DYNAMICS OF SYMMETRIC HOLOMORPHIC MAPS ON PROJECTIVE SPACES

Abstract

We consider complex dynamics of a critically finite holomorphic map from \mathbf{P}^{k} to \mathbf{P}^{k}, which has symmetries associated with the symmetric group S_{k+2} acting on \mathbf{P}^{k}, for each $k \geq 1$. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

Kohei Ueno

1. Introduction

For a finite group G acting on \mathbf{P}^{k} as projective transformations, we say that a rational map f on \mathbf{P}^{k} is G-equivariant if f commutes with each element of G. That is, $f \circ r=r \circ f$ for any $r \in G$, where \circ denotes the composition of maps. Doyle and McMullen [4] introduced the notion of equivariant functions on \mathbf{P}^{1} to solve quintic equations. See also $[\mathbf{1 1}]$ for equivariant functions on \mathbf{P}^{1}. Crass [2] extended Doyle and McMullen's algorithm to higher dimensions to solve sextic equations. Crass [3] found a good family of finite groups and equivariant maps for which one may say something about global dynamics. Crass [3] conjectured that the Fatou set of each map of this family consists of attractive basins of superattracting points. Although I do not know whether this family has relation to solving equations or not, our results will give affirmative answers for the conjectures in [3].

In Section 2 we shall explain an action of the symmetric group S_{k+2} on \mathbf{P}^{k} and properties of our S_{k+2}-equivariant map. In Sections 3 and 4 we shall show our results about the Fatou sets and hyperbolicity of our maps by using properties of our maps and Kobayashi metrics.

[^0]
2. S_{k+2}-equivariant maps

Crass [3] selected the symmetric group S_{k+2} as a finite group acting on \mathbf{P}^{k} and found an $S_{k+2^{-}}$equivariant map which is holomorphic and critically finite for each $k \geq 1$. We denote by $C=C(f)$ the critical set of f and say that f is critically finite if each irreducible component of $C(f)$ is periodic or preperiodic. More precisely, $S_{k+2^{-}}$equivariant map g_{k+3} defined in Section 2.2 preserves each irreducible component of $C\left(g_{k+3}\right)$, which is a projective hyperplane. The complement of $C\left(g_{k+3}\right)$ is Kobayashi hyperbolic. Furthermore restrictions of g_{k+3} to invariant projective subspaces have the same properties as above. See Section 2.3 for details.

2.1. S_{k+2} acts on P^{k}.

An action of the ($k+2$)-th symmetric group S_{k+2} on \mathbf{P}^{k} is induced by the permutation action of S_{k+2} on \mathbf{C}^{k+2} for each $k \geq 1$. The transposition (i, j) in S_{k+2} corresponds with the transposition " $u_{i} \leftrightarrow u_{j}$ " on \mathbf{C}_{u}^{k+2}, which pointwise fixes the hyperplane $\left\{u_{i}=u_{j}\right\}=\left\{u \in \mathbf{C}_{u}^{k+2} \mid u_{i}=u_{j}\right\}$. Here $\mathbf{C}^{k+2}=\mathbf{C}_{u}^{k+2}=\left\{u=\left(u_{1}, u_{2}, \ldots, u_{k+2}\right) \mid u_{i} \in \mathbf{C}\right.$ for $i=1, \ldots, k+$ $2\}$.

The action of S_{k+2} preserves a hyperplane H in \mathbf{C}_{u}^{k+2}, which is identified with \mathbf{C}_{x}^{k+1} by projection $A: \mathbf{C}_{u}^{k+2} \rightarrow \mathbf{C}_{x}^{k+1}$,

$$
H=\left\{\sum_{i=1}^{k+2} u_{i}=0\right\} \stackrel{\mathrm{A}}{\approx} \mathbf{C}_{x}^{k+1} \text { and } A=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & -1 \\
0 & 1 & \ldots & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -1
\end{array}\right)
$$

Here $\mathbf{C}^{k+1}=\mathbf{C}_{x}^{k+1}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) \mid x_{i} \in \mathbf{C}\right.$ for $\left.i=1, \ldots, k+1\right\}$.
Thus the permutation action of S_{k+2} on \mathbf{C}_{u}^{k+2} induces an action of " S_{k+2} " on \mathbf{C}_{x}^{k+1}. Here " S_{k+2} " is generated by the permutation action S_{k+1} on \mathbf{C}_{x}^{k+1} and a $(k+1, k+1)$-matrix T which corresponds to the transposition $(1, k+2)$ in S_{k+2},

$$
T=\left(\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
-1 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & 0 \\
-1 & 0 & \ldots & 1
\end{array}\right)
$$

Hence the hyperplane corresponding to $\left\{u_{i}=u_{j}\right\}$ is $\left\{x_{i}=x_{j}\right\}$ for $1 \leq$ $i<j \leq k+1$. The hyperplane corresponding to $\left\{u_{i}=u_{k+2}\right\}$ is $\left\{x_{i}=0\right\}$ for $1 \leq i \leq k+1$. Each element in " S_{k+2} " which corresponds to some transposition in S_{k+2} pointwise fixes one of these hyperplanes in \mathbf{C}_{x}^{k+1}.

