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PERIODIC PARABOLIC PROBLEMS WITH

NONLINEARITIES INDEFINITE IN SIGN

T. Godoy and U. Kaufmann

Abstract

Let Ω ⊂ R
N be a smooth bounded domain. We give suffi-

cient conditions (which are also necessary in many cases) on two
nonnegative functions a, b that are possibly discontinuous and
unbounded for the existence of nonnegative solutions for semi-
linear Dirichlet periodic parabolic problems of the form Lu =
λa (x, t) up − b (x, t) uq in Ω × R, where 0 < p, q < 1 and λ > 0.
In some cases we also show the existence of solutions uλ in the
interior of the positive cone and that uλ can be chosen such
that λ → uλ is differentiable and increasing. A uniqueness theo-
rem is also given in the case p ≤ q. All results remain valid for

the corresponding elliptic problems.

1. Introduction

Let Ω be a C2+θ bounded domain in R
N , N ≥ 2, θ ∈ (0, 1). For T > 0

and 1 ≤ p ≤ ∞, let Lp
T be the Banach space of T -periodic functions f

on Ω × R (i.e. satisfying f (x, t) = f (x, t + T ) a.e. (x, t) ∈ Ω × R)
such that f|Ω×(0,T ) ∈ Lp (Ω × (0, T )), equipped with the norm ‖f‖Lp

T
:=∥∥f|Ω×(0,T )

∥∥
Lp(Ω×(0,T ))

. Let CT be the space of continuous and T -periodic

functions on Ω×R provided with the L∞ norm, and let C
1+θ,(1+θ)/2
T be

the space of T -periodic functions belonging to C1+θ,(1+θ)/2
(
Ω × R

)
.

Let {aij}, {bj}, 1 ≤ i, j ≤ N , be two families of T -periodic functions

satisfying aij ∈ C0,1
(
Ω × R

)
, aij = aji and bj ∈ L∞

T , and assume that
∑

aij (x, t) ξiξj ≥ α0 |ξ|
2

for some α0 > 0 and all (x, t) ∈ Ω×R, ξ ∈ R
N . Let A be the N×N matrix

whose i, j entry is aij , let b = (b1, . . . , bN ), let 0 ≤ c0 ∈ Lr
T , r > N + 2,
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and let L be the parabolic operator given by

Lu = ut − div (A∇u) +
〈
b,∇u

〉
+ c0u.

Let W =
{
u ∈ L2

(
(0, T ) , H1

0 (Ω)
)

: ut ∈ L2
(
(0, T ) , H−1 (Ω)

)}
. For a

given f ∈ L2
T , we will say that u is a (weak) solution of the periodic

problem

(1.1)






Lu = f in Ω × R

u = 0 on ∂Ω × R

u T -periodic

if u is T -periodic, u|Ω×(0,T ) ∈ W and
∫

Ω×(0,T )

[
−u

∂h

∂t
+ 〈A∇u,∇h〉 +

〈
b,∇u

〉
h + c0uh

]
=

∫

Ω×(0,T )

fh

for all h ∈ C∞
c (Ω × (0, T )). For u ∈ W , the inequality Lu ≥ f (resp. ≤)

in Ω × R, u = 0 in ∂Ω × R will be understood in the analogous weak
sense.

For 1 ≤ r ≤ ∞ let W 2,1
r (Ω × (t0, t1)) be the Sobolev space of the

functions u ∈ Lr (Ω × (t0, t1)) , u = u (x, t) , x = (x1, . . . , xN ) such
that ut, uxj

and uxixj
belong to Lr (Ω × (t0, t1)) for 1 ≤ i, j ≤ N ,

and let W 2,1
r,T be the space of T -periodic functions such that u|Ω×(0,T ) ∈

W 2,1
r (Ω × (0, T )). For f ∈ Lr

T , r > 1, we say that u is a strong solution

of (1.1) if u ∈ W 2,1
r,T (Ω × R) and the equation holds a.e. in the pointwise

sense.

The existence of positive solutions for periodic parabolic problems of
the form

(1.2)






Lu = g (x, t, u) in Ω × R

u = 0 on ∂Ω × R

u T -periodic

has been widely studied (see e.g. [15] and the references therein). For
applications we refer to [15], [5]. In [11] and [13], bifurcation of pos-
itive solutions for (1.2) was proved assuming that ξ → g (x, t, ξ) /ξ is
nonincreasing in (0,∞) and that gξ (x, t, 0) belongs to Lr

T for some
r > (N + 2) /2. On the other hand, in [12], existence results of positive
solutions for (1.2) were given without monotonicity conditions on g and
allowing gξ (x, t, 0) = +∞, but assuming that inf0<σ≤ξ (g (x, t, σ) /σ) be-
longs to Lr

