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DYNAMICS OF SYMMETRIC HOLOMORPHIC MAPS

ON PROJECTIVE SPACES

Kohei Ueno

Abstract

We consider complex dynamics of a critically finite holomorphic
map from Pk to Pk, which has symmetries associated with the
symmetric group Sk+2 acting on Pk , for each k ≥ 1. The Fa-
tou set of each map of this family consists of attractive basins of
superattracting points. Each map of this family satisfies Axiom A.

1. Introduction

For a finite group G acting on Pk as projective transformations, we
say that a rational map f on Pk is G-equivariant if f commutes with
each element of G. That is, f ◦ r = r ◦ f for any r ∈ G, where ◦ denotes
the composition of maps. Doyle and McMullen [4] introduced the notion
of equivariant functions on P1 to solve quintic equations. See also [11] for
equivariant functions on P1. Crass [2] extended Doyle and McMullen’s
algorithm to higher dimensions to solve sextic equations. Crass [3] found
a good family of finite groups and equivariant maps for which one may
say something about global dynamics. Crass [3] conjectured that the
Fatou set of each map of this family consists of attractive basins of
superattracting points. Although I do not know whether this family
has relation to solving equations or not, our results will give affirmative
answers for the conjectures in [3].

In Section 2 we shall explain an action of the symmetric group Sk+2

on Pk and properties of our Sk+2-equivariant map. In Sections 3 and 4
we shall show our results about the Fatou sets and hyperbolicity of our
maps by using properties of our maps and Kobayashi metrics.
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2. Sk+2-equivariant maps

Crass [3] selected the symmetric group Sk+2 as a finite group acting
on Pk and found an Sk+2-equivariant map which is holomorphic and
critically finite for each k ≥ 1. We denote by C = C(f) the critical
set of f and say that f is critically finite if each irreducible compo-
nent of C(f) is periodic or preperiodic. More precisely, Sk+2-equivari-

ant map gk+3 defined in Section 2.2 preserves each irreducible compo-
nent of C(gk+3), which is a projective hyperplane. The complement
of C(gk+3) is Kobayashi hyperbolic. Furthermore restrictions of gk+3 to
invariant projective subspaces have the same properties as above. See
Section 2.3 for details.

2.1. Sk+2 acts on Pk.

An action of the (k+2)-th symmetric group Sk+2 on Pk is induced by
the permutation action of Sk+2 on Ck+2 for each k ≥ 1. The transposi-
tion (i, j) in Sk+2 corresponds with the transposition “ui ↔ uj” on Ck+2

u ,
which pointwise fixes the hyperplane {ui = uj} = {u ∈ Ck+2

u | ui = uj}.
Here Ck+2 = Ck+2

u = {u = (u1, u2, . . . , uk+2) | ui ∈ C for i = 1, . . . , k +
2}.

The action of Sk+2 preserves a hyperplane H in Ck+2
u , which is iden-

tified with Ck+1
x by projection A : Ck+2

u → Ck+1
x ,

H =

{
k+2∑

i=1

ui = 0

}
A
≃ Ck+1

x and A =





1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1




.

Here Ck+1 =Ck+1
x ={x=(x1, x2, . . . , xk+1) | xi ∈ C for i = 1, . . . , k+1}.

Thus the permutation action of Sk+2 on Ck+2
u induces an action

of “Sk+2” on Ck+1
x . Here ”Sk+2” is generated by the permutation ac-

tion Sk+1 on Ck+1
x and a (k + 1, k + 1)-matrix T which corresponds to

the transposition (1, k + 2) in Sk+2,

T =





−1 0 . . . 0
−1 1 . . . 0
...

...
. . . 0

−1 0 . . . 1




.

Hence the hyperplane corresponding to {ui = uj} is {xi = xj} for 1 ≤
i < j ≤ k+1. The hyperplane corresponding to {ui = uk+2} is {xi = 0}
for 1 ≤ i ≤ k + 1. Each element in “Sk+2” which corresponds to some
transposition in Sk+2 pointwise fixes one of these hyperplanes in Ck+1

x .
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The action of “Sk+2” on Ck+1 projects naturally to the action
of “Sk+2” on Pk. These hyperplanes on Ck+1 projects naturally to
projective hyperplanes on Pk. Here Pk = {x = [x1 : x2 : · · · : xk+1] |
(x1, x2, . . . , xk+1) ∈ Ck+1 \ {0}}. Each element in the action of “Sk+2”
on Pk which corresponds to some transposition in Sk+2 pointwise fixes
one of these projective hyperplanes. We denote “Sk+2” also by Sk+2 and
call these projective hyperplanes transposition hyperplanes.