The action of " S_{k+2} " on \mathbf{C}^{k+1} projects naturally to the action of " S_{k+2} " on \mathbf{P}^{k}. These hyperplanes on \mathbf{C}^{k+1} projects naturally to projective hyperplanes on \mathbf{P}^{k}. Here $\mathbf{P}^{k}=\left\{x=\left[x_{1}: x_{2}: \cdots: x_{k+1}\right] \mid\right.$ $\left.\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) \in \mathbf{C}^{k+1} \backslash\{\mathbf{0}\}\right\}$. Each element in the action of " S_{k+2} " on \mathbf{P}^{k} which corresponds to some transposition in S_{k+2} pointwise fixes one of these projective hyperplanes. We denote " S_{k+2} " also by S_{k+2} and call these projective hyperplanes transposition hyperplanes.

2.2. Existence of our maps.

One way to get S_{k+2}-equivariant maps on \mathbf{P}^{k} which are critically finite is to make S_{k+2}-equivariant maps whose critical sets coincide with the union of the transposition hyperplanes.
Theorem 1 ([3]). For each $k \geq 1, g_{k+3}$ defined below is the unique S_{k+2}-equivariant holomorphic map of degree $k+3$ which is doubly critical on each transposition hyperplane.

$$
\begin{aligned}
& g=g_{k+3}=\left[g_{k+3,1}: g_{k+3,2}: \cdots: g_{k+3, k+1}\right]: \mathbf{P}^{k} \rightarrow \mathbf{P}^{k} \\
& \text { where } g_{k+3, l}(x)=x_{l}^{3} \sum_{s=0}^{k}(-1)^{s} \frac{s+1}{s+3} x_{l}^{s} A_{k-s}, \quad A_{0}=1,
\end{aligned}
$$ and A_{k-s} is the elementary symmetric function

$$
\text { of degree } k-s \text { in } \mathbf{C}^{k+1} \text {. }
$$

Then the critical set of g coincides with the union of the transposition hyperplanes. Since g is S_{k+2}-equivariant and each transposition hyperplane is pointwise fixed by some element in S_{k+2}, g preserves each transposition hyperplane. In particular g is critically finite. Although Crass [3] used this explicit formula to prove Theorem 1, we shall only use properties of the S_{k+2}-equivariant maps described below.

2.3. Properties of our maps.

Let us look at properties of the S_{k+2}-equivariant map g on \mathbf{P}^{k} for a fixed k, which is proved in [3] and shall be used to prove our results. Let L^{k-1} denote one of the transposition hyperplanes, which is isomorphic to \mathbf{P}^{k-1}. Let L^{m} denote one of the intersections of $(k-m)$ or more distinct transposition hyperplanes which is isomorphic to \mathbf{P}^{m} for $m=$ $0,1, \ldots, k-1$.

First, let us look at properties of g itself. The critical set of g consists of the union of the transposition hyperplanes. By S_{k+2}-equivariance,
g preserves each transposition hyperplane. Furthermore the complement of the critical set of g is Kobayashi hyperbolic.

Next, let us look at properties of g restricted to L^{m} for $m=1,2, \ldots$, $k-1$. Let us fix any m. Since g preserves each L^{m}, we can also consider the dynamics of g restricted to any L^{m}. Each restricted map has the same properties as above. Let us fix any L^{m} and denote by $\left.g\right|_{L^{m}}$ the restricted map of g to the L^{m}. The critical set of $\left.g\right|_{L^{m}}$ consists of the union of intersections of the L^{m} and another L^{k-1} which does not include the L^{m}. We denote it by L^{m-1}, which is an irreducible component of the critical set of $\left.g\right|_{L^{m}}$. By $S_{k+2^{-}}$equivariance, $\left.g\right|_{L^{m}}$ preserves each irreducible component of the critical set of $\left.g\right|_{L^{m}}$. Furthermore the complement of the critical set of $\left.g\right|_{L^{m}}$ in L^{m} is Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed points of g. The set of superattracting points, where the derivative of g vanishes for all directions, coincides with the set of L^{0} 's.

Remark 1. For every $k \geq 1$ and every $m, 1 \leq m \leq k$, a restricted map of g_{k+3} to any L^{m} is not conjugate to g_{m+3}.

