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INTRINSIC GEOMETRY ON THE CLASS OF

PROBABILITY DENSITIES AND EXPONENTIAL

FAMILIES

Henryk Gzyl and Lázaro Recht

Abstract

We present a way of thinking of exponential families as geodesic
surfaces in the class of positive functions considered as a (multi-
plicative) sub-group G+ of the group G of all invertible elements
in the algebra A of all complex bounded functions defined on a
measurable space. For that we have to study a natural geometry
on that algebra. The class D of densities with respect to a given
measure will happen to be representatives of equivalence classes
defining a projective space in A. The natural geometry is defined
by an intrinsic group action which allows us to think of the class of
positive, invertible functions G+ as a homogeneous space. Also,
the parallel transport in G+ and D will be given by the original
group action. Besides studying some relationships among these
constructions, we examine some Riemannian geometries and pro-
vide a geometric interpretation of Pinsker’s and other classical
inequalities. Also we provide a geometric reinterpretation of some

relationships between polynomial sequences of convolution type,
probability distributions on N in terms of geodesics in the Banach
space ℓ1(α).

1. Introduction and preliminaries

Exponential families of probability densities appear at least in three
different ways: On one hand, they appear as parametric distributions
for which unbiased estimators achieve their maximum efficiency (or min-
imum variance). Even though the result is a textbook matter, see [LM]
or [W] for example, let us briefly describe it following the presenta-
tion in [S] (which together with [GP] are a good staring point for
a fertile interaction between probability, physics and geometry): Let
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T = (T1, . . . , Tk) be an unbiased estimator of Θ = (θ1, . . . , θk), unknown
parameters of a family Π = {p(x, Θ)} describing the probability densities
of an (S,S)-valued random variable X with respect to a given probabil-
ity measure m(dx). If we put Vij = EΘ[(Ti−θi)(Tj −θj)], and under the

usual regularity assumptions we set Gij = EΘ

[

∂ ln p(x,Θ)
∂θi

∂ ln p(x,Θ)
∂θj

]

, then

in matrix terms the Cramer-Rao inequality asserts that (V − G−1) is
positive, and when V G = I, then the minimum variance or maxi-
mum efficiency is achieved. In this case, this amounts to saying that
p(x, Θ) = c(Θ)−1 exp{〈Θ,T〉}.

The second way in which exponential families appear is related to
the notion of sufficiency. To cite an old result on the relation of expo-
nential families and sufficient statistics, consider the following result by
Brown, [Br], improving on a result by Dynkin:

Theorem 1.1. Let Π = {p(x, Θ)} be a family of densities on an inter-
val I such that every p(x, Θ) is bounded away from zero and continously
differentiable on I. Suppose that there is a nontrivial sufficient statis-
tics T for Θ on the basis of n-observations. Then Π is a k-parameter
exponential family with k < n.

For much more about this and properties of exponential families, their
use in statistics and information theory, some classical references are the
volumes by Barndorff-Nielsen [B], Kullback [K] and Vajda [V].

As we shall mention later on, this old, important theorem is recalled
here for two reasons: on one hand it brings forth the relationship be-
tween exponential families and sufficiency, and on the other, it makes the
special class of densities we deal with (namely the invertible elements in
the algebra A defined below), appear as the natural class to consider.

The third road to exponential families comes from the solution of mo-
ment (or generalized moment) problems by information theoretic or max-
entropic methods. To state it as simple as possible, consider the problem
of finding a density p(x) on the measure space (S,S, m) such that the
expected value of an RK-valued random variable X is preassigned to be
Ep[X ] =

∫

X(x)p(x)m(dx) = µ, where µ ∈ R
K is a preassigned vector.

The problem is not trivial when K = 1 only when m(S) = ∞. This
problem seems to have been first solved by Esscher in [Es], although it
was during the 1950’s that the idea was systematized into a variational
method to lay down the foundations of statistical mechanics by Jaynes
in [J].

The interplay between geometry and probability has proceeded along
two mayor directions. One described in [Ef], [A] and the collection
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[ABKLR], which goes from a geometry induced on the space of param-
eters to statistical properties of the parameterized family of densities,
and the other which can be traced back from [GP] and [PRo], where the
authors examine a geometric (manifold) structure on the class of prob-
ability densities of probabilities equivalent to a given one. Regretfully
there does not seem to be an easy connection between these approaches
and the one we develop here.

Here we shall examine a completely different geometric structure on
the space of probabilities, that is, an approach that does not bear any
relationship to that described in the above mentioned references. For us,
probability distributions with density with respect to a given measure (or
probability) will be described by representatives of a projective structure
on the class of positive, invertible elements in a special complex Banach
algebra, namely the Banach algebra of complex, measurable functions
defined on a given measure space.

To make this note self contained, instead of referring the reader
to [GR] where the basics were outlined, we shall again recall some re-
sults obtained by Corach, Porta and Recht in [CPR], [PR1] and [PR2],
from which we draw freely. Our case is simpler that the theory developed
there, because all the Banach algebras with which we deal with here are
commutative. This is done in Section 2. In that section we obtain some
properties of the geodesics in the space of positive invertible functions
and we examine two Riemannian structures on that space. There we
provide a geometric way of understanding Pinsker’s inequalities. In Sec-
tion 3 we consider two different Riemannian structures on the class of
probability densities thought of as representatives of rays in the class of
positive invertible elements of the algebra, that is, as representatives of
a natural equivalence relation. The geometry of that projective space
is transported onto the class of densities which will be representatives
of the rays. In Section 4 we provide the geometrical characterization
of exponential families in terms of exponential surfaces in the intrinsic
geometry.