2.2. Existence of our maps.

One way to get Sk+2-equivariant maps on Pk which are critically

finite is to make Sk+2-equivariant maps whose critical sets coincide with
the union of the transposition hyperplanes.

Theorem 1 ([3]). For each k ≥ 1, gk+3 defined below is the unique

Sk+2-equivariant holomorphic map of degree k+3 which is doubly critical

on each transposition hyperplane.

g = gk+3 = [gk+3,1 : gk+3,2 : · · · : gk+3,k+1] : Pk → Pk,

where gk+3,l(x) = x3
l

k∑

s=0

(−1)s
s+ 1

s+ 3
xslAk−s, A0 = 1,

and Ak−s is the elementary symmetric function

of degree k − s in Ck+1.

Then the critical set of g coincides with the union of the transpo-
sition hyperplanes. Since g is Sk+2-equivariant and each transposition
hyperplane is pointwise fixed by some element in Sk+2, g preserves each
transposition hyperplane. In particular g is critically finite. Although
Crass [3] used this explicit formula to prove Theorem 1, we shall only
use properties of the Sk+2-equivariant maps described below.

2.3. Properties of our maps.

Let us look at properties of the Sk+2-equivariant map g on Pk for a
fixed k, which is proved in [3] and shall be used to prove our results. Let
Lk−1 denote one of the transposition hyperplanes, which is isomorphic
to Pk−1. Let Lm denote one of the intersections of (k − m) or more
distinct transposition hyperplanes which is isomorphic to Pm for m =
0, 1, . . . , k − 1.

First, let us look at properties of g itself. The critical set of g consists
of the union of the transposition hyperplanes. By Sk+2-equivariance,
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g preserves each transposition hyperplane. Furthermore the complement
of the critical set of g is Kobayashi hyperbolic.

Next, let us look at properties of g restricted to Lm for m = 1, 2, . . . ,
k − 1. Let us fix any m. Since g preserves each Lm, we can also con-
sider the dynamics of g restricted to any Lm. Each restricted map has
the same properties as above. Let us fix any Lm and denote by g|Lm

the restricted map of g to the Lm. The critical set of g|Lm consists of
the union of intersections of the Lm and another Lk−1 which does not
include the Lm. We denote it by Lm−1, which is an irreducible compo-
nent of the critical set of g|Lm . By Sk+2-equivariance, g|Lm preserves
each irreducible component of the critical set of g|Lm . Furthermore the
complement of the critical set of g|Lm in Lm is Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed points of g.
The set of superattracting points, where the derivative of g vanishes for
all directions, coincides with the set of L0’s.

Remark 1. For every k ≥ 1 and every m, 1 ≤ m ≤ k, a restricted map
of gk+3 to any Lm is not conjugate to gm+3.

2.4. Examples for k = 1 and 2.

Let us see transposition hyperplanes of the S3-equivariant function g4
and the S4-equivariant map g5 to make clear what Lm is. In [3] one can
find explicit formulas and figures of dynamics of Sk+2-equivariant maps
in low-dimensions .

2.4.1. S3-equivariant function g4 in P1.

g3([x1 : x2]) = [x3
1(−x1 + 2x2) : x3

2(2x1 − x2)] : P1 → P1,

C(g3) = {x1 = 0} ∪ {x2 = 0} ∪ {x1 = x2} = {0, 1,∞} in P1.

In this case “transposition hyperplanes” are points in P1 and L0 denotes
one of three superattracting fixed points of g3.

2.4.2. S4-equivariant map g5 in P2.

C(g5) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0} ∪ {x1 = x2}

∪ {x2 = x3} ∪ {x3 = x1} in P2.