2.4. Examples for $k=1$ and 2.

Let us see transposition hyperplanes of the S_{3}-equivariant function g_{4} and the S_{4}-equivariant map g_{5} to make clear what L^{m} is. In [3] one can find explicit formulas and figures of dynamics of S_{k+2}-equivariant maps in low-dimensions .

2.4.1. S_{3}-equivariant function g_{4} in P^{1}.

$$
\begin{gathered}
g_{3}\left(\left[x_{1}: x_{2}\right]\right)=\left[x_{1}^{3}\left(-x_{1}+2 x_{2}\right): x_{2}^{3}\left(2 x_{1}-x_{2}\right)\right]: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1} \\
C\left(g_{3}\right)=\left\{x_{1}=0\right\} \cup\left\{x_{2}=0\right\} \cup\left\{x_{1}=x_{2}\right\}=\{0,1, \infty\} \text { in } \mathbf{P}^{1} .
\end{gathered}
$$

In this case "transposition hyperplanes" are points in \mathbf{P}^{1} and L^{0} denotes one of three superattracting fixed points of g_{3}.

2.4.2. S_{4}-equivariant $\operatorname{map} g_{5}$ in P^{2}.

$$
\begin{aligned}
C\left(g_{5}\right)=\left\{x_{1}=0\right\} \cup\left\{x_{2}=0\right\} \cup\left\{x_{3}\right. & =0\} \cup\left\{x_{1}=x_{2}\right\} \\
& \cup\left\{x_{2}=x_{3}\right\} \cup\left\{x_{3}=x_{1}\right\} \text { in } \mathbf{P}^{2}
\end{aligned}
$$

In this case L^{1} denotes one of six transposition hyperplanes in \mathbf{P}^{2}, which is an irreducible component of $C\left(g_{5}\right)$. For example, let us fix a transposition hyperplane $\left\{x_{1}=0\right\}$. Since g_{5} preserves each transposition hyperplane, we can also consider the dynamics of g_{5} restricted to $\left\{x_{1}=0\right\}$.

We denote by $\left.g_{5}\right|_{\left\{x_{1}=0\right\}}$ the restricted map of g_{5} to $\left\{x_{1}=0\right\}$. The critical set of $\left.g_{5}\right|_{\left\{x_{1}=0\right\}}$ in $\left\{x_{1}=0\right\} \simeq \mathbf{P}^{1}$ is

$$
C\left(\left.g_{5}\right|_{\left\{x_{1}=0\right\}}\right)=\{[0: 1: 0],[0: 0: 1],[0: 1: 1]\} .
$$

When we use L^{0} after we fix $\left\{x_{1}=0\right\}, L^{0}$ denotes one of intersections of $\left\{x_{1}=0\right\}$ and another transposition hyperplane, which is a superattracting fixed point of $\left.g_{5}\right|_{\left\{x_{1}=0\right\}}$ in \mathbf{P}^{1}. The set of superattracting fixed points of g_{5} in \mathbf{P}^{2} is

$$
\{[1: 0: 0],[0: 1: 0],[0: 0: 1],[1: 1: 1],[1: 1: 0],[1: 0: 1],[0: 1: 1]\}
$$

In general L^{0} denotes one of intersections of two or more transposition hyperplanes, which is a superattracting fixed point of g_{5} in \mathbf{P}^{2}.

3. The Fatou sets of the S_{k+2}-equivariant maps

3.1. Definitions and preliminaries.

Let us recall theorems about critically finite holomorphic maps. Let f be a holomorphic map from \mathbf{P}^{k} to \mathbf{P}^{k}. The Fatou set of f is defined to be the maximal open subset where the iterates $\left\{f^{n}\right\}_{n \geq 0}$ is a normal family. The Julia set of f is defined to be the complement of the Fatou set of f. Each connected component of the Fatou set is called a Fatou component. Let U be a Fatou component of f. A holomorphic map h is said to be a limit map on U if there is a subsequence $\left\{\left.f^{n_{s}}\right|_{U}\right\}_{s \geq 0}$ which locally converges to h on U. We say that a point q is a Fatou limit point if there is a limit map h on a Fatou component U such that $q \in h(U)$. The set of all Fatou limit points is called the Fatou limit set. We define the ω-limit set $E(f)$ of the critical points by

$$
E(f)=\bigcap_{j=1}^{\infty} \overline{\bigcup_{n=j}^{\infty} f^{n}(C)} .
$$

Theorem 2 ([10, Proposition 5.1]). If f is a critically finite holomorphic map from \mathbf{P}^{k} to \mathbf{P}^{k}, then the Fatou limit set is contained in the ω-limit set $E(f)$.