T for some r > (N + 2) /2. However, in many cases of interest
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neither of the above conditions hold. A typical example of this situation
is the problem

(1.3)






Lu = λa (x, t)up − b (x, t)uq in Ω × R

u = 0 on ∂Ω × R

u T -periodic

where a, b are two nonnegative functions, 0 < p, q < 1 and λ > 0.
Our aim in this paper is to study (1.3), where a, b belong to Lr

T

with r > N + 2. Concerning this problem, we will show existence of
nonnegative solutions for all λ > 0 under weak conditions on a and b
(see Theorem 3.2 and also Remark 3.3), using iterative and fixed point
methods combined with some facts about linear problems with weight.
Also, under different assumptions on a and b, we will prove existence of

solutions in the interior of the positive cone of C
1+θ,(1+θ)/2
T for λ large

enough and, for p ≤ q, that u can be chosen such that λ → uλ is
differentiable and increasing (see Theorem 3.4). These last results will
follow from a sub and supersolution approach together with the implicit
function theorem. Finally, a uniqueness theorem for the solutions in the
interior of the positive cone is given in Theorem 3.5 for the case p ≤ q.

To avoid unnecessary complexity, we restrict ourselves to (1.3), but
one can see that most of the results are still valid for increasing non-
linearities that behave like up near the origin and infinity. We mention
also that as a consequence of our proofs all results remain true for the
analogous elliptic problem.

In order to relate our results to others in the literature, let us men-
tion that similar elliptic problems have been studied for example in [20]
for L = −∆ and a, b ∈ C

(
Ω
)

using a variational approach, and recently

for a, b ∈ C1 (Ω) and allowing these functions to have a singularity in
the boundary in [14, Section 3] (see also the references therein). The
particular case Lu = mup in Ω, with 0 < p < 1 and m changing sign,
was treated in detail in [2] for L = −∆ and m ∈ Cθ

(
Ω
)
, θ ∈ (0, 1),

using sub and supersolutions to construct nonnegative solutions, and
there is also a result for the associated parabolic initial boundary value
problem there. For the one dimensional elliptic problem (1.3), a precise
description of the solution set when p > q and a = b ≡ 1 was given in [8]

for the operator Lu = −
(
|u′|

s−2
u′
)′

, s > 1. On the other hand, in the

periodic parabolic case, a similar problem to (1.3) with p = q was consid-
ered extensively in [16] for the heat operator with Neumann boundary
condition, and it is also shown there that the nonnegative solutions are
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not necessarily unique. Existence and multiplicity of changing sign solu-
tions for similar periodic parabolic problems were also considered in [17].
We finally mention that related elliptic superlinear problems have been
widely studied too, see e.g. [1] and references therein.

2. Preliminaries and auxiliary results

We start collecting some known facts about the (weak) solution op-
erator (denoted by L−1) and strong solutions for problem (1.1).

Remark 2.1. (i) For r > (N + 2) /2 it holds that L−1 (Lr
T ) ⊂ CT and

L−1 : Lr
T → CT is a compact and positive operator (see e.g. [4,

Section 5], also [11, Remarks 2.1 and 2.2]).

(ii) Given f ∈ Lr
T , r > N + 2, there exists a unique solution u ∈ W 2,1

r,T

of (1.1) and the operator L−1 : Lr
T → W 2,1

r,T is continuous (see

e.g. [19, Section 4]). Moreover, from the Sobolev imbedding theo-

rems (e.g. [18, Lemma 3.3, p. 80]) it follows that u ∈ C
1+θ,(1+θ)/2
T ;

and if f ≥ 0, the strong maximum principle (e.g. [5, Theorem 13.5])
gives that u > 0 in Ω×R and ∂u

∂ν < 0 on ∂Ω×R, where ν denotes
the outward unit normal to ∂Ω.

We recall also some necessary facts about periodic parabolic problems
with weight.

Remark 2.2. (i) Let m ∈ Lr
T , r > (N + 2) /2, and let

P (m) :=

∫ T

0

esssupx∈Ω m (x, t) dt.

Then P (m) > 0 is necessary and sufficient for the existence of a
(unique) positive principal eigenvalue λ1 (m) for the periodic prob-
lem Lu = λmu in Ω×R, u = 0 on ∂Ω×R (cf. [10, Theorem 3.6]).