In this case L1 denotes one of six transposition hyperplanes in P2, which
is an irreducible component of C(g5). For example, let us fix a transpo-
sition hyperplane {x1 = 0}. Since g5 preserves each transposition hyper-
plane, we can also consider the dynamics of g5 restricted to {x1 = 0}.
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We denote by g5|{x1=0} the restricted map of g5 to {x1 = 0}. The critical

set of g5|{x1=0} in {x1 = 0} ≃ P1 is

C(g5|{x1=0}) = {[0 : 1 : 0], [0 : 0 : 1], [0 : 1 : 1]}.

When we use L0 after we fix {x1 = 0}, L0 denotes one of intersections
of {x1 = 0} and another transposition hyperplane, which is a superat-
tracting fixed point of g5|{x1=0} in P1. The set of superattracting fixed

points of g5 in P2 is

{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : 1 : 0], [1 : 0 : 1], [0 : 1 : 1]}.

In general L0 denotes one of intersections of two or more transposition
hyperplanes, which is a superattracting fixed point of g5 in P2.

3. The Fatou sets of the Sk+2-equivariant maps

3.1. Definitions and preliminaries.

Let us recall theorems about critically finite holomorphic maps. Let
f be a holomorphic map from Pk to Pk. The Fatou set of f is defined
to be the maximal open subset where the iterates {fn}n≥0 is a normal
family. The Julia set of f is defined to be the complement of the Fatou
set of f . Each connected component of the Fatou set is called a Fatou
component. Let U be a Fatou component of f . A holomorphic map h is
said to be a limit map on U if there is a subsequence {fns |U}s≥0 which
locally converges to h on U . We say that a point q is a Fatou limit point
if there is a limit map h on a Fatou component U such that q ∈ h(U).
The set of all Fatou limit points is called the Fatou limit set. We define
the ω-limit set E(f) of the critical points by

E(f) =

∞⋂

j=1

∞⋃

n=j

fn(C).

Theorem 2 ([10, Proposition 5.1]). If f is a critically finite holomorphic

map from Pk to Pk, then the Fatou limit set is contained in the ω-limit

set E(f).

Let us recall the notion of Kobayashi metrics. Let M be a complex
manifold and KM (x, v) the Kobayashi quasimetric on M ,

inf

{
|a| | ϕ : D →M : holomorphic, ϕ(0)=x, Dϕ

(
a

(
∂

∂z

)

0

)
=v, a∈C

}

for x ∈ M , v ∈ TxM , z ∈ D, where D is the unit disk in C. We say
that M is Kobayashi hyperbolic if KM becomes a metric. Theorem 5 is
a corollary of Theorem 3 and Theorem 4 for k = 1 and 2.
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Theorem 3 (a basic result whose former statement can be found in [8,
Corollary 14.5]). If f is a critically finite holomorphic function from P1

to P1, then the only Fatou components of f are attractive components

of superattracting points. Moreover if the Fatou set is not empty, then

the Fatou set has full measure in P1.

Theorem 4 ([5, theorem 7.7]). If f is a critically finite holomorphic

map from P2 to P2 and the complement of C(f) is Kobayashi hyper-

bolic, then the only Fatou components of f are attractive components of

superattracting points.

3.2. Our first result.

Let us fix any k and g = gk+3. For every m, 2 ≤ m ≤ k, we can
apply an argument in [5] to a restricted map of g to any Lm because
every Lm−1 is smooth and because every Lm\C(g|Lm) is Kobayashi hy-
perbolic. We shall use this argument in Lemma 1, which is used to prove
Proposition 1.

Proposition 1. For any Fatou component Uwhich is disjoint from C(g),
there exists an integer n such that gn(U) intersects with C(g).

Proof: We suppose that gn(U) is disjoint from C(g) for any n and de-
rive a contradiction by using Lemma 1 and Remark 3 below. Take any
point x0 ∈ U . Since E(g) coincides with C(g), gn(x0) accumulates
to C(g) as n tends to ∞ from Theorem 2. Since C(g) is the union of
the transposition hyperplanes, there exists a smallest integer m1 such
that gn(x0) accumulates to some Lm1 . Let h1 be a limit map on U such
that h1(x0) belongs to the Lm1 . From Lemma 1 below, the intersection
of h1(U) and the Lm1 is an open set in the Lm1 and is contained in the
Fatou set of g|Lm1 .