Let us recall the notion of Kobayashi metrics. Let M be a complex manifold and $K_{M}(x, v)$ the Kobayashi quasimetric on M,
$\inf \left\{|a| \mid \varphi: \mathbf{D} \rightarrow M:\right.$ holomorphic, $\left.\varphi(0)=x, D \varphi\left(a\left(\frac{\partial}{\partial z}\right)_{0}\right)=v, a \in \mathbf{C}\right\}$ for $x \in M, v \in T_{x} M, z \in \mathbf{D}$, where \mathbf{D} is the unit disk in \mathbf{C}. We say that M is Kobayashi hyperbolic if K_{M} becomes a metric. Theorem 5 is a corollary of Theorem 3 and Theorem 4 for $k=1$ and 2 .

Theorem 3 (a basic result whose former statement can be found in $[\mathbf{8}$, Corollary 14.5]). If f is a critically finite holomorphic function from \mathbf{P}^{1} to \mathbf{P}^{1}, then the only Fatou components of f are attractive components of superattracting points. Moreover if the Fatou set is not empty, then the Fatou set has full measure in \mathbf{P}^{1}.
Theorem 4 ([5, theorem 7.7]). If f is a critically finite holomorphic map from \mathbf{P}^{2} to \mathbf{P}^{2} and the complement of $C(f)$ is Kobayashi hyperbolic, then the only Fatou components of f are attractive components of superattracting points.

3.2. Our first result.

Let us fix any k and $g=g_{k+3}$. For every $m, 2 \leq m \leq k$, we can apply an argument in [5] to a restricted map of g to any L^{m} because every L^{m-1} is smooth and because every $L^{m} \backslash C\left(\left.g\right|_{L^{m}}\right)$ is Kobayashi hyperbolic. We shall use this argument in Lemma 1, which is used to prove Proposition 1.

Proposition 1. For any Fatou component U which is disjoint from $C(g)$, there exists an integer n such that $g^{n}(U)$ intersects with $C(g)$.
Proof: We suppose that $g^{n}(U)$ is disjoint from $C(g)$ for any n and derive a contradiction by using Lemma 1 and Remark 3 below. Take any point $x_{0} \in U$. Since $E(g)$ coincides with $C(g), g^{n}\left(x_{0}\right)$ accumulates to $C(g)$ as n tends to ∞ from Theorem 2. Since $C(g)$ is the union of the transposition hyperplanes, there exists a smallest integer m_{1} such that $g^{n}\left(x_{0}\right)$ accumulates to some $L^{m_{1}}$. Let h_{1} be a limit map on U such that $h_{1}\left(x_{0}\right)$ belongs to the $L^{m_{1}}$. From Lemma 1 below, the intersection of $h_{1}(U)$ and the $L^{m_{1}}$ is an open set in the $L^{m_{1}}$ and is contained in the Fatou set of $\left.g\right|_{L^{m_{1}}}$.

We next consider the dynamics of $\left.g\right|_{L^{m_{1}}}$. If there exists an integer n_{2} such that $g^{n_{2}}\left(h_{1}(U) \cap L^{m_{1}}\right)$ intersects with $C\left(\left.g\right|_{L^{m_{1}}}\right)$, then $g^{n_{2}}\left(h_{1}(U) \cap\right.$ $\left.L^{m_{1}}\right)$ intersects with some $L^{m_{1}-1}$. In this case we can consider the dynamics of $\left.g\right|_{L^{m_{1}-1}}$. On the other hand, if there does not exist such n_{2}, then there exists an integer m_{2} and a limit map h_{2} on $h_{1}(U) \cap L^{m_{1}}$ such that the intersection of $h_{2}\left(h_{1}(U) \cap L^{m_{1}}\right)$ and some $L^{m_{2}}$ is an open set in the $L^{m_{2}}$ from Remark 3 below. Thus it is contained in the Fatou set of $\left.g\right|_{L^{m_{2}}}$. Here m_{2} is smaller than m_{1}. In this case we can consider the dynamics of $\left.g\right|_{L^{m_{2}}}$.

We continue the same argument above. These reductions finally come to some L^{1} and we use Theorem 3. One can find a similar reduction argument in the proof of Theorem 5. Consequently $g^{n}\left(x_{0}\right)$ accumulates to some superattracting point L^{0}. So there exists an integer s such
that g^{s} sends U to the attractive Fatou component which contains the superattracting point L^{0}. Thus $g^{s}(U)$ intersects with $C(g)$, which is a contradiction.