(ii) For λ ∈ R, let µm (λ) be defined as the unique µ ∈ R such that
the Dirichlet periodic problem Lu = λmu + µm (λ)u in Ω×R has
a positive solution u. Then µm (λ) is well defined, µm (0) > 0,
µm is concave and continuous, and a given λ ∈ R is a principal
eigenvalue associated to the weight m if and only if µm (λ) = 0
(cf. [10, Lemma 3.2]). Also, if λ1 (m) exists, then for λ > 0,
µm (λ) > 0 if and only if λ < λ1 (m), and if λ1 (m) does not exist,
µm (λ) > 0 for all λ > 0.
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(iii) If µm (λ) > 0 then for all h ∈ Lr
T the T -periodic problem

(2.1)





Lu = λmu + h in Ω × R

u = 0 on ∂Ω × R

u T -periodic

has a unique solution u ∈ W 2,1
r,T , which is positive if h > 0, and

the solution operator h → u for this problem is continuous from
Lr

T into CT (cf. [11, Lemma 2.9]). In particular, these conclusions
apply for all λ ≥ 0 if λ1 (m) does not exist and for 0 ≤ λ < λ1 (m)
when λ1 (m) exists.

Conversely, if (2.1) has a positive solution h and λ1 (m) exists,
then λ < λ1 (m) (cf. [13, Remark 2.1 (e)]).

(iv) The following comparison principle holds: if m1, m2∈Lr
T , P (m1)>

0 and m1 ≤ m2 in Ω×R, then λ1 (m1) ≥ λ1 (m2) and, if in addition
m1 < m2 in a set of positive measure, then λ1 (m1) > λ1 (m2)
(cf. [10, Remark 3.7]).

The following lemma states a maximum principle for noncylindrical
domains.

Lemma 2.3. Let D ⊂ Ω×R be a domain, let 0 ≤ g ∈ Lr (D), r > N+2,

and let u ∈ W 2,1
r,T (Ω × R) such that

{
Lu = g in D

u ≥ 0 on ∂D.

Then u ≥ 0 in D.

Proof: Since u ∈ C
(
D
)
, there exists c := minD u. Suppose c < 0, and

let (x0, t0) ∈ D such that u (x0, t0) = c. Then (x0, t0) ∈ D. Let Q ⊂ D
be a smooth bounded cylinder of the form Q = Ω0 × (t0 − δ, t0 + δ),
δ > 0, such that x0 ∈ ∂Ω0. Taking into account that ∇u (x0, t0) =
0, the maximum principle in Proposition 13.2 in [5] says that u ≡ c
in Q. Now, choosing adequately such Q’s (for example, taking ∂Ω0 “pla-
nar” around x0) we can cover a neighborhood Bρ (x0) × (t0 − δ, t0 + δ)
with a finite number of them, and hence it follows that the set C :=
{(x, t) ∈ D : u (x, t) = c} is open. Since it is also closed we have C = D.
But then u < 0 on ∂D. Contradiction.

Remark 2.4. In Lemma 2.3, the regularity assumptions on the coeffi-
cients of L can be weakened. In fact, it is clear from the proof that it
suffices that they hold in each compact subset of D.
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3. The main results

Lemma 3.1. Let b, f ∈ Lr
T , r > N + 2, b ≥ 0. Then, there exists a

unique u ∈ W 2,1
r,T solution of

(3.1)






Lu + b |u|
q−1

u = f in Ω × R

u = 0 on ∂Ω × R

u T -periodic.

Moreover, the solution operator S : CT → CT is compact and increasing.
In particular, f > 0 implies Sf > 0.

Proof: Let v ∈ CT . From Remark 2.1 (ii) we have that there exists a

unique solution u ∈ W 2,1
r,T of the Dirichlet periodic problem

(3.2) Lu + b |v|
q−1

v = f in Ω × R.

We note that the solution operator Sf : CT → CT is compact. Indeed,
Lebesgue’s dominated convergence theorem gives that the map v →

|v|
q−1

v is continuous from CT into Ls
T for all s ≥ 1, and therefore

v → −b |v|
q−1

v + f is continuous from CT into Ll
T for l > N + 2. Thus,

the compactness follows from Remark 2.1 i).

For R > 0, let B
CT

R be the closed ball in CT with center at 0 and

radius R. We claim that Sf : B
CT

R → B
CT

R for R large enough. Indeed,
from (3.2) we have |Lu| ≤ |f | + Rqb and thus

−
(
L−1 |f | + RqL−1b

)
≤ u ≤ L−1 |f | + RqL−1b.

Hence, |u| ≤ c1 + c2R
q where c1, c2 do not depend on u and the claim

follows. So, the Schauder fixed point theorem (e.g. [9, Corollary 11.2])
gives a solution for (3.1).

Suppose now there exist two solutions u, w ∈ W 2,1
r,T for (3.1). Then

L (u − w) = b
(
|w|q−1 w − |u|q−1 u

)
in Ω × R.