We next consider the dynamics of g|Lm1 . If there exists an integer n2

such that gn2(h1(U) ∩Lm1) intersects with C(g|Lm1 ), then gn2(h1(U) ∩
Lm1) intersects with some Lm1−1. In this case we can consider the
dynamics of g|Lm1−1 . On the other hand, if there does not exist such n2,
then there exists an integer m2 and a limit map h2 on h1(U)∩Lm1 such
that the intersection of h2(h1(U) ∩ Lm1) and some Lm2 is an open set
in the Lm2 from Remark 3 below. Thus it is contained in the Fatou set
of g|Lm2 . Here m2 is smaller than m1. In this case we can consider the
dynamics of g|Lm2 .

We continue the same argument above. These reductions finally come
to some L1 and we use Theorem 3. One can find a similar reduction
argument in the proof of Theorem 5. Consequently gn(x0) accumulates
to some superattracting point L0. So there exists an integer s such



Dynamics of Symmetric Holomorphic Maps 339

that gs sends U to the attractive Fatou component which contains the
superattracting point L0. Thus gs(U) intersects with C(g), which is a
contradiction.

Remark 2. Even if a Fatou component U intersects with some Lm and
is disjoint from any Lm−1, then the similar thing as above holds for the
dynamics in the Lm. In this case U ∩ Lm is contained in the Fatou set
of g|Lm and there exists an integer n such that gn(U ∩ Lm) intersects
with C(g|Lm).

Lemma 1. For any Fatou component U which is disjoint from C(g)
and any point x0 ∈ U , let h be a limit map on U such that h(x0) belongs

to some Lm and does not belong to any Lm−1. If gn(U) is disjoint

from C(g) for every n ≥ 1, then the intersection of h(U) and the Lm is

an open set in the Lm.

Proof: Let B be the complement of C(g). Since B is Kobayashi hyper-
bolic andB includes g−1(B), g−1(B) is Kobayashi hyperbolic, too. So we
can use Kobayashi metrics KB and Kg−1(B). Since B includes g−1(B),

KB(x, v) ≤ Kg−1(B)(x, v) for all x ∈ g−1(B), v ∈ TxP
k.

In addition, since g is an unbranched covering from g−1(B) to B,

Kg−1(B)(x, v) = KB(g(x), Dg(v)) for all x ∈ g−1(B), v ∈ TxP
k.

From these two inequalities we have the following inequality

KB(x, v) ≤ KB(g(x), Dg(v)) for all x ∈ g−1(B), v ∈ TxP
k.

Since the same argument holds for any gn from g−n(B) to B,

KB(x, v) ≤ KB(gn(x), Dgn(v)) for all x ∈ g−n(B), v ∈ TxP
k.

Since gn is an unbranched covering from U to gn(U) and B includes gn(U)
for every n, a sequence {KB(gn(x), Dgn(v))}n≥0 is bounded for all x∈U ,
v ∈ TxP

k. Hence we have the following inequality for any unit vectors vn
in Tx0

U with respect to the Fubini-Study metric in Pk,

(1) 0 < inf
|v|=1

KB(x0, v) ≤ KB(x0, vn) ≤ KB(gn(x0), Dg
n(x0)vn) <∞.

That is, the sequence {KB(gn(x0), Dg
n(x0)vn)}n≥0 is bounded away

from 0 and ∞ uniformly.
We shall choose vn so that Dgn(x0)vn keeps parallel to the Lm and

claim that Dh(x0)v 6= 0 for any accumulation vector v of vn. Let h =
limn→∞ gn for simplicity. Let V be a neighborhood of h(x0) and ψ a
local coordinate on V so that ψ(h(x0)) = 0 and ψ(Lm ∩ V ) ⊂ {y =
(y1, y2, . . . , yk) | y1 = · · · = yk−m = 0}. In this chart there exists a
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constant r > 0 such that a polydisk P (0, 2r) does not intersect with
any images of transposition hyperplanes which do not include the Lm.
Since ψ(gn(x0)) converges to 0 as n tends to ∞, we may assume that
ψ(gn(x0)) belongs to P (0, r) for large n. Let {vn}n≥0 be unit vectors
in Tx0

Pk and {wn}n≥0 vectors in Tψ(gn(x0))C
k so that wn keep parallel

to ψ(Lm) with a same direction and

Dgn(x0)vn = |Dgn(x0)vn| Dψ
−1(wn).