A shortcoming in the above presentation, is that the C∗-algebra to
which it readily applies is the algebra of bounded, measurable functions,
and for probabilistic applications one is interested in more general alge-
bras. In Section 5 we explore the geometry on the space ℓ1(α), which is
a convolution algebra, but not a C∗-algebra. A motivation for looking
into this example is that it is the simplest example of convolution algebra
which contains the measures on a countable set. Surprisingly enough, a
variety of connections between probability and polynomial convolution
sequences aquire a new meaning in the geometric setup that we propose.
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2. The fundamental C
∗ algebra and its properties

In this section we recall the basic facts about the geometry on a
commutative C∗ algebra A with a unit. The basic model we should have
in mind is A = {f : S → C | ‖f‖ = esssup(|f |) < ∞}, where (S,S, m) is
a given measure space. We shall assume that the measure m is either
a probability or a finite measure. We will define a special connection,
describe its geodesics and the parallel transport along them, as well
as the resulting geometries on the positive elements of the algebra, as
well as the basic properties of the projective spaces in the set of positive
invertible elements in A. In this algebra the set of invertible (with respect
to the usual pointwise multiplication as the product on the algebra)
vectors G = {g ∈ A | g−1 exists} is a (commutative) group and the
class G+ ⊂ G denotes the class of positive invertible elements. Also,
it is standard result that G is an open set in A and that the inversion
operation is continuously differentiable. This allows us to provide G with
a manifold structured modeled on A thought of as a Banach algebra and
that the Lie algebra of G, i.e. the tangent space to G at 1, is A.

2.1. The basic reductive homogeneous space.

We want to think of G+ both as a homogeneous space and as the
base space for a principal bundle. For that, we first need an action of G
on G+. We define

Lg : G+ −→ G+; Lg(a) = (g∗)−1ag−1, ∀ a ∈ G+,

for any g ∈ G. Since the product is commutative, Lg(a) = |g|−2a. An
intuitive way of understanding that mapping is to realize that every a ∈
G+ defines a scalar product on Ha ≡ L2(am) by 〈X, Y 〉a =

∫

XY a dm.
Now we may interpret the group action as an isometry Ha → HLg(a).

This action is transitive and it is easy to see that G+ ≃ G/Ia, where
Ia is defined a few lines below. There is a well known way to define
connections in this setup, see Chapters 10 and 11 of [KN] for example.

To define the principal bundle, fix some a ∈ G+ and define the pro-
jection operator

πa : G −→ G+ by means of πa(g) = Lg(a)

and notice right away that the isotropy group of a defined by

Ia = {g ∈ G | πa(g) = a} = {g ∈ G | g∗g = 1},

verifies that π−1
a (a) = Ia. Moreover the fiber π−1

a (b) over b ∈ G+ is
given by Iah for appropriate h ∈ G. Notice that when A is a function
algebra, Ia is the class of functions taking value in the circle.
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We mentioned that G is an open subset in A, its tangent space at 1
is A, i.e.

(TG)1 = A,

and it is easy to see that

(TIa)1 = Va = {0} ⊕ iAs.

The group action can be used to move this splitting around, and the
existence of such splitting is equivalent to the existence of connections.
The derivative (Dπa)1(X) of πa at 1 in the direction of X ∈ A is easy
to compute, and it is given by

(Dπa)1(X) = −a(X + X∗).

Clearly

(Dπa) : A −→ (TG+)a ≡ As ⊕ {0}.

We shall define the horizontal space at a by

Ha ≡ {X ∈ A | (a)−1X∗a = X} = {X ∈ A | X∗ = X} = As ⊕ {0}

and we have the obvious splitting

A = Ha ⊕ Va.

Not only that, the map (Dπa)1 is invertible from the left. That is,
there exists a mapping (actually a section of the bundle (G, G+, πa)),
κa : (TG+)a → (TG)1, given by

κa(z) ≡ −
a−1

2
z

such that (TG+)a
κa−→ (TG)1

(Dπa)
−→ (TG+)a is the identity mapping.

Definition 2.1. Define the A-valued 1-form κ : G+ → L(TG+,As)
by κb = κa ◦ (DL)−1

g , where Lg(a) = b.

Comment. From now on we shall use the shorthand and L̃g for the
tangent mapping DLg and π̃a for the tangent Dπa, etc.

The mapping κ is called the structure 1-form of the homogeneous
space G+. All the geometry on G+ comes from κ. The basic properties
of these mappings are contained in the simple

Lemma 2.1. With the notations above, and if Lg(a) = b, we have

(i) πb = Lg ◦ πa, (ii) or in differential form: π̃b = L̃g ◦ π̃a, (iii) κ is

equivariant, that is, κb ◦ L̃g = κa, and (iv) π̃b ◦ κb : (TG+)b → (TG+)b

is the identity mapping.
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2.2. Geodesics in G
+.

Let us now recall the basic construction leading to the definition of
geodesics in G+. We begin with

Definition 2.2. Let a(t) be a continuously differentiable curve in G+

such that a(0) = a. Let γ(t) be the solution to the transport equation

(1) γ̇(t) = κa(t)(ȧ(t))γ(t), γ(0) = 1.

The curve γ(t) is called the horizontal lift of a(t).

Proposition 2.1. With the notations introduced above we have:
(i) πa(γ(t)) = a(t) and (ii) γ̇(t) ∈ As = κa((TG+)a).

Proof: Just note that integrating (1) we obtain γ(t) =
(

a(o)
a(t)

)1/2

.

Definition 2.3. Let a(t) be a continuously differentiable curve in G+

such that a(0) = a, and let Y (t) be a vector field defined along a(t). The
covariant derivative of Y (t) along a(t) is defined to be

(2) Dȧ(t)Y (t) = πa(t)

(

d

dt
κa(t)(Y (t))

)

.

Observe now that if a(t) is a twice differentiable curve in G+, by
considering Y (t) = ȧ(t) in (2) above, a simple computation yields:

(3) Dȧ(t)ȧ(t) = −
ȧ2(t)

a(t)
+ ä(t)

and if, as usual, we say that a(t) is a geodesic whenever Dȧ(t)ȧ(t) = 0,
we readily obtain that

(4) a(t) = a(0)etX , where X = ln
ȧ(0)

a(0)
.

