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ABSTRACT

Low-Rank Kalman Filtering in Subsurface Contaminant Transport

Models

Mohamad El Gharamti

Understanding the geology and the hydrology of the subsurface is important to model

the �uid �ow and the behavior of the contaminant. It is essential to have an accurate

knowledge of the movement of the contaminants in the porous media in order to track them

and later extract them from the aquifer. A two-dimensional �ow model is studied and then

applied on a linear contaminant transport model in the same porous medium. Because of

possible di¤erent sources of uncertainties, the deterministic model by itself cannot give exact

estimations for the future contaminant state. Incorporating observations in the model can

guide it to the true state. This is usually done using the Kalman �lter (KF) when the system

is linear and the extended Kalman �lter (EKF) when the system is nonlinear. To overcome

the high computational cost required by the KF, we use the singular evolutive Kalman �lter

(SEKF) and the singular evolutive extended Kalman �lter (SEEKF) approximations of the

KF operating with low-rank covariance matrices. The SEKF can be implemented on large

dimensional contaminant problems while the usage of the KF is not possible. Experimental

results show that with perfect and imperfect models, the low rank �lters can provide as

much accurate estimates as the full KF but at much less computational cost. Localization

can help the �lter analysis as long as there are enough neighborhood data to the point being

analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the

EKF and the SEEKF.
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Chapter 1

Introduction

Groundwater contamination problem arises when the water in the subsurface becomes pol-

luted by substances of human origin. Since groundwater is one of the most safe sources for

people to drink; drinking contaminated water can become a serious issue because, it is very

dangerous to consume. Several sources can cause contamination in the groundwater such

as chemicals, road salt, bacteria, viruses, medications, fertilizers, and fuel. Groundwater

contamination can also occur when factories dump thousands of toxic materials into sur-

rounding waterways, and when polluted runo¤ from storm drains reaches the aquifer [16].

At the time the aquifer becomes contaminated, it is very di¢ cult to clean up. In some cases,

the water can be cleaned using �ltration systems, but in other cases, it may be rendered

useless.

Subsurface contaminant transport models are very e¢ cient for groundwater quality as-

sessment and risk evaluation [16]. A subsurface contaminant transport model can provide

important information about the evolving of the contaminant inside the subsurface geo-

logic system and it can give some estimations and predictions about the future subsurface

situation after the migration of the contaminant [15, 16, 41, 42, 43, 44, 45].

Modeling of subsurface dynamic systems is carried out through two main stages starting

with the �ow modeling and then the contaminant transport model [15, 43, 44]. Unlike the

contaminant which evolves with time, the �ow model is stationary [42, 43]. The �ow model

is indispensable to infer correct knowledge of the water heads and the Darcy velocities

in the system. The contaminant transport model can be e¢ ciently handled by using the

traditional procedure of the state-space approach on the discrete-time formulation. In most
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realistic models, uncertainties in the model parameters and con�gurations are unavoidable

and they can mislead the model from the correct trajectoris. Collecting data and using it

as a support for the model can help guide the model estimation to much accurate solutions.

Such procedure, where the model and the observations are used together, is well known as

�ltering.

Recursive �ltering, such as Kalman �lter (KF), can process the received data sequentially

rather than dealing with it as a single batch so that it is not necessary to store the complete

data set or to reprocess existing data if a new observation becomes available [9, 7].

Basically, the KF is used to provide estimation for linear problems and EKF is used

for moderately nonlinear problems where the error distribution is Guassian. On the other

hand, EnKF, based on Monte Carlo sampling and KF processes, is used for highly nonlinear

problems. All these �lters are considered to be good tools for prediction and estimation in

dynamic systems as long as they can handle the dimensions of the problem. For instance,

the KF is e¢ cient for small dimensions and as the dimension of the problem increases,

carrying out the KF will be computationaly more expensive. In some cases where the

dimensions become very large, the KF fails to predict and give estimations for the states of

the system because of the huge computational cost it requires. To overcome this problem;

a singular evolutive Kalman �lter, proposed by Pham et al. (1997) [34], will be considered.

This SEKF is a new �ltering technique for subsurface contaminant models; it is mainly

based on a low rank approximation for the full KF and it is well guaranteed to decrease the

high computational cost needed by the KF and to give reliable estimation results for high

dimension problems.

Recently, KF and extended Kalman �lter (EKF) have been applied in surface and sub-

surface hydrologic systems and water quality modeling. We can refer, for example, to

[4, 14, 23, 17, 31, 36, 50, 53, 56]. Apart from modeling, KF has been used also in several

areas for water resources [1, 3, 20, 35, 39, 40, 52]. Cheng (2000) applied discrete KF in

a three-dimensional subsurface contaminant transport model for a continuous input [13].

Chang and Jin (2005) used KF with regional noises in a two-dimensional subsurface con-
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taminant transport model for a pulse input [10]. Chang and Latif (2007) used KF and

particle �lter in a one-dimensional leachate transport in subsurface [8]. Chang and Latif

(2010) used EKF in a two-dimensional contaminant transport model with a pulse input [9].

Several examples of Kalman �ltering and extended Kalman �ltering were applied in en-

vironmental and ecological modeling, analysis, and prediction studies. Pastres et al. (2003)

applied EKF to the analysis of high frequency �eld measurements of dissolved oxygen, wa-

ter temperature, and salinity collected by multi-parametric sensors in the lagoon of Venice,

Italy [33]. Neal et al. (2007) examined the application of a river-�ow forecasting approach

based on a one-dimensional hydraulic �ow simulation model updated using real-time data

within an EnKF framework [32]. Goegebeur and Pauwels (2007) compared the performance

of the parameter estimation method within the EKF for the estimation of hydrologic model

parameters [21]. Franssen et al. (2008) used ensemble Kalman �ltering (EnKF) to assimi-

late hydraulic head data from 90 locations during two years of groundwater �ow modeling

[18].

The objectives of this thesis are to prove the e¢ ciency of data assimilation in

providing more accurate estimates of the contamination state in the system, to test the

functioning of the KF in the dynamic model by comparing the estimated states with the

true model states, and to reduce the expensive computational cost needed by KF through

the usage of low-rank �ltering techniques. A low resolution grid is used to implement the full

KF and the low-rank KF, then when the low-rank KF is validated it can be then applied

on a more realistic high resolution grid. Further and by using contaminant data, state

parameter estimation problem will be studied using EKF and singular evolutive extended

Kalman �lter (SEEKF). The prediction accuracy of the EKF and the SEEKF will be tested

on a permeability estimation system using a nonlinear contaminant model.

This thesis is organized in 6 chapters. In chapter 2, the subsurface model is presented, all

mathematical derivations are well explained for both the �ow and the contaminant model.

All �ltring tools and estimation techniques are given in details in chapter 3. The numerical

experiments and the results for some interesting problems are presented in chapter 4. In
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chpater 5, the joint state-parameter estimation problem is tackled. Further discussions and

conclusions are found in the last chapter.



Chapter 2

Subsurface Model and

Discretization

The dynamic �ow model is represented by a 2-D uniform saturated �ow �eld that is com-

posed of two rock types with di¤erent permeabilities where one is embedded in the other

(Figure 2-1). K1 and K2 are the hydraulic conductivities of the two rocks, a0, b0, a1, and b1

indicate the position of the low permeability rock with respect to the main high permeability

rock.

Figure 2-1: 2D saturated �ow �eld with the 2 major rocks having di¤erent permeabilities

(The small rock with k2 is located at the center of the large rock).

2.1 Flow Model

The behavior of the water inside the medium is studied by looking at the water head

distribution and the Darcy velocities. To do so, both the Darcy equation and the continuity

5
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equation are considered.

� Darcy Equation

U = �k
�
(rP + �grz) ; (2.1)

where U is the Darcy velocity, k is the permeability of the porous medium, � is

the viscosity of water, P is the pressure head, � is the density of water, g is the

gravitational acceleration, and z is the vertical coordinate.

The �ow in the model is taking place in the 2 dimensional space so the vertical coordinate

z in (2:1) is ignored. The permeability term k depends only on the porous medium (soil,

rock, ...). Another more general term depending on both the �uid and the porous medium,

known as hydraulic conductivity (as in Figure 2-1), is introduced in (2:1). Then, the Darcy

equation becomes

U = �Krh; (2.2)

where K is the hydraulic conductivity and h is the water head given by

h =
P

�g
: (2.3)

� Continuity Equation
@ (��)

@t
= �r � (�U) + eq; (2.4)

where � is the porosity of the medium, t is the time, and eq is the source term.
Discretization of the PDEs in (2:2) and (2:1) is done using the Cell Centred Finite

Di¤erences (CCFD) approach . CCFD is also known as Block Centered Finite Di¤erence

Method, it is based on mass conservation concept; i.e. the net �uid �owing out from a cell

is equal to the net injection of �uid into the same cell. The governing equations can be

written as

Ux = �Kxx
@h

@x
; (2.5)

Uy = �Kyy
@h

@y
; (2.6)

@Ux
@x

+
@Uy
@y

= q; (2.7)
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h = hB on �D; (2.8)

U � n = UB on �N; (2.9)

where Ux and Uy correspond to the Darcy velocities in x and y directions respectively,

Kxx and Kyy correspond to the hydraulic conductivities in x and y directions respectively,

q is the source term, hB is water head at the boundaries, UB is the Darcy velocity at

the boundaries, and �nally �D and �N represent the Dirichlet and Neumann boundary

conditions respectively.

Considering a small rectangular cell inside the porous domain, the net �uid �owing out

from the cell will be

Ux
i+1;j+ 1

2

(yj+1 � yj) + Uyi+ 1
2
;j+1

(xi+1 � xi)� Uxi;j+ 1
2

(yj+1 � yj)� Uyi+ 1
2
;j+1

(xi+1 � xi) ;

(2.10)

and the net injection of the �uid into the cell is

q
�
xi+ 1

2
; yj+ 1

2

�
(xi+1 � xi) (yj+1 � yj) �

yj+1Z
yj

xi+1Z
xi

q (x; y) dxdy; (2.11)

where Ux
i+1;j+ 1

2

; Ux
i;j+ 1

2

; ; Uy
i+ 1

2
;j+1

; and Uy
i+ 1

2
;j
are the Darcy velocities components on the

right, left, top, and bottom edges of the cell respectively., and q
�
xi+ 1

2
; yj+ 1

2

�
is the source

term at the center of the cell.

The Darcy velocities are written in terms of water heads as follows

Ux
i+1;j+ 1

2

= �Kxx
�
xi+1; yj+ 1

2

� hi+ 3
2
;j+ 1

2
� hi+ 1

2
;j+ 1

2

xi+ 3
2
� xi+ 1

2

; (2.12)

Ux
i;j+ 1

2

= �Kxx
�
xi; yj+ 1

2

� hi+ 1
2
;j+ 1

2
� hi� 1

2
;j+ 1

2

xi+ 1
2
� xi� 1

2

; (2.13)

Uy
i+ 1

2
;j+1

= �Kyy
�
xi+ 1

2
; yj+1

� hi+ 1
2
;j+ 3

2
� hi+ 1

2
;j+ 1

2

yj+ 3
2
� yj+ 1

2

; (2.14)

Uy
i+ 1

2
;j
= �Kyy

�
xi+ 1

2
; yj

� hi+ 1
2
;j+ 1

2
� hi+ 1

2
;j� 1

2

yj+ 1
2
� yj� 1

2

: (2.15)

Equating both (2:10) and (2:11) gives

Ux
i+1;j+ 1

2

� Ux
i;j+ 1

2

xi+1 � xi
+
Uy
i+ 1

2
;j+1

� Uy
i+ 1

2
;j

yj+1 � yj
= q

�
xi+ 1

2
; yj+ 1

2

�
; (2.16)
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where i runs from 0 to m� 1 and j from 0 to n� 1.

Plugging equations (2:12), (2:13), (2:14), and (2:15) in (2:16) will give the general dis-

cretized �ow equation�
�Kxx

�
xi+1; yj+ 1

2

� h
i+3

2 ;j+
1
2
�h

i+1
2 ;j+

1
2

x
i+3

2
�x

i+1
2

+Kxx

�
xi; yj+ 1

2

� h
i+1

2 ;j+
1
2
�h

i� 1
2 ;j+

1
2

x
i+1

2
�x

i� 1
2

�
(xi+1 � xi)

+�
�Kyy

�
xi+ 1

2
; yj+1

� h
i+1

2 ;j+
3
2
�h

i+1
2 ;j+

1
2

y
j+3

2
�y

j+1
2

+Kyy

�
xi+ 1

2
; yj

� h
i+1

2 ;j+
1
2
�h

i+1
2 ;j�

1
2

y
j+1

2
�y

j� 1
2

�
(yj+1 � yj)

= q
�
xi+ 1

2
; yj+ 1

2

�
; (2.17)

here i runs from 1 to m� 1 and j from 1 to n� 1.

Closing the system of equations, Dirichlet boundary conditions (constant water heads)

are imposed at the eastern and western boundaries. Top and bottom boundaries are im-

permeable (i.e. the Darcy velocities across these boundaries vanish).

2.2 Contaminant Transport Model

The spatial distribution of the water heads and the Darcy velocities obtained from the

�ow model are used to solve for the contaminant�s concentration in the following transport

equation

@ (�C)

@t
+r � (UC �D (U)rC) = r (C) + qC�; (2.18)

where C is the concentration of the contaminant commonly referred as the amount of species

in a unit volume of water, D is the dispersion/di¤usion term, r is the reaction/adsorption

term, and C� is the upwind concentration.

Solving for the contaminant�s concentration in (2:18), the upwind scheme of the CCFD is

used in order to get a stable solution with no oscillations. The upwind scheme emphasizes

the idea that the concentration at the center of the cell is a¤ected by the concentration

of the upwind cells around it. If the velocity of water is pointing from left to right, the

concentration has to get information from the cells left, up, and bottom of it and vise versa.
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Since this transport equation is time dependent, an additional initial condition has to be

imposed together with the boundary conditions. This initial condition will represent the

spatial contaminant spread inside the aquifer at time zero.

Just like the �ow model, the mass conservation idea is applied here but this time the

�uid �ow is replaced by a mass �ow. In other words, the net mass in�ow rate has to be

equal to the mass accumulation. Considering a small cubic volume

� The mass in�ow of the species of interest

� across the surface x� �x
2 is

(UxC)x��x
2
;y;z�y�z; (2.19)

� across the surface y � �y
2 is

(UyC)x;y��y
2
;z
�x�z; (2.20)

� across the surface z � �z
2 is

(UzC)x;y;z��z
2
�x�y: (2.21)

� The mass out�ow of the species of interest

� across the surface x+ �x
2 is

(UxC)x+�x
2
;y;z�y�z; (2.22)

� across the surface y + �y
2 is

(UyC)x;y+�y
2
;z
�x�z: (2.23)

� across the surface z + �z
2 is

(UzC)x;y;z+�z
2
�x�y; (2.24)
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Mass accumulation term in �x�y�z is

@

@t
(�x�y�z�C) : (2.25)

where �x, �y, and �z represent the length of the cell in x, y, and z directions respectively.

Equating the mass accumulation in (2:25) to the net mass in�ow rate, we will get

@

@t
(�C) = � @

@x
(UxC)�

@

@y
(UyC)�

@

@z
(UzC) : (2.26)

Discretization is then applied on this equation (2:26) considering the upwind values for

C. So, the �nal equation will take the following form

d

dt

h
�
�
xi+ 1

2
; yj+ 1

2

�
Ci+ 1

2
;j+ 1

2

i
(xi+1 � xi) (yj+1 � yj)

=
h
max

�
Ux
i;j+ 1

2

; 0
�
Ci� 1

2
;j+ 1

2
+min

�
Ux
i;j+ 1

2

; 0
�
Ci+ 1

2
;j+ 1

2

i
(yj+1 � yj)

�
h
max

�
Ux
i+1;j+ 1

2

; 0
�
Ci+ 1

2
;j+ 1

2
+min

�
Ux
i+1;j+ 1

2

; 0
�
Ci+ 3

2
;j+ 1

2

i
(yj+1 � yj)

+

�
max

�
Uy
i+ 1

2
;j
; 0

�
Ci+ 1

2
;j� 1

2
+min

�
Uy
i+ 1

2
;j
; 0

�
Ci+ 1

2
;j+ 1

2

�
(xi+1 � xi)

�
�
max

�
Uy
i+ 1

2
;j+1

; 0

�
Ci+ 1

2
;j+ 1

2
+min

�
Uy
i+ 1

2
;j+1

; 0

�
Ci+ 1

2
;j+ 3

2

�
(xi+1 � xi) : (2.27)

Attention has to be given for the time step taken in each iteration because it plays an

essential role in the stability of the system according to the CFL condition�
Ux�t

��x
+
Uy�t

��y

�
< c; (2.28)

where c is constant for the CFL condition (Courant-Friedrichs-Levy condition). We note

that small time steps will insure stability.

The transport equation (2:27) can be simpli�ed more in the form

N
dC

dt
+BC = b; (2.29)

where N and B are de�ned as follows

N = diag (�S) ;

B =
�
BW �BE

� �
diag

�
U+x
�
BW + diag

�
U�x
�
BE
�

+
�
BS �BN

� �
diag

�
U+y
�
BS + diag

�
U�y
�
BN
�
;



11

and b and S are the source term vector and the area of each cell respectively.

The new terms and matrices in B are

U+x = max (Ux:hy; 0) ; U�x = min (Ux:hy; 0) ;

U+y = max (Uy:hx; 0) ; U�y = min (Uy:hx; 0) ;

and

BW =

2666666666664

0B@ O1�m

Im�m

1CA
1

0 0

0
. . . 0

0 0

0B@ O1�m

Im�m

1CA
n

3777777777775
;

BE =

2666666666664

0B@ In�m

O1�m

1CA
1

0 0

0
. . . 0

0 0

0B@ In�m

O1�m

1CA
n

3777777777775
;

BS =

264 Om�(mn)

I(mn)�(mn)

375 ;

BN =

264 I(mn)�(mn)
Om�(mn)

375 ;
where hx and hy are the horizontal and the vertical length of each cell respectively, and

m and n are the total number of cells in x and y directions respectively.