So we may assume that the length of wn is almost unit for large n. We
define holomorphic maps ϕn from D to P (0, 2r) as

ϕn(z) = ψ(gn(x0)) + rzwn for z ∈ D

and consider holomorphic maps ψ−1 ◦ϕn from D to B for large n. Then

(ψ−1 ◦ ϕn)(0) = gn(x0),

D(ψ−1 ◦ ϕn)

(
|Dgn(x0)vn|

r

(
∂

∂z

)

0

)
= Dgn(x0)vn.

Suppose Dh(x0)v = 0, then Dgn(x0)v converges to 0 as n tends to ∞
and so does Dgn(x0)vn. By the definition of Kobayashi metric we have
that

KB(gn(x0), Dg
n(x0)vn) ≤

|Dgn(x0)vn|

r
→ 0 as n→ ∞.

Since this contradicts (1), we have Dh(x0)v 6= 0. This holds for all
directions which are parallel to ψ(Lm). Consequently the intersection
of h(U) and the Lm is an open set in Lm.

Remark 3. The similar thing as above holds for the dynamics of any re-
stricted map. Thus even if a Fatou component gn(U) intersects with C(g)
for some n, the same result as above holds. Because one can consider
the dynamics in the Lm when gn(U) intersects with some Lm.

Theorem 5. For each k ≥ 1, the Fatou set of the Sk+2-equivariant

map g consists of attractive basins of superattracting fixed points which

are intersections of k or more distinct transposition hyperplanes.

Proof: This theorem follows from Proposition 1 and Remark 2 immedi-
ately. Let us describe details. Take any Fatou component U . From
Proposition 1 there exists an integer nk such that gnk(U) intersects
with C(g). Since C(g) is the union of the transposition hyperplanes,
gnk(U) intersects with some Lk−1. By doing the same thing as above for
the dynamics of g restricted to the Lk−1, there exists an integer nk−1

such that gnk+nk−1(U) intersects with some Lk−2 from Remark 2. We
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again do the same thing as above for the dynamics of g restricted to
the Lk−2.

These reductions finally come to some L1.That is, there exists integers
nk−2, . . . ,n2 such that gnk+nk−1+···+n2(U) intersects with some L1. From
Theorem 3 there exists an integer n1 such that gn1(gnk+nk−1+···+n2(U))
contains some L0. Hence gnk+nk−1+···+n1 sends U to the attractive Fatou
component which contains the superattracting fixed point L0 in Pk.

4. Axiom A and the Sk+2-equivariant maps

4.1. Definitions and preliminaries.

Let us define hyperbolicity of non-invertible maps and the notion of
Axiom A. See [6] for details. Let f be a holomorphic map from Pk

to Pk and K a compact subset such that f(K) = K. Let K̂ be the set of

histories in K and f̂ the induced homeomorphism on K̂. We say that f is
hyperbolic onK if there exists a continuous decomposition T bK = Eu+Es

of the tangent bundle such that Df̂(E
u/s
bx ) ⊂ E

u/s
bf(bx)

and if there exists

constants c > 0 and λ > 1 such that for every n ≥ 1,

|Df̂n(v)| ≥ cλn|v| for all v ∈ Eu and

|Df̂n(v)| ≤ c−1λ−n|v| for all v ∈ Es.

Here | · | denotes the Fubini-Study metric on Pk. If a decomposition and

inequalities above hold for f and K, then it also holds for f̂ and K̂. In
particular we say that f is expanding on K if f is hyperbolic on K with
unstable dimension k. Let Ω be the non-wandering set of f , i.e., the set
of points for any neighborhood U of which there exists an integer n such
that fn(U) intersects with U . By definition, Ω is compact and f(Ω) = Ω.
We say that f satisfies Axiom A if f is hyperbolic on Ω and periodic
points are dense in Ω.

Let us introduce a theorem which deals with repelling part of dynam-
ics. Let f be a holomorphic map from Pk to Pk. We define the k-th
Julia set Jk of f to be the support of the measure with maximal entropy,
in which repelling periodic points are dense. It is a fundamental fact that
in dimension 1 the 1st Julia set J1 coincides with the Julia set J . Let K
be a compact subset such that f(K) = K. We say that K is a repeller
if f is expanding on K.
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Theorem 6 ([7]). Let f be a holomorphic map on Pk of degree at

least 2 such that the ω-limit set E(f) is pluripolar. Then any repeller

for f intersects Jk. In particular,

Jk = {repelling periodic points of f}.