Note as well that the geodesic which goes from a0 to a1, both in G+,
in one time unit is rapidly obtained from (4) to be given by

(5) a(t) = a1−t
0 at

1.

Comments. Clearly we also have X = ln
(

a1

a0

)

. To justify the name of the

curves (5) we have to verify that they minimize some distance function.
To begin with, at a ∈ G+ define the following norm. For x ∈ (TG+)a

set ‖x‖a = ‖a−1x‖, where ‖ · ‖ is the norm in the Banach algebra. Let
now a(t) for t ∈ [0, 1], be a continuously differentiable curve. Define its
length by

l(a) =

∫ 1

0

‖ȧ(t)‖a(t) dt.
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Define now for given a0, a1 ∈ G+

(6) d(a0, a1) = inf{l(c) | c continuously differentiable curve

joining a0 to a1}.

It so happens that the curve (5) is the minimizer of (6), and therefore
κ is the connection in the Finsler geometry associated to d(a0, a1). We
have

Theorem 2.1. Let a0, a1 ∈ G+ and denote by ga0,a1(t) the curve (5)
and let c(t) be any other continuously differentiable curve joining a0 to a1

in a unit of time. Then l(c) ≥ l(ga0,a1).

Proof: Consider

l(c) =

∫ 1

0

‖ċ(t)‖c(t) dt =

∫ 1

0

‖c−1(t)ċ(t)‖ dt

≥

∥

∥

∥

∥

∫ 1

0

d ln c(t) dt

∥

∥

∥

∥

=

∥

∥

∥

∥

ln

(

a1

a0

)∥

∥

∥

∥

= d(a0, a1).

To close this section note that going from a0 to a1 along a geodesic can
be realized by means of the group action:

a1 = a0e
X = Lg(a0), with g = e−X/2,

which prompts the following definition for vector fields along curves
in G+.

Definition 2.4. Let Y (t) be a vector field defined along a geodesic
curve a(t) ∈ G+. We say that Y is parallel if Y (t) = Lg(t)(Y (0)) for
every t where g(t) is a group element taking a0 onto a1.

Let us examine the basics of a Riemannian geometry on G+.

2.3. Two Riemannian structures on G
+.

In this section we examine two different Riemannian structures on G+.
With respect to the first one, the geodesic transport is our old group
action, which turns out to be self dual. With respect to the other,
there are two different parallel transports in duality. We also provide a
geometric interpretation for Pinsker’s inequality and a converse to it.

Definition 2.5. We define the scalar product on the tangent bun-
dle TG+ as follows: On the tangent space (TG+)1 = As to G+ at 1,
we can define the scalar product 〈X, Y 〉1 ≡ Em[XY ] which can be made
equivariant by setting 〈X, Y 〉a = Em[a−1Xa−1Y ].
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To begin with, we have the simple

Lemma 2.2. The parallel transport in Definition 2.5, is self dual with
respect to this scalar product, that is, if Lg(1) = a, Xa = Lg(X1) and
Ya = Lg(Y1),

(7) 〈Xa, Ya〉a = 〈X1, Y1〉1.

Comment. Duality of different parallel transports is studied in [A],
[ABKLR] and [S]. Here we provide a parallel transport leading to
a connection that is self dual. We can define the squared distance along
curves for this Riemannian metric by

Definition 2.6. Let c(t) be a continuously differentiable curve in G+

joining c(0) to c(1). The (squared) distance along c is defined by

(8) d1(c(0), c(1)) =

∫ 1

0

〈ċ(t), ċ(t)〉(c)(t) dt.

What is interesting and remarkable at this stage is that

Proposition 2.2. The geodesics of (8) are the geodesics of the connec-
tion in G+ and are given by (5).

Proof: Left for the reader. Just notice that the Euler-Lagrange equa-
tion d

dt

(

∂L
∂ċ

)

=
(

∂L
∂c

)

is easy to obtain in the commutative case. Here
L(c) is given by the right hand side of (8). The solution is as claimed.

A simple computation shows that along a geodesic a(t) = a0e
tX with

X = ln
(

a1

a0

)

, the distance is as given in Theorem 2.1, i.e.,

(9) d1(a0, a1) = ‖X‖ =

∥

∥

∥

∥

ln

(

a1

a0

)∥

∥

∥

∥

.

We shall now introduce a different Riemannian structure on G+.

Definition 2.7. Let us now define the scalar product in (TG+)a by
setting (X, Y )a ≡ Em[a−1X Y ].

The analogue of Lemma 2.2 is the following

Lemma 2.3. Let Xa = Lg(X1) = T +
1,a(X1) where a = Lg(1) and let

Y = T−
1,a(Y ), that is, the parallel transport from the ambient space in

which parallel transport is assumed to be the identity mapping. Then

(T +
1,a(X1), T−

1,a(Y ))a = Em[a−1aX, Y ] = (X, Y )1

that is, the geodesic transport and the identical parallel transport are dual
with respect to the (·, ·) product on TG+.
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We also have

Proposition 2.3. Let c(t) be a differentiable curve in G+ joining a0

to a1 in a unit of time. Define

d2(a0, a1) =

∫ 1

0

(ċ(t), ċ(t))c(t) dt.

Then the geodesic in that metric is a∗(t) =
(

a
1/2
0 + t(a

1/2
1 − a

1/2
0 )

)2
.

Proof: Notice to begin with the Euler-Lagrange equations determining

the geodesic are now 2
(

c̈
c

)

=
(

ċ
c

)2
, which can be integrated to yield the

claimed result. Next a simple application of Jensen’s inequality yields
that for any other continuously differentiable curve ĉ with the same initial
and final points

(10)

∫ 1

0

(ȧ∗(t), ȧ∗(t))a∗(t) ≡ 4Em

[

(a
1/2
1 − a

1/2
0 )2

]

≤

∫ 1

0

( ˙̂c(t), ˙̂c(t))ĉ(t),

thus concluding the proof.

