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ABSTRACT 

   

Trees serve as a natural umbrella to mitigate insolation absorbed by features of 

the urban environment, especially building structures and pavements. For a desert 

community, trees are a particularly valuable asset because they contribute to energy 

conservation efforts, improve home values, allow for cost savings, and promote enhanced 

health and well-being. The main obstacle in creating a sustainable urban community in a 

desert city with trees is the scarceness and cost of irrigation water. Thus, strategically 

located and arranged desert trees with the fewest tree numbers possible potentially 

translate into significant energy, water and long-term cost savings as well as conservation, 

economic, and health benefits. The objective of this dissertation is to achieve this 

research goal with integrated methods from both theoretical and empirical perspectives.      

This dissertation includes three main parts. The first part proposes a spatial 

optimization method to optimize the tree locations with the objective to maximize shade 

coverage on building facades and open structures and minimize shade coverage on 

building rooftops in a 3-dimensional environment. Second, an outdoor urban physical 

scale model with field measurement is presented to understand the cooling and locational 

benefits of tree shade. The third part implements a microclimate numerical simulation 

model to analyze how the specific tree locations and arrangements influence outdoor 

microclimates and improve human thermal comfort. These three parts of the dissertation 

attempt to fill the research gap of how to strategically locate trees at the building to 

neighborhood scale, and quantifying the impact of such arrangements. 

Results highlight the significance of arranging residential shade trees across 

different geographical scales. In both the building and neighborhood scales, research 
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results recommend that trees should be arranged in the central part of the building south 

front yard. More cooling benefits are provided to the building structures and outdoor 

microclimates with a cluster tree arrangement without canopy overlap; however, if 

residents are interested in creating a better outdoor thermal environment, open space 

between trees is needed to enhance the wind environment for better human thermal 

comfort. Considering the rapid urbanization process, limited water resources supply, and 

the severe heat stress in the urban areas, judicious design and planning of trees is of 

increasing importance for improving the life quality and sustaining the urban 

environment.   
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement 

      Urbanization is an integrated natural and social phenomenon involving growth to the 

built environment due to economic drivers and population growth that influence thermal, 

hydrologic, and atmospheric characteristics of the region (Ma, Zhou, Pei, Haynie, & Fan, 

2012; Zhang & Seto, 2011). Urban areas are home to 54% of the current world population 

and that level is projected to reach 66% by 2050 within only 3% of the Earth’s terrestrial 

surface (United Nations, 2014). However, more than 78% of carbon emissions, 76% of 

industrial wood consumption, and 60% of residential water use occur in urban areas 

(Grimm et al., 2008). The rapid urban sprawl and expanded urban population has led to 

emerging problems including higher energy consumption, air quality degradation, human 

thermal discomfort, and the urban heat island (UHI) effects (Nazaroff, 2013; Oke, 1982; 

Song & Wang, 2014). The goal of this dissertation is to address one dimension of the 

challenges of urbanization, mitigation methods for the urban heat island effect. 

      To alleviate the extreme thermal stress and improve urban residents’ quality of life in 

the urban area, urban green infrastructure such as trees, shrubbery and turf grass are 

frequently used for residential landscaping, green roofs and walls, urban parks, as well as 

green corridors (Akbari, Pomerantz, & Taha, 2001; Middel, Chhetri, & Quay, 2015; Z.-H. 

Wang, Zhao, Yang, & Song, 2016). Trees and grass provide various environmental, social, 

health, and economic benefits to the urban environment, but at the related costs and 

expenditures such as water supply and maintenance costs (Roy, Byrne, & Pickering, 2012; 

Sarajevs, 2011; Shashua-Bar, Pearlmutter, & Erell, 2011). Thus, the guidelines for using 
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urban green infrastructure significantly rely on the local climate conditions and heat 

mitigation objectives (Norton et al., 2015).  

      For a desert city such as Phoenix Arizona, the water cost of urban lawns is significantly 

more than trees because of the high irrigation demand from grass. In addition, trees provide 

valuable shading benefits to the built environment as compared to lawns. Hence, desert 

trees are a more water-friendly strategy to cool down the outdoor environment and human 

dwellings (Z.-H. Wang et al., 2016). In a desert community, residential trees are a valuable 

asset to conserve energy, improve home values, mitigate UHI effects, add 

aesthetic/recreational/cultural values, decrease crime rate, and promote human thermal 

comfort, health, and well-beings (Akbari, 2002; Akbari et al., 2001; Bolund & Hunhammar, 

1999; Gold, 1976; Heisler & Grant, 2000; Nowak & Dwyer, 2007; O’Neill et al., 2009, p. 

200; Roy et al., 2012; Sander, Polasky, & Haight, 2010; Seo, Golub, & Kuby, 2014; Troy, 

Morgan Grove, & O’Neil-Dunne, 2012; Wolfe & Mennis, 2012). All of these benefits 

make residential trees be an indispensable part of the residential urban environment.  

      Although the benefits provided by trees are important and valuable, trees also have 

financial costs as well as contributing to certain environmental and health problems. Life 

cycle costs of trees, include planting and establishment, irrigation, maintenance (pruning, 

crown thinning and removal) and green waste disposal (G. McPherson et al., 2004). 

Furthermore, trees contribute to environmental problems such as generating and releasing 

volatile organic compounds (Kesselmeier & Staudt, 1999; Owen, MacKenzie, Stewart, 

Donovan, & Hewitt, 2003), and health issues to the elderly and children from pollen allergy 

or insect attacks and diseases (Donovan, Michael, Gatziolis, Prestemon, & Whitsel, 2015; 
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Lovasi et al., 2013). Avoiding and minimizing these drawbacks from trees are necessary to 

help the development of urban green infrastructure in the desert city.   

      Besides the costs and expenditures issues of trees, inappropriate tree locations generate 

unnecessary shade to solar panels on the residential rooftops. Exposed residential rooftop 

space is ideally reserved for placing solar panels to generate electricity from direct solar 

radiation. Although the rooftop is the optimal place to capture solar energy, trees 

significantly influence photovoltaic efficiency of the solar panels if their shade obscures the 

direct solar radiation (Fogl & Moudrý, 2016; Levinson, Akbari, Pomerantz, & Gupta, 2009; 

Li, Zhang, & Davey, 2015; Tooke, Coops, Voogt, & Meitner, 2011). Wisely locating 

residential shade trees with the consideration of solar energy production on rooftops will 

significantly benefit the overall energy conservation of the city residents and utility 

companies.   

      Considering all the advantages and disadvantages of trees, the tradeoffs between energy, 

water, and related costs and expenditures limit the number of trees to be planted in the 

desert community (Livesley, McPherson, & Calfapietra, 2016; G. McPherson et al., 2004; 

Sawka, Millward, Mckay, & Sarkovich, 2013). Effective strategies are therefore needed to 

maximize the overall benefits from trees with the fewest tree numbers in an effort to 

simultaneously reduce water consumption, tree maintenance cost, and energy use (E. G. 

McPherson, Simpson, & Livingston, 1989). All of these conditions require a better method 

to design and locate the trees optimally at the building and neighbourhood scale. 

Strategically locating trees in a hot arid residential environment is significant and necessary.   

      Existing research uses a variety of methods such as remote sensing and numerical 

simulation to explore how the locations and arrangements of trees influence the built 
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environment. Remotely sensed data supports research at the city and regional scales and 

shows how a clustered arrangement of trees contributes to improved cooling effects (Fan, 

Myint, & Zheng, 2015; Myint et al., 2015). These studies however do not examine the 

specific relationship between trees and buildings and neglect to derive temperatures under 

the tree canopies or the building facade. Numerical simulation methods have also been 

utilized to understand the locational benefits of trees in the neighborhood to building scale. 

Like the remotely sensed methods, researchers have used numerical simulation models to 

show that a clustered arrangement of trees offer improved cooling benefits (Ooka, Chen, & 

Kato, 2008). However, some other numerical simulation results suggest that a scattered tree 

pattern provides a better ventilation environment for improving human thermal comfort (H. 

Chen, Ooka, & Kato, 2008). These contrasting results and the gaps in research leave it 

unclear how tree spacing and layouts influence microclimate effects and human thermal 

comfort. 

1.2 Research Objectives 

      The overarching objective of this dissertation research is to identify tree locations and 

design arrangements to maximize the environmental benefits at building and neighborhood 

scales in an urban desert residential environment. Three individual research projects were 

designed and implemented to better understand the relationship between trees, buildings, 

and the urban microclimate through a case study in a residential neighborhood in the City 

of Tempe, AZ (SE and adjacent to Phoenix, AZ). The first research project will introduce 

and demonstrate a 3D spatial optimization method to quantify optimal tree locations and 

arrangements that provide the most benefit for single family building structures. Further, 

the second research goal will aim to better quantify the direct thermal characteristics of tree 
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shade to buildings through an outdoor urban physical scale model experiment. These two 

research projects attempt to identify the best tree locations and arrangements to maximize 

the shading coverage and cooling benefits at the single-family building scale. The third 

research goal will bridge the optimal tree locations from building scale to neighborhood 

scale through a microclimate numerical simulation analyzing dispersed and clustered 

arrangements of trees. The overall research findings of this dissertation will provide a 

quantitative method to locate trees at the different geographical scales (parcel and 

neighborhood) with consideration of urban microclimate effects and human thermal 

comfort, and offer insights to maximize tree benefits for the individual residents as well as 

their residential neighborhood. Research outcomes can help policy makers, urban planners, 

homeowners, and landscape architects to design and plant trees to create a sustainable 

urban environment.   

1.3 Outline of the Dissertation 

      This dissertation includes five chapters: an introductory chapter, three individual 

chapters each serves as a first-authored research article, and a concluding chapter. This 

section describes them in more details. 

      Chapter 2 integrates geographic information systems (GIS) with spatial optimization to 

precisely and optimally locate shade trees for a residential household. Shade coverage on 

different building structures (rooftops, facade, and windows) and nearby buildings are 

considered in the optimization model. The research in this chapter attempts to identify the 

best tree locations and arrangement at the single-family building scale. This Chapter was 

published in Building and Environment in February 2017 with co-authors Elizabeth A. 

Wentz and Alan T. Murray. 
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      Chapter 3 evaluates the cooling benefits of tree shade to the building facade under 

different tree densities, locations and arrangements. The locational benefits of trees are 

evaluated in the outdoor urban physical scale model experiment. The research in this 

chapter validates the research results in chapter 2 and further provides realistic 

recommendation to planting trees in the building scale. This chapter is under revision and 

will be submitted to Urban Forestry & Urban Greening in September 2017 with co-

authors Jiachuan Yang, Zhi-Hua Wang, and Elizabeth A. Wentz. 

      Chapter 4 assesses the impact of tree locations and arrangements for the outdoor 

microclimate and human thermal comfort in the urban desert residential environment. 

Outdoor microclimate and human thermal comfort under different tree locations and 

arrangements are simulated by the microclimate numerical simulation platform. The 

research in this chapter inherits the research results from chapter 2 and 3, and evaluates 

whether optimal tree planting scenarios for the individual buildings create optimal 

microclimate built environment in the residential neighborhood. This chapter is under 

preparation and will be submitted to Landscape and Urban Planning in September 2017 

with co-authors David J. Sailor and Elizabeth A. Wentz. 

      Chapter 5 is the conclusion of the dissertation. This chapter summarizes the main 

achievements of this dissertation and proposes future research directions. 
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CHAPTER 2 

TREE SHADE COVERAGE OPTIMIZATION IN AN URBAN RESIDENTIAL 

ENVIRONMENT 

2.1 Introduction 

      The urban heat island (UHI) is the consequence of the thermal properties of the urban 

fabric that results in higher temperatures in urban areas compared to the surrounding rural 

areas (Oke, 1973, 1982). The UHI exacerbates heat waves during the summer, increases 

energy consumption, and more importantly, increases the risk of heat-related morbidity 

and mortality, especially for the elderly, children, and disadvantaged groups (Bassil & 

Cole, 2010; Bi et al., 2011; McGeehin & Mirabelli, 2001; Tomlinson, Chapman, Thornes, 

& Baker, 2011). Well-known UHI mitigation methods rely on increased vegetation such 

as shading impervious surfaces through increased tree coverage, building urban parks 

with lawns and water ponds, and adding green roofs or cool roofs on residential and 

commercial buildings (Akbari et al., 2001; Chang, Li, & Chang, 2007; Golden, Carlson, 

Kaloush, & Phelan, 2007; Gui, Phelan, Kaloush, & Golden, 2007; Middel et al., 2015; 

Tan, Lau, & Ng, 2015; Z.-H. Wang et al., 2016; Zhao, Myint, Wentz, & Fan, 2015). In 

this research, we focus on the strategic planning of shade trees in residential areas, which 

has been shown to provide significant energy and long-term cost savings, to enhance the 

environmental quality of the urban ecosystem, and to promote a range of human health 

benefits (Akbari, 2002; Akbari et al., 2001; Pandit & Laband, 2010; Parisi, Kimlin, Wong, 

& Wilson, 2000). Intuitively, the benefits of shade are best realized when trees are 

located on the sunward facing facade of buildings such as the west and southwest of a 

building for regions in the northern hemisphere. A simple method to create ample shade 
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involves planting as many trees as possible on these sides of the building. This approach, 

however, is impractical because of the financial cost of trees as well as water restrictions 

in many water regulated communities (Wentz, Rode, Li, Tellman, & Turner, 2016). 

Similarly, excessive shading reduces the possibility of retaining exposed residential 

rooftops for placing electricity-generating solar panels (Fogl & Moudrý, 2016; Levinson 

et al., 2009; Li et al., 2015; Tooke et al., 2011). So while existing research provides a 

general guideline on where to locate residential trees, they fail to consider the position of 

windows and doors, residential landscape siting restrictions, and the rooftop solar energy 

loss from shade coverage (Calcerano & Martinelli, 2016; Hwang, Wiseman, & Thomas, 

2015; G. McPherson et al., 2004; Sawka et al., 2013; Simpson & McPherson, 1996, p. 1). 

The challenge, however, is achieving the maximum benefits of shade at the individual 

building structure level with a more quantitative method, something that is not fully 

understood (Berry, Livesley, & Aye, 2013; Gomez-Munoz, Porta-Gándara, & Fernández, 

2010).  

      The goal of this research is to consider where to optimally locate shade trees on a 

residential parcel such that: a) the shading of facade, windows, and doors of home 

structures is maximized and rooftop shade is minimized; b) the shade from trees to the 

surrounding structures is considered; and c) spatial optimization is creatively used to find 

the best tree locations quantitatively in 3-dimentional (3D) environment. The study is 

limited to the shade coverage provided by trees and does not consider the dynamics of 

sensible and latent heat flux that occurs through evapotranspiration, diurnal variations in 

insolation, and seasonality. While limited in scope, we believe this approach provides an 

effective strategy for maximizing the shade of trees on residential structures. We 
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therefore present a 3D spatial optimization model that identifies optimal tree locations for 

residential structures by integrating geographic information systems (GIS) with spatial 

optimization methods to solve this problem as a mathematical model. We demonstrate 

the method on a residential neighborhood in the greater Phoenix metropolitan area of 

Arizona, where tree shade coverage, water conservation, and solar energy potential are 

critical because of the hot and dry conditions. 