If f is critically finite, then E(f) is pluripolar. We need the following
corollary to prove our second result.

Corollary 1 ([7]). Let f be the same as above. Suppose that Jk is a

repeller. Then any repeller for f is a subset of Jk.

4.2. Our second result.

Theorem 7. For each k ≥ 1, the Sk+2-equivariant map g satisfies Ax-

iom A.

Proof: We only need to consider the Sk+2-equivariant map g for a fixed k,
because argument for any k is similar as the following one. Let us show
the statement above for a fixed k by induction. A restricted map of g to
any L1 satisfies Axiom A by using the theorem of critically finite func-
tions (see [8, Theorem 19.1]). We only need to show that a restricted
map of g to a fixed L2 satisfies Axiom A. Then a restricted map of g
to any L2 satisfies Axiom A by symmetry. Argument for a restricted
map of g to any Lm, 3 ≤ m ≤ k, is similar as for a restricted map of g
to the L2. Let us denote g|L2 , Ω(g|L2), and L2 by g, Ω, and P2 for
simplicity.

We want to show that g|L2 is hyperbolic on Ω(g|L2) by using Kobayashi
metrics. If g is hyperbolic on Ω, then Ω has a decomposition to Si,

Ω = S0 ∪ S1 ∪ S2,

where i = 0, 1, 2 indicate the unstable dimensions. Since C(g) attracts all
nearby points, S0 includes all the L0’s and S1 includes all the Julia sets
of g|L1. We denote by J(g|L1) the Julia set of g|L1 . Then g is contracting
in all directions at L0 and is contracting in the normal direction and
expanding in an L1-direction on J(g|L1). Let us consider a compact,
completely invariant subset in P2 \ C,

S = {x ∈ P2 | dist(gn(x), C) 9 0 as n→ ∞}.

By definition, we have J2 ⊂ S2 ⊂ S. If g is expanding on S, then it
follow that S0 = ∪L0, S1 = ∪J(g|L1). Moreover J2 = S2 = S holds
from Corollary 1 (see Remark 4 below). Since periodic points are dense
in J(g|L1) and J2, expansion of g on S implies Axiom A of g.
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Let us show that g is expanding on S. Because f is attracting on C

and preserves C, there exists a neighborhood V of C such that V is
relatively compact in g−1(V ) and the complement of V is connected.
We assume one of L1’s to be the line at infinity of P2. By letting
B be P2 \ V and U one of connected components of g−1(P2 \ V ), we
have the following inclusion relations,

U ⊂ g−1(B) ⋐ B ⊂ C2 = P2 \ L1.

Because B and U are in a local chart, there exists a constant ρ < 1 such
that

KB(x, v) ≤ ρKU (x, v) for all x ∈ U, v ∈ TxC
2.

In addition, since the map g from U to B is an unbranched covering,

KU (x, v) = KB(g(x), Dg(v)) for all x ∈ U, v ∈ TxC
2.

From these two inequalities we have the following inequality

KB(x, v) ≤ ρKB(g(x), Dg(v)) for all x ∈ g−1(B), v ∈ TxC
2.

Since g preserves S, which is contained in g−n(B) for every n ≥ 1,

KB(x, v) ≤ ρnKB(gn(x), Dgn(v)) for all x ∈ S, v ∈ TxC
2.

Consequently we have the following inequality for λ = ρ−1 > 1,

KB(gn(x), Dgn(v)) ≥ λnKB(x, v) for all x ∈ S, v ∈ TxC
2.

Since KB(x, v) is upper semicontinuous and |v| is continuous, KB(x, v)
and |v| may be different only by a constant factor. There exists c > 0
such that

|Dgn(x)v| ≥ cλn|v| for all x ∈ S, v ∈ TxC
2.

Thus g is expanding on S and satisfies Axiom A.

Remark 4. Unlike the case when k = 1, it does not seem obvious that
S being a repeller implies Jk = S when k ≥ 2.

Remark 5. From [1, Theorem 4.11] and [9], it follows that the Fatou set
of the Sk+2-equivariant map g has full measure in Pk for each k ≥ 1.
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Primera versió rebuda el 19 de juliol de 2006,
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