Comment. Actually (10) connects us to

Corollary 2.1. Let now c(t) = a0e
tX with X = ln

(

a1

a0

)

. Then (10) im-

plies that

(11) Em

[

(

a1 − a0

)

ln

(

a1

a0

)]

≥ 4Em

[

(a
1/2
1 − a

1/2
0 )2

]

.

Now, when Em[a0] = Em[a1] = 1, we obtain 4Em

[

(a
1/2
1 − a

1/2
0 )2

]

≥
(

Em[(a1 − a0)]
)2

after a simple application of the Cauchy-Schwarz in-
equality, which turns (11) into a simple extension of the famous Pinsker’s
inequality. We thus obtain a totally geometric proof of that famous in-
equality.

To obtain a kind of converse to that inequality using our geometric

setup, compute the distance d1(a0, a1) along the geodesic a∗(t) =
(

a
1/2
0 +

t(a
1/2
1 − a

1/2
0 )

)2
for d2 to obtain

Proposition 2.4. With the notations introduced above the following
inequality holds

(12)

∥

∥

∥

∥

ln

(

a1

a0

)∥

∥

∥

∥

≤
∥

∥(a
1/2
1 − a

1/2
0 )

∥

∥.
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2.4. A projective class in G
+.

In this section we consider a simple projective space, P+, arising from
an equivalence relation on G+. For this it is convenient to think of
constants as constant functions, and the class of constant functions as a
sub-algebra B of A. A projection (or conditional expectation when m is
a probability) of A onto B is given by X → Em[X ] ≡

∫

S X(s) dm(s). We

shall denote respectively by GB and G+
B the group of invertible elements

and the group of positive invertible elements in B.

Definition 2.8. Let a and b be in G+. We shall say that a ∼B b
if and only if there exists an element g ∈ GB such that b = Lg(a).
Form P+ = G+/ ∼B and denote by τ the quotient map τ : G+ → P+.

Comment. This clearly amounts to saying that a ∼B b if there is a
positive real r such that a = rb.

To define the tangent bundle to P+, we have to describe the tangent
space at every α = τ(a) ∈ P+.

Definition 2.9. We shall say that (a, X) ∼B (a′, X ′) if and only if a ∼B

a′ and X ′/a′ − X/a ∈ As. Here X ∈ (TG+)a and X ′ ∈ (TG+)′a.

Clearly the group action of G on G+ can be induced on P+ in the
obvious way:

Lg(α) = τ( Lg(a)) if α = τ(a), g ∈ G.

To construct geodesics on P+, an easy way out is to present it as a
homogeneous space. For that, note that if we set α1 = τ(1), the isotropy
group of α1 is

Iα1 = {g ∈ G | Lg(α1) = α1},

that is, the collection of all g’s such that ‖g‖−2 ∼B 1, or GB in this case,
and we have

Proposition 2.5. With the notations introduced above, we have the
isomorphism

P
+ ≃ G/Iα1 .

Comment. Hereby we present P+ as a homogenous space. Thus the
whole machinery developed in [KN] may be brought into play to define
connections and geodesics. For the time being we want to concentrate in
a specific class of representatives for P

+ and leave the study of P
+ and

some associate constructions for a continuation of [GR].
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3. Geometry in the class of probability densities

The main result of this section consists of verifying that geodesics
in G+ having initial and final point in the class of densities, stay there all
the time. We shall examine two Riemannian geometries on D that admit
a pair of dual parallel transports. To establish the notation consider the
basic class of densities with respect to m,

D = {ρ ∈ G+ | Em[ρ] = 1}.

To go from G+ to D consider the projection

Φ: G+ −→ D given by a −→ Φ(a) =
a

Em[a]
.

Comments. Notice that this mapping is constant along rays, i.e., it pro-
vides systems of representatives for P+. Note as well that if ρ = Φ(a),
the tangent map induced by Φ is given by

(13) Φ̃ : (TG+)a −→ (TD)ρ X −→ Φ̃(X)=ρX −ρEm[ρX ]=Qρ(ρX),

where Qρ(Y ) ≡ Y − ρEm(Y ) is a projection operator. Note that it acts
on vectors tangent to the tangent space (TG+)ρ.

With the help of (13) we can obtain a connection on D as follows.

Definition 3.1. With notations introduced above, if ρ(t) is a curve
in D with tangent X and Y is tangent to D along ρ, then the covariant
derivative of Y along X is defined to be

(14) D̃XY = Qρ(DXY ) = DXY − ρEm[DXY ].

And we also have

Theorem 3.1. Let a(t) = a(0)etX be a geodesic in G+ passing through
a(0) at time t = 0 with speed X. Then ρ(t) = Φ(a(t)) is a geodesic in D,

i.e., it satisfies D̃ρ̇ ρ̇ = 0.

Proof: That ρ(t) is fully contained in D is clear. We have to verify

that ρ(t) satisfies D̃ρ̇ ρ̇ = 0. All it takes is to compute two derivatives
and then to verify that Dρ̇ ρ̇ = ρ̈ − ρ̇2/ρ = −ρV (X), where V (X) =

Em[ρX2] −
(

Em[ρX ]
)2

. Apply (14) and the result easily drops out.

Comment. A curious geometric connection appears here between vari-
ances and covariant derivatives.

Corollary 3.1. Let ρ(0) and ρ(1) be two densities. Then

ρ(t) = ρ(0)(1−t)ρ(1)t

Em[ρ(0)(1−t)ρ(1)t]
is a geodesic in D, going from ρ(0) to ρ(1) in a

unit of time.
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Proof: We know that given ρ0 and ρ1 there is a geodesic in G+, written
as a(t) = ρ0e

tY , joining the two points. According to the theorem,
Φ(a(t)) = ρ0e

tY /EM [ρ0e
tY ] is a geodesic in D joining the same two

points. Now set ρ1 = Φ(a(1)), solve for eY and substitute in ρ(t) ≡
Φ(a(t)) to obtain the desired result.