Since
(
|w|

q−1
w − |u|

q−1
u
)

/ (w − u) is always positive when u 6= w, the

maximum principle in Lemma 2.3 implies u = w.
To end the lemma, we note that the compactness of S follows reason-

ing as in the beginning of the proof, and the fact that S is increasing
follows by Lemma 2.3 in a similar way as above.
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Theorem 3.2. Let 0 < p, q < 1, and let 0 ≤ a, b ∈ Lr
T , r > N + 2, such

that the following condition holds

(H1) There exists an open set B := Ω0 × (t0, t1) ⊂ Ω × R such that
a (x, t) > 0 in a subset of B of positive measure and b ≡ 0 in B.

Then, for all λ > 0 there exists a (nontrivial) nonnegative solution

u ∈ W 2,1
r,T of (1.3).

Proof: Let 0 ≤ v ∈ CT and λ > 0. By the above lemma there exists a
unique positive solution u ∈ W 2,1

r,T of (3.1) with f := λavp. Let Sf be the

operator defined by Sfv = S (λavp) where S is the solution operator of
Lemma 3.1. Then Sf is compact and nondecreasing. Note that if v ≡ c
for some constant c large enough, then Sfv ≤ v. Indeed, let u = Sfv.
From (3.1) it follows that Lu ≤ λavp and so ‖u‖∞ ≤ Kcp for some K
independent of c.

Take v ≡ c ≫ 0, consider the nonincreasing sequence
{
Sj

fv
}∞

j=0
and

let u∞ ≥ 0 be its limit. We have

(3.3)






Luj+1 = λaup
j − buq

j+1 in Ω × R

uj+1 = 0 on ∂Ω × R

uj+1 T -periodic,

where uj = Sj
fv. Now, by Lebesgue’s theorem the right side of (3.3)

converges in Lr
T , thus {uj+1}

∞
j=1 converges in W 2,1

r,T (and so also in CT ).

Then u∞ ∈ W 2,1
r,T and u∞ = 0 on ∂Ω×R. Going to the limit in (3.3) we

find that Lu∞ = λaup
∞ − buq

∞ in Ω×R. It remains to see that u∞ 6= 0.
We proceed by contradiction. Suppose that u∞ = 0. Since uj converges
to u∞ in CT , there exists j0 such that uj ≤ 1 for j ≥ j0. Observe also
that

(3.4) uk (x, t) > 0 for (x, t) ∈ B, k ∈ N ∪ {0} .

Indeed, (3.4) clearly holds for k = 0 and if it holds for k = j, since






Luj+1 = λaup
j > 0 in B

uj+1 ≥ 0 on ∂P B

uj+1 T -periodic,

where

(3.5) ∂P B := (∂Ω0 × (t0, t1)) ∪ (Ω0 × {t0}) ,



52 T. Godoy, U. Kaufmann

the maximum principle gives (3.4) for k = j + 1. Taking into account
(3.4) and that uj+1 ≤ uj , a computation gives, for p < s < 1 and j ≥ j0,

(3.6)

L
(
u1−s

j+1

)
= (1 − s)u−s

j+1L (uj+1)

+ s (1 − s)u−s−1
j+1 〈A∇uj+1,∇uj+1〉+sc0u

1−s
j+1

≥ (1 − s)u−s
j+1λaup

j

≥ (1 − s)λaup−s
j

≥ (1 − s)λa in B.

Also,

(3.7) uj+1 ≥ 0 on ∂P B.

From (3.6) and (3.7), the maximum principle implies u1−s
j+1 ≥ z on B

for j ≥ j0 where z ∈ W 2,1
r (B) is the (nonnegative and nontrivial) solu-

tion of

Lz = (1 − s) λa in B,

z = 0 on ∂P B.

Thus u1−s
∞ ≥ z and so u∞ = 0 is impossible.

Remark 3.3. Let us make some comments on the condition (H1). Let
m ∈ Lr

T , r > N +2, m = m+−m−, where as usual m+ = max (m, 0) and
m− = max (−m, 0). By the above theorem there exists a nonnegative
solution of the Dirichlet periodic problem

Lu = λm+up − m−uq in Ω × R

for all λ > 0 provided that (H1) holds. Moreover, if m ∈ CT , (H1) is
also necessary by the maximum principle. In particular, taking λ = 1
and p = q it follows that Lu = mup in Ω×R has a nonnegative solution
if and only if m > 0 at some point. This generalizes (and gives a different
proof of) the existence results known in the elliptic case (e.g. [2]) as well
as in the periodic parabolic case.

We focus now on the existence of strictly positive solutions for (1.3).
We note that, for general p, q ∈ (0, 1) , the only information available
from the proof of Theorem 3.2 about the solution u provided there is
that u (x, t) > 0 for each B satisfying (H1) which, in general, does not
implies that u (x, t) > 0 for all (x, t) ∈ Ω × R.