resulting interlaced 

frames will be written to the output folder in the format: frame%04d.png.

Once the process is complete, we use ffmpeg with the same parameters as before:

ffmpeg -r 15 -i ./frame%04d.png -qscale 1 ../video_folder/3D_movie.avi

Example 7. template for encoding with ffmpeg

To play the movie follow these steps:

• ensure it is located in /project/ subtree (i.e. not on a local machine).

• ssh into a nexcave machine that is driving the monitors.

• export your preferred display to be used (you can find the screen name by looking at the 

screensaver) and executing “export DISPLAY=:n.m” with n and m substituted with the 

values observed in the previous point.

• use mplayer to play the movie by executing “mplayer path/to/movie/3d_movie.avi”
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VI.Conclusion

This study demonstrates a pipeline for modeling and visualizing earthquake wave 

propagation: starting from a well discretized geophysical model, we pass through a number 

of  tools that allow us to visualize a highly accurate prediction of  near source ground motion, 

and ultimately gain information from large amounts of  data. With the software and 

hardware tools we generated and displayed a 41.3 megapixel multi view movie of  an 

earthquake event, which to our knowledge has not been done before, and enabled high pixel 

count 3D interactive visualization and video generation. In the process of  describing the  

experiment we have highlighted the shortcomings, pitfalls and challenges of  moving from an 

ordinary desktop screen to large video walls and 3D micro-polarized displays.

Our approach enables geophysicists to collaborate, share data, conduct interactive 

presentations and look for interesting features, patterns and interactions that we have not 

seen before. The ability to provide many views simultaneously and, in some cases, 

interactively gives scientist many advantages over the previous visualizations obtained with 

SeisSol.

There are still some limitations with the current process: for example a single SeisSol run can 

output maximum 20.000 pickpoints, and processing this many files elegantly is still a 

challenge, plus having to run multiple simulations to achieve better granularity is not an  

optimal solution and something we are looking into. Fully automating the pipeline, with 

automatic transfer function generation has been left for future projects due to time 

constraints. From the hardware point of  view, we are waiting for a new fiber link between 
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Showcase and the scratch storage subsystem, removing the need to copy any data between 

HPC and visualization facilities.

Finally, we believe to have paved the way for introducing two new capabilities in the 

geophysics filed: (1) computational steering [56-58] which has been an emerging topic in 

recent publications, and looks to be poised to deliver interesting and exciting capabilities to 

scientist; (2) 3D interactive visualization in a “cave” environment. With the former, 

researchers will be able to intervene and modify the parameters while the simulation is 

running allowing for a more interactive parameter search exploration, the latter will give 

scientist the ability to examine results at the same time as they are being produced. The 

ultimate challenge lies were these two paths cross, and a researcher can steer, split and kill 

multiple simulations interactively from within a fully immersive stereoscopic environment 

such as Cornea.
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GLOSSARY

AmiraMesh: Amira's native general-purpose file format. It is used to store many different 

data objects like fields defined on regular or tetrahedral grids, segmentation results, 

colormaps, or vertex sets such as landmarks. [59]

Elastic wave: motion in a medium in which, when particles are displaced, a force 

proportional to the displacement acts on the particles to restore them to their original 

position. [60]

Fault: A fracture in the continuity of  a rock formation caused by significant displacement.

Keyframe: a frame containing a drawing that defines the start or end point of  a smooth 

transition.

Pickpoint: it enables for continuous recording of  the variables at a particular point in space 

at specific time intervals.

PGA (Peak Ground Acceleration): maximum absolute value of  acceleration found for a 

particular strong motion record.[61]

PGV: (Peak Ground Velocity): maximum absolute value of  velocity found for a particular 

strong motion record

Stereoscopy: three-dimensional vision produced by the fusion of  two slightly different views 

of  a scene.
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VTK: The Visualization Toolkit (VTK) is an open-source, freely available software system 

for 3D computer graphics, image processing and visualization.[62]

______

A copy of  the scripts, resource and configuration files can be found at:

https://github.com/Pass1/thesis
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