On D parallel motion along geodesics is realized by projecting the

geodesic motion in G+. That is, ρ(t) = ρ(0)(1−t)ρ(1)t

Em[ρ(0)(1−t)ρ(1)t]
= Φ◦Lg(t)(ρ(0))

where g(t) = e−tX/2 and X = ln
(

ρ(1)
ρ(0)

)

. Actually there is a little more

to this

Proposition 3.1. The projected group action on D is again a group
action, i.e., the mapping L̂g(ρ) = Φ ◦ Lg(ρ), defines a group action
on D.

Proof: Just notice that

Φ
(

Lg1Φ((Lg2(ρ)))
)

=
|g1|

−2|g2|
−2ρ/Em[|g2|

−2ρ]

Em[|g1|−2|g2|−2ρ/Em[|g2|−2]]

=
|g1|

−2|g2|
−2ρ

Em[|g1|−2|g2|−2ρ]
= Φ(Lg1g2(ρ)).

The analogue of Definition 2.4 is in this case

Definition 3.2. A tangent vector field along a curve ρ(t) in D is parallel
if

Y (t) = Φ̃(Lg(t)Y (0)), where ρ(t) = L̂g(t)(ρ(0)).

Let us denote the parallel transport induced by the above restricted
group action by T̃ +

g1g2
, i.e., if L̂g(ρ1) = ρ2, then for Xρ1 ∈ (TG+)ρ1 we

set

T̃ +
ρ1ρ2

(Xρ1) = Φ̃
(

Lg(Xρ1)
)

=

(

ρ2

ρ1

)

Xρ1 − ρ2Em

[(

ρ2

ρ1

)

Xρ1

]

.

Lemma 3.1. With the notations introduced above

T̃ +
ρ2ρ3

◦ T̃ +
ρ1ρ2

= T̃ +
ρ1ρ3

for any ρ1, ρ2 and ρ3.

To define a Riemannian structure on D it is convenient to refer all
vectors to TD1. (By the way, it is at this point where the assumption that
the measure m is a probability measure simplifies the computations.)

Since the group action L̂ on D is transitive, any vector Xρ ∈ TDρ can be
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obtained from a vector X0 at TD1 by Xρ = T̃1ρ(X0)+ = ρX0−ρEm[ρX0],
and we can set

Definition 3.3. We can restrict the (•, •)g scalar product to D by

(T̃ +
1ρ(X0), T̃ +

1ρ(Y0))g = Cρ(X0, Y0) = Em[ρX0Y0] − Em[ρX0]Em[ρY0].

And as above, we have the same duality result

Lemma 3.2. With the notations introduced above, and again denoting
by T̃− : (TG+)1 → (TG+)ρ by T̃−(X0) = X0, then

(T̃ +
1ρ(X0), T̃−(X0))g = (X0, Y0)1.

4. Geodesic surfaces and exponential families

The thrust of this section is to establish that natural exponential
families of densities appear as geodesic surfaces, but keep in mind that
geodesic surface here means the following

Definition 4.1. A k-differentiable surface of order d in D is a k-differ-
entiable mapping Ψ: Θ → D, where Θ is an open convex set in Rd.

Comment. As usual it is convenient to think of the surface as the range
of Ψ, i.e., as a family Π = {Ψ(θ) | θ ∈ Θ}.

Definition 4.2. We shall say that a surface is geodesic if any two of its
points can be joined by a geodesic contained within the surface.

Definition 4.3. We shall say that a family {ρ(θ)} is a natural expo-
nential family labeled by Θ if there exist X1, . . . , Xd in As and q in G+

such that
ρ(θ) = Φ(qe〈θ,X〉).

Theorem 4.1. Let Π be a surface or order d in D such that the vector

fields Xi ≡
∂ ln Ψ(θ)

∂θi
for i = 1, . . . , d, are linearly independent. Then the

family Π is exponential if and only if the image of any segment θ(s) =
(1 − s)θ0 + sθ1 in Θ is a geodesic joining Ψ(θ0) to Ψ(θ1) in D.

Proof: Assume that Ψ(θ) = qe〈θ,X〉, and let ρ(s) = Φ(Ψ(θ0)1−sΨ(θ1)s)
be the geodesic joining Ψ(θ0) to Ψ(θ1). Then clearly ρ(s) = Ψ((1 −
s)θ0 + sθ1).

Assume next that Φ(Ψ(θ0)1−sΨ(θ1)s) = Ψ((1 − s)θ0 + sθ1), that is
that geodesics in D are the image of lines in Θ. Fix θ0 and rewrite
the last identity as Ψ(θ0 + s(θ1 − θ0)) = Φ(Ψ(θ0)esY ) as above. Now
differentiate both sides at s = 0 to obtain

〈∆θ,∇Ψ(θ0)〉 = Ψ(θ0)Y − Ψ(θ0)Em[Ψ(θ0)].
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Now set s = 1, bring in the definition of X and change θ1 to θ above to
rewrite this identity as 〈∆θ, X〉 = Ψ(θ0)Y −Ψ(θ0)Em[Ψ(θ0)] and obtain

Ψ(θ) = Φ(Ψ(θ0)eY ) = Φ(Ψ(θ0)eY −Em[Ψ(θ0)]) = Φ(Ψ(θ0)e〈∆θ,X〉)

where the second step is valid for Φ is constant along rays in G+. Now
set q = Ψ(θ0)e−〈θ0,X〉 and we are through with the proof.

5. Geometry on ℓ1(a), geodesic families and polynomial
sequences

Even though the scheme developed above provides a nice geometrical
framework in which to understand exponential families, it has an unsa-
vory or at least inconvenient limitation, namely, that it only allows for
densities that are bounded away from zero. The algebraic setup devel-
oped above can be modified to overcome that inconvenience, and the
purpose of this section is to show how this can be done in the context of
a specific example, namely when the algebra is ℓ1(a). Some unexpected
connections appear.

5.1. Some properties on convolution sequences.

Let us begin by recalling some basic properties of convolution se-
quences. Let {αn | n ≥ 0} be a sequence of positive numbers such
that αn+m ≤ αnαm for all n, m ≥ 0 and let us put

A = ℓ1(α) =

{

{xn ∈ C : 0 ≤ n ≤ ∞} |

∞
∑

0

αn|xn| < ∞

}

.