Remark 2. Even if a Fatou component U intersects with some L^{m} and is disjoint from any L^{m-1}, then the similar thing as above holds for the dynamics in the L^{m}. In this case $U \cap L^{m}$ is contained in the Fatou set of $\left.g\right|_{L^{m}}$ and there exists an integer n such that $g^{n}\left(U \cap L^{m}\right)$ intersects with $C\left(\left.g\right|_{L^{m}}\right)$.

Lemma 1. For any Fatou component U which is disjoint from $C(g)$ and any point $x_{0} \in U$, let h be a limit map on U such that $h\left(x_{0}\right)$ belongs to some L^{m} and does not belong to any L^{m-1}. If $g^{n}(U)$ is disjoint from $C(g)$ for every $n \geq 1$, then the intersection of $h(U)$ and the L^{m} is an open set in the L^{m}.

Proof: Let B be the complement of $C(g)$. Since B is Kobayashi hyperbolic and B includes $g^{-1}(B), g^{-1}(B)$ is Kobayashi hyperbolic, too. So we can use Kobayashi metrics K_{B} and $K_{g^{-1}(B)}$. Since B includes $g^{-1}(B)$,

$$
K_{B}(x, v) \leq K_{g^{-1}(B)}(x, v) \text { for all } x \in g^{-1}(B), v \in T_{x} \mathbf{P}^{k}
$$

In addition, since g is an unbranched covering from $g^{-1}(B)$ to B,

$$
K_{g^{-1}(B)}(x, v)=K_{B}(g(x), D g(v)) \text { for all } x \in g^{-1}(B), v \in T_{x} \mathbf{P}^{k}
$$

From these two inequalities we have the following inequality

$$
K_{B}(x, v) \leq K_{B}(g(x), D g(v)) \text { for all } x \in g^{-1}(B), v \in T_{x} \mathbf{P}^{k}
$$

Since the same argument holds for any g^{n} from $g^{-n}(B)$ to B,

$$
K_{B}(x, v) \leq K_{B}\left(g^{n}(x), D g^{n}(v)\right) \text { for all } x \in g^{-n}(B), v \in T_{x} \mathbf{P}^{k}
$$

Since g^{n} is an unbranched covering from U to $g^{n}(U)$ and B includes $g^{n}(U)$ for every n, a sequence $\left\{K_{B}\left(g^{n}(x), D g^{n}(v)\right)\right\}_{n \geq 0}$ is bounded for all $x \in U$, $v \in T_{x} \mathbf{P}^{k}$. Hence we have the following inequality for any unit vectors v_{n} in $T_{x_{0}} U$ with respect to the Fubini-Study metric in \mathbf{P}^{k},
(1) $0<\inf _{|v|=1} K_{B}\left(x_{0}, v\right) \leq K_{B}\left(x_{0}, v_{n}\right) \leq K_{B}\left(g^{n}\left(x_{0}\right), D g^{n}\left(x_{0}\right) v_{n}\right)<\infty$.

That is, the sequence $\left\{K_{B}\left(g^{n}\left(x_{0}\right), D g^{n}\left(x_{0}\right) v_{n}\right)\right\}_{n \geq 0}$ is bounded away from 0 and ∞ uniformly.

We shall choose v_{n} so that $D g^{n}\left(x_{0}\right) v_{n}$ keeps parallel to the L^{m} and claim that $D h\left(x_{0}\right) v \neq \mathbf{0}$ for any accumulation vector v of v_{n}. Let $h=$ $\lim _{n \rightarrow \infty} g^{n}$ for simplicity. Let V be a neighborhood of $h\left(x_{0}\right)$ and ψ a local coordinate on V so that $\psi\left(h\left(x_{0}\right)\right)=\mathbf{0}$ and $\psi\left(L^{m} \cap V\right) \subset\{y=$ $\left.\left(y_{1}, y_{2}, \ldots, y_{k}\right) \mid y_{1}=\cdots=y_{k-m}=0\right\}$. In this chart there exists a
constant $r>0$ such that a polydisk $P(\mathbf{0}, 2 r)$ does not intersect with any images of transposition hyperplanes which do not include the L^{m}. Since $\psi\left(g^{n}\left(x_{0}\right)\right)$ converges to $\mathbf{0}$ as n tends to ∞, we may assume that $\psi\left(g^{n}\left(x_{0}\right)\right)$ belongs to $P(\mathbf{0}, r)$ for large n. Let $\left\{v_{n}\right\}_{n \geq 0}$ be unit vectors in $T_{x_{0}} \mathbf{P}^{k}$ and $\left\{w_{n}\right\}_{n \geq 0}$ vectors in $T_{\psi\left(g^{n}\left(x_{0}\right)\right)} \mathbf{C}^{k}$ so that w_{n} keep parallel to $\psi\left(L^{m}\right)$ with a same direction and

$$
D g^{n}\left(x_{0}\right) v_{n}=\left|D g^{n}\left(x_{0}\right) v_{n}\right| D \psi^{-1}\left(w_{n}\right)
$$

So we may assume that the length of w_{n} is almost unit for large n. We define holomorphic maps φ_{n} from \mathbf{D} to $P(\mathbf{0}, 2 r)$ as

$$
\varphi_{n}(z)=\psi\left(g^{n}\left(x_{0}\right)\right)+r z w_{n} \text { for } z \in \mathbf{D}
$$

and consider holomorphic maps $\psi^{-1} \circ \varphi_{n}$ from \mathbf{D} to B for large n. Then

$$
\begin{gathered}
\left(\psi^{-1} \circ \varphi_{n}\right)(0)=g^{n}\left(x_{0}\right) \\
D\left(\psi^{-1} \circ \varphi_{n}\right)\left(\frac{\left|D g^{n}\left(x_{0}\right) v_{n}\right|}{r}\left(\frac{\partial}{\partial z}\right)_{0}\right)=D g^{n}\left(x_{0}\right) v_{n}
\end{gathered}
$$

Suppose $D h\left(x_{0}\right) v=\mathbf{0}$, then $D g^{n}\left(x_{0}\right) v$ converges to $\mathbf{0}$ as n tends to ∞ and so does $D g^{n}\left(x_{0}\right) v_{n}$. By the definition of Kobayashi metric we have that

$$
K_{B}\left(g^{n}\left(x_{0}\right), D g^{n}\left(x_{0}\right) v_{n}\right) \leq \frac{\left|D g^{n}\left(x_{0}\right) v_{n}\right|}{r} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since this contradicts (1), we have $D h\left(x_{0}\right) v \neq \mathbf{0}$. This holds for all directions which are parallel to $\psi\left(L^{m}\right)$. Consequently the intersection of $h(U)$ and the L^{m} is an open set in L^{m}.

Remark 3. The similar thing as above holds for the dynamics of any restricted map. Thus even if a Fatou component $g^{n}(U)$ intersects with $C(g)$ for some n, the same result as above holds. Because one can consider the dynamics in the L^{m} when $g^{n}(U)$ intersects with some L^{m}.
Theorem 5. For each $k \geq 1$, the Fatou set of the S_{k+2}-equivariant map g consists of attractive basins of superattracting fixed points which are intersections of k or more distinct transposition hyperplanes.

Proof: This theorem follows from Proposition 1 and Remark 2 immediately. Let us describe details. Take any Fatou component U. From Proposition 1 there exists an integer n_{k} such that $g^{n_{k}}(U)$ intersects with $C(g)$. Since $C(g)$ is the union of the transposition hyperplanes, $g^{n_{k}}(U)$ intersects with some L^{k-1}. By doing the same thing as above for the dynamics of g restricted to the L^{k-1}, there exists an integer n_{k-1} such that $g^{n_{k}+n_{k-1}}(U)$ intersects with some L^{k-2} from Remark 2. We
again do the same thing as above for the dynamics of g restricted to the L^{k-2}.

These reductions finally come to some L^{1}. That is, there exists integers n_{k-2}, \ldots, n_{2} such that $g^{n_{k}+n_{k-1}+\cdots+n_{2}}(U)$ intersects with some L^{1}. From Theorem 3 there exists an integer n_{1} such that $g^{n_{1}}\left(g^{n_{k}+n_{k-1}+\cdots+n_{2}}(U)\right)$ contains some L^{0}. Hence $g^{n_{k}+n_{k-1}+\cdots+n_{1}}$ sends U to the attractive Fatou component which contains the superattracting fixed point L^{0} in \mathbf{P}^{k}.

4. Axiom A and the $\boldsymbol{S}_{\boldsymbol{k + 2}}$-equivariant maps

4.1. Definitions and preliminaries.

Let us define hyperbolicity of non-invertible maps and the notion of Axiom A. See $[\mathbf{6}]$ for details. Let f be a holomorphic map from \mathbf{P}^{k} to \mathbf{P}^{k} and K a compact subset such that $f(K)=K$. Let \widehat{K} be the set of histories in K and \widehat{f} the induced homeomorphism on \widehat{K}. We say that f is hyperbolic on K if there exists a continuous decomposition $T_{\widehat{K}}=E^{u}+E^{s}$ of the tangent bundle such that $D \widehat{f}\left(E_{\widehat{x}}^{u / s}\right) \subset E_{\widehat{f}(\widehat{x})}^{u / s}$ and if there exists constants $c>0$ and $\lambda>1$ such that for every $n \geq 1$,

$$
\begin{array}{ll}
\left|D \widehat{f}^{n}(v)\right| \geq c \lambda^{n}|v| & \text { for all } v \in E^{u} \quad \text { and } \\
\left|D \widehat{f}^{n}(v)\right| \leq c^{-1} \lambda^{-n}|v| & \text { for all } v \in E^{s}
\end{array}
$$

Here $|\cdot|$ denotes the Fubini-Study metric on \mathbf{P}^{k}. If a decomposition and inequalities above hold for f and K, then it also holds for \widehat{f} and \widehat{K}. In particular we say that f is expanding on K if f is hyperbolic on K with unstable dimension k. Let Ω be the non-wandering set of f, i.e., the set of points for any neighborhood U of which there exists an integer n such that $f^{n}(U)$ intersects with U. By definition, Ω is compact and $f(\Omega)=\Omega$. We say that f satisfies Axiom A if f is hyperbolic on Ω and periodic points are dense in Ω.

Let us introduce a theorem which deals with repelling part of dynamics. Let f be a holomorphic map from \mathbf{P}^{k} to \mathbf{P}^{k}. We define the k-th Julia set J_{k} of f to be the support of the measure with maximal entropy, in which repelling periodic points are dense. It is a fundamental fact that in dimension 1 the 1st Julia set J_{1} coincides with the Julia set J. Let K be a compact subset such that $f(K)=K$. We say that K is a repeller if f is expanding on K.

Theorem 6 ([7]). Let f be a holomorphic map on \mathbf{P}^{k} of degree at least 2 such that the ω-limit set $E(f)$ is pluripolar. Then any repeller for f intersects J_{k}. In particular,

$$
\left.J_{k}=\overline{\{r e p e l l i n g ~ p e r i o d i c ~ p o i n t s ~ o f ~} f\right\} .
$$

If f is critically finite, then $E(f)$ is pluripolar. We need the following corollary to prove our second result.

Corollary 1 ([7]). Let f be the same as above. Suppose that J_{k} is a repeller. Then any repeller for f is a subset of J_{k}.

4.2. Our second result.

Theorem 7. For each $k \geq 1$, the S_{k+2}-equivariant map g satisfies $A x$ iom A.

Proof: We only need to consider the S_{k+2}-equivariant $\operatorname{map} g$ for a fixed k, because argument for any k is similar as the following one. Let us show the statement above for a fixed k by induction. A restricted map of g to any L^{1} satisfies Axiom A by using the theorem of critically finite functions (see [8, Theorem 19.1]). We only need to show that a restricted map of g to a fixed L^{2} satisfies Axiom A. Then a restricted map of g to any L^{2} satisfies Axiom A by symmetry. Argument for a restricted map of g to any $L^{m}, 3 \leq m \leq k$, is similar as for a restricted map of g to the L^{2}. Let us denote $\left.g\right|_{L^{2}}, \Omega\left(\left.g\right|_{L^{2}}\right)$, and L^{2} by g, Ω, and \mathbf{P}^{2} for simplicity.

We want to show that $\left.g\right|_{L^{2}}$ is hyperbolic on $\Omega\left(\left.g\right|_{L^{2}}\right)$ by using Kobayashi metrics. If g is hyperbolic on Ω, then Ω has a decomposition to S_{i},

$$
\Omega=S_{0} \cup S_{1} \cup S_{2}
$$

where $i=0,1,2$ indicate the unstable dimensions. Since $C(g)$ attracts all nearby points, S_{0} includes all the L^{0} s and S_{1} includes all the Julia sets of $\left.g\right|_{L^{1}}$. We denote by $J\left(\left.g\right|_{L^{1}}\right)$ the Julia set of $\left.g\right|_{L^{1}}$. Then g is contracting in all directions at L^{0} and is contracting in the normal direction and expanding in an L^{1}-direction on $J\left(\left.g\right|_{L^{1}}\right)$. Let us consider a compact, completely invariant subset in $\mathbf{P}^{2} \backslash C$,

$$
S=\left\{x \in \mathbf{P}^{2} \mid \operatorname{dist}\left(g^{n}(x), C\right) \nrightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

By definition, we have $J_{2} \subset S_{2} \subset S$. If g is expanding on S, then it follow that $S_{0}=\cup L^{0}, S_{1}=\cup J\left(\left.g\right|_{L^{1}}\right)$. Moreover $J_{2}=S_{2}=S$ holds from Corollary 1 (see Remark 4 below). Since periodic points are dense in $J\left(\left.g\right|_{L^{1}}\right)$ and J_{2}, expansion of g on S implies Axiom A of g.

Let us show that g is expanding on S. Because f is attracting on C and preserves C, there exists a neighborhood V of C such that V is relatively compact in $g^{-1}(V)$ and the complement of V is connected. We assume one of L^{1} 's to be the line at infinity of \mathbf{P}^{2}. By letting B be $\mathbf{P}^{2} \backslash V$ and U one of connected components of $g^{-1}\left(\mathbf{P}^{2} \backslash V\right)$, we have the following inclusion relations,

$$
U \subset g^{-1}(B) \Subset B \subset \mathbf{C}^{2}=\mathbf{P}^{2} \backslash L^{1}
$$

Because B and U are in a local chart, there exists a constant $\rho<1$ such that

$$
K_{B}(x, v) \leq \rho K_{U}(x, v) \text { for all } x \in U, v \in T_{x} \mathbf{C}^{2}
$$

In addition, since the map g from U to B is an unbranched covering,

$$
K_{U}(x, v)=K_{B}(g(x), D g(v)) \text { for all } x \in U, v \in T_{x} \mathbf{C}^{2}
$$

From these two inequalities we have the following inequality

$$
K_{B}(x, v) \leq \rho K_{B}(g(x), D g(v)) \text { for all } x \in g^{-1}(B), v \in T_{x} \mathbf{C}^{2}
$$

Since g preserves S, which is contained in $g^{-n}(B)$ for every $n \geq 1$,

$$
K_{B}(x, v) \leq \rho^{n} K_{B}\left(g^{n}(x), D g^{n}(v)\right) \text { for all } x \in S, v \in T_{x} \mathbf{C}^{2}
$$

Consequently we have the following inequality for $\lambda=\rho^{-1}>1$,

$$
K_{B}\left(g^{n}(x), D g^{n}(v)\right) \geq \lambda^{n} K_{B}(x, v) \text { for all } x \in S, v \in T_{x} \mathbf{C}^{2}
$$

Since $K_{B}(x, v)$ is upper semicontinuous and $|v|$ is continuous, $K_{B}(x, v)$ and $|v|$ may be different only by a constant factor. There exists $c>0$ such that

$$
\left|D g^{n}(x) v\right| \geq c \lambda^{n}|v| \text { for all } x \in S, v \in T_{x} \mathbf{C}^{2}
$$

Thus g is expanding on S and satisfies Axiom A.
Remark 4. Unlike the case when $k=1$, it does not seem obvious that S being a repeller implies $J_{k}=S$ when $k \geq 2$.

Remark 5. From [1, Theorem 4.11] and [9], it follows that the Fatou set of the S_{k+2}-equivariant map g has full measure in \mathbf{P}^{k} for each $k \geq 1$.

Acknowlegements. I would like to thank Professor S. Ushiki and Doctor K. Maegawa for their useful advice. Particularly in order to obtain our second result, Maegawa's suggestion to use Theorem 6 and Corollary 1 was helpful.

References

[1] R. Bowen, "Equilibrium states and the ergodic theory of Anosov diffeomorphisms", Lecture Notes in Mathematics 470, SpringerVerlag, Berlin-New York, 1975.
[2] S. Crass, Solving the sextic by iteration: a study in complex geometry and dynamics, Experiment. Math. 8(3) (1999), 209-240.
[3] S. Crass, A family of critically finite maps with symmetry, Publ. Mat. 49(1) (2005), 127-157.
[4] P. Doyle and C. McMullen, Solving the quintic by iteration, Acta Math. 163(3-4) (1989), 151-180.
[5] J. E. Forness and N. Sibony, Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque 222(5) (1994), 201-231.
[6] M. Jonsson, Hyperbolic dynamics of endomorphisms, preprint.
[7] K. Maegawa, Hyperbolic sets and critical orbits of holomorphic maps on \mathbf{P}^{k}, in preparation.
[8] J. Milnor, "Dynamics in one complex variable", Introductory lectures, Friedr. Vieweg \& Sohn, Braunschweig, 1999.
[9] M. Qian and S. Z. Zhang, Ergodic theory for Axiom A endomorphisms, Ergodic Theory Dynam. Systems 15(1) (1995), 161-174.
[10] T. Ueda, Critical orbits of holomorphic maps on projective spaces, J. Geom. Anal. 8(2) (1998), 319-334.
[11] S. Ushiki, Julia sets with polyhedral symmetries, in: "Dynamical systems and related topics" (Nagoya, 1990), Adv. Ser. Dynam. Systems 9, World Sci. Publ., River Edge, NJ, 1991, pp. 515-538.

Graduate School of Human and Environmental Studies
Kyoto University
Yoshida-Nihonmatsu-cho, Sakyo-ku
Kyoto 606-8501
Japan
E-mail address: ueno@math.h.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary: 37F45; Secondary: 37C80.
 Key words. Complex dynamics, symmetry, equivariant map, hyperbolicity, Axiom A.