Reorganizing the terms of (2:29) and applying forward Euler�s methods will give

Ck+1 = N�1
�
tk+1 � tk

��
b�BCk

�
+ Ck: (2.30)

Note that N is a diagonal matrix, and thus its inverse N�1 is readily available.
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2.3 Model Physics and Uncertainties

The model grid is de�ned on a 2-D plane domain. There are 100 cells in both x and y

directions making a total of 10; 000 grid points. The horizontal and vertical lengths of

the grid are H = 1000 m and L = 500 m respectively. The permeabilities of the large

and the small (embedded) rocks are 100 millidarcy and 10 millidarcy respectively. The

embedded rock is positioned exactly in the center of the domain. The density of water is

1000 Kg/m3 and the viscosity is 1 cP. The gravitational acceleration is taken as 9:81 m/s2.

The water head is 100 m-water along the western boundary and 10 m-water along the

eastern boundary. The water head distribution and the Darcy velocity streamlines inside

the domain are shown in �gure 2-2. The transport of the contaminant is modeled for 50

years and the time step is 2 months.

Figure 2-2: Spatial distribution of the water heads (left) and the Darcy velocity streamlines

(right) in the porous medium.

The porous medium is considered as totally homogenous within each subdomain, and

it contains just solid matrix with no fractures. Dispersion and reaction terms in (2:18)

are ignored. Precipitation and dissolution can play an important role as a good source

of watering for the aquifer, but in this model all water sources that might take place are
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suppressed, thus the b term in (2:30) vanishes. So, the general time dependent transport

model will take this form

Ck+1 = ACk; (2.31)

where

A = �N�1
�
tk+1 � tk

�
B + I: (2.32)



Chapter 3

Data Assimilation into

Contaminant Models

Data assimilation is the process of combining information from a numerical model and ob-

servations to determine the best possible description of the state of a dynamic system. As

will be discussed later, "best possible" refers to the fact that the "best estimate" is often

di¢ cult to compute because of the large dimension of the system under study, and because

of our poor knowledge of the system uncertainties. Roughly speaking, the observations

guide the model towards a realistic trajectory, while the model provides a spatiotemporal

dynamics interpolation for the observations [25]. Assimilation methods generally fall down

into two categories: sequential methods based on statistical estimation theory where the

state estimation is carried out sequentially in time with observations, and variational meth-

ods based on the deterministic inverse problems theory where the optimization is done for

the whole system at once [19]. The work carried out in this thesis is based on the �rst

category coming from the well-known Kalman Filter (KF).

The KF is a well-known statistical data assimilation scheme that provides the best

estimate, in the sense of minimum variance, of the state of a linear system with Gaussian

errors using all observations up to the estimation time (Kalman 1960). The application of

the KF to realistic underground water problems often encounters two major di¢ culties, non-

linearity of the governing equations and computational cost. The transport contaminant

model in this study (2:32) is linear but the model state can be of huge dimension depending

on the resolution and the size of the area of interest. The KF relies on the model to

14
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integrate the state estimate in time when no-observations are available, in what is called

the KF forecast step. Because models outputs often strongly depend on the input model

parameters, determining accurate state estimates would therefore requires good knowledge

of the system parameters. In this study, we use the joint state-parameter approach to

simultaneously determine estimates of the state and the model parameters using the KF. It

is important to note here that even if the model is linear function of the state, the parameter

estimation problem is very often nonlinear. Here we resort to the extended Kalman �lter

(EKF) approach and its low-rank variant to tackle this problem.

3.1 Kalman Filter (KF)

The KF can be described by a set of mathematical equations that provides an e¢ cient

computational recursive algorithm means to estimate the state of a dynamic system. The

optimality criteria of the KF relies on the minimization of the mean squared estimation

error. The �lter is very powerful in several aspects;

� It can handle estimations of past, present, and even future states,

� It can do so even when the precise nature or real parameters and inputs of the simu-

lated system is poorly unknown.

� It provides estimates not only of the state, but also of the underlying uncertainties,

and

The KF uses a form of feedback control to estimate the quantities of interest; the �lter

gives a prediction for the process state at some time and then obtains feedback in the form

of (noisy) measurements. As such, the KF operates in two steps

� Time update equations known as �Forecast Step�

� Measurement update equations known as �Correction Step�
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The time update equations project the current state and its error covariance estimates

forward in time to provide the a priori estimates for the following time step. The correction

step updates the a priori estimate with new observation before the next forecast step takes

place.

3.1.1 KF Algorithm

We follow the usual notation of the data assimilation community which was proposed by

Ide et al. (1997) to describe the algorithm of the KF.

Consider a dynamic system

Xt (tk) =M (tk; tk�1)X
t (tk�1) + � (tk) ; (3.1)

where Xt (tk) denotes the vector representing the true state at time tk, M (tk; tk�1) is the

transition operator that integrates the system states from time tk�1 to time tk, and � (tk)

is the system noise vector representing uncertainties in the model. Here we assume that

the model M is linear. As will be discussed later, M represents the contaminant model

described in (2:32).

At each time tk, we assume that the observations of the state are obtained from the

following observation system

Y ok = HkX
t (tk) + "k; (3.2)

where Hk is the observational operator that relates the state to the observation, and "k is

the observational noise.

We assume that the process and the observational noises have normal probability dis-

tributions with zero means as follows

p (�) = N (0; Q) ; (3.3)

p (") = N (0; R) ; (3.4)

where Q is the process noise covariance and R is the measurement noise covariance.
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The KF algorithm is a succession of a forecast step and a correction step. The KF has

to be initialized prior to these two steps. The initialization the �lter will be discussed in

section 4.4.

1. Forecast Step:

At time tk�1 an estimate Xa (tk�1) of the system state and its corresponding error

covariance matrix P a (tk�1) are available. The forecast step Xf and the associated

error covariance matrix P f are computed by integrating the model forward in time

Xf (tk) =M (tk; tk�1)X
a (tk�1) ; (3.5)

P f (tk) =M (tk; tk�1)P
a (tk�1)M (tk; tk�1)

T +Qk; (3.6)

2. Correction Step:

Every time a new observation Y ok is available, the KF corrects the forecast with the

analysis equations

Xa (tk) = X
f (tk) +Gk

h
Y ok �HkXf (tk)

i
; (3.7)

P ak = (I �GkHk)P
f
k ; (3.8)

where Y ok is the new observation at time tk, and Gk is the Kalman gain matrix

Gk = P
a
kH

T
k

�
HkP

f
kH

T
k +Rk

��1
; (3.9)

3.2 Covariance In�ation

In some cases where Q is very hard to estimate, an in�ation factor is introduced in the

covariance equation (3:6) as follows

P f (tk) = �MP
a (tk�1)M

T ; (3.10)

where � is the in�ation factor, commonly referred to as 1=�, and � is a forgetting factor [2].

As shown in equation (3:3), the error covariance matrix represents the uncertainties in

the model, but when we cannot estimate it we resort to in�ations. The main role of in�ations
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is to account as much as possible to the missing error covariance matrix. In�ations can help

in guiding the �lter to the best possible estimate by trusting the observations. In most of

the real cases, the observations are noisy but still we can rely on them because they do not

include such large uncertainties like the model.

3.3 Singular Evolutive Kalman Filter (SEKF)

If the system state has a dimension N , the error covariance matrix P will have a dimension

N � N . Manipulating the error covariance matrix for large dimensional systems becomes

computationaly very expensive and even impossible because of the huge memory storage

it requires. The SEKF has been introduced as a way to reduce the computational cost of

the KF arising in large dimensional systems. The main idea is to approximate the error

covariance matrix of the KF by a singular matrix with low rank r << N which allows the

decomposition

P = LULT ; (3.11)

where L is of size N � r and U is simply r � r. Using this decomposition in the KF

algorithm, we obtain the algorithm of the SEKF in which only L and U are used. P can

still be computed but not needed, therefore drastically reducing computational burden of

the KF. This resulting SEKF applies the KF correction only along certain directions called

correction directions of the �lter, parallel to a linear subspace of dimension r. It was shown

that these directions are those for which the error is not su¢ ciently attenuated by the

system dynamics [25, 26]. Just as the KF, the SEKF proceeds in two stages apart from

an initialization stage based on Empirical Orthogonal Functions "EOFs" (See Chapter 4,

section 4.4.1).

1. Forecast Step:

At time tk�1; an estimate Xa (tk�1) of the state and its corresponding error covariance

matrix P a (tk�1), in the factorized form Lk�1Uk�1L
T
k�1, are available. The SEKF
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updates the analysis and the correction directions with the model.

Xf (tk) =M (tk; tk�1)X
a (tk�1) ; (3.12)

Lk =M (tk; tk�1)Lk�1: (3.13)

The forecast error covariance matrix is then

P f (tk) = Lk�1Uk�1L
T
k�1 +Qk: (3.14)

2. Correction Step:

The KF correction step is then applied as

Xa (tk) = X
f (tk) +Gk

h
Y ok �HkXf (tk)

i
; (3.15)

with the Kalman gain now given as

Gk = LkUkL
T
kH

T
k R

�1
k ; (3.16)

with

U�1k =
�
Uk�1 +

�
LTkLk

��1
LTkQkLk

�
LTkLk

��1��1
+LTkH

T
k R

�1
k HkLk: (3.17)

The corresponding �lter analysis error covariance matrix is then equal to

P a (tk) = LkUkL
T
k : (3.18)

Again, equations (3:14) and (3:18) are only included for better interpretation of the

�lter�s algorithm the results, but are not needed in the algorithm. It is also important

to note that equation (3:17) was obtained after projection of the model error in the �lter

correction directions L as described in [34]. This is needed to avoid an unbounded increase

in the rank of P [34].

When in�ation is used to represent the model error in the SEKF, equation (3:17) be-

comes

U�1k = �U�1k�1 + L
T
kH

T
k R

�1
k HkLk: (3.19)
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Even if the statistics of the model are known, the use of in�ation in the SEKF is also

needed to mitigate for the underestimation of P by low-rank matrices and because of the

projection Q on L.

3.4 Singular Fixed Kalman Filter (SFKF)

The SFKF carries the same low-rank idea just as the SEKF; it only aims to decrease the

computational cost more by �xing L with time. This means that the correction directions

are obtained just once without further updates by the model. This can introduce more

uncertainties and noise in the system but still it can be manipulated to estimate future

state estimates. This �lter can be used for high resolution grids where the size of the

dynamic system N is extremely large and estimating the correction directions at each step

(3:13) can slow down the speed of the algorithm and take a huge memory storage.

The main change is the error covariance matrix which will be written as

P a (tk) = LUkL
T : (3.20)

The algorithm of the SFKF is exactly the same as the SEKF and the only di¤erence is

that the evolving equation for L (3:13) does not exist anymore.

3.5 Extended Kalman Filter (EKF)

The EKF was introduced to allow the application of the KF to (moderately) nonlinear

systems. The main idea is to linearize the system about the most recent state estimate

before applying the KF [19]. Linearization can be done by several ways including Taylor

expansions, �nite di¤erences, ... [46]. It is now more customary to use the Ensemble

Kalman �lter (EnKF) for nonlinear data assimilation problems [27]. In our study, the EKF

was found e¢ cient enough to compute accurate estimates of the model parameters. Future

work will consider EnKF-based methods for more accuracy.
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The algorithm for the EKF is quite similar to the one of the KF, only the linearized

operators of the model and the observational operators are now in the KF algorithm as

follows

1. Forecast Step:

Xf (tk) =M (tk; tk�1)X
a (tk�1) ; (3.21)

P f (tk) =M (tk; tk�1)P
a (tk�1)M (tk; tk�1)

T +Qk; (3.22)

where M (tk; tk�1) is the gradient of M (tk; tk�1) evaluated at Xa (tk�1).

2. Correction Step:

Xa (tk) = X
f (tk) +Gk

�
Y ok �HkXf (tk)

�
; (3.23)

Gk = P
a
kH

T
k

�
HkP

f
kH

T
k +Rk

��1
; (3.24)

P ak = (I �GkHk)P
f
k ; (3.25)

where Hk is the gradient of Hk evaluated at Xf (tk).

The computation of the forecast error covariance matrix P f requires the manipulation

of matrix of order N , and at least N model integrations. Therefore, approximations are

unavoidable. The SEEK �lter is a good approach to reduce the cost of the EKF [26].

3.6 Singular Evolutive Extended Kalman Filter (SEEKF)

The SEEKF is the extended version of the SEKF, where linearization is incorporated in the

algorithm as in the EKF. After initialization, the forecast and the correction steps are as

follows

1. Forecast Step:

Xf (tk) =M (tk; tk�1)X
a (tk�1) ; (3.26)

Lk =M (tk; tk�1)Lk�1: (3.27)
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2. Correction Step:

Xa (tk) = X
f (tk) +Gk

�
Y ok �HkXf (tk)

�
; (3.28)

Gk = LkUkL
T
kH

T
kR

�1
k ; (3.29)

U�1k =
�
Uk�1 +

�
LTkLk

��1
LTkQkLk

�
LTkLk

��1��1
+LTkH

T
kR

�1
k HkLk: (3.30)

3.7 Localization of the Filter Analysis

As can be seen in equations (3:15) and (3:16), the �lter correction is only applied in the

directions of L. The low-rank approximation used in SEKF and SFKF, therefore results

in very few degrees of freedom for the �lter analysis to �t available observations. Another

problem, but closely related, can be due to the bad representation of long-term correlations

of a covariance matrix using low-rank approximation. Based on Houtekamer and Mitchel

(2001), the simplest strategy to deal with this problem is to exclude observations greatly

distant from the grid point being analyzed. By doing so, short-range correlations in the

�lter�s error covariance matrices will be preserved, and long-range correlations will be �ltered

out. In other words, localization can �t the data and �lter out spurious unrealistic long

correlations of the covariance matrices dominated by large scale signals.

Localization is now considered as a necessary tool for a successful implementation for a

low-rank KF, including Ensemble KFs [49, 28].

Applying localization would require changes only in the analysis step, where only a

speci�c number of observations falling within a distance from the point being estimated are

used. This localization idea is de�ned by means of a radius of in�uence around the analyzed

point. All data located outside this area of in�uence are discarded. The analysis equations

of the SEKF will take the form

Xa
j (tk) = X

f
j (tk) + Lk;jUk;jxk; (3.31)
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xk = L
T
kH

T
k;jR

�1
k;j

�
Yk;j �Hk;jXf (tk)

�
; (3.32)

U�1k;j = U
�1
k�1;j + L

T
kH

T
k;jR

�1
k;jHk;jLk; (3.33)

where Hk;j and Rk;j are the observation and the measurement noise covariance matrices

for every single point in the state vector respectively, Yk;j corresponds to the observations

located within the radius of in�uence of the analyzed point, Lk;j is the jth row of L matrix,

and Uk�1;j is the initial U at point j.

3.8 Computational Requirements of the Filters

One of the basic criteria followed to compare the �lters is by looking at their computational

requirement. Obviously, the low-rank �lters require the least e¤ort that is r+1 time the cost

of the numerical integration of the model (to compute the evolution of L). The full Kalman;

however, requires N times the cost of the model integration which is much larger than r+1.

In the extended Kalman �lters, there is another computational e¤ort given for updating

the model around the most recent parameters. If localization is done, the computational

e¤ort will increase in the analysis step. It depends on how much observations are found in

the neighborhood of the point to be analyzed.

3.9 Implementation of KFs on Contaminant Transport Mod-

els

Once the �lters algorithms are well coded, we can plug the contaminant state vector and its

covariance matrix in these �lters. The contaminant state correspond to the concentration

value of the contaminant in each cell of the domain. Contaminant data at speci�c locations

in the domain have to be collected before starting �ltering. The output from the �lter

will give an idea about the position of the contaminant plume after some time. Other

model parameters such as the permeability, the spatial distribution of the rocks in the
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porous medium, ... can be estimated using the KFs. All these estimation problems will be

discussed in the following chapter.



Chapter 4

Numerical Applications

Several experiments were performed, each with speci�c con�gurations, using di¤erent pa-

rameters and inputs and focusing on di¤erent objectives. Based on the information given

in the previous chapter, we considered the transport contaminant model on two grids, low

and high resolution, and the reason for that is to study the impact of the dimension on the

problem. The KF can be applied on the coarse mesh grid (CMG) whereas, the SEKF can

be used for both the coarse and the �ne mesh grid (FMG). The meshing properties of the

two grids are detailed in Table 4.1.

Table 4.1: Meshing properties for the low and the high resolution model grids.

Meshing Properties CMG FMG

The total number of cells 2500 10000

The total number of nodes 2601 10201

The number of edges 5100 20200

The number of boundary edges 200 400

The length of each cell in x-direction (m) 20 10

The length of each cell in y-direction (m) 10 5

The area of each cell (m2) 200 50

As it can be seen from the table above, the FMG has double more cells than the CMG.

The CMG has a lower resolution than the FMG and this is clearly shown in the areas of

25
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each cell in both grids. Smaller cell areas means better representation of the contaminant

distribution inside the domain.

Obviously, the FMG would require more computational time because our objective is

to know the contaminant concentration at each cell location. The computational e¤ort in

the CMG is faster but less accurate because the contaminant is averaged on larger areas.

That�s why it is important to be able to manipulate contaminant model on the FMG to get

accurate results and good contaminant image.

4.1 Twin Experiments

Twin experiments are used as a tool to assess the performances and the capabilities of our

�lters. These experiments work in the following manner:

1. A reference experiment is performed and the reference contaminant states are saved

to be compared later with the estimations of the �lters.

2. Pseudo-measurements are then extracted from these reference states based on our

choice.

3. Later, we run the assimilation experiments using the contaminant model and the

collected pesudo-observations.

The twin experiments can validate or dis-validate the �lter�s performance based on

the resulting estimations. We expect the estimation of the contaminant to improve and

get closer to the reference contaminant states throughout �ltering if we are using correct

observations and true model. If the results get worse, then we know that the �lter is not

functioning properly and the reason could be a problem in the observations or the model.

4.2 Reference States

The reference state, or what we what we refer to as "the truth", includes all the states

that are used to evaluate the performance of the �lters and to study their behaviors. These
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states result from the simulation of the dynamic model, using the correct parameters and

initial conditions. In our study, we collect the true states every 2 months by running the

transport model in (2:31) for 50 years using the model parameters as mentioned section

(2.3). Chang and Latif (2010), considered a pulse mass input of 1604 g, producing an initial

concentration (C0) of 10; 000 mg/l; this contaminant is injected at a single point in the

grid [9]. In our model, we consider a contaminated area (plume) in a fully pure aquifer.

The contaminant is then transported into the medium with the water �ow. For the low

resolution grid, the contaminant plume is located close to the western boundary in the

subdomain [4; 6]� [5; 45] ; and it moves towards the eastern side. The same initial condition

is considered for the high resolution grid, but this time the contamination plume is located

in the subdomain [8; 12]� [10; 90]. The initial concentration of the contaminant is 100 ppm.

The �owing water entering the aquifer goes around the low permeability layer because the

values of the Darcy velocities in that subdomain are very small. Figures 4-1 and 4-2 show

the evolution of the contaminant every 5 years inside the aquifer for the CMG and the FMG

respectively.

Figure 4-1: The reference "true" states of the contaminat transport model (CMG). The

initial contaminant concentration is 100 ppm.
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Figure 4-2: The reference "true" states of the contaminat transport model (FMG). The

initial contaminant concentration is 100 ppm.

One can see that the spread of the contaminant is thinner in the FMG than the CMG.

This is because the larger number of cells inside the FMG, meaning that the concentration

values are being assigned to small areas rather than approximating them for larger areas as

in the CMG case.

4.3 Pseudo-Observations

We collect pseudo-observations for both the CMG and the FMG. Since there are more cells

in the FMG, we choose to extract more data from the reference states of this grid. In the

real life case, it�s extremely hard and expensive to get observations from the whole domain

area. We collect observations from the grid points located along the path of the moving

contaminant.

In total, there are 305 reference states and observations have to be collected from each

of these states, i.e. every 2 months. From the CMG, we collect observations - in a vertical

manner every 200 m - from 160 cells out of 2500. In the FMG we choose to collect - in the

same vertical manner but every 100 m - 720 observations out of 10; 000 cells (Figure 4-3).

Observations represent the true state of the contaminant only if there is absolutely
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no measurement error. In practical measurement, this ideal situation does not often take

place. The measurement is incorporated with unavoidable error termed as measurement

noise. This may take place due to an inaccurate reading of the measuring instrument, lack

of proper instrument calibration, and insensitivity of the measuring instrument ... [9].

Perturbation is imposed on the observations to include measurement noise so that the

experiments are constructed in a more realistic setting. The observation error is simulated

by adding randomly generated Gaussian noise with zero mean. We assume that the ob-

servational errors are not correlated, and thus we write the error covariance matrix R as a

diagonal matrix having the variances of the observational errors as its entries. In most of

the cases, we assume 10% and 30% observational errors of the total variance.

Figure 4-3: "Pesudo" observations taken from each state of the CMG (left) and the FMG

(right).

4.4 Initialization of the Filters

As discussed in section (3.1.1), to initialize the �lters one needs some initial estimate of the

state vector Xa (t0), and its initial error covariance matrix P a (t0). The choice of Xa (t0)

and P a (t0) is usually not very important on the long term behavior of the �lter. To



30

initialize the KF, we take Xa (t0) as the average of the simulated state vectors from the

reference states (Figure 4-4), and P a (t0) as the sample covariance matrix of these vectors.

To initialize the SEKF, we take Xa (t0) as the initial state (similar to KF) and P a (t0) as the

low-rank approximation of the sample covariance matrix which we compute using empirical

orthogonal function analysis. Such an analysis can provide the initial L0 and U0 needed to

start the SEKF.

Figure 4-4: Initial contaminant states (mean of all 305 states) used in the �lters for both,

the low and the high resolution grids.

4.4.1 EOF Analysis

The Empirical Orthogonal Function (EOF) analysis, is a method to split the temporal

variance of spatially distributed data into orthogonal spatial patterns called EOFs. It can

be viewed as a method of compressing data contained in a set of subsurface states, by

summarizing the correlation of their variables in a few vectors, called EOFs. The EOFs are

the eigenvectors of the sample covariance matrix of the set of states.

The relative importance of any individual EOF to the total variance in the �eld is

measured by its associated eigenvalues. The theorem of Taylor-Young also demonstrates
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that the EOF analysis provides the best low-rank r approximation of sample covariance

matrix P (in the sense of least squares) decomposed in the form

P � LULT ; (4.1)

where U is a diagonal matrix containing the eigenvalues of P ; �1; :::; �r ranked in decreasing

order on its diagonal [24]. In many earth sciences applications, only few eigenvalues are

found signi�cant, whereas the rest are very small suggesting that a drastic rank reduction

is possible.

4.4.2 Calculation of the EOFs

The sample covariance matrix P can be obtained by

P =
1

N

NsX
i=1

�
Xi �X

� �
Xi �X

�T
; (4.2)

where Xi is the ith contaminant state, X is the mean of all states, and Ns is the total

number of states (i.e. 305 in our case).

After getting P , we can compute the eigenvalues and the eigenvectors of this matrix.

We sort the eigenvalues in decreasing order on the main diagonal of matrix U and the

eigenvectors in L. Since the eigenvectors are orthogonal so we can write the following

equality

Xi �X = LLT
�
Xi �X

�
; (4.3)

where LLT is identity. If we take the �rst r eigenvectors Lr associated with the largest r

eigenvalues we can approximate our centered states in (4:3) as

Xi �X � LrLTr
�
Xi �X

�
: (4.4)

This approximation means that the centered states can be projected on a smaller sub-

space of dimension r if multiplied by the transpose of Lr, then we can reconstruct the states

in the original space by multiplying the projected states by Lr.
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The two bar plots in �gure 4-5 show the �rst 50 eigenvalues from the CMG and the

FMG. It is clear that only the �rst few eigenvalues are the signi�cant ones. The FMG has

larger eigenvalues than the CMG and this is expected because of the large dimension of

the FMG. This means that more information is needed to represent the FMG. We can also

understand this better by plotting the inertia of each eigenvalue (Figure 4-6). We see that

for both grids the �rst 10 EOFs account for more than 90% of the inertia of the sample.

Based on these two �gures (4-5 and 4-6) we can choose the number of retained EOFs in

all assimilation experiments.

Figure 4-5: Bar plot showing the values for the �rst 50 eigenvalues from the CMG (in total

there are 2,500 eigenvalues) and the FMG (in total there are 10,000 eigenvalues).

4.5 Forecast Model

The forecast model is the model used to integrate the state estimates forward in time. The

forecast model is said to be perfect if we use the same model that has been used to generate

the observations. In this case, no model errors are considered. In the other case, the forecast

model is said to be imperfect.



33

Figure 4-6: Percentage of inertia versus the number of EOFs from both grids.

Apart from the assimilation experiments, we apply free model runs on the CMG and

the FMG with no assimilation. The purpose of these experiments is to evaluate the per-

formances of the �lters and to show that assimilation improves the behavior of the model.

We compare the results of the �lters to that obtained from a model run starting from the

�lters initial conditions and running without assimilation using the forecast model.

Case 1 Estimation with perfect model forecast

In this �rst case, the forecast of the contaminant state is computed using the "true"

model, i.e. using the model parameters discussed in section (2.3) and the initial conditions

shown in �gure 4-4. These experiments allow us to evaluate the �lters performances without

the in�uence of the model errors. The only di¤erence in the �lters performances are due to

the formulations of the �lters. We carry out several experiments using 3 di¤erent �ltering

techniques namely;

KF Applied only on the CMG using observations from the data points in the domain

(Figure 4-3).

SEKF Carried out for both, the CMG and the FMG. A number of �lter ranks are consid-

ered and analyzed.
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SFKF Same application like the SEKF.

Note that no model error covariance matrix Q was used in the �lters runs as the model

was perfect.

Case 2 Estimation with imperfect forecast model

In real applications, the model is subject to model errors. To test the �lters in a more

realistic settings, we used a perturbed forecast model. More precisely, we decreased the

rock permeabilities by 20% to make k1 = 80 millidarcy and k2 = 0:8 millidarcy. We apply

the same �ltering techniques as in the �rst case and we compare the e¢ ciency of the �lters

by including the process noise covariance matrix Q and using in�ation factors.

Q is estimated as the sample covariance matrix between the correct solution states and

the perturbed model states. Then in the �lter�s algorithm, at each time step when a new

state is analyzed, Q can be updated.

We also apply localization for the low rank �lters using 3 in�uence areas. The searching

criteria for observations is implemented by considering a rectangular area and the grid point

being analyzed is placed at the center of the rectangle. The areas were chosen as follows

1. R1; starting from the grid point we search in horizontal direction 40 m to east and 40

m to west. In vertical direction, we search 20 m to north and 20 m to south:

2. R2; in the same manner but using a larger in�uence area. We use 100 m in east and

west directions and 50 m in north and south directions.

3. R3; is the largest searching area. We look for data located within a distance of 200

m to the east and west and 100 m in north and south directions.

Since in most of the real cases we face imperfect models, we apply localization just in this

case. For the localization idea, we check from the �rst case whether the SEKF is working

well with the perfect model then we go to the imperfect model and apply localization.



35

4.6 Evaluation of the �lters solution

To account for the analysis errors in both cases, we look at the Root Mean Square Error

(RMSE). The RMSE measures the di¤erence between the state predicted or estimated by

the �lter and the reference state. It can be calculated as follows

RMSE =

vuuuut
NX
i=1

(XModel;i �XTrue;i)2

N
: (4.5)

We also look at the estimated spatial distribution of the contaminant inside the aquifer

and we compare it with the reference states in �gure 4-1.

4.7 Numerical Results

4.7.1 Estimations using the Perfect Model

The primary point to prove is the importance of data assimilation and how can the obser-

vations guide the model to the true trajectories. We start our experiments with the �rst

case from the forecast model.

Free Run and KF

We used the perfect model and we compared the free run results with the KF estimations.

Figures 4-7 and 4-8 show the evolution of the contaminant in time from the free run and the

KF estimations respectively. One can see that the spatial distribution of the contaminant

predicted by the KF is more accurate and closer to the reference states (Figure 4-1) than

the free run estimation.

The free run underestimates the concentration of the contaminant after 50 years by

almost 10 ppm compared to the reference states. We looked at the analysis errors from

both runs (Figure 4-9) and we noticed that the RMSE values were also consistent with the

results given by the spatial distribution of the contaminant. The RMSE of KF is large

at the early assimilation steps, but quickly decreases after assimilating the data into the
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Figure 4-7: Concentration of the contaminant every 5 years as obtained from the free run.

(Model run without assimilation starting from the �lter�s initial condition).

Figure 4-8: Concentration of the contaminant every 5 years as estimated by the KF with

30% observational errors.
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model. The RMSE of the free run also decreases in time but with much slower pace than

the KF, re�ecting in a way the stable dynamics of the contaminant model.

Figure 4-9: Variation of the analysis errors in time from the free run (without data assimi-

lation) and the KF (with 10% and 30% observational errors).

KF versus SEKF

In this set of experiments, we study the behavior of the SEKF and compare its performance

to the KF. What we are trying to �nd is an accurate and fast estimation on the same time.

Here we use the SEKF that is guaranteed to support us with the least time and memory

storage that we seek.

The �rst question we try to answer is how to choose a good rank for the SEKF. Based

on �gures 4-5 and 4-6, the CMG has very few eigenvalues that are signi�cant (� 10) and

they account to more than 90% of the total inertia. Note that the larger the rank, the more

model integrations are needed to evolve the �lter correction directions implying increase

in the computational burden. Based on that, we conducted 2 sets of experiments and

we implemented the SEKF with di¤erent rank values 6, 8, and 10. The results are then

compared them to the ones of the KF.
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Figure 4-10: Comparison between the analysis errors given by the KF and the ones of the

SEKF based on the number of EOFs (with 10% and 30% observational errors).

Looking at �gure 4-10, the �rst thing that can be noticed is the blue curve representing

the analysis errors of the SEKF using 10 EOFs. It almost coincides with the bold black

curve representing the KF meaning that the low-rank approximation has only a marginal

impact on the accuracy of the estimation. We did not lose any essential information while

going to a smaller subspace because we are still able to get almost the same estimations

with the SEKF as in the full Kalman. This accurate estimation was obtained with a drastic

decrease in computational time and memory storage. Storing 2 matrices L of size n� r and

U of size r � r instead of a covariance matrix of size n � n can signi�cantly decrease the

memory storage.

As we decrease the rank of the �lter, we start losing information and the estimation

errors start to increase. This is expected because the �rst 10 eigenvalues are the largest

ones and ignoring some of them will lead to a less accurate estimation.

Testing SFKF

In the following experiment, we use the SFKF for the sake of increasing the speed of the

algorithm more. We compare the RMSE values with those of the SEKF in �gure 4-11.
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Obviously, the RMSE values for SEKF estimations are better than those of the SFKF but

the SFKF is signi�cantly faster. To certain extent, the RMS errors given by the SFKF can

be tolerated given the high speed of the algorithm when compared to the KF.

Figure 4-11: The SEKF (solid curves) and the SFKF (dashed curves) analysis errors for the

perfect model with di¤erent EOFs at 10% observational errors.

This interesting result can tell us that we can increase the rank of the SFKF and

obtain better results than the SEKF (running with smaller rank) without increasing the

computational cost as this does not require any new model integrations. Only storage and

the analysis step would be more demanding but not like integrating the model.

High Resolution Grid

The last experiment with the true forward model was carried out with the model solved

on the FMG instead of the CMG. In this setup, it was not possible to implement the KF

because we ran out of memory. MATLAB could not a¤ord handling a covariance matrix of

size 10; 000 � 10; 000. It is important to mention here that the CMG runs could validate

for us the usage of the SEKF by comparing its estimations with those of the full Kalman.

Now, we run this FMG using the SEKF and this is another advantage for the SEKF that
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it can handle large dimension problems at times where the KF can not. We got the lowest

analysis errors using the �rst 15 EOFs as in Figure 4-12. We run the same model in a

free run mode (Figure 4-13) and again we see the important e¤ect of data assimilation in

guiding the �lter toward the true solution. The RMSE values after 50 years by the SEKF

using just 5 EOFs is less than 1 and almost 0 for 15 EOFs; however, it is still greater than

6 in the free run simulation.

Figure 4-12: RMSE values resulted from the SEKF when implemented on the FMG with

di¤erent �lter ranks at 10% observational errors.

4.7.2 Estimations using the Imperfect Model

We consider now the case of the imperfect forecast model which is the true model with

perturbed initial conditions and permeabilities. Clearly, the �lter estimates should be less

accurate than the ones we obtained with the true model. This is a more realistic case when

we do not know exactly the reservoir parameters. We start from some estimates, collect

some (noisy) data, and then apply �ltering. In all the experiments in this section, we impose

10% errors on the observations.

The use of an imperfect model to forecast the state of the KF signi�cantly degrades
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Figure 4-13: RMSE values for the free run when applied on the FMG.

the KF estimates. The RMSE increases in time because the �lter does not fully use the

information in the observations as more weight is given to the enormous forecast (Figure 4-

14). Adding in�ations increases the uncertainties on the model forecast and push the �lter

to trust more the observations, this results in a better �lter performance. As expected,

in�ation stabilizes the �lter RMSE at the early assimilation window before allowing the

�lter to converge towards the true state at the end of the assimilation period. However,

increasing in�ation beyond 1.08 increases the error and at some point it caused the �lter to

diverge. A more preferable strategy is take into account the uncertainties in the model and

to compute the error covariance matrix. It is important to note that this is however based

on the assumption of additive noise which is likely to be not true in this con�guration. As

discussed in section (4.5), Q was estimated as the sample covariance matrix between the

true reference run and the perturbed model. The bold dashed curve in �gure 4-14 shows

how including Q in the �lter�s algorithm greatly improves the stability of the �lter; unlike

when using in�ations where we see the estimation error varying in a more irregular pattern.

The �lter with Q cannot however decrease the RMSE values while for certain in�ations, the

�lter RMSE continuously decreases in time.

Further we tested the behavior of the SEKF and the SFKF with the same imperfect
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Figure 4-14: KF analysis errors for the imperfect low resolution model with Q and in�ations

(observational errors are 10% of the total variance).

model. Figure 4-15 shows the RMSE values from the SEKF (with 10 EOFs) using both

in�ations and Q. There are 2 main interesting features that one can get from this plot:

1. Firstly, the �lter could now handle more in�ation than the KF, up to 1:14. This can

be expected because the low-rank approximation of the SEKF underestimates the

�lter covariance matrices allowing for more in�ation than in the KF. More in�ation

again continuously decreases the RMSE to about 0:12 with an in�ation � = 1:14, but

after certain level, the �lter diverges as for the KF.

2. Secondly, using Q in this SEKF interestingly decreases the error to 0:08 and this

contributes to a more accurate and much stable estimation than all in�ation cases.

For the SFKF (with 10 EOFs), again using Q gave slightly better performance than

using in�ation, but the �lter did not handle as much in�ation as the SEKF (Figure 4-16).

This can be explained by the invariant correction directions that are used to parametrize

the �lter covariance matrices. The �ler can be then sometimes overestimated and adding

in�ation might degrade the results. The error with SFKF decreased after 50 years to 0:58

which is larger than both the KF and the SEKF.
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Figure 4-15: SEKF analysis errors for the imperfect low resolution model with Q and

in�ations (observational errors are 10% of the total variance).

Figure 4-16: SFKF analysis errors for the imperfect low resolution model with Q and

in�ations (observational errors are 10% of the total variance).
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To summarize the results of this section, we compare the 3 performances of the �lters

(Figure 4-17) in terms of using in�ation and Q. The least accurate one in both cases is the

SFKF, the error is seen to decrease and later increases towards the end of the assimilation

window. This shows that omitting the evolution of the correction directions in the �lter�s

algorithm degrades the performances and lead to less accurate estimates. Concerning the

KF and the SEKF, surprisingly the low-rank approximation is found to provide better

estimates than the full Kalman. The RMSE values of the SEKF were smaller than those of

the KF in both cases. Also, the SEKF with Q lead to less errors and was more stable than

the KF. As a tentative exploration, we hypothesize that the low-rank approximation �lters

out some of the model noise to better behave in the presence of model uncertainties.

Figure 4-17: Comparison between the 3 �lters (using the imperfect CMG model) based on

their RMSE values and the usage of Q and in�ations.

4.7.3 E¤ect of Localization on the Estimated Contaminant States

As discussed in section (3.7), the localization is applied for the analysis step in the SEKF

and the SFKF �lters. We tested localization only with the CMG because applying it on

the FMG would be very slow. The domain grid in the FMG is very large and for each
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point we have to look for data around it, so computationaly it can be implemented but not

so feasible. The results shown in Figures 4-19 and 4-20 were obtained from assimilation

runs with three in�uence areas as described in the forecast model, section (4.5). In all

assimilation experiments, we impose 10% noise as perturbation on the observations.

In both �lter runs, we see that the larger the in�uence area the better the estimation

becomes. Based on the local support idea, if the point gets its analysis from the data close

to it we should get a better estimation. Well, this is correct as long as the neighborhood

around the point include observation points; if not we will end up having a case where

no data will be assigned to the point and its value would remain unchanged. This is the

case mainly for R1 and R2, most of the grid points had no observations around them so

their values ended up being uncorrected. Especially for R1, the RMSE curve resembles to

the free run to certain extent because what is really going on is just forecasting with very

small corrections. The fact that the RMSE values at the beginning are large is due to the

same problem. What is being estimated at the beginning is so much a¤ected by the initial

condition (mean of all the states) because there are no enough observations for correction

(Figure 4-18).

Figure 4-18: RMSE values using localization with R1 searching area and the free run

(CMG).
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In the SEKF, we see that when using localization with R2 we were able to obtain more

accurate estimates than the SEKF case with no in�ations and it even becomes much better

with R3. For the SFKF case, the error with R2 and R3 was also not that as accurate as the

�lter run without in�ation. From the computational side, as the area of in�uence around

the point increases, estimations become more expensive requiring more computational time.

Figure 4-19: RMSE values when applying localization to the SEKF analysis with di¤erent

in�uence areas.

The reason for the weak impact of localization on the �lters performances is mainly due

to the assimilation of "pesudo" observations in the present work. These observations are

fully consistent with the model dynamics and the long-distance correlations summarized in

the correction directions are likely to be correct. Another reason is that, as for the model

states, the total variance of the observations can be also represented at very high accuracy

with a very few modes. The direction of the �lter correction subspace is therefore not an

issue and the �lter should be able to extract most of the information in the observations

even with few correction directions. In these conditions, localization might not necessarily

enhance the �lters performances and the results of our experiments support our analysis.
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Figure 4-20: RMSE values when applying localization to the SFKF analysis with di¤erent

in�uence areas.



Chapter 5

Joint State-Parameter Estimation

with KF

In all the previous data assimilation discussion, we stated the problem where we use �ltering

procedures to estimate the model state variables. In most models, we face a problem where

we need to estimate some model parameters together with the state variables. This is often

encountered in very complicated models with inaccurate con�gurations and parameters. To

solve this, we consider in this chapter the combined state-parameter estimation problem, in

which both the model state and parameters are estimated simultaneously.

One approach for the combined estimation problem is given by the joint estimation

where the states and the parameter vectors are added together in a single joint state vector;

commonly referred to as state augmentation approach [5, 6, 37, 47, 48, 55]. In other words,

the parameters are treated in a similar way just like the state variables. What di¤ers these

parameters from the normal state variables is the fact that they are not observed and they

can be nonlinear function of the model even if the standard system is linear.

The joint state-parameter estimation problem is generally nonlinear and for this we use

the EKF and the SEEKF assigned for nonlinear dynamic systems. It is essential to mention

that for some systems where the non-linearity is strong, the system with EKF can become

unstable. To deal with this drawback, generally the Ensemble Kalman �lter (EnKF), based

on Monte Carlo method, is used.

48
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5.1 General State-Parameter Estimation with the KF

Based on the KF algorithm discussed in section 3.1.1, the model state in the forecast step

is updated in time by the model operator as in equation (3:5). Using the augmented state-

parameter estimation approach, the update of the model state will be represented in a

di¤erent way because the state vector now includes some model parameters. An important

point to remember is that, the parameters are time invariants and so the model operator

will not project them forward in time as the state variables.

Assume that the parameter vector is denoted as Z, then the forecast equation (3:5) of

the model state in the KF algorithm will be splitted into 2 equations as follows

Xf (tk) =M (tk; tk�1)X
a (tk�1) ; (5.1)

Zf (tk) = Z
a (tk�1) : (5.2)

This con�guration is then joined in a single equation

eXf (tk) = fM (tk; tk�1) eXa (tk�1) ; (5.3)

where eX and fM correspond to the state and the model operator of the joint system approach

and can be written as

eX =

264 X
Z

375 ; (5.4)

fM =

264 M 0

0 I

375 ; (5.5)

where I is an identity matrix having the same size as the parameter vector Z.

5.2 Joint State Estimation of the Contaminant System

In the case when imperfect forecast model is used, the model was perturbed using inaccurate

values of the permeabilities. In this section, we try to estimate the 2 rock permeabilities

alongside of the contaminant state using the state parameter approach. This is a challenging



50

problem as the information about the permeabilities come from observing the contaminant

concentration not the �ow. To do so, we add the two permeabilities to the state vector we

are estimating making its dimension N + 2. Since the contaminant model operator A in

(2:32) is a nonlinear function of the parameters, the estimation problem becomes nonlinear.

In this case, we use the EKF and the SEEKF in which the model is linearized around the

previous state estimate.

In the EKF and the SEEKF setups, based on the previous section, the model state

Xa (tk�1) and the model operator M (tk; tk�1) in equation (3:21) become

Xa (tk�1) =

26666666666666664

C1(tk�1)

C2(tk�1)
...

Cn(tk�1)

k1(tk�1)

k2(tk�1)

37777777777777775
(N+2)�1

; (5.6)

M (tk; tk�1) =

26666666666664

�
A
�
k1(tk�1); k2(tk�1)

��
N�N

0

...

0

0

...

0

0 : : : 0 1 0

0 : : : 0 0 1

37777777777775
(N+2)�(N+2)

; (5.7)

where C1(tk�1) represents the concentration of the contaminant of the �rst grid point at

tk�1. k1(tk�1) and k2(tk�1) correspond to the estimated rock permeabilities at tk�1.

The observation operator H will be exactly the same as before augmented by two addi-

tional zero columns after the N th column. The reason for this, is that we are only observing

the concentration of the contaminant, and the permeability by itself is something intangi-

ble, meaning that it can not be observed directly. H is therefore a linear operator and no

linearization is required so the gradient of H is the same matrix as H.
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The gradient of M (tk; tk�1) in (3:22) includes some derivative as follows

M (tk; tk�1) =

2666664
A
�
k1(tk�1); k2(tk�1)

� �
@A

@k1(tk�1)

�
C (tk�1)

�
@A

@k2(tk�1)

�
C (tk�1)

0 : : : 0 1 0

0 : : : 0 0 1

3777775 ;
(5.8)

where C (tk�1) denotes the contaminant vector as

C (tk�1) =

2666666664

C1(tk�1)

C2(tk�1)
...

Cn(tk�1)

3777777775
: (5.9)

Here the derivatives are approximated using a second order centered �nite di¤erence method

as  
@A

@k1(tk�1)

!
k2(tk�1)

�
A
�
k1(tk�1) + "

�
�A

�
k1(tk�1) � "

�
2"

+ #
�
"2
�
; (5.10)

 
@A

@k2(tk�1)

!
k1(tk�1)

�
A
�
k2(tk�1) + �

�
�A

�
k2(tk�1) � �

�
2�

+ #
�
�2
�
; (5.11)

for some small values " and �.

The covariance matrix P a (tk�1) in (3:22) must include the variances that account for

the uncertainties in these permeabilities together with the covariance matrix of the state

vectors as follows

eP a (tk�1) =

26666666666664

P a (tk�1)

0

...

0

0

...

0

0 : : : 0 var1 0

0 : : : 0 0 var2

37777777777775
(N+2)�(N+2)

; (5.12)

where P a (tk�1) stands for the error covariance of the state vectors having a size of N �N ,

var1 and var2 are initial estimates of the variances of k1 and k2 respectively. These are

assumed to be 100 for var1 and 0:01 for var2. These values are just rough estimations,
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so we can adjust them depending on the change of the poor permeability estimates in the

�lter.

In the SEEKF, the error covariance matrix P a (tk�1) is decomposed into Lk�1Uk�1LTk�1

then eP a (tk�1) can be decomposed as

eLk =

26666666666664

Lk�1

0

...

0

0

...

0

0 : : : 0 1 0

0 : : : 0 0 1

37777777777775
(n+2)�(r+2)

; (5.13)

eUk =

26666666666664

Uk�1

0

...

0

0

...

0

0 : : : 0 var1 0

0 : : : 0 0 var2

37777777777775
(r+2)�(r+2)

; (5.14)

where Lk�1 and Uk�1 are given by the EOF analysis and the index r denotes the rank of

the SEEK �lter. One can then apply the SEEKF without any changes using eLk and eUk in
the �lter�s algorithm.

5.3 Estimation of the Aquifer Permeabilities

Just as the imperfect forecast model case used in the previous experiments, we impose 20%

perturbation on the permeabilities, and we collect the same observations from the CMG

as in �gure 4-3. The initial contaminant state is the same as the one shown for the low

resolution grid in �gure 4-4. As mentioned in the previous section, since the model is

nonlinear we use the EKF and after linearization of the system. Achieving this is not an

easy job because computationaly it is very expensive and the reason is that we need to

update our model operator after each iteration around the estimates of k1 and k2. This is

in addition to the high computational cost required by the EKF itself. Using the SEEKF
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solves the problem associated with the model integrations but it cannot avoid the important

computational time needed to update the model operator at each iteration.

Figure 5-1: Permeability estimation using EKF with di¤erent observational errors.

We conducted with the EKF 3 experiments using 10%, 5%, and 1% errors on the ob-

servations (Figure 5-1). In the 3 experiments we were able to estimate back the true

permeabilities with a very small error. The 2 plots also show how the estimates become

more accurate as we decrease the error on the observations. The only question that these 2

plots may bring to us is the di¤erent estimation behavior for each permeability. Estimating

k1 looks faster and more stable than the estimation of k2. We can only understand this

estimation behavior if we go back and look at the size of the rocks for each permeability.

From �gure 2-1, we see that k1 is assigned for the large rock occupying 75% of the whole

domain whereas, k2 comes from the small embedded rock occupying the remaining 25%

of the aquifer. This fact makes it harder for the EKF to estimate k2 in a fast way as k1

because most of the grid points are located in the large rock where the �ow is taking place.

Then, we applied the SEEKF and we compared it with the EKF. The same idea like

before, we see that the more EOFs we use the more accurate solutions we get (Figure 5-2).

Based on the large variances we assigned for each permeability, we were not able to decrease
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Figure 5-2: Permeability estimation using the SEEK �lter using di¤erent EOFs.

Figure 5-3: Permeability estimation using the SEEK �lter with di¤erent EOFs and smaller

variances.
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the number of EOFs more than 7 when estimating k1. We noticed that when the variance

is large, estimating the permeability becomes harder and at some point the permeabilities

can take negative values which is wrong. If we decrease the variance for both permeabilities

by taking �21 = 1 and �
2
2 = 10

�4, the estimation gets better and the large changes decrease

(Figure 5-3).



Chapter 6

Conclusions and Discussions

In this thesis, we studied some applications of a low-rank Kalman �lter on subsurface

models. This low rank KF is a new �ltering technique that have never been used before in

subsurface contaminant and �ow models. It has the same mathematical equations like the

KF including some approximations depending on the rank r of the �lter. The main purpose

for using this low rank idea is to get fast and trustful estimations by reducing the expensive

computational cost of the KF.

We used a coupled model incorporating both �ow and contaminant information. We

ran assimilation experiments and our objective was to locate the contaminant plume in the

2D domain correctly after some period of time. We used mainly a perfect and imperfect

models for assimilation. In the perfect model case, the free run results were not good when

compared to the �lters estimates, and this shows the importance of data assimilation in

improving the overall estimation. The SEKF and the SFKF estimations require less time

and memory than the KF; moreover, we found that the SEKF gives less prediction errors

when considering only 10 EOFs. If we look at Figure 6-2, we see that towards the end of

the simulation the best estimate comes from the SEKF not the KF. So, this tells us that

we did not only reduce the computational cost but also estimated our contaminant state

more accurately. The physical interpretation for this result arises from the eigenvalues of

the large covariance matrix P in the KF. By de�nition, this matrix is symmetric positive

de�nite; it comes from the product of the contaminant state and the transpose of it as

shown in equation (4:2). So, we expect the eigenvalues for this matrix to be all positive,

but due to some numerical errors we still have very small negative eigenvalues. In �gure

56
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6-1, we plot all the 2; 500 eigenvalues in 2 semi-log plots and it appears that almost half of

the eigenvalues are greater than zero while the others are less than zero. These negative

eigenvalues can introduce noise to the system and mislead the KF. Since we decrease the

rank in the SEKF, we ignore these small eigenvalues and thus the SEKF can �lter out all

this noise resulting in slightly better estimates.

Figure 6-1: Plot of all eigenvalues of the covariance matrix in KF.

The SEKF was also a better choice than the KF for large models. When we increased

the resolution of the model, the KF failed to give estimations; nevertheless, the SEKF did.

In SEKF, we use some correction directions and the dimension of the problem decreases

drastically; however, in KF the dimension is still large and implementing it was not possible.

In the imperfect model case, we used the process noise covariance Q and in�ation to get

better estimates. SEKF and SFKF with Q provided better results than with in�ation. For

the KF, estimates with in�ation were slightly better than with Q. In Figure 6-3, we plot

the best estimates as in the perfect model. In here as well, the low rank �lter was better

than the full Kalman because of the noise coming from the negative eigenvalues and the

model uncertainties.

In both models, the SFKF was less accurate than the SEKF and the KF. The RMS
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Figure 6-2: All estimates for the true model.

error for this �lter was not too bad, still acceptable especially if we are dealing with very

large dimensions such as the atmosphere and the ocean.

Figure 6-3: All estimates for the perturbed mode.

Next, we continued with the perturbed model and applied localization for the low rank

�lter analysis aiming to reduce the RMS errors more. The results were very sensitive to the

chosen searching area; small in�uence areas did not help the overall estimation because the
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majority of the grid points did not have observations close to them. For large areas, the

RMSE improved a little bit for the SEKF, but not for the SFKF. Generally, localization is

better applied on very large domains where there are more observations, and the data varies

extremely between di¤erent parts of the domain. In such cases, it is really important to

correlate the grid point just with the data around it, rather than including very far points.

Figure 6-4: Comparison between the the RMSE of the SEKF with Q and the SEEKF from

state-parameter estimation at 5% observational errors.

Finally, we apply joint state-parameter estimation using the imperfect model to estimate

the true permeabilities of the aquifer. The recovered permeabilities were very close to the

true ones using both the EKF and the SEEKF with an error not exceeding 1%. In terms

of the computational e¤ort, the SEEKF is faster and as we include more EOFs it becomes

more accurate.

We saw that the process noise covariance can account to the model uncertainties and

in the state-parameter estimation problem we removed the uncertainties from the system.

It is good to compare the RMSE with Q from the SEKF and the RMSE from the SEEKF.

Figure 6-4 shows the RMSE values from the �lters with 5% observational errors. We notice

that the SEEKF is more accurate than the SEKF meaning that we were able to beat the
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SEKF with Q by recovering the true permeabilities. What we did is that we removed the

uncertainties from the model and in time the estimates were better than the other case

where we leave the uncertainties and account for them with Q.

6.1 Future Work

This work is a �rst step towards a full comprehensive study of developing e¢ cient data

assimilation tools for improving the accuracy of the underground contaminant models.

Throughout the progress of this work, interesting ideas for future work came up. Other

approaches to treat the model errors exist, but were not all explored in the present study.

These need to be implemented and evaluated against the approaches that are considered in

this study. Another ideas could be to extend the complexities of the contaminant model by

including some dispersion and adsorption terms with external water sources. In this case

the system will be nonlinear function of the states and EnKF-like methods might be per-

formed. It would be also interesting to look at compositional �ow models that are essential

and widely used in reservoir simulations. Working on multiple phase �ows in porous media

might be considered as well, because in such models the permeability becomes a function

of phase saturation. For this case, new �ltering schemes need to be developed to be able to

estimate functions of more than one variable.

"There is still too much to learn but as long as we are seeking for knowledge, we will be

able to reach the heart of Science." Mohamad El Gharamti
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