We shall consider ‖x‖α =
∑∞

0 αn|xn| to be the norm on A. If we regard
α as a measure on N, then Eα[x] =

∑

n xnαn may be thought of as an
integral, and talking about densities with respect to α makes sense. To
make this measure finite it suffices to assume that α1 < 1. Addition and
scalar multiplication are component wise, whereas the product x ∗ y of
two elements x and y in A is the convolution product. As mentioned,
this turns A into a Banach algebra with involution (given by the complex
conjugation) which we shall denote by x → x̄ since we are using ∗ for
the product. Also, the unit element in A will be denoted by 1 and is the
sequence δ0 = {1, 0, . . .}. All the basic properties about commutative
Banach algebras the we need here can be seen in [GRS] and a more
modern background on convolution spaces can be seen in [BCR].
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We set ρ = limn→∞
1
n log αn and assume that ρ > −∞. It is also

known that the complex homomorphisms of A (i.e., continuous, linear
maps from A to C that preserve multiplication) are of the form Λz(x) =
∑∞

0 xnzn, with |z| ≤ eρ. A basic property of the convolution operation
is contained in

Lemma 5.1. Let {xn} be a sequence of complex numbers such that
x0 = 0. Then

a) xk∗
n = 0 whenever k > n.

b) xn∗
n = (x1)n for all n > 0.

c) xk∗
n is a polynomial in x1, . . . , xk for all 2 ≤ k ≤ n and k, n ≥ 0.

Here xk∗
n = (x ∗

k
· · · ∗ x)n.

The proof is simple and detailed in [dB]. An interesting consequence
of this, also proved there, is

Lemma 5.2. Let g0, g1, . . . , gN be complex numbers and let
h0(t), . . . , hN(t) be complex valued functions defined on R or [0,∞), such
that

hn(t + s) =

n
∑

0

hk(t)hn−k(s) for n = 0, . . . , N.

Define

fn(t) =

n
∑

0

gk∗
n hk(t) for n = 0, . . . , N,

then

fn(t + s) =

n
∑

0

fk(t)fn−k(s) for n = 0, . . . , N.(15)

Definition 5.1. A sequence of functions {fn(t) : n ≥ 0}, defined on R

or [0,∞), such that (15) holds, is said to be of convolution type.

The following result contain an analogue to the first lemma

Lemma 5.3. Let {fn(t) : n ≥ 0} be a sequence of convolution type.
Then

a) if f0 = 0, then fn(t) = 0 for all n > 0,

b) if f0(t0) = 0 for some t0, then fn = 0 for all n ≥ 0.

The following is some sort of converse to (15). It is also proved in [dB].
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Theorem 5.1. Consider a convolution algebra A of functions such that

a) the only non zero elements f in the algebra that solve f(t + s) =
f(t) + f(t) are f(t) = ct, with c ∈ C,

b) the only non zero elements f in the algebra that solve f(t + s) =
f(t)f(t) are f(t) = eat with a ∈ C.

Then {fn(t) : n ≥ 0} is a sequence of convolution type if and
only if there exists a ∈ C and a sequence {gn ∈ A}, with g0 6= 0
such that

(16) fn(t) = eat
n

∑

0

gk∗
n

(

tk

k!

)

.

In the geometric setup an important role is played by (the connected
component of) the group G of all invertible (with respect to the con-
volution product) elements of A = ℓ1(α). Let us introduce the nota-
tion E = {ex | x ∈ A}, where ex ≡

∑

k xk∗, then

Theorem 5.2. With the notations introduced above, G = E.

The proof of this result and the next are detailed in [dB]. In terms
of the generic automorphisms introduced above, we also have

Theorem 5.3. With the notations introduced above

G = E =

{

x ∈ A | Λz(x) =
∑

n

xnzn 6= 0, ∀ |z| ≤ eρ

}

.

We mention in passing that for |z| ≤ eρ, the sets Mz = {x ∈ A |
Λz(x) = 0} are maximal ideals in A, and we have the mapping

Λ: A −→ A(eρ) x −→ Λ•(x)

where A(r) = {g : {|z| ≤ r} → C | g analytic for |z| < r and continuous
for |z| ≤ r}.

5.2. Geometry on G
+.

The constructions developed in Section 2 above have to be transported
to this example with care. This is due to the fact that in this case pos-
itivity is now relative to the convolution product, that is, a ∈ ℓ(a) is
positive if there exits b ∈ ℓ(α) such that a = b∗ b̄. And it is important to
keep in mind that positivity does not imply pointwise positivity. Con-
sider b = (1,−2, 0, 0, . . . ), then b ∗ b = (1,−4, 4, 0, . . . ) which is positive
but not pointwise positive.

As above, an action is defined for g ∈ G and a ∈ G+ by

Lg(a) = ḡ−1 ∗ a ∗ g−1 = (ḡ ∗ g)−1 ∗ a,
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and it is clear that the group G acts on G+ transitively. The isotropy
group of a ∈ G+ is defined by Ia = {g ∈ G | Lg(a) = a}, and clearly is
independent of a and we have

Lemma 5.4. With the notations above we have I1 = exp(ℓa
1(α)), where

ℓa
1(α) = {X ∈ ℓ1(α) | X̄ + X = 0}

the antisymmetric elements in ℓ1(α).

Comment. Since G is open in A its tangent space at 1 is A, and when we
want to think of the elements of A as tangent vectors, we shall denote
them by capitals. Also, for a1, a2 ∈ G+, clearly g = (a−1

1 ∗ a2)1/2 ∗ u
with u ∈ I1 satisfies Lg(a1) = a2.

Proof: Commutativity implies that I1 ={g∈G | ḡ∗g=1}. Since G=E we

know that g = eX∗ for some X . Since eX∗∗eX̄∗ = e0 we are through.

Lemma 5.5. With the notations introduced above, the following iden-
tities hold. G+ = G/I, (TG)1 = ℓ1(α), I ≡ (TI)1 = ℓa

1(α) and for
any a ∈ G+, (G+)a = ℓs

1(α) = {X ∈ A | X = X̄}.

Proof: Let us verify the third assertion. Let u(t) be a smooth curve in I1

such that u(0) = 1 and u̇(0)=X . Differentiate both sides of ū(t)∗u(t)=1
at t = 0.

5.2.1. Connection and geodesics on G
+.

Again we direct the reader to Section 2 above or to [KN], [CPR],
or [GR] for full details. Once we know that G+ is a homogeneous bundle,
the procedure to define a geometry on it is standard. For a ∈ G+, the
bundle map πa : G → G+ is again πa(g) = Lg(a).

Notice now that A = (TG)1 = ℓ1(α) = ℓs
1(α) + ℓa

1(α) = (TG+)a ⊕ I.
This splitting can be transported everywhere by means of the group
action. Here (TG+)a will play the role of the horizontal space and
I will be the vertical space at every point. The 1-form connection
κa : (TG+)a :→ (TG)+ is now κa(X) = − 1

2a−1 ∗ X . Is easy to ver-
ify that if Dπa denotes de derivative (tangent of push forward map)
of πa. Then, Dπa ◦ κa : (TG+)a → (TG+)a is the identity mapping.

Again, the lifting of a continuously differentiable curve a(t) in G+

with a(0) = a is the curve g(t) = (a(0) ∗ a(t)−1)1/2 in G. Once we have
this lifting, we can use the group action to define parallel transport and
geodesics as in Section 2. Adapting what we did to this case we have

Proposition 5.1. The geodesics in G+ are the curves a(t) = a(0)∗etX∗

with X = ȧ(0) ∗ a(0)−1.
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Proof: It is easy to verify that the equation for the geodesics ä(t) −
a(t)−1∗ ȧ2(t) = 0, and then it is simpler to verify that a(0)∗etX∗ satisfies
the equation.

Comments. For the sake of emphasis, etX∗ is the element in A with
components

(etX∗)n =

n
∑

k=0

tkXk∗
n /k!

As in Section 2, to justify the calling a(0) ∗ etX∗ a geodesic, we should
verify that it minimizes some distance function. To begin with, at a∈G+

define the following norm. For X ∈ (TG+)a set ‖X‖α,a = ‖a−1X‖α,
where ‖·‖α is the norm in the Banach algebra. Let now a(t) for t ∈ [0, 1],
be a continuously differentiable curve. Define its length by

l(a) =

∫ 1

0

‖ȧ(t)‖α,a(t) dt.

Define now for given a0, a1 ∈ G+

(17) d(a0, a1) = inf{l(c) | c continuously differentiable curve

joining a0 to a1}.

It so happens that the curve a(0)∗etX∗ with X = ȧ(0)a−1(0) = ln
(

a(1)∗

a(0)−1
)

is the minimizer of (17), and therefore κ is the connection in
the Finsler geometry associated to d(a0, a1). We have

Theorem 5.4. Let a0, a1 ∈ G+ and denote by ga0,a1(t) the curve a(0) ∗
etX∗ and let c(t) be any other continuously differentiable curve joining a0

to a1 in a unit of time. Then l(c) ≥ l(ga0,a1).

Proof: As in Section 2, consider

l(c) =

∫ 1

0

‖ċ(t)‖α,c(t) dt =

∫ 1

0

‖c−1(t) ∗ ċ(t)‖ dt

≥

∥

∥

∥

∥

∫ 1

0

d ln c(t) dt

∥

∥

∥

∥

α

=

∥

∥

∥

∥

ln

(

a1

a0

)∥

∥

∥

∥

α

= d(a0, a1).

To close this section note that going from a0 to a1 along a geodesic can
be realized by means of the group action:

a1 = a0 ∗ eX∗ = Lg(a0), with g = e−X/2∗,

and a vector field Y defined along a geodesic curve a(t) ∈ G+ is parallel
if Y (t) = Lg(t)(Y (0)) for every t where g(t) is a group element taking a0

onto a1.
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5.3. Sequences of convolution type and geodesics in G
+.

Let us begin by recalling two results from [dB].

Theorem 5.5. Let q(t) ≡ {qn(t) : n ≥ 0} be a sequence of poly-
nomials of convolution type, with coefficient sequence {gn : n ≥ 0}
(i.e. qn(t) =

∑n
k=0 gk∗

n tk/k!), and let {αn} be as above. Then the follow-
ing are equivalent:

a) {gn} ∈ ℓ1(α),

b) there exists M > 0 such that ‖q(t)‖1,α ≤ e|t|M for all t ∈ C,

c) limt↓0 ‖q(t)‖1,α = 1,

d) lim supt↓0 ‖q(t)‖1,α < 2,

e) there exist δ > 0 and t0 ∈ (0, δ) such that q(t) ∈ ℓ1(α) for all t ∈
(0, δ) and Ψ(t0, z) ≡ Λz(q(t0)) 6= 0 if |z| = eρ,

f) there exists t0 ∈ C such that q(t0) ∈ ℓ1(α) and Λz(q(t0)) 6= 0
if |z| ≤ eρ,

g) there exists t0 ∈ C such that q(t0) ∈ ℓ1(α) and q(−t0) ∈ ℓ1(α).

Moreover, if one of these conditions holds, then
∑

n qn(t)zn/n! = etg(z)

where g(z) =
∑

n gnzn and both series converge in A(eρ) and all t ∈ C.

From parts (a) and (b) we can safely begin manipulating our polyno-
mial sequences without worrying much about convergence issues. And
of interest here is other result from [dB].

Theorem 5.6. Let q(t) ≡ {qn(t) : n ≥ 0} be a sequence of polynomials
of convolution type with coefficient sequence {gn | n ≥ 0}. Then

Λz(q(t)) =
∑

n

qn(t)zn = etg(z)

where g(z) =
∑

n gnzn. Also q0 = 1 as well as qn(0) = 0 for all n ≥ 1.

Let us now go backwards. Consider a geodesic a(t) = etX∗ in G+,
(see Proposition 5.1) with X ∈ ℓ1(α) that joins a(0) = 1 to a(1) = eX .
We have

Lemma 5.6. With the notations above, the family a(t) = {an(t) | n ≥
0} is of convolution type with coefficient sequence {Xn | n ≥ 0}.

Proof: The claim follows from identifying the n-th coordinate of a(t +
s) = a(t) ∗ a(s).

Lemma 5.7. With the notations introduced above, we also have

Λz(etX∗) = etΛz(X).
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Proof: Just a simple computation.

As in Section 4, we can define a k-dimensional geodesic surface in G+

by

Definition 5.2. A geodesic surface generated by X = (X1, . . . , Xk)
is a mapping Θ: Rk → A given by t = (t1, . . . , tx) → e〈t,X〉, where
〈t, X〉 =

∑

i tiXi.

Comment. The following lemma is a variation on the theme of the previ-
ous lemma, describes how cross-sequences are related to geodesic surfaces
in G+.

Lemma 5.8. Let {an(t1, t2) | n ≥ 0} be the sequence of polynomials
determined by the geodesic surface, then for any (t1, t2) and (s1, s2)

an(t1 + s1, t2 + s2) =

n
∑

k=0

ak(t1, s1)an−k(t2, s2).

Proof: For the reader.

Let us now consider a special class of sequences:

Definition 5.3. We shall say that a differentiable curve in w : R → ℓ1(α)
is a Scheffer sequence with generating sequence g ∈ ℓ1(α), whenever its
Gelfand transform Λz(w(t)) satisfies

(18)
d

dt
Λz(w(t)) = Λz(g)Λz(w(T )).

Proposition 5.2. Let q ∈ ℓ1(α) be the convolution sequence generated
by g ∈ ℓ1(α). If w(t) is the convolution sequence satisfying (18), then

a) wn(t + s) =
∑n

k=0 wk(t)qn−k(s),

and in particular

b) wn(t) =
∑n

k=0 wk(0)qn−k(t).

The proof is for the reader. The geometric way to understand Scheffer
sequences as geodesics is contained in

Lemma 5.9. Let w0 ∈ G+ and X ∈ ℓs
1(α) be a tangent vector to G+,

then the geodesic w(t) ≡ w0 ∗ etX∗ through w0 is a Scheffer sequence.

Proof: Just observe that Λz(w(t)) satisfies (18).
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5.4. Geodesics in D and exponential families.

We shall now consider the class of “densities” with respect to α defined
by

D =

{

q ∈ G+ | Eα(q) ≡

∞
∑

n=0

qnαn = 1

}

.

As with G+, here we differ radically from what we did above in Sec-
tions 2–4, since now positivity does not mean sequential positivity, and
D is richer than a collection of densities on N. Nevertheless, it still can be
thought of as a class of representatives for P+, the projective space arising
from the equivalence relation on G+ defined by a1 ∼ a2 ⇔ ∃ r ∈ (0,∞)
such that a1 = ra2. One can regard P+ as a homogeneous reductive
structure, and then try to pass on this structure on to D. But this is not
necessarily possible.

Instead, one can simply project the connection on G+ directly on
to D. This is carried out in detail in Sections 3 and 4, where it is shown
that curves

ρ(t) =
ρ1−t
0 ρt

1

Em[ρ1−t
0 ρt

1]

are geodesics. Actually, what changes from there to here is the nature of
the product in the algebra, but in an abstract setting, things are similar.
Let us briefly sketch the results. To go from G+ to D we consider the
projection

Φ: G+ −→ D; a −→ Φ(a) =
a

Eα(q)
.

Comment. Notice that this mapping is constant along rays {ra | r > 0},
thus it makes sense to think of D as representatives for P+. Notice as well
that the tangent mapping Φ̃ ≡ DΦ: (TG+)a → (TD)ρ, with ρ = Φ(a) is
given by

(19) X −→ Φ̃(X) = ρX − ρEα[ρX ].

Definition 5.4. With the notations introduced above, if ρ(t) is a curve
in D with tangent X and Y (t) is a vector field along ρ(t), tangent to D,
its covariant derivative along X is defined by

D̃X(Y ) = Φ̃(DX(Y )) = ρDX(Y ) − ρEα[DX(Y )]

where DX(Y ) = d
dt

(

Lg(t)−1(Y (t))
)

t=0
.

The following were proved in Section 3. The difference being that we
cannot talk of true densities anymore.
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Theorem 5.7. Let q(t)=q(0)∗etX be a geodesic in G+ passing trough q(0)
at t = 0 with speed X. Then Φ(q(t)) is a geodesic in D (i.e., it satisfies

D̃ρ̇(t)(ρ̇(t)) = 0).

Corollary 5.1. Let ρ0 and ρ1 be in D, then

ρ(t) =
ρt∗
0 ∗ ρ

(1−t)∗
1

Eα[ρt∗
0 ∗ ρ

(1−t)∗
1 ]

is a geodesic going from ρ0 to ρ1 in a unit of time.

Theorem 5.8. Let Ψ: t ∈ Rk → ρ(t) ∈ D be a continuously differen-

tiable mapping such that Xi = ∂Ψ(t)
∂ti

are linearly independent in ℓ1(α).

The family Π ≡ {ρ(t) | t ∈ Rk} is exponential if and only if, for any
pair t1 and t2, the curve s → Ψ(st1+(1−s)t2) is a geodesic joining ρ(t1)
to ρ(t2) in D. In this case Ψ(t) = Φ(e〈t,X〉).

Comment. Notice that as stated, the result may not be applicable to
probability densities. For that to be happen, we would have to add that
ρ(t) is pointwise positive. How do the pointwise sequences sit in G+ is
an open question.

Acknowledgements. We want to thank the referee for her/his com-
ments, which contributed to clarify the presentation.
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