2.2 Literature Review 

      The study described here draws upon literature examining residential tree shade and 

spatial optimization in 3D environment. From the residential tree shade literature, 

research shows that west and east tree shade outside of house open structures provide the 

optimal cooling effects and energy reduction on residential homes (G. McPherson et al., 

2004). The 3D spatial optimization literature guides the research on how to extend the 2-

dimentional (2D) maximum coverage location problem into the 3D space (Lee, 2015). 

The following sections elaborate on these bodies of work.  

2.2.1 Impact of Tree Shade 

      Existing research on the impact of tree shade on home structures associates tree shade 

with energy use savings in a single-family house setting. Larger energy savings, up to 54% 

in some studies (Sawka et al., 2013), are found with trees located on the west side of a 

home, followed by trees on the east or southwest (G. McPherson et al., 2004; Simpson & 

McPherson, 1996). These conclusions are similar across different northern hemisphere 

climate zones where both heating and cooling conditions are considered. For example, 

Hwang et al. (Hwang et al., 2015) evaluated the tree shade effects from a single tree to a 

single family house during the cooling and heating season at both northern (Minneapolis 
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and Indianapolis) and lower latitude (Charlotte and Orlando) locations. Using the 

distance between the tree and the building through eight cardinal (E, S, W, N) and inter-

cardinal points (NE, SE, SW, NW), they show that trees on the west and east side of the 

house provided more energy conservation than those on the south side during the summer 

followed by the southeast or southwest. 

      The beneficial relationship between tree shade and energy is well established but 

there are only general guidelines on tree placement strategies and the optimal number of 

trees. Tree placement strategies emphasize cardinal direction with precision only 

specified at the inter-cardinal level (Hwang et al., 2015) and without incorporating the 

distance from the home structure. This type of information is limited when it is infeasible 

to plant trees in specific cardinal directions. Furthermore, the distance trees are planted 

from the house structure, independent of the directionality, can further impact the area 

tree shade on a facade. Similarly, the number of planted trees is understudied, with most 

research focusing on the impact of a single tree. The starting point for these issues is 

research such as Simpson & McPherson (Simpson & McPherson, 1996), McPherson et al. 

(G. McPherson et al., 2004), Calcerano & Martinelli (Calcerano & Martinelli, 2016), 

Huang et al. (Y. J. Huang, Akbari, Taha, & Rosenfeld, 1987), and Akbari & Taha 

(Akbari & Taha, 1992), who examined shading effects on different tree heights, multiple 

story buildings, and number of trees. Results are consistent with prior research showing 

optimal tree placement for energy savings is the east and west side of the buildings. 

These studies offer a broader range of design considerations, but they still do not consider 

the relationship to neighboring houses, the open features on the building facade, and a 

potential for rooftop solar panels. 
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      Design considerations for tree placement additionally need to consider the 

relationship to nearby buildings, additional shade for windows and doors, and rooftop 

exposure for solar panel installations. There are two considerations for nearby buildings 

and tree placement. Nearby buildings, depending on distance, can simultaneously provide 

shade as well as receive shade from target building trees, although little research has 

examined this dual relationship. Also missing from the literature is tree placement to 

maximize shade on windows and doors.   Windows and doors have less heat-insulation 

comparing to facades, so shading the windows by trees or other nearby structures will 

provide significant energy saving to the household comparing to facade (Safarzadeh & 

Bahadori, 2005). On the other hand, residential building rooftops are the preferred 

location for photovoltaic solar panels to generate electricity from direct solar radiation, 

shown in multiple geographic locations (Ordóñez, Jadraque, Alegre, & Martínez, 2010). 

Tree canopy coverage and shade will significantly reduce the photovoltaic efficiency of 

solar panels (Fogl & Moudrý, 2016; Levinson et al., 2009; Tooke et al., 2011).  

2.2.2 Spatial Optimization in 3D 

      A challenge in maximizing shade coverage is that the buildings and trees are 3D 

objects, where the comparative location of the trees, roof, facade, doors and windows are 

important components for insolation remediation. Many real world facility location 

modeling problems have service coverage in the 3D environment such as camera 

surveillance or Wi-Fi connection services (Amriki & Atrey, 2014; H. Huang et al., 2014; 

Lee, 2015). Nevertheless, existing facility location modeling problems are mostly 

abstracted and formulated in the 2D environment, such as the location set covering 

problem (LSCP) and the maximal covering location problem (MCLP) (R. Church & 
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ReVelle, 1974; Toregas, Swain, ReVelle, & Bergman, 1971). To manage the 3D space, 

these 3D coverage problems were simplified into 2D environment to ease the formulation 

and solution of the facility location problems (Letourneux, Corre, Suteau, & Lostanlen, 

2012). Because of the dimensional simplification, the reliability and accuracy of optimal 

facility locations were unavoidably lost projecting from a 3D to a 2D environment.  

      With the development of 3D computational tools, several attempts have been made to 

appropriately formulate and solve the facility location modeling problems in the 3D 

environment (Lee, 2015). Some of this has taken place through a 2.5D surface, such as 

digital elevation model (DEM), by using a visibility analysis or viewshed analysis 

(Podobnikar & Vrečko, 2012). Goodchild & Lee (Goodchild & Lee, 1989) utilized 

visibility analysis to locate the minimum number of viewpoints to observe the entire 

DEM surface, or to locate a fixed number of viewpoints to maximize the overall visible 

area on the DEM. This research extended the concept of set-covering problems to the 

topographic surface, and viewshed analysis was used to derive coverage on the DEM 

surface rather than the 2D planar surface. However, DEM is not a real 3D surface and the 

coverage derivation by visibility analysis required extensive computation. These 

limitations make it difficult to use their method to obtain the optimal coverage in a true 

3D environment. To overcome the computational inefficiency, Kim et al. (Kim, Rana, & 

Wise, 2004) extended Goodchild and Lee’s research by only utilizing terrain features 

(peak, pass and pit) as candidate viewpoints to acquire the maximal coverage with given 

number of viewpoints. Their method solved the problems faster and overcame the 

computational difficulty, but they used the same viewshed method to derive the coverage 

in 2.5D. Murray et al. (Murray, Kim, Davis, Machiraju, & Parent, 2007) found optimal 
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security sensor placements in a 3D university environment utilizing the MCLP and the 

backup coverage location problem with visibility analysis. They considered the 3D 

building blocking effects in the coverage derivation process, but the coverage was only 

derived on the ground surface and did not consider the coverage on campus building 

facades. Most recently, Bao et al. (Bao, Xiao, Lai, Zhang, & Kim, 2015) applied 

viewshed analysis to derive the watchtower coverage on the DEM, and integrated LSCP 

and MCLP solutions to determine the optimal watchtower locations for forest fire 

monitoring. To simplify the coverage representation, they used viweshed analysis to 

derive coverage on the 2D raster surface. Although their methods integrate different 

methods to improve the efficiency of optimizing watchtower location, the coverage 

representation is still limited in the 2D rather than 3D. All of the research above 

demonstrate that visibility analysis or viewshed analysis are useful methods to help 

derive service coverage in the 2.5D or 3D environment. However, none of these existing 

literature deals with the service coverage on the real 3D objects. This remains as an 

obvious research opportunity to extend this type of research into 3D environment.   

      To extend existing facility location modeling analysis into 3D, a range of problems 

exist such as computational complexity, 3D data availability, problem size, and model 

complexity. However, the key question is how to extend the 2D service coverage into the 

3D environment. Besides the visibility analysis, several researchers have attempted to 

solve the facility location problems with 3D coverage in the real 3D space (Amriki & 

Atrey, 2014; Dao, Zhou, Thill, & Delmelle, 2012; Lee, 2015). Lee (Lee, 2015) 

introduced a 3D coverage location model of Wi-Fi access points in an indoor 

environment. Euclidean distance in the 3D space was utilized to generate the 3D 
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volumetric coverage rather than the 2D circular coverage. The software environment 

ArcGIS was able to generate demand nodes and candidate facility sites within the 3D 

representation, calculate 3D Euclidean distance, and visualize solutions in a 3D 

environment. Commercial optimization software (CPLEX) successfully solved the 

problem in seconds with no computational difficulty. Lee’s research provides a 

successful example to extend facility location modeling problems by using 3D volumetric 

coverage in the 3D GIS environment, however, the 3D volumetric coverage was all 

perfectly sphere shape and did not consider the coverage change by surrounding obstacles. 

Similar attempts were made by Amriki & Atrey (Amriki & Atrey, 2014) on bus 

surveillance system. In their research, they optimized camera locations and orientations 

in a 3D interior bus space that was simulated by Autodesk 3ds Max. Maximal overall 

surveillance coverage with a specific number of cameras and minimum number of 

cameras to reach specified coverage in the bus were presented. They were able to 

evaluate the camera’s visible region in 3D while avoiding obstacles, but they evaluated 

the empty space rather than coverage on 3D objects. Zhao et al. (Zhao, Wentz, & Murray, 

2014) demonstrated a simple version of shade coverage optimization for the single family 

household in Tempe, AZ. Shade coverage was derived on different 3D building structures 

in the 3D environment. Zhao et al.’s research provides limited details about formulating 

and solving the facility location modelling problems in 3D, requiring more detailed 

research on service coverage in 3D objects and decide the best facility locations. 
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2.3 Methods 

2.3.1 Study Area  

      The study focuses on a parcel with a detached single-family home and the 

surrounding buildings within a residential neighborhood in the City of Tempe, Arizona 

(33.4 N, 111.9 W, Figure 2.1). Tempe is a municipality within the greater Phoenix 

metropolitan area in the Sonoran Desert of the U.S. Southwest. The population of Tempe 

in 2010 was more than 160,000 with greater than 40% of the residents living in single-

family detached dwellings (US Census Bureau., n.d.). With summertime temperatures 

reaching or exceeding 43C, heat mitigation strategies such as tree shade are essential for 

reducing heat-related diseases and energy consumption.  

      The specific parcel we analyzed is a generic residential parcel in a Tempe residential 

neighborhood where most of the single-family households were built during the 1950s 

and 1960s. The average parcel size is 695 m2 and the typical home is single story with an 

average size of 134 m2. The residential neighborhood has a dense building arrangement 

with neighboring structures next to one another on the west and east side, except those 

close to the major roads running north-south. This specific neighborhood layout makes it 

infeasible to plant trees on the west or east side of the building to provide shade. 

Although there are no regulations that specify the type of landscaping, 95% of the parcels 

in this neighborhood contain trees (identified from remotely sensed images), which offer 

some level of shade on the home structures. 
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Figure 2.1 Sample Home and Parcel in the Residential Neighborhood of Tempe 

2.3.2 Data Sources 

      Two data types are required for the analysis, the specifications of the building (e.g., 

dimensions, location, and facade features) and the specifications of the tree (e.g., tree 

height, location). The digital representation of the house structure for the selected parcel 

involves knowing the building size, shape, roof contour, windows/doors locations, and 

overall orientation. We used Sketchup and its Google Map component to create single 

family houses at the specific geographical location (Figure 2.2). We constructed a 18 

m×12 m house, approximately 216 m2 in size, with 4 m height sloped rooftop, three 2 

m×1 m windows, and a 2 m×1.5 m front door on the south facade. The house has a 

multi-faceted roof surface and is positioned with the front of the house facing the south. 

The area of south roof, south facade and open structures (3 windows and 1 door) are 

108.5 m2, 45 m2 and 9 m2. The distance between this structure and nearby buildings is 3 

m.  
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      The digital representation of the tree includes tree size, shape, and position. The 3D 

tree plugin in Sketchup was used to create a theoretical 7 m high, 6 m crown diameter, 

and 3 m trunk height to represent a thornless mature mesquite (Prosopis thornless hybrid 

‘AZT™’), a common xeriscape flora found in Tempe residential neighborhoods. The 

advantage of our tree model is that we can represent realistic desert trees with low 

leaf/area index rather than other simple “cylinder-like” or “cone-like” tree models. By 

using this tree model, we can derive a more accurate tree shade on the structure. 

Although different tree shapes, sizes, species can be selected and these parameters would 

definitely influence the level of tree shade on different building structures such as 

rooftops, this 7 m thornless mesquite is typical of those found in Tempe (“Eligible desert-

adaptive shade trees,” n.d.; “Urban Tree Scientist - Central Arizona–Phoenix Long-Term 

Ecological Research,” n.d.) (see Figure 2.2). The challenge, of course, is identifying the 

best placement of one or more trees to provide shade coverage to this building structure. 

 

Figure 2.2 3D Building and Tree Models 

2.3.3 Modeling Approach   

      We utilized GIS and spatial optimization to model the tree shade coverage 

optimization problem. GIS tools provide data storage, spatial analysis, and 3D topology. 
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Optimization methods are used to abstract the real world situation as a mathematical 

problem as well as solve this problem. This section describes the analytical procedures 

we used. 

2.3.3.1 GIS: Surface Coverage Derivation 

      Spatial topology and trigonometry principles are used to store the spatial information 

and to derive surface coverage. Topological data structures in GIS store the location, 

configuration, and attribute information of 2D and 3D objects. More specifically, to 

derive the shadow location, trigonometry principles are used. The formal trigonometry 

specifications are shown in equation (2.1) - (2.4). In these equations, (𝑥, 𝑦, 𝑧) represents 

points from a tree, ε is the solar profile angle, γ is the difference between solar azimuth 

and surface azimuth angles, β is the solar altitude angle, and H is the height of the roof. 

All solar angles are calculated based on Duffie and Beckman (2013) (Duffie, 2013). 

Figure 2.3 shows that it is possible to mathematically derive shade coverage associated 

with 3D object across a range of conditions. Figure 2.3(a) shows the solar angles and 

ground shading, the shading point on the ground is at (𝑥′, 𝑦′, 0). Figure 2.3(b) represents 

the facade shading, the shading point on the facade is (0, 𝑦′′, 𝑧′′). Figure 2.3(c) explains 

the roof shading, the shading point on the rooftop is (𝑥′′′, 𝑦′′′, 𝐻).  

h =  
z

tan β
 

(2.1) 

where h is the shadow length on the 2D plane by solar altitude angle (β)  

x′ =  x −
z

tan ε
;    y′ =  y − hsinγ 

(2.2) 

which calculates the horizontal shadow projection (𝑥′, 𝑦′) based on solar profile  
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angle (ε) and azimuth angle (γ) 

y′′ =  y − xtanγ;     z′′ =
x′z

x′ − x
 

(2.3) 

which determines the vertical shadow projection, (y′′, z′′), over a house facade 

according to horizontal shadow (x′) and azimuth angle (γ) 

 

x′′′ =  x −
z − H

tan ε
;    y′′′ =  y − (x − x′′′)tanγ 

(2.4) 

which derives the horizontal projection (x′′′, y′′′) on a roof given building height 

(H), solar profile angle (ε) and azimuth angle (γ) 

 

 

(a) Ground shading. 
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(b) Facade shading. 

 

 

(c) Roof shading. 

Figure 2.3 Shade Projections from a Point (x, y, z) on a 3D Object (Redraw from Gomez-

Munoz et al. (2010) (Gomez-Munoz et al., 2010)) 
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2.3.3.2 Spatial Optimization: Tree Placement 

      Using Church & Murray (Church & Murray, 2009) and the MCLP of Church & 

ReVelle (Church & ReVelle, 1974), we define the following notation:  

i = index of 3D object components; 

j = index of potential tree locations; 

d = index of extreme heat days; 

t = index of extreme heat hours in a day d; 

wi = weight of object component i; 

gi =  area of object component i; 

p = number of trees to be located;   

f( ) = shade coverage function relating parameters of an object using 

trigonometry equation (2.1) - (2.4); 

 Std = solar angles at time t on day d; 

 Ni = set of potential tree siting locations that shade object component i; 

Decision variables are:  

Citd = amount of object component i covered at time t, day d;     

      This notation allows for the specification of object components, such as roof, facade, 

windows and doors. Accordingly, Citd tracks shade provided to object component i at 

time t on day d as a function of surface coverage. Using this notation, the model for 3D 

object coverage is as follows: 

Xj = {
1,
0,

 

if tree located at potential site j 

otherwise 
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Maximize                                ∑ wi ∑ ∑ Citdtdi                                                     (2.5) 

Subject to: 

Citd = f(gi, Std, Xj, j ∈ Ni)  ∀i, t, d (2.6) 

∑ Xj = p

j

 (2.7) 

Xj = {0,1}  ∀j (2.8) 

Citd ≥ 0  ∀i, t, d (2.9) 

  

      The objective, (2.5), is to maximize tree shade coverage of different object 

component i (roof, facade and windows/doors) during a particular time period and date 

with a predefined weight wi. wi represents the priority of tree shade coverage to different 

building structure i. In general, windows/doors are open structures and need the most 

shade to mitigate direct solar radiation in the desert environment, following with building 

facade. Roof needs less or no shading because residential roof is always built with heat-

insulation materials and is a perfect place to install solar panels to generate electricity 

from solar energy. Constraints (2.6) define the amount of coverage that will be provided 

to object component i (roof, facade and windows/doors) based upon the tree locations and 

solar angles at a specific time period and date. Constraints (2.7) specify the number of 

trees to be located. Integer restrictions on the siting variables are stipulated in Constraints 

(2.8). Non-negative restrictions on coverage variables are indicated in Constraints (2.9). 

2.3.3.3 Heuristic 

      We solve the 3D tree shade optimization problem through a heuristic solution 

approach for three reasons. First, it is computationally intensive to calculate shade 
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coverage on different building structures by trigonometry principles we mention above, 

especially when we have a detailed and complicated 3D tree and building models. Second, 

there is not an exact method that can be applied to solve this optimization problem with a 

nonlinear constraint involving a trigonometric function. Third, trees can be located 

anywhere in the continuous space resulting in infinite combinations of different tree 

arrangements with multiple trees. Thus, we used a greedy-adding algorithm combining 

with brute-force (enumeration of all possible candidate sites) method to find a near-

optimal solution for this problem. The detailed steps are: 

      1) Define the set of potential tree siting locations (Ni) based on tree height, tree crown 

diameter, outdoor landscaping codebook, and building layouts. 

      2) Brute-force method is used to locate the first tree by enumerating all the potential 

tree locations around the building during heat hours at given number of summer days. 

The best tree location can be found by maximizing tree shade coverage (Citd) on building 

structures with predefined shading weights (wi).  

      3) To avoid tree crown overlap, the potential tree siting locations (Ni) within the 

existing tree crown is eliminated.  

      4) Repeat step 2) and 3) to locate the next tree around the building, until the potential 

tree siting location set is empty or locates p trees.  

2.3.3.4 Model Parameter Explanation and Simplification 

      Because infinite potential tree locations exist, the simplification of potential tree 

siting location set is necessary. Potential tree placement on the residential parcel is 

summarized based on landscape design guidelines (City of Tempe, AZ : Zoning and 

Development Code - Appendix, 2011; City of Tempe, AZ : Zoning and Development Code 
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- Part 4: Development Standards, 2011). In the northern hemisphere, landscape design 

guidelines suggest that trees should be planted on the south, west, or east of structures. 

Because of the space limitation on the west and east side of the house, we limited tree 

placement to the south of the building. Further, to avoid unnecessary tree shade coverage 

on the rooftops, a minimum distance of 3 m between the tree and the building is 

predefined (Figure 2.4).   

 

Figure 2.4 Potential Tree Placement Area in the Study Site (Plan View) 

      To simplify the solution process, the continuous space was discretized into 42 

potential tree locations as the potential facility location set (Ni) (3 m intervals in the east-

west direction and 1 m intervals in the south-north direction). Figure 2.5 shows half of 

the potential tree locations in the study site. Besides testing the shading benefits for the 

target building, we also derive the shade coverage on the two nearby buildings to obtain 

the shading benefits for the surrounding building structures. We locate two trees (p=2) 

because this is the most common number of trees to be planted in the desert city 

considering the water usage and landscape regulation, but in general, the spatial 

optimization method can be used to locate any number of trees in the 3D environment.  
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Figure 2.5 Potential Tree Locations in the Study Site (Plan View) 

      The weight of object component i (wi) was defined as 0.7, 0.4 and -0.1 for 

windows/doors, facade and rooftops. Several reasons helped to define these weighting 

coefficients. The structure components we assigned as most important for shading were 

open structures such as windows and doors. Although these open structures are a small 

area compared to facades and rooftops, solar radiation impacts are greatest through 

windows and doors (Wagar, 1984). From existing literature, the heat conduction from the 

sun through 1 ft2 of facade or roof was only about 2% of the heat that passed through a 

window (Heisler, 1986). Thus, when tree shade covers open structures, there are greater 

energy savings. Considering heat conduction and solar radiation, shade coverage on 

windows/doors had the highest priority, followed by facade, and rooftops. Further, 

residential roof was an appropriate location to place solar panels to generate solar energy. 

We penalized the rooftop shading by using a small negative weight. 

      The shade was determined using trigonometry principles detailed in section 3.3.1. 

Sun location and radiation was simulated in Sketchup. The criteria for measuring shade 

effects on different structures of a single-family residence are based on the work of 
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Shaviv & Yezioro (Shaviv & Yezioro, 1997), who proposed the use of a geometrical 

shading coefficient to express the ratio between shaded and total examined surface areas. 

We selected the heat period from 9:30 to 15:30 in a 30 minutes’ interval during four heat 

days (June 15th, July 15th, August 15th, and September 15th) to represent the periods of 

greatest insolation (Pidwirny, 2006). To simplify the optimization criterion, we assume 

the most shading coverage will result in the most cooling benefits for the building 

structures in this research. A heuristic approach for solving the optimization model, (5) - 

(9), was structured based on the section 3.3.3. The accumulated weighted shaded area, 

objective (5), was calculated for each potential location with the given weights (wi) for 

windows/doors, facade and rooftops.  

2.4 Results 

      The optimization results illustrate how tree shade area changes across different 

locations and building-tree distances (Figure 2.6). From Figure 2.6(a), tree shade 

coverage significantly decreases when we increase the distance between the tree and the 

building, and the central parts of the front yard will provide the most shade for the overall 

household in regardless of building-tree distance. Figure 2.6(b) shows the tree shade 

coverage surface in the potential tree planting area by interpolation in the GIS 

environment. The results show that facade tree shade area could be reduced to zero if 

trees are planted near the southern parcel boundary and far away from the buildings. This 

demonstrates that simply following the guidelines, planting trees on a specific side of a 

buildings, could result in little or no shade on the house structure. 
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(a) Accumulated weighted shaded area (m2) under different locations and tree-building 

distances (distance of 3 m, 4 m and 5 m from left to right). 

 

(b) Geographical representation of tree location priority when planting one tree. 

Figure 2.6 Tree Shade Coverage in One Tree Scenario 

      The results of the heuristic modeling for the first tree show that the best site is at 

location 4, which is 3 m from the building’s south facade and 9 m from the building west 
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and east facades (Figure 2.6(a) and 2.7(a)). The accumulated shading time from this 

single mature mesquite tree to the central part of the building south facade and open 

structures on August 15th is up to four hours (Figure 2.7(b)). Results show that the single 

mature mesquite tree can provide this shading to the central parts of building facade and 

open structures on this day. 

 

(a) Tree location (plan view). 

 

(b) Shading time in 3D environment. 

Figure 2.7 Optimal Shading from One Tree (August 15th, at Location 4) 

       To locate a second tree with our heuristic method, we first eliminated the potential 

facility set based on the first tree location and landscaping limitation (no tree crown 
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overlap), then enumerate all remaining options. To improve the performance of the 

heuristic algorithm, we repeated the heuristic algorithm with three different starting 

conditions (the first tree locates at 3, 4, or 5). The results show that the best near-optimal 

solution is at location 3 and 5 (see Figure 2.8 and Figure 2.9(a)). The accumulated 

shading time from these two trees on August 15th is shown in Figure 2.9(b). Two mature 

mesquite trees can provide up to 6 hours shading to the central parts of the building south 

facade and open structures in this day, and provide at least one hour shading to the whole 

building facade. The top three two-trees siting arrangements are location 3 and 5, location 

4 and 6, and location 2 and 5. 

 

Figure 2.8 Accumulated Weighted Shaded Area (m2) Comparison for Two Trees (Only 

Showing the Two Tree Combination from Location 1 to 7) 
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(a) Tree locations (plan view). 

 

(b) Shading time in 3D environment. 

Figure 2.9 The Best Near-optimal Shading Results from Two Trees (August 15th, at 

Location 3 and 5) 

      A breakdown of component coverage (windows/doors, facade and rooftops) is 

summarized in Figure 2.10 for the thirteen 30-minutes time periods between 9:30 and 

15:30 with the average value of June 15th, July 15th, August 15th and September 15th in 

2016. Two trees are located at location 3 and 5, which presents the best near-optimal 

shading area found by the spatial optimization method in a two-tree setting. In Figure 

2.10(a), the tree shade coverage ratio demonstrates the shade to different components of 
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the residential structures. For example, windows/door had more than 35% shade coverage 

ratio during 11:00 to 15:00. This results in a steady solar radiation deduction provided by 

these two trees for this single family household during the heat hours. The south facade 

of the house was covered by shade more than 30% from 10:00 to 15:00. Significant 

blocking effects for solar radiation from tree shade were provided. With less solar 

radiation penetrates the open structures and heats up building facade, the individual 

household can significantly reduce its energy consumption. The south roof coverage ratio 

was all less than 7%, which represents a good exposed rooftop for the solar energy 

potential. From Figure 2.10(b), the four-day average open structure accumulated shade 

coverage is 41.96 m2, with the maximum coverage of 3.82 m2 out of 9 m2 at 12:00. The 

four-day average accumulated shade coverage is 202.94 m2, with the maximum coverage 

of 18.38 m2 out of 45 m2 at 12:00 as well. The four-day average accumulated shade 

coverage of rooftop is 80.26 m2, with the maximum coverage of 7.03 m2 out of 108.5 m2 

at 10:30. By using the spatial optimization method, we successfully maximize the 

building facade and open structure shading, and minimize the shade on the building 

rooftop. 
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(a) Average summer month shade coverage ratio (%) at optimal location. 

 

(b) Average summer month shade coverage area (m2) at optimal location. 

Figure 2.10 Tree Shade Coverage with the Best Near-optimal Arrangement (Location 3 

and 5) 
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2.5 Discussion  

      This study shows that maximizing shade area occurs with trees planted 3 m south of 

central part of the home structure, unlike the results from prior studies that measure 

energy efficiency or consumption from nearby tree shade. The reason behind this 

difference is that the compact urban setting restricts residents to plant trees in the west 

and east side of the household. When locating trees in front of the building south facade, 

the locations of windows & doors are significant factor to influence the decision making. 

With limited number of trees to be planted for each residential household, homeowners 

should focus more on planting shade trees in the central area of their south front yard to 

provide shade (30%-35% shade coverage with two trees) for their own open structures 

and facade. Previous research recommend to plant trees at the southwest corner of the 

building front yard, this research result shows that it is not always optimal to simply plant 

trees at the southwest side of the buildings. A quantitative method that incorporates 

neighborhood conditions and building/tree characteristics is a more reliable way to 

achieve the maximum shade.    

      The near-optimal two-tree arrangement (location 3 and 5) provides around 35% shade 

coverage of open structures and facades during the peak heat hours at summer months. 

Since most of the previous literature did not recommend to plant trees on the south side 

of buildings (limited shade coverage during the summer), the results demonstrate that two 

desert trees at optimal locations can still provide a significant amount of shading 

residential household. To consider the aesthetic design and add the landscaping variety of 

residential trees, different tree spacing can be adapted in the residential yard based on the 
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results in Figure 2.8. Besides the tree arrangement at location 3 and 5, location 4 and 6 or 

location 2 and 5 also provide significant shade coverage to the residential household.  

      The breakdown of the building components (windows & doors, facade, and rooftops) 

make it possible to maximize tree shade coverage on the “shade-friendly” building 

structures such as windows & doors. With the weighting coefficients in the optimization 

method, the emphasis of tree shade coverage can be easily adjusted depending on 

different types of building materials and structures. On the other hand, rooftop exposure 

is preserved by minimizing tree shade coverage on the building rooftops, which is not 

examined or achieved in the previous tree shade related research. Besides considering the 

separated building components, tree shade coverage to the surrounding buildings are also 

evaluated. In this particular compact residential neighborhood, tree shade coverage on the 

nearby buildings cannot be ignored, especially when planting trees near the parcel 

boundaries. However, the results show little shade coverage on the surrounding buildings. 

The reason behind this finding is that shadow length is relatively limited during the 

greatest insolation hours from 9:30 to 15:30. The shading benefits to the surrounding 

buildings need to be further explored in the future study.  

      In addition to the specifics of tree shade, this paper also demonstrates the way in 

which a 3D spatial optimization model can support the identification of optimal tree 

locations for providing shade to 3D urban building structures. To implement this model, 

3D modeling along with GIS spatial processing techniques are used to determine the 

three dimensional geometric properties of structures to be shaded by the optimal location 

of trees. We provide a demonstration and implementation of the model using a single-

family house with its surrounding buildings in Tempe, Arizona. GIS and spatial 
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optimization techniques were employed to formalize a mathematical model that could be 

used for identifying optimal placement of the single tree that optimize accumulated shade 

coverage on building structures. Heuristic was used to solve the optimization problem 

involving trigonometry functions and provided the near-optimal solutions of the two trees 

scenario (real world scenario) for policy makers and planners. The optimization results 

show that two trees can provide a maximum of 244.90 m2 accumulated shade coverage to 

a single-story residential house’s south facade and open structures from 9:30 to 15:30 

(shade area was calculated in every 30 minutes) on a hot summer day from June to 

September, and the maximum shade coverage is achieved at 12:00 with the shade area of 

22.20 m2 in the 54 m2 south facade and open structures. Optimal tree locations can offer 

significant energy savings, reduce long-term economic costs and create a healthier living 

environment.  

      This is the first known attempt to identify the precise location and number of trees to 

maximize tree shade on home structures. There is, however, more that can be done to 

extend this work. For example, this study only considers an individual single-family 

household and its surrounding buildings. A large residential region will require 

automated 3D building extraction and construction techniques combining remote sensing 

and GIS. Also, different tree species, varying growing processes and alternative tree 

height and crown size reflect important options for flora. In this research, we use a 7 m 

high mature desert tree to represent a common situation in the desert setting, however, 

different tree species will have different tree height, leaf area index/canopy density, and 

crown size (Armson, Rahman, & Ennos, 2013). Furthermore, all of the tree-related 

parameters will change during the tree’s growing process (Rahman, Armson, & Ennos, 
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2015). All of these factors would influence the final optimization results. Also, it must be 

noted that maximizing the number of hours of shade does not necessarily correlate with 

minimizing air conditioning energy use, as the latter is highly dependent upon diurnal 

cycles in internal/external loads as well as occupancy. Future research can extend this 

work to focus on comparing tree shade benefits with different tree-related parameters at 

the same tree locations and arrangements.  

2.6 Conclusions 

      Strategic shade provision offers the potential to mitigate the effects of high solar 

radiation loads on summer days, enabling economic, environmental and health related 

benefits. We build upon research that links tree coverage with energy savings with higher 

levels of precision on tree placement. Unlike prior research, we provide specificity 

beyond the cardinal direction and address the relationship to nearby structures, shade on 

windows and doors, and retaining the option for rooftop solar panels. Future directions 

involve evaluating the microclimate benefits under different tree locations and 

arrangements, such as wind speed/direction and solar radiation intensity, and quantifying 

the cooling benefits of tree shade through an outdoor urban physical scale model with 

field measurement. The proposed method for carrying out the analysis in a 3D 

environment is an important first step in relating local level decision making to positive 

regional and global change. 
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CHAPTER 3 

ASSESSING THE COOLING AND LOCATIONAL BENEFITS OF TREE SHADE BY 

AN OUTDOOR URBAN PHYSICAL SCALE MODEL AT TEMPE, AZ 

3.1 Introduction 

      The demands of a rapidly growing human population have resulted in a shift toward 

larger and more expansive urban areas (Seto, Fragkias, Güneralp, & Reilly, 2011). This 

has altered the surface energy and moisture balances of these urban areas and led to 

environmental issues such as the urban heat island (UHI) effect, human thermal 

discomfort, air quality degradation, and microclimate modifications (Nazaroff, 2013; Oke, 

1982; Santamouris, 2014, p.; Song & Wang, 2014; Zhao et al., 2015; Zhao & Wentz, 

2016). To alleviate urban thermal stress, to promote urban ecosystem services, and to 

improve human and environmental health, vegetation, more generally described as urban 

“green infrastructure”, is becoming an integral feature of urban designs (Tzoulas et al., 

2007). Commonly used urban green infrastructure includes residential landscaping, green 

corridors, green roofs and walls, and urban parks using a combination of trees, shrubbery 

and turf grass (Akbari et al., 2001; Middel et al., 2015; Millward & Sabir, 2011; Z.-H. 

Wang et al., 2016; J. Yang & Wang, 2015; J. Yang, Wang, Georgescu, Chen, & Tewari, 

2016). The question that remains is how to best integrate urban green infrastructure with 

the transportation, residential, commercial and industrial infrastructure to maximize the 

ecosystem service offered by the green infrastructure.  

      The research presented here focuses specifically on how to effectively and efficiently 

incorporate shade trees in residential neighborhoods in a hot desert city. In hot desert 

areas, trees provide multiple microclimate benefits by reducing solar radiation 
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penetration, blocking the exchange of long-wave (infrared) radiation, and generating 

evapotranspiration. Use of tree shade requires a balanced and nuanced analysis of the 

tradeoffs between cooling by shade and the use of water, a scarce resource (Erell, 

Pearlmutter, & Williamson, 2011; Z.-H. Wang et al., 2016). Since the tradeoffs between 

water and energy require efficiency in the number of trees to be planted on a given parcel, 

effective tree placement strategies are needed (e.g., tree location, orientation, and spacing) 

(Wentz et al., 2016; Zhao et al., 2014; Zhao, Wentz, & Murray, 2017). These strategies 

will help homeowners maximize the overall benefits from trees with the fewest number 

of tree in an effort to simultaneously reduce both water consumption and energy use (E. 

G. McPherson et al., 1989).  

      Studies on the effect of shade trees in urban areas has been examined through real 

world in situ measurements and through numerical modeling, both confirming the 

conventional wisdom that trees and other forms of shade reduce surface and air 

temperature (Middel, Selover, Hagen, & Chhetri, 2016; Song & Wang, 2015). The 

differences among the in situ studies are the methods used, whether they measured 

surface or air temperature, and the impact of different types of shade such as native, 

exotic, and artificial shade (Aguiar, 2012; Berry et al., 2013; Vanos, Middel, McKercher, 

Kuras, & Ruddell, 2016). Results show reduced temperatures between 1° and 9° C 

depending on these variables. The problem with the results is that in situ conditions 

influence the results, such as the geometry and material characteristics of trees (tree type, 

tree height, leaf area, etc.), building arrangements, and background meteorological 

conditions. Numerical simulation modeling offers the ability to manipulate tree 

placement, background materials, and analyze cooling from tree shade by simulating the 
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microclimate and resulting human thermal comfort (Krayenhoff, Christen, Martilli, & 

Oke, 2014; Z.-H. Wang, 2014). Urban canopy models (UCMs) simulate tree foliage 

together with buildings to represent the emission and reflection of radiation, and mutual 

shading between buildings and trees, showing energy savings and heat mitigation from 

shade trees. Computational fluid dynamics (CFD) modeling better represents the three-

dimensional thermal environment than the UCMs and has been used to analyze air 

movement, pollution dispersal, and pedestrian wind tunnels (Erell et al., 2011; Fahmy & 

Sharples, 2009; Stathopoulos, Chiovitti, & Dodaro, 1994). Like UCMs, CFD simulations 

consistently show that increased vegetation provides cooling effects under a variety of 

conditions (Middel et al., 2015; Robitu, Musy, Inard, & Groleau, 2006; Skelhorn, Lindley, 

& Levermore, 2014; Taleghani, Sailor, Tenpierik, & van den Dobbelsteen, 2014). The 

challenge with simulation modeling tree shade on buildings is that numerical simulations 

are unable to resolve the heat transfer of the wall (i.e. the buoyancy effect).  

      In contrast to the in situ measurements and the numerical simulation modeling, 

physical scale models combine the experimental control of numerical simulation with the 

real complexities related to the natural environment (Roberts, 2010). There are 

comprehensive physical scale models that have been developed to measure urban albedo, 

aerodynamic drag, urban surface energy fluxes, thermal inertia, urban canopy 

microclimate, pedestrian energy exchange, convective heat transfer, thermal amelioration 

from water bodies, and evapotranspiration in urban canyons (Imam Syafii et al., 2017; M. 

Kanda, 2005; M. Kanda et al., 2006; M. Kanda, Kanega, Kawai, Moriwaki, & Sugawara, 

2007; Manabu Kanda & Moriizumi, 2009; Kawai & Kanda, 2010a, 2010b; Nottrott, 

Onomura, Inagaki, Kanda, & Kleissl, 2011; Pearlmutter, Berliner, & Shaviv, 2005, 2006, 
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2007; Pearlmutter, Krüger, & Berliner, 2009). They offer the ability to control many of 

the field parameters such as street layouts, existence of vegetation, solar radiation, wind 

speed, and humidity, which provides enough flexibility for analyzing radiation, shading, 

and wind tunnel conditions. With the exception of Roberts (2010) and Pearlmutter et al. 

(2005, 2006, 2007, 2009), none represent the hot desert urban environment, and very few 

incorporate vegetation (Lirola, Castañeda, Lauret, & Khayet, 2017; Y. Wang, Bakker, de 

Groot, Wortche, & Leemans, 2015). This is because the morphology and materials of 

vegetation are much more complex than urban structures (such as cubes, blocks, or 

cylinders) in the physical scale modeling. Park et al. (2012) included vegetation (Gold 

Crest Wilma plants) in the Comprehensive Outdoor Scale Model (COSMO) to evaluate 

the thermal comfort of pedestrians, finding that trees along pedestrian walkways can 

reduce the wind speed by up to 51% and decrease the temperature. Taleghani et al. 

(2014b) also created a scale model site with vegetation to analyze roof configurations in 

courtyards. Their scale model experimental results showed that a green pavement with 

grass on a roof or courtyard could result in lower temperature comparing to gravels and 

black materials.  

      Note that artificial trees were used in this outdoor scale model field measurement. As 

a result, the biophysical functions of real trees, e.g. evapotranspiration by stomatal 

control, root uptake, foliage dynamics, and diurnal/seasonal variabilities, are not 

represented. However, these artificial trees can capture the most important cooling 

mechanism of real trees via radiative shading (Upreti, Wang, & Yang, 2017). This is 

particularly true for xeric trees in an arid or semi-arid environment such as Phoenix, 
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where evapotranspiration is largely inhibited by excessive heat as well as relatively 

sparse foliage (Upreti et al., 2017). 

      The goal of this research is to build an outdoor urban physical scale model to measure 

and understand the cooling effect of different tree densities, locations, and arrangements 

in a typical residential area in a hot desert city. We conducted our experiment in Tempe, 

Arizona, a municipality in the greater Phoenix Metropolitan Area in Arizona, USA. We 

designed this study based upon Park et al. (2012) and Taleghani et al. (2014b) who 

demonstrated how vegetation can be an asset in physical scale models. Existing research 

has not yet explored the cooling benefits of trees under different locations and 

arrangements in a physical scale model experiment. This is an obvious research gap in 

the outdoor urban physical scale modeling literature that we intend to fill and will be a 

crucial step in designing green infrastructure for the long-term sustainability of urban 

areas. 

3.2 Experimental Details 

3.2.1 Experimental Site and Period 

      In the experimental site, we developed an outdoor physical scale model with 

buildings and trees to represent a typical residential parcel with detached single-family 

house and surrounding buildings in the City of Tempe, Arizona (33.4 N, 111.9 W). 

Tempe is a municipality within the Phoenix metropolitan area in the Sonoran Desert of 

the U.S. Southwest. The population of Tempe in 2010 was more than 160,000 residents, 

with more than 40% population living in the single-family detached dwellings (US 

Census Bureau, 2010). With reaching or exceeding 43 C summertime temperatures, 

various heat mitigation strategies such as adding vegetation coverage, creating green/cool 
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roofs, and constructing cool pavement are essential for both reducing heat-related 

diseases and energy consumption. To avoid the significant weather fluctuation in the 

summer monsoon season at August, the microclimate field measurements were 

conducted only at the selected steady hot and cloud free days in the period of August 12th 

to August 31st at 2016. The experimental date weather conditions were shown in Table 

3.1, which are retrieved from the nearby Phoenix Sky Harbor International Airport 

weather station record (Daily Summaries Station Details: PHOENIX SKY HARBOR 

INTERNATIONAL AIRPORT, AZ US, National Climatic Data Center (NCDC)). 

Table 3.1 Weather Conditions in the 10 Experimental Dates 

Date Maximum 

temperature (°C) 

Minimum 

temperature (°C) 

Precipitation 

(cm) 

08/12/16 40.6 27.8 0.00 

08/13/16 42.2 28.9 0.00 

08/14/16 41.1 30.0 0.00 

08/15/16 43.3 30.0 0.00 

08/16/16 43.9 30.6 0.00 

08/17/16 42.8 28.9 0.25 

08/18/16 40.0 27.8 0.03 

08/20/16 37.8 26.7 0.00 

08/30/16 41.6 28.9 0.00 

08/31/16 41.1 27.8 0.00 

      The specific residential parcel we analyzed is a generic one in the Tempe residential 

neighborhood with north-south building orientation. Within the neighborhood, most of 

the single-family houses were built with concrete block construction during the 1950s to 

1960s. The average parcel size is around 700 m2 with front/back yards, and the average 

single story building size is 134 m2, according to the Maricopa County Assessor’s records. 



  43 

Most of the households have nearby neighbors on the west/east side except those 

buildings that are close to the major north-south direction roads. This unique compact 

urban layout and building orientation make it difficult to plant any residential tree in the 

west or east side of the buildings. Even though there is not a strict regulation for front 

yard landscaping, most of the household owners plant shade trees to provide some level 

of shade to their own home structures. 

      The outdoor physical scale model is located at the rooftop of the six-story 

Engineering Research Center (ERC) building at Arizona State University Tempe campus, 

which is approximately 10 km southeast of Phoenix Sky Harbor International Airport and 

2 km east of residential parcel we analyzed. This experimental site has many logistical 

advantages such as high level of security and its central location on ASU Tempe campus. 

To be the highest structure in the area, the rooftop of the ERC building is free of 

obstructions (e.g., other buildings, trees) that can potentially result in unwanted 

microclimate influences such as horizontal shading, wind environment alternation or 

anthropogenic cooling or heating. The ERC rooftop surface is comprised of a layer of 

steel grating (6 cm × 3 cm gaps) on 2 m high support piers. The overall rooftop 

dimensions are 85 m × 23 m and the building’s long axis is oriented in the south-north 

direction. To avoid the excess wind influences the experimental results and ensure the 

safety of the equipment and people, ERC rooftop has an approximately 1 m high 

surrounding protected walls. The south portion of the ERC roof is largely free of 

structures and is the optimal area to construct the scale model experiment.  

      The outdoor physical scale model (1:15.5) was constructed with an array of concrete 

blocks to represent the residential buildings (See Figure 3.1). Since the rooftop surface is 
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a layer of steel grating, we used 260 concrete blocks to create a 20 blocks (386.0 cm) ×

 13 blocks (250.9 cm) underlying concrete surface to represent the impervious surface of 

the residential area. Each concrete block is a cube with equal length, width and height of 

19.3 cm. The cubes are hollow concrete with a 2 cm-thick wall and are painted dark gray. 

Further, because the cubes are relatively small in size, 18 of them were aggregated as a 

single family building with 6 blocks (115.8 cm) as the building length and 3 blocks (57.9 

cm) as the building width. The concrete block of rooftop is 38.6 cm long, 19.3 cm wide, 

and 4.2 cm high with dark gray painted as well. The buildings in the scale model were 

designed to be scaled at about 1:15.5 relative to a general 18 m length, 9 m width, and 

3.65 m height flat roof residential house in Tempe residential neighborhood. To avoid the 

boundary effect and to explore the tree shade effect on the surrounding buildings, we 

created two 3 blocks × 2 blocks small buildings with rooftops to the west and east side of 

the experimental building. Three sets of the building arrays were created with 4 blocks 

(77.2 cm, 12 m in the real world) distance in the south-north direction to generate two 

similar urban canyons to serve as the treatment group and control group separately.  

      Natural two-tone pine median profile artificial trees that made by polyvinyl chloride 

(PVC) with 45.7 cm tall and 27.9 cm base diameter (at the widest point) were used in the 

scale model site to represent 7.1 m thornless mature mesquite trees (Prosopis thornless 

hybrid ‘AZT™’) in the residential neighborhood. There are several important reasons we 

select an artificial tree in this scale model experiment. First, radiation exchange is often 

the dominant factor to influence the microclimate conditions in the hot dry desert 

environment (Shashua-Bar et al., 2011). In this scale model experiment, we want to 

isolate the role of shading from trees to buildings rather than considering every aspect of 
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the vegetation to better understand the tree shade coverage benefits to the building facade. 

Second, compared to real trees, we can easily find identical artificial trees with the same 

albedo, emissivity, and physical structures at affordable price. This will guarantee the 

similarity of shading area, shape, and density. Many errors or uncertainty may exist and 

influence the experimental results by using the real trees such as the different soil 

moisture level, leaf area humidity, plant evapotranspiration rate, plant albedo and 

emissivity, and shadow shape, area, and density that were mentioned in Park et al.. Third, 

although existing research have utilized both real and artificial grass in the scale model 

experiment (Jang, Kim, & Jeon, 2015; Peterson & Schmidt, 1984; Taleghani, Tenpierik, 

et al., 2014), none of the research attempts to use artificial trees in the outdoor scale 

model experiment. This experiment will help understand the importance of shading and 

retaining heat radiation from artificial trees in the hot dry desert environment.  

      In the scale model experiment, the scale model always has different thermal inertia 

(volumetric heat capacity) as compared to those of real buildings. This is the common 

problem of scale modeling and is difficult to compensate. A method to avoid this 

problem is to create a larger urban mock neighborhood and to make it more similar 

(thermally and dynamically) to the real world situation. Nevertheless, it will lose some 

flexibility of physical scale modeling and increase modeling cost. Due to the space and 

cost limitation, our experiment keeps the scale model in a relatively small size to 

maintain more flexibility of the physical scale modeling. Further, we use the hollow 

concrete cubes to represent the concrete block construction of single-family houses in the 

study area to represent the thermal mass of the building structures.  
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(a) Front view. 

 

(b) Plan view (for one urban canyon). 
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(c) Side view. 

Figure 3.1 Pictures of the Outdoor Urban Physical Scale Model (Red Outline Represents 

a Single Unit of the Target Building) 

3.2.2 Experimental Design 

        In this physical scale model experiment, three determinants of tree shading effect 

were tested: tree density, tree locations, and tree arrangements. Tree density is the total 

number of trees used per experiment. Tree location is the placement of the trees relative 

to the building structure. Tree arrangement is analyzed with 2 or more trees and 

characterizes whether they are arranged closely (clustered) or separately (dispersed). For 

tree density, we analyzed between 0 and 2 trees to simulate the prevalent choices. The 

reason we only consider up to 2 trees for the single building is because landscape 

regulation and water usage limitation in the desert environment make it inefficient to 

plant 3 or more number of tall trees (7 m) in a residential household front yard. 7 

potential tree locations in the building south front yard were studied with a 19.3 cm 
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distance from the structure (3 m in the real world) (Figure 3.2). To characterize different 

tree density, location, and arrangement, we conducted 10 different experiments (details 

summarized in Table 3.2). Group 1 is the empty control group without trees to represent 

the natural solar radiation and reflection in the urban canyon. Group 2 contains one tree 

with 7 different tree locations. Group 3 includes the cluster arrangement of two similar 

trees with different locations. Group 4 represents the disperse arrangement of two trees. 

Given the size of the artificial trees, we place two trees at location 3 and 5 rather than 

location 3 and 4 to represent the cluster tree arrangement. Table 3.3 shows the key factors 

in the different experimental groups. Since the weather conditions fluctuate frequently in 

the summer monsoon season, it is difficult to conduct multiple observation for each 

scenario. Thus, we tested each tree location/arrangement scenario in the similar weather 

conditions (see Table 3.1) without multiple observations. Seven one-tree scenarios were 

tested over a consecutive 7-days period from August 12th to August 18th, 2016, and three 

two-tree scenarios were tested on separated days at August 20th, August 30th and August 

31st.  

 

Figure 3.2 Potential Tree Locations in the Outdoor Urban Physical Scale Model 
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Table 3.2 Summary of Tree Number, Location, and Arrangement in Different 

Experimental Groups 

Group no. Tree numbers Tree locations Tree arrangements 

Group 1 0 N/A N/A 

Group 2 1 (1), (2), (3), (4), (5), (6), (7) N/A 

Group 3 2 (3,5), (4,6) Cluster 

Group 4 2 (2,5) Disperse 

Table 3.3 Key Factors in Different Experimental Groups 

Treatment group Control group Key factors 

Group 2 Group 1 Tree density and location (one tree vs. no tree) 

Group 3 and 4 Group 1 Tree density (two trees vs. no tree) 

Group 3 and 4 Group 2 Tree density (two trees vs. one tree) 

Group 4 Group 3 Tree arrangement (cluster vs. disperse) 

 

3.2.3 Measurement Equipment 

        To measure the microclimate conditions, 12 DS1921G iButton temperature loggers 

were attached with strong adhesive to the scale model building facade to measure the 

near-surface building facade temperature. Since the direct solar radiation influences the 

temperature measurement recorded by the iButton temperature logger, we covered each 

iButton logger with white printer paper. The iButton loggers were individually calibrated 

in a NIST-traceable chamber by the manufacture, measuring temperatures at an accuracy 

of 0.5 oC over a range of -40 oC to +85 oC.  

      Because the outdoor urban physical scale model represents a compact urban setting in 

the real residential neighborhood, there is no adequate space for planting a tree in the 

west and east side of building. Thus, the physical model represents a west-east orientated 
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street canyon, and the 12 iButton loggers were installed on the south facades of the target 

and surrounding buildings (Figure 3.3). Loggers 1-8 were installed in the south urban 

canyon, and loggers 9-12 were installed in the north urban canyon. In the south urban 

canyon, loggers 2-7 measured the facade temperature of the target building, and logger 1 

and 8 measured the facade temperature of the surrounding buildings. In the north urban 

canyon, logger 9 served as the control group of logger 1, loggers 10 and 11 served as the 

control group of loggers 2-7, and logger 12 served as the control group of logger 8. In our 

experiment, all of the temperature loggers were set to collect the temperature data at 15-

minute intervals over a period of 24 hours. 

 

Figure 3.3 The Digital Photo of IButton Logger Locations 

        To validate the iButton measurements and to collect information on the overall 

thermal environment, we used a FLIR P620 thermal camera. The resolution of FLIR 

P620 thermal camera is 640×480 with the temperature measurement accuracy at +/- 2 oC 

or 2% of reading. It has a large temperature measurement range (-40 oC - 500 oC) and 

high thermal sensitivity (<0.06 oC at 30 oC). FLIR thermal camera was applied to collect 

the surface temperature in our experimental site, which was later compared with the 
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iButton temperature measurement. The experiments were conducted on clear sky days 

with stable weather conditions. The solar radiation was relatively stable and can be 

readily obtained from meteorological parameterization schemes. Wind speed was not 

measured for several reasons. First, wind speed is relative low in this outdoor urban 

physical scale model because of the scale model size and the 1 m protecting walls around 

the rooftop (see Figure 3.1(a) and 3.1(c)). Second, wind is a secondary factor to influence 

the building surface temperature comparing to the strong solar radiation in the desert 

environment.  

3.3 Experimental Results    

3.3.1 Instrumentation Calibration and Quality Control 

       A preliminary experiment was conducted on a clear hot summer day from 10:30 to 

17:30 at July 13th to validate the temperature measurement accuracy by comparing 

temperature readings from thermal images and iButton temperature loggers. We 

calibrated the thermal imagery by using FLIR Tools version 5.9 to adjust temperature 

related parameters such as emissivity, reflected apparent temperature, distance, 

atmospheric temperature, and relative humidity. Because the scale model is mainly 

constructed by grey concrete blocks, we set the emissivity as 0.91 (Erell et al., 2011; 

Taha, Sailor, & Akbari, 1992). Atmospheric temperature and relative humidity were 

decided by the nearby weather station at Sky Harbor International Airport (NOAA, n.d.). 

We took two thermal images every 30 minutes from the west side (2 m distance) and east 

side (1.5 m distance) of the scale model. Because there was not an obvious heat source on 

the rooftop, we set the reflected apparent temperature the same as the atmospheric 

temperature.  
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       To validate the accuracy of measuring block surface temperature by iButton loggers, 

we chose two iButton loggers in the middle of two urban canyons to do the comparison 

between thermal images and iButton loggers (see Figure 3.4(a)). We extracted 15 

temperature readings from 10:30 to 17:30 at each iButton logger, and identified surface 

temperatures in 60 thermal images (30 images for each canyon, 15 images taken from 

west and 15 images taken from east) where were next to the iButton loggers (see Figure 

3.4(b)). As shown in Table 3.4, the root mean squared error (RMSE) between iButtons 

and thermal images was 1.7 oC in the north urban canyon with tree shade, and was 2.0 oC 

in the south urban canyon without tree shade. The mean absolute error (MAE) was 1.5 oC 

in the north urban canyon and 1.9 oC in the south urban canyon. An existence of tree 

induces a 0.3 oC difference of RMSE and a 0.4 oC difference of MAE. iButton 

temperature was consistently lower than the concrete block surface temperature derived 

by thermal images (see Figure 3.5).   

      Since the iButton was wrapped by white printer paper and the white paper had higher 

reflective rate comparing to the concrete block surface, less direct solar radiation was 

received by the iButton loggers. On the other hand, the concrete blocks have higher heat 

capacity, and can easily heat up under direct solar radiation. Thus, it is not surprising that 

the temperature of the iButton loggers are consistently lower than the real concrete block 

surface temperature. The method used in measuring the skin temperatures is a 

compromise due to the practical difficulty and complexity in measuring surface 

temperatures using direct contact sensors such as flat surface thermistors or 

thermocouples.  
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      Although iButtons cannot accurately measure the concrete surface temperature and 

cause cooler measurement bias, this research focuses on comparing the temperature 

differences with/without trees in the mock canyon. After calculating the temperature 

differences, the consistent measurement bias will be eliminated and the measurement 

errors by trees will be around 0.3 oC between two canyons according to the RMSE. 

Considering the accuracy of iButton (0.5 oC) and FLIR thermal camera (+/- 2 oC or 2% of 

reading), the preliminary experimental results showed that iButton can be used to 

measure and compare the building facade surface temperature in this scale model 

experiment.  

 

(a) Digital photo (red outline indicates iButtons that were used in the validation). 
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(b) Thermal imagery (we extracted the surface temperatures from red circles for 

validation). 

Figure 3.4 Thermal Image and Digital Photo from FLIR P620 Thermal Camera (Taken at 

13:59, July 13th) 

Table 3.4 Temperature Measurement Errors Between the Thermal Images and IButton 

Loggers 

 RMSE (oC) MAE (oC) 

North urban canyon (with tree) 1.7 1.5 

South urban canyon (without tree) 2.0 1.9 
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(a) South urban canyon (without tree). 

 

(b) North urban canyon (with tree). 

Figure 3.5 Temperature Comparison between IButtons and Thermal Images of Proximal 

Exposed Concrete Block Surfaces. 

3.3.2 Tree Shade Cooling Benefits to the Target Building 

      For the one-tree scenarios, we moved the single artificial tree from the west side of 

the front yard to the east side of the front yard during the experimental period to explore 
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the cooling benefits of tree shade to the buildings. Because our primary interest is 

focused on the cooling benefits from tree shade during the heat hours, we narrowed the 

time interval to 8:00 to 17:00 and extracted the temperature records in the iButton logger 

to obtain the heat hour temperature variation.  

      To understand how tree shade influences the building facade temperature, we 

calculate the temperature difference (∆𝑇s) between the south urban canyon (𝑇exp, 

experimental group) and the north urban canyon (𝑇ctl, control group) through equation 

(3.1): 

∆𝑇s = 𝑇exp − 𝑇ctl (3.1) 

In the north urban canyon, the average temperature of loggers in the target building 

(logger 10 and 11) serves as the control group to compare with temperature in the south 

urban canyon (loggers 2 through 7). We assume the overall building facade temperature 

is homogeneous in the north urban canyon. Since the size of the experimental site is 

relative small, the angle of incident for both of the canyons are similar and we do not 

consider this factor in this research. 

      Figure 3.6 shows the tree shade cooling effect on the target building in one-tree 

scenarios. Because of the sun movement during the diurnal cycle, the coverage of tree 

shade moves from the west side of the south facade to the east side of the south facade. 

Among all one-tree scenarios, we choose the scenario that the single tree locates at the 

central part of the front yard (location 3 in Figure 3.2) to represent how tree shade 

coverage movement influences the building facade temperature. In this scenario, morning 

shading in the west side of facade cooled down the temperature at the outer-west of 

facade (logger 2) at the maximum value of 1 °C from 8:30 to 12:00, and reduced the 
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facade temperature at the maximum value of 1.75 °C at middle-west and central-west of 

the facade (logger 3 and 4) from 8:30 to 13:30. In the afternoon, tree shade covered the 

east side of the building facade and an opposite temperature trend can be distinguished at 

central-east of facade (logger 5) with a temperature decrease of 1.75 °C from 14:15 to 

16:45. 

 

Figure 3.6 Cooling Effect of Tree Shade on the Target Building Facade Temperature 

(One-tree, at the Central Part of Front Yard) 

      Figure 3.7 shows the cooling benefits from tree shade under different tree 

arrangements in two-tree scenarios. In the experimental groups, two cluster tree 

arrangements (location 3 and 5 or location 4 and 6) and one disperse tree arrangement 

(location 2 and 5) were tested. We compare the tree shade benefits by one cluster tree 

arrangement (location 3 and 5) and one disperse tree arrangement (location 2 and 5). In 

the cluster tree arrangement, the west side of facade was heavily shaded from 9:30 to 

12:30. The largest cooling benefit was 3.5 °C at 10:30 in the central-west facade (logger 

4). The shading benefits in the afternoon was not as significant as the shading in the 

morning, but it still showed an opposite temperature trend at the east side of building 
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south facade (logger 5, 6 and 7) comparing all other loggers. With a disperse tree 

arrangement, steady cooling benefits were shown for both west and east side of the 

building south facade during the daytime (logger 3 and 6). The maximum morning 

cooling benefit was 2.75 °C in the outer-west of facade (logger 2) at 11:30. In the 

afternoon, 2.5 °C cooling benefit was shown in middle-east of facade (logger 6) at 13:45.  

 

(a) Cluster tree arrangement. 

 

(b) Disperse tree arrangement. 

Figure 3.7 Cooling Effect of Tree Shade on the Target Building Facade Temperature 

(Two-trees) 
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      To compare the tree shade cooling benefits at different tree locations and 

arrangements, we calculate the sum of the temperature differences between two urban 

canyons (∆𝑇s) for each iButton logger to represent the total cooling benefits from 8:00 to 

17:00. The average value of the total cooling benefits for each experimental group is 

calculated to represent the mean cooling benefits for the entire facade (see Table 3.5). In 

one-tree scenarios, the average temperature differences at 7 different locations range from 

6.8 °C to 36.1 °C. The best tree location prefers east part of the front yard (location 5 and 

6). Few cooling benefits were found at the edge of front yard (location 1 and 7) because 

half of the shading was projected to the nearby buildings. Large temperature differences 

at east side of the facade were observed when locating the single tree at the west side of 

the building (location 1 and 2). This phenomenon shows the importance of afternoon 

shading to the building facade. In two-tree scenarios, the average temperature differences 

with 3 different tree arrangements range from -35.8 °C to 1.3 °C. The best tree 

arrangement prefers cluster arrangement at the east side of the front yard (location 4 and 

6). When planting trees in a cluster arrangement, the results show that planting trees in 

the east side of the front yard generates more cooling benefits than locating trees in the 

central area (location 4 and 6 is better than location 3 and 5). Further, a disperse tree 

arrangement (location 2 and 5) has a better cooling effect than the cluster tree 

arrangement in the central part of the front yard (location 3 and 5), but the effect is worse 

than clustering trees at the east side of the front yard (location 4 and 6). The enormous 

cooling benefit when clustering trees at the east side of front yard (location 4 and 6) is 

unforeseeable, but it is consistent with the cooling benefits we find when locating a single 

tree at location 6.  
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Table 3.5 Cooling Benefits Comparison for Each Experimental Group (Referring to 

Figure 3.2 and 3.3 for IButton Locations and Tree Locations) 

  Facade West  to  East  

   LG2 LG3 LG4 LG5 LG6 LG7 Mean 

One tree scenarios                                        

West L1 19.0 20.0 20.8 39.5 47.0 52.5 33.1 

 L2 30.8 6.8 17.0 47.3 55.8 58.8 36.1 

 L3 24.3 -5.3 -1.0 20.8 40.8 33.8 18.9 

to L4 44.5 15.5 -4.3 -5.0 33.0 39.5 20.5 

 L5 39.8 17.8 0.8 4.8 10.8 22.3 16.1 

 L6 19.3 19.3 8.5 12.3 3.8 -22.3 6.8 

East L7 38.8 25.8 19.5 31.8 33.8 -19.3 21.7 

Two trees scenarios 

Cluster  L3&L5 33.3 -18.8 -26.3 -17.3 6.3 30.3 1.3 

Cluster L4&L6 -18.5 -32.0 -47.5 -40.9 -64.0 -12.0 -35.8 

Disperse L2&L5 -23.5 -42.0 -15.0 14.2 -40.5 32.0 -12.5 

Note: L1 represents location 1, LG2 represents logger 2 in the text, and the temperature 

unit is °C. 

3.3.3 Tree Shade Cooling Benefits to the Surrounding Buildings 

        Besides the target building, it is also important to explore the cooling effect from 

tree shade on the surrounding buildings. When placing the single tree near the boundary 

of the building front yard, part of the tree shade was projected to the surrounding 

buildings. In this experiment, tree shade cooling benefits were compared by iButtons on 

the west/east surrounding building (logger 1 and 8) and on the outer-west or outer-east 

facade (logger 2 and logger 7) in the target building. Figure 3.8 shows the tree shade 

cooling benefits on the target building and the surrounding building. It is clear from 
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Figure 3.8 that the cooling benefits are more significant when locating the single tree at 

the edge of the front yard (locations 1 and 7). The cooling benefits of tree shade on the 

west surrounding building happens from 8:00 to 13:30 at the maximum value of 2 °C 

when locating single tree at the west edge of front yard (location 1). Not surprisingly, the 

cooling period and intensity all decreased when moving this single tree towards the east 

side of the building (cooling from 8:00 to 10:45 at the maximum value of 1.5 °C). 

Similarly, the cooling benefits to the east surrounding building happens from 13:15 to 

17:00 at the maximum value of 2.5 °C when locating the single tree at the east edge of 

the front yard (location 7). The cooling intensity and period drops down when moving 

this tree west (cooling from 15:45 to 17:00 at the maximum value of 1.5 °C). When 

placing trees at the boundary of the building parcel (location 1 or 7), longer and stronger 

cooling benefits are detected. 

 

(a) Shading to the west nearby building. 

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

8
:0

0

8
:4

5

9
:3

0

1
0

:1
5

1
1

:0
0

1
1

:4
5

1
2

:3
0

1
3

:1
5

1
4

:0
0

1
4

:4
5

1
5

:3
0

1
6

:1
5

1
7

:0
0

𝑇
ex

p
-
𝑇

ct
l
(°

C
)

Target building - Outer-
west location (Location 1)

West nearby building -
Outer-west location
(Location 1)

Target building - Middle-
west location (Location 2)

West nearby building -
Middle-west location
(Location 2)



  62 

 

(b) Shading to the east nearby building. 

Figure 3.8 Cooling Effect of Tree Shade on the Surrounding Building Facade 

Temperature (One-tree) 

3.4 Discussion       

        From the experimental results, several findings are worth further discussion. The 

first contribution of this research is to provide a quantitative measurement of how tree 

density influence the facade cooling benefits. A single shade tree can induce a maximum 

cooling of 2-2.5 °C of the facade temperature, and two trees can decrease the facade 

temperature by up to 3-3.5 °C in the scale model experiment. Although the absolute 

values we measured is not repetitive in the real world setting, these findings confirm that 

higher tree density can substantially enhance cooling benefits on the building facade. 

Second, when locating one or two trees in the mock urban canyon, the field experimental 

results consistently show that tree shade benefits were more significant when locating 

trees at the central parts of the house’s front yard with the shading emphasis to the east 

side of the building facade. This phenomenon shows the importance and effectiveness of 

afternoon shading to reduce the overall facade temperature.   
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        By comparing the cooling benefits from the cluster and disperse arrangement, the 

results show that a disperse arrangement is not necessarily worse than the cluster 

arrangement. A cluster arrangement with better afternoon shading provides the most 

cooling benefits in this particular urban layout, but the disperse arrangement also offers 

good level of cooling benefits to the whole building facade. All the results confirm the 

importance of the locational benefits from tree shade coverage in relation to the 

residential buildings. In this compact urban setting, nearby surrounding buildings also 

receive significant tree shade cooling benefits (around 2 °C) especially when planting 

trees at the edge of the residential parcels.  

        From Figures 3.6, 3.7 and 3.8, it is noteworthy that the facade temperature 

remarkably increased in the late afternoon (increasing temperature trend for all the 

loggers except those loggers under shading), which can be more than 3 oC from 15:00 to 

17:00. The potential explanation is that artificial tree serves as a heat source in the late 

afternoon and radiates heat to the nearby building facade. Although artificial tree 

provides various benefits and convenience in the experiment (see section 2.1), this is an 

unavoidable issue due to the small heat capacity and lack of evapotranspiration in 

artificial trees. This phenomenon diminishes and underestimates the cooling benefits 

from tree shade in the scale model experiment. However, this is further validated the 

importance of tree shade coverage for the building facade. Artificial turf increases the 

surface temperature and raises health issues on the sports playground (Jim, 2016, 2017; 

Serensits, McNitt, & Petrunak, 2011; Villacañas, Sánchez-Sánchez, García-Unanue, 

López, & Gallardo, 2017), but the shading from artificial tree is still found to be valuable 

and reduces the facade temperature significantly. The finding here emphasizes the 
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contribution of shading to the facade surface temperature and corresponds with the 

finding in the existing literature that natural shading and artificial shading provide similar 

thermal sensation in the hot dry desert climates (Middel et al., 2016; Vanos et al., 2016).  

        Several limitations exist in this scale model experiment. First, we use iButton 

loggers to measure the near surface air temperature and approximately represent the 

building surface temperature with the validation of thermal images. Even though iButton 

loggers are easy to install and be used to measure surface temperature in some existing 

research (Brabyn et al., 2014; Schmid, Gubler, Fiddes, & Gruber, 2012; Sohrabinia, Rack, 

& Zawar-Reza, 2012; Sternberg, Viles, & Cathersides, 2011), flat surface thermistors or 

thermocouples may provide better surface temperature measurements with more 

experimental efforts. Second, this research does not account for the building’s open 

structures such as windows, doors, and ventilation. Adding these important building 

components into the physical scale mode is expected to improve the accuracy of the 

quantitative study.  

        This is the first attempt to assess the cooling benefits of tree locations and 

arrangements in a residential neighborhood by an outdoor urban physical scale model. 

There is, however, more can be done to extend this work. For example, different tree 

species, alternative leaf area index/canopy density, crown size, and tree heights are all 

important options for flora. All of these factors can be added and evaluated in the 

physical scale model. The comparison between artificial tree and real tree will be also 

important to understand how evapotranspiration and retention heat issue influence surface 

temperature in the built environment. In addition, the specific compact urban 

arrangement we simulate limits the orientation of buildings and location of trees in the 
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experiment. Different building arrangements and orientations can be adopted to this 

outdoor urban physical scale model in future studies. Furthermore, trees cool down the 

building structures in the daytime, but they also trap the long wave radiation during the 

night. This outdoor urban physical scale model can be used to explore the overall 

advantages and disadvantages of trees for mitigating UHI effects in both daytime and 

nighttime.  

        The research finding from this scale mode experiment can translate into important 

policy recommendation or design implication to the residential neighborhood in the 

desert city. City residents or single-family homeowners should plant their first tree to 

shade the east side of the south facade, and allow enough space between multiple trees to 

maximize the overall shading benefits. Also, trees locate at the edge of residential parcel 

will not be invaluable. They will provide ample shading to multiple houses and improve 

the overall living environment in the neighborhood. We anticipate this research can raise 

the attention from city mayors, policy makers, and homeowner association to emphasize 

the use of urban green infrastructure to improve the overall built environment under hot 

dry desert climates. 

3.5 Conclusions  

      Urban green infrastructure provides the potential to mitigate urban heat and improve 

human thermal comfort in the urban residential environment. In a desert city, the 

scarceness of water limits the number of trees to be planted in a residential 

neighbourhood. Hence, it is important to understand the locational benefits of trees and 

maximize the cooling benefits from tree shade to the building structures. This paper 

utilizes an outdoor urban physical scale model with field measurements to measure the 
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cooling effect of trees with different combinations of tree densities, locations, and 

arrangements in a mock compact residential neighbourhood in Tempe AZ. The research 

findings quantify the tree shade cooling benefits, and indicate the effectiveness of 

locating shade trees in the middle of the building’s south front yard with the emphasis on 

the east side of the facade to generate afternoon shading. A single full size tree can 

significantly cool the facade by up to 2.5 °C in the afternoon, and multiple trees improve 

the cooling benefits particularly with a cluster of trees with no tree canopy overlap. There 

is also a cooling effect on the surrounding buildings from planting trees in the boundary 

of the residential parcel. This research is one of the pioneering attempts to incorporate 

vegetation in physical scale models. The research results will help the design of urban 

green infrastructure for the long-term sustainability of urban environments. 
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CHAPTER 4 

IMPACT OF TREE LOCATIONS AND ARRANGEMENTS ON OUTDOOR 

MICROCLIMATES AND HUMAN THERMAL COMFORT IN AN URBAN 

RESIDENTIAL ENVIRONMENT 

4.1 Introduction 

      The urban heat island (UHI) effect is a well-known phenomenon caused by the 

change of energy balance and thermal properties of the built environment (Oke, 1982). 

The UHI effects increase air and surface temperature, result in higher energy demand for 

cooling, degrade air quality, decrease in human thermal comfort, and increase to heat-

related morbidity and mortality (Bi et al., 2011; Nazaroff, 2013; Song & Wang, 2015; 

Wentz et al., 2016; Zhao et al., 2015). Vegetation is the most common method to 

alleviate the negative impacts of the UHI (Declet-Barreto, Brazel, Martin, Chow, & 

Harlan, 2013; Y. J. Huang et al., 1987; Z.-H. Wang et al., 2016; Zhao et al., 2014). While 

turf lawns and shrubbery provide surface cooling, trees provide more benefits by 

blocking short-wave radiation penetration to the surface, reducing long-wave radiation 

exchange, and generating evapotranspiration with less water consumption comparing to 

turfgrass (Erell et al., 2011). Without effective and adequate vegetation coverage in the 

residential neighborhood, urban residents will experience significant human thermal 

discomfort and result in heat-related illnesses and deaths in the outdoor environment, 

especially to the elderly and children (Chow, Chuang, & Gober, 2012; Vanos et al., 

2016). A desert city such as Phoenix, is more complex because water limits the number 

of trees to be planted for each residential household (Zhao et al., 2017). Thus, the goal of 
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this research is to quantify the appropriate arrangement of trees in the residential 

neighborhood to reduce the UHI and improve human comfort.  

Existing research to explore how the locations and arrangements of trees influence the 

built environment uses methods including remote sensing and numerical simulation. 

Remote sensing research show that vegetation coverage significantly reduces the urban 

surface temperature at the city and regional scales (Soe W. Myint, Wentz, Brazel, & 

Quattrochi, 2013), however, the specific locational effects of trees have not been 

explored widely because of the reduced availability of high resolution thermal satellite 

images (Zhao & Wentz, 2016). Recently, using the high resolution thermal remotely 

sensed images (60 m/pixel), Myint et al. (2015) and Fan et al. (2015) show that a 

clustered arrangement of trees improves cooling effects. However, two limitations exist 

by using remote sensing techniques to understand the locational benefits of trees. First, 

they can only derive the top canopy surface temperature by using thermal remote sensing 

techniques, the temperature comparison between canopy surface temperature and air 

temperature under the tree canopy is rarely done by field measurement. Second, air 

temperature, wind speed, mean radiant temperature (MRT), and relative humidity need to 

be incorporated into the calculation of human thermal comfort under different locations 

and tree arrangements. Knowing the thermal perception and grade of physiological stress 

of an urban neighborhood is more meaningful for urban residents than just recognizing 

extreme heat areas from the urban surface temperature. Thus, we still do not understand 

how tree locations and arrangements influence the built environment by the existing 

remote sensing research. As an alternative to remotely sensed data and methods, 

numerical simulation methods such as the 3D computational fluid dynamics (CFD) 
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modeling, has the capabilities to simulate the urban environment of airflow, pollution 

dispersal, pedestrian wind tunnel and vegetation effects (Erell et al., 2011). Numerical 

simulation overcomes the limitations of remote sensing because it gives the availability to 

simulate outdoor microclimate conditions (air temperature, surface temperature, 

humidity, etc.) and human thermal comfort. Most importantly, numerical models make it 

possible to create and test a wide variety of tree locations and arrangements scenarios that 

are not practical to test in situ.  

Numerical models consistently show that increased vegetation or tree coverage 

provide a cooling effect and improve the human thermal comfort, but what varies is the 

amount of vegetation and the level of cooling. Those variations occur due to the climatic 

environment at different geographic locations, the volume or the type of vegetation, and 

building layout or wind tunnel design (Hsieh, Jan, & Zhang, 2016; A.-S. Yang, Juan, 

Wen, & Chang, 2017). Although trees were widely confirmed to be effective in 

mitigating heat and improving human thermal perception in the dense urban streets 

(Kong et al., 2017; Morakinyo, Kong, Lau, Yuan, & Ng, 2017; Tan et al., 2015; Tan, 

Lau, & Ng, 2017), seldom of research explores how residential tree locations, spacing, 

and arrangements will influence the outdoor microclimates and human thermal comfort. 

Most of the existing literature simulates the outdoor microclimates and human thermal 

comfort by randomly locating trees to a certain percent of the coverage or is simply based 

on the real-world landscaping design (L. Chen & Ng, 2013; Hsieh et al., 2016; Jan, 

Hsieh, Ishikawa, & Sun, 2013; Middel et al., 2015). The obvious next step is to account 

for factors such as tree densities, locations, and arrangements in the numerical models to 

evaluate the cooling effects from trees and human thermal comfort. Further, none of the 
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research explores how to effectively design tree locations and arrangements to benefit 

both the individual houses and residential neighborhood concurrently. Residents may 

want to maximize the shade coverage of their south-facing facade by planting trees in the 

central of south front yard, but it is still unknown that if planting a tree between two 

residential houses can provide more comprehensive benefits to both the buildings and the 

neighborhood.  

The goal of this research is to explore how tree locations and arrangements influence 

the outdoor microclimates and human thermal comfort by numerical simulation, and how 

strategically to design tree locations and arrangements to benefit both the individual 

houses and residential neighborhood simultaneously. The model reliability is first 

validated by the mobile vehicle field measurements. Further, we designed and compared 

different tree arrangements (cluster, disperse, or equal interval) in both the building and 

neighborhood scales. This research will improve the theoretical and empirical 

understanding of the influences of tree locations and arrangements to the outdoor 

microclimates and human thermal comfort in the desert residential neighborhood.  

4.2 Study Area and Climatic Conditions 

 

Figure 4.1 Study Area 
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      The study area is in the City of Tempe, AZ USA within a residential neighborhood 

(Figure 4.1). The majority of this residential neighborhood consists of single-family 

houses built between 1950 and 1960. Most structures are single story buildings around 

134 m2 according to Maricopa County Assessor’s records 

(https://mcassessor.maricopa.gov/). The average parcel size is around 700 m2 moderate 

size front and back yards and narrow side yards. Nearly all the parcels have neighboring 

houses on the west/east side of the building except those buildings that are close to the 

major roads. This unique compact urban layout forces the residents to plant large shade 

trees in their front yard (south) or back yard (north). Some residents plant grassland on 

their front/back yards as well. Although homeowner association landscaping regulations 

do not exist in this neighborhood, most of the residents plant trees and other vegetation in 

the front yards.  

The City of Tempe has a semi-arid climate that situated in the Sonora desert. The 

mean annual rainfall is 237 mm and most of the rain occurs during monsoon season in 

July and August (62 mm) as well as in the winter December through March (112 mm). 

June is the driest month with less than 1 mm mean annual precipitation. Mean maximum 

air temperature ranges from 39.3 C to 40.4 C during the summer months (June to 

August), and ranges from 20.1 C to 22.6 C during the winter months (December to 

February). Average minimum air temperature peaks at 24.0 C in July and can reach as 

low as 3 C in December (“WRCC,” 2015). Under this specific dry and hot summer 

climatic conditions, it is important to understand how to ameliorate urban heat and human 

thermal discomfort by effectively locating and arranging trees.  
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4.3 Methodology 

      The research methodology framework is presented in Figure 4.2. In this study, 

simulation results from the base model that represents current residential neighborhood 

conditions were first validated by fieldwork measurements. Further, outdoor 

microclimate conditions and human thermal comfort were simulated and compared under 

different tree densities, locations and arrangements. The final model results provide 

planning recommendations and understandings to better design sustainable urban 

residential environment.  

      In the base model simulation, we included lawns to accurately represent and simulate 

the outdoor thermal environment. However, when we created new simulated scenarios, 

we did not change or remove existing lawns. This is because we want to maintain as 

similar as possible between the validated scenario and the simulated scenarios to ensure 

the model accuracy and avoid extra variables other than tree locations and arrangements 

to influence the simulated results.  

 

Figure 4.2 Methodology Framework 
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4.3.1 Fieldwork Design and Measurement 

      To validate the accuracy of the numerical simulation results, we collected air 

temperature data along transects in the target residential neighborhood (Figure 4.1). The 

field measurements occurred on a clear summer day with low wind speed (about 2 m/s) 

and no cloud cover. We used the QStartz Travel Recorder XT to record the GPS locations 

for every second (Figure 4.3), and applied car-based Omega thermocouples at the same 

time to measure the air temperature at 1.5 m height for each second (Figure 4.4). Data 

were collected in the early morning (7:00) and late afternoon (16:00) on 13 June 2017. 

We completed each car-based air temperature transect in 5 minutes with a driving speed 

of 3 m/s in the target neighborhood. The target neighborhood were measured twice in 

each transect. Because each transect was finished within 5 minutes and the temperature 

variation in the early morning and late afternoon was low, we avoided significant 

background temperature variation in each transect. The fieldwork measurement results 

were compared with the simulation results from ENVI-met by the univariate difference 

measures to evaluate the model accuracy.  

 

Figure 4.3 Qstarz Travel Recorder XT (GPS Loggers) 
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Figure 4.4 Car-Based Air Temperature Thermocouples 

4.3.2 Microclimate Numerical Simulation 

      The base model was first tested in the ENVI-met simulation platform to verify the 

modeling that represents the current buildings, vegetation, and soil/surface conditions. 

ENVI-met is a three-dimensional atmospheric model designed to simulate the urban 

surface-plant-air interactions, and has been utilized for simulating air flows between and 

around buildings, vegetation impacts of the local microclimates, heat exchange processes 

at the building walls or ground surface, and bioclimatology and pollutant dispersion 

(Bruse & Fleer, 1998, p.). The ENVI-met area input and configuration parameters for 

validation simulation are shown in Table 4.1. The ENVI-met area input file for the 

neighborhood has a vertical and horizontal grid resolution of 1 m and a total of 200 × 

200 × 20 grid cells plus 7 nesting grids in the surrounding (see Figure 4.5). Besides the 7 

nesting grids, we created a 10 m empty buffer area around the simulated area to ensure 

the model stability. The meteorological conditions were obtained from the nearby 

weather station at Phoenix Sky Harbor International Airport on 13 June 2017. Since the 
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neighborhood we simulated has a mixture of trees, shrubs, and grass coverage, a xeric 

soil temperature setting was used based on Middel et al. (2014). We manually digitized 

the building boundary information based on Google map, with a consistent 4 m height to 

represent the common single-family house in the study area. We applied the emissivity 

and albedo of urban surfaces according to Erell et al. (2011), Oke (1992), and 

Santamouris et al. (2013) (see Table 4.2). We used forced lateral boundary conditions for 

the temperature and relative humidity by manually given temperature and humidity 

information based on the meteorological conditions at 13 June 2017. Further, we utilized 

cyclic lateral boundary conditions for the turbulent exchange coefficient to copy the 

inflow profile into the model domain to represent a large homogeneous residential 

neighborhood. 

 

Figure 4.5 Base Model with Existing Tree Locations and Arrangements 
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Table 4.1 Summary of Area Input and Configuration Parameters for Validated Simulation 

Parameter Definition Input value 

Meteorological conditions Initial air temperature ( C) 24  

 Relative Humidity in 2 m (%) 13  

 

Inflow direction (0: North; 

90: East; 180: South; 270: 

West.) 

  225  

 Wind speed in 10 m (m/s) 2 

 Soil temperature ( C) 

Derived from Table 2 

at Middel et al. (2014) 

for xeric setting. 

 Cloud cover 0.00 

 
Roughness length at reference 

point (m) 
0.01 

Buildings’/roads’ information Street orientation E-W 

 Street width (m) 8 

 
Roads/Pavements/Soils/Water 

information  
See Table 4.2 

Lateral boundary conditions 

(LBC) 

LBC for temperature and 

humidity 
Forced 

 LBC for turbulence Cyclic 
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Table 4.2 Summary of Surface Information 

Type Albedo Emissivity Roughness Length 

Soil 0.20 0.95 0.015 

Asphalt Road 0.15 0.95 0.010 

Concrete Pavement Light 0.35 0.90 0.010 

Concrete Pavement Gray 0.20 0.90 0.010 

Gravel 0.15 0.90 0.010 

Water 0.05 0.95 0.010 

      Three different types of trees were used in the base model with different leaf type, 

crown width and tree height: Fraxinus velutina (Desert ash), Acacia salicina (Weeping 

acacia), and Washingtonia filifera (Desert palm) (see Table 4.3). Desert ash represents 

regular deciduous shade tree with large canopy coverage in the neighborhood. Weeping 

acacia has similar height to desert ash, but it has relatively small canopy coverage 

(conifer leafs) and fits better in a narrow vertical space. Desert palm is the typical tall 

palm tree with little shade coverage from the canopy. These three types of trees were the 

most common tree species in this specific neighborhood, and we utilized them to 

represent all other similar tree species in our study area. We chose the regular 5 cm 

height dense grass to simulate the urban lawns in the study area.  

Table 4.3 Summary of Tree Information 

Tree name Scientific name Leaf type Crown width Tree height 

Desert Ash Fraxinus velutina Deciduous 5 6 

Weeping acacia Acacia salicina Conifer 9 6 

Desert palm Washingtonia filifera Conifer 9 10 

Note: Tree information is obtained from the virtual library of Phoenix Landscape plants 

(Martin, n.d.). 
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      To assess the impacts of different tree locations and arrangements to the outdoor 

microclimates and human thermal comfort, we created 9 different scenarios in the 

residential neighborhood (see Table 4.4). Since tree locations and arrangements are the 

most important factors we want to understand, we only used mature weeping acacia to 

represent the most common tree species in the neighborhood. Due to the tree size and 

space limitation in the residential building front yard, we did not simulate scenarios with 

more than two trees for each single-family household in the designed scenarios.  

Table 4.4 Numerical Simulation Scenarios 

Scenario Tree density Individual tree layout  
Neighborhood tree 

layout 

1  0 N/A N/A 

2 1 Center of south front yard Equal interval 

3 1 West of south front yard Equal interval 

4 1 East of south front yard Equal interval 

5 1 West/East of south front yard Cluster 

6  2 Cluster (no canopy overlap) Cluster 

7 2 Cluster (with canopy overlap) Cluster 

8 2 Equal interval Equal interval 

9 2 Disperse Cluster 

      We removed all the existing trees in the central street of the model to create a “no-

tree” scenario (see Figure 4.6(a)), and create one tree and two trees scenarios with 

different tree arrangements (examples at Figure 4.6(b) and 4.6(c)). Tree arrangement for 

individual buildings and neighborhood were compared and evaluated in these scenarios. 

For each scenario, air temperature, surface temperature, MRT, and relative humidity were 

simulated for 24 hours at 13 June 2017. 
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(a) No front yard tree (scenario 1). 

 

(b) One front yard tree (scenario 5). 

 

(c) Two front yard trees (scenario 9). 

Figure 4.6 Simulated Tree Locations and Arrangements Scenarios 

4.3.3 Human Thermal Comfort Calculation 

      To evaluate the outdoor human thermal comfort, we used physiological equivalent 

temperature (PET) as the indicator to show the thermal sensation under different 

simulated scenarios (Mayer & Höppe, 1987). PET values were estimated by ENVI-met 

BioMet package to evaluate the effects of residential trees in improving outdoor 

pedestrians and residents comfort (Höppe, 1999). For the human parameter setting in 

BioMet, we used a 35-year-old male with 75 kg weight and 1.75 m height, with a static 
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clothing insulation index (clo) of 0.2 (T-shirt and walking shorts) and metabolic rate at 93 

W/m2 (standing or light activity) based on ISO 9920 (2007) and ISO 8996 (2004).  

4.4 Results 

4.4.1 Fieldwork Validation 

      To compare the simulated air temperature with the air temperature validated transects, 

we extracted 1.5 m air temperature from ENVI-met simulation results at 7:00 and 16:00 

13 June. Based on the location and time information from GPS, we identified the 

simulated air temperature on the validated transects. To avoid the boundary issues and the 

temperature instability at the inflow area, we removed transect records near the boundary 

of the domain. Since we measured twice for the target neighborhood in each transect, we 

calculated the average temperature of the thermocouples to compare with the simulated 

temperature. In the existing research with ENVI-met simulation, the root mean squared 

error (RMSE) and mean absolute error (MAE) of air temperature were around 1-2 oC 

(Middel et al., 2014, 2015). In our validation, the RMSE is 1.1 oC in the morning and 2.1 

oC in the afternoon, and the MAE is 1.1 oC in the morning and 2.0 oC in the afternoon. 

Further, we calculated the systematic RMSE (RMSES) and unsystematic RMSE 

(RMSEU) and showed in Table 4.5. The results show that most of the errors in the 

temperature difference are systematic errors.  

      In the validation results, ENVI-met simulated temperature is consistently higher than 

the validated temperature transects. Several issues may influence the simulated 

temperature and field temperature measurements. First, we did not model shrubbery in 

the ENVI-met study domain, which would provide extra cooling for the study area. 

Further, the car driving speed, GPS errors (2.5 m), and thermocouples accuracy may also 
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increase the uncertainty of the air temperature transect results. Last, we used a prominent 

wind direction at 13 June from southwest to represent the neighborhood wind 

environment in the ENVI-met simulation; however, this may not be accurate at 7:00 and 

16:00 in this particular neighborhood. Since we are more interested in the temperature 

difference between different tree location and arrangement scenarios, the systematic 

errors will be eliminated. Thus, we believe the existing ENVI-met simulation can provide 

reliable microclimate outputs for further simulation. 

Table 4.5 Temperature Differences between the Simulated and Validated Dataset 

 RMSE (oC) MAE (oC) RMSES (oC) RMSEU (oC) 

Morning (7:00) 1.1 1.1 1.1 0.2 

Afternoon (16:00) 2.1 2.0 2.1 0.1 

 

4.4.2 Numerical Simulation Results 

4.4.2.1 Outdoor Microclimates Comparison  

      To compare how tree densities, locations, and arrangements influence the outdoor 

microclimates, we extracted 1.5 m air temperature and surface air temperature (0.1 m 

height) at the hottest summer afternoon (15:00) for all 9 scenarios. We selected 4 

buildings in the central of the study domain (building 3, 4, 5, and 6) at the north side of 

the street, and calculated the average temperature of their entire front yard to represent as 

the neighborhood temperature. Results are shown in Figure 4.7 and 4.8. In the one tree 

scenarios, locating a single tree on the west side of the house front yard provides the most 

air and surface temperature cooling benefits to the neighborhood (0.26 oC surface 

temperature cooling and 0.11 oC air temperature cooling compared to no tree scenario). 

The worst case is planting trees at the east side of front yard because most of the 
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afternoon shading is projected to the front yard of the adjacent parcel. When planting two 

trees in each residential parcel, an equal interval tree arrangement generates the largest 

average cooling benefits for the neighborhood (0.5 oC surface temperature cooling and 

0.19 oC air temperature cooling compared to no tree scenario). Cluster tree arrangement 

with overlap produces the least cooling benefits.  

 

Figure 4.7 The Boxplot of Surface Air Temperature Comparison in the Neighborhood. 

(The Upper and Lower Bounds of the Box Plots Indicate the 25th and 75th Percentile of 

the Values, the Whiskers Represent the 5th and 90th Percentiles, the Red Plots Show the 

Mean value, and the Red Lines Illustrate the Median Value) 

 

Figure 4.8 The Boxplot of 1.5 m Air Temperature Comparison in the Neighborhood 
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      Mean radiant temperature, which sums up all short wave and long wave radiation 

fluxes to the human body (Thorsson, Lindberg, Eliasson, & Holmer, 2007), is one of the 

most important factors that influences the human thermal comfort. In Figure 4.9, we 

show how 1.5 m MRTs vary in all different scenarios at 15:00. Planting one tree in the 

middle of building south front yard can produce approximately 5.3 oC average cooling 

benefits of MRT to the neighborhood. The best one tree arrangement (establish one tree 

in the middle of front yard) offers 0.6 oC more MRT cooling benefits than the worst one 

tree arrangement (plant one tree in the west/east of front yard). Adding another tree into 

the neighborhood can generate another 5.3 oC cooling benefits when these trees are 

equally distributed. The best two trees arrangement (equal interval) provides 1.2 oC more 

MRT cooling benefits than the worst two trees arrangement (disperse). 

 

Figure 4.9 The Boxplot of MRT Comparison in the Neighborhood 

      Figure 4.10 shows the wind speed comparison under different tree locations and 

arrangements scenarios in the neighborhood at 15:00. The first finding is that increasing 

tree densities in the neighborhood decreases the neighborhood wind speed. When we 
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locate the first residential shade tree in the building south front yard, the wind speed 

decreases by 0.1 m/s. With the second residential shade tree, the wind speed further 

decrease by 0.05 m/s. When locating one tree in the middle of the front yard, trees has the 

least influence to the wind environment. After adding another tree to each house’s front 

yard, the cluster tree arrangement with overlap has the best wind environment. In this tree 

arrangement, trees are clustered in the middle of the front yard and do not block the wind 

corridor between buildings. The wind speed of cluster arrangement without overlap and 

equal interval arrangement is very similar to each other.  

 
 

Figure 4.10 The Boxplot of Wind Speed Comparison in the Neighborhood 

4.4.2.2 Human Thermal Comfort Comparison  

      With the simulated air temperature, relative humidity, wind speed, and MRT, we 

simulated the PET at 1.5 m for both the neighborhood and two individual houses in the 

neighborhood. Figure 4.11 shows the PET comparison in the residential neighborhood at 

15:00. To achieve the best PET at 1.5 m, equal two trees arrangement is the best option to 

reduce mean PET from 50.5 oC (no tree) to 49.6 oC. If the residents only plan to plant one 
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tree in their front yard, a single tree in the middle of the front yard offers the most human 

thermal comfort by decreasing mean PET from 50.5 oC to 50.1 oC.  

 

Figure 4.11 The Boxplot of PET Comparison in the Neighborhood 

      Moreover, we picked two individual houses to understand how tree locations and 

arrangements influence their front yard human thermal comfort at 15:00. The PET 

comparison is shown in Figure 4.12. The overall results are similar to the neighborhood 

scale, but we can observe a significant difference when locating one tree at the west/east 

corner of the building. Because two individual trees were located between building 5 and 

6 (see Figure 6(b)) and most of the afternoon shading cast to the building 6’s front yard. 

This specific tree arrangement results in significant cooling benefits on the building 6 as 

showed in Figure 4.12(b). 
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(a) Individual house (building 5). 

 

(b) Individual house (building 6). 

Figure 4.12 The Boxplot of PET Comparison for Individual Houses 

4.5 Discussion 

      From the simulated results, effective tree locations and arrangements significantly 

improve the outdoor microclimates and human thermal comfort. The research results first 

confirm that higher tree densities contribute to more cooling benefits to human thermal 

comfort (MRT and PET) comparing to the outdoor microclimates (air and surface 

temperatures). Further, the comparison between different tree locations and arrangements 

scenarios reveals the importance of arranging residential shade trees. To maximize the 
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tree locational benefits, the general guideline is to avoid unnecessary tree canopy overlap, 

provide more shading to the built environment, and create effective ventilation conditions 

between trees. Because we have a low wind speed (1 m/s) in all of the simulation 

scenarios, MRT is the most important factor to influence the human thermal comfort in 

the desert residential neighborhood.  

      By comparing the cooling benefits in the overall neighborhood and individual houses, 

the results show that tree cooling benefits to the neighborhood and individual houses are 

not contradicted. Multiple individual “cold spots” with effective tree arrangements in the 

neighborhood create an overall cool neighborhood. This finding emphasizes the 

importance of wisely designing tree locations and arrangements in the individual house 

front yard. An appropriate tree arrangement will not only benefit the house owners, but 

also benefit the overall thermal environment in the residential neighborhood.  

      Although conventional wisdom recommends planting the residential shade trees at the 

southwest corner of the building front yard, it is not strictly correct from the simulated 

results. The air and surface temperature comparison show that locate a single tree at the 

west corner can provide the most temperature cooling benefits, however, the cooling 

magnitude is relatively trivial (0.26 oC surface temperature and 0.11 oC air temperature 

cooling). When locating a single tree in the middle of the front yard, we will lose 0.05 oC 

air and surface temperature cooling benefits, but gain 0.14 oC cooling of MRT. Both the 

west and the central of the front yard can be a reasonable choice to plant a single 

residential shade tree.  

      It is noteworthy that locating the single tree in the middle of the front yard and the 

equal interval two trees arrangement provide the most PET benefits in both the 
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neighborhood and individual level. Both tree arrangement scenarios correspond with 

findings in Zhao et al. (2017). These results confirm that the best tree arrangement can 

provide the best shading benefits to the outdoor human thermal comfort as well as the 

buildings. In a neighborhood without homeowner association (HOA) regulations, it is 

difficult to arrange the residential trees in a strictly equal interval arrangement. Thus, it is 

important to make the urban residents understand the importance of tree shade in the hot 

arid desert environment and offer advice when they attempt to plant a new tree to their 

residential parcel. For a residential neighborhood with HOA regulation, adding a 

maximum vegetation amount regulation and emphasizing the significance of avoiding 

tree canopy overlapping, is significant and necessary.  

      In a desert city, evapotranspiration is largely inhibited by extreme heat (Upreti et al., 

2017). Thus, radiation exchange is the dominant factor to influence the overall urban 

thermal environment. The tree locations and arrangements recommendation in this 

research may not be effective in another climate zone such as the tropical monsoon 

climate cities. In a hot humid environment, both shading and ventilation are important 

factors to be considered. In other climates, excessive cluster tree arrangement may reduce 

the wind speed and decrease the evaporation rate of people’s skin, which will have a 

detrimental effect on human thermal comfort (Hsieh et al., 2016). The best tree 

arrangement will be expected to find the balance of shading benefits as well as 

satisfactory wind environment in the residential neighborhood. 

      Several limitations exist in this research. Although the microclimates and human 

thermal benefits from residential trees are very important, we did not account for the 

ecological, aesthetic, health, and physiological benefits of trees (Roy et al., 2012; 
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Sarajevs, 2011). Further, we only used one common conifer desert shade tree in the 

simulation. It may provide limited coverage of tree shade and other tree species with 

different tree height, leaf area index, canopy density, and crown size may recommend 

different results from this research (Armson et al., 2013). The tree growing process can 

also be considered in the future research to understand how trees will influence the urban 

built environment in a long time period (Rahman et al., 2015).  

4.6 Conclusions 

      Trees provide significant benefits to outdoor microclimates and human thermal 

comfort in the desert environment. Considering the planting and maintenance cost, it is 

important to maximize tree benefits with limited number of trees. This research utilizes 

numerical simulation to explore how to wisely design tree arrangements to benefit both 

individual households and residential neighborhood. The flexibility of numerical models 

makes it possible to create, simulate, and compare the outdoor microclimates and human 

thermal comfort under different tree locations and arrangements. The research results 

recommend that urban residents should plant shade trees without canopy overlap. If 

possible, trees should not block the existing wind tunnels to impede air movement. This 

research is one of the pioneering attempts to explore the importance of tree locations and 

arrangements, and bridge the tree benefits for both the individual houses and residential 

neighborhood. The research results will help the design of urban vegetation and HOA 

regulation for the long-term sustainability of urban desert environments. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Summary of Dissertation 

      Urban green infrastructure that includes urban parks, street trees, green roofs and 

green walls continues to serve as an important component to create a better living 

environment for the urban citizens (Chang et al., 2007; Coutts, White, Tapper, Beringer, 

& Livesley, 2016; Santamouris, 2014; Wong et al., 2010). Existing research repeatedly 

confirmed the effectiveness of heat mitigation from vegetation, especially for trees, by 

the evapotranspiration effects, high albedo reflectance from leaves, and the blocking 

effects from solar radiation (Taleghani, 2017). Although researchers, policy makers, and 

urban citizens understand and believe that planting trees is an effective strategy to benefit 

the urban community, existing literature did not fully explore and understand how to 

optimally identify the best tree locations and arrangements in both the individual houses 

and the urban neighborhood. The goal of this dissertation is to fill this research gap in the 

literature and provide a better policy implication for the urban communities to plant 

residential trees.  

      Chapter 2 proposed a new 3D spatial optimization method to optimally locate 

residential trees for the single-family houses. We maximized the shading to the building 

facade, windows, and doors, and minimized the shading to the building rooftops. Results 

show that planting trees in the central part of the south facade provided the most shading 

benefits to the building. A cluster tree arrangement provides better shading environment 

compared to a dispersed tree arrangement. In addition, planting trees in the boundary of 

the residential parcel offered significant shading to the neighboring buildings.  
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      Chapter 3 employed an outdoor urban physical scale model to understand the cooling 

and locational benefits from trees to the building facade. We measured the facade 

temperature by iButton loggers and FLIR thermal camera under different tree locations 

and arrangements. Results demonstrated that tree shade benefits were more significant in 

the afternoon for the east side of the south facade. Further, tree canopy overlap should be 

avoided between multiple trees to provide the most cooling benefits to the built 

environment. For neighboring buildings, similar results were shown in both Chapter 2 

and 3. Plant trees at the boundary of the residential parcel benefited both of the houses 

and improved the overall living environment.  

      Chapter 4 applied numerical simulation to understand the outdoor microclimates and 

human thermal comfort under different tree locations and arrangements. We first validate 

the simulated scenarios with the air temperature fieldwork transects. Further, we utilized 

ENVI-met simulation platform to create and compare the air temperature, surface 

temperature, MRT, wind speed, and PET under different tree locations and arrangements. 

The results shown that planting a single tree in the middle of the front yard and arranged 

two trees in an equal interval provided the most human thermal comfort benefits to both 

the residential neighborhood and individual houses. The research results corresponded 

with the research findings in both Chapter 2 and 3, and offered guidelines for arranging 

trees at the neighborhood scale.  

      The overall dissertation research results highlight the importance of arranging 

residential shade trees across various geographical scales. In the building scale, research 

results recommend that homeowners and urban residents should arrange trees in the 

central part of the building south front yard without canopy overlap. In the neighborhood 
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scale, trees are suggested to be located in the central of the south front yard as well, but 

what varies is the distance and space between tree canopies. MRT is the most important 

factor to influence the human thermal comfort especially in a low wind speed 

environment. The dissertation findings not only confirm the cooling benefits from tree 

densities, but also indicate the importance of wisely design tree locations and 

arrangements for both the individual buildings and the residential neighborhood. 

Considering the rapid urbanization process, the severe heat stress, and limited water 

supply, judicious planning and design of residential shade trees is increasingly important 

for sustaining the urban environment and improving the life quality. 

5.2 Limitation and Future Work 

5.2.1 Tree Characteristics 

      This dissertation research explores the importance of tree locations and arrangements 

in a hot arid urban residential neighborhood. However, we did not evaluate how tree 

species, leaf area index, tree growing process, and tree types (evergreen or deciduous 

trees) will affect the spatial optimization results as well as the outdoor microclimate 

environment. A deciduous tree provides significant shading during the summer and 

allows more solar radiation penetration in the winter season. Future research can 

incorporate these tree-related variables into the understanding of the tree benefits. 

5.2.2 Tree Placement and Energy Saving 

      In this dissertation, we decided the optimal tree locations and arrangements by 

maximizing tree shade coverage and cooling benefits on the building surfaces. A more 

realistic and practical next step will attempt to identify the best tree locations and 

arrangements with the maximum air conditioning energy savings resulting from each tree. 
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In addition, different building orientations can also be incorporated into the energy 

simulation to gain more understanding of designing built environment.  

5.2.3 Tree Location Optimization Index 

      With the availability of high resolution remotely sensed images, ground-based light 

detection and ranging (LIDAR), and high performance computing facilities, it is 

achievable to derive the existing tree locations and building configurations in a city 

extent. The newly proposed spatial optimization method in this dissertation can be used 

to generate a tree location optimization index across different cities. This index will be 

useful for urban planners and policy makers to understand the current development status 

of urban green infrastructure and further help them implement plans for tree planting 

programs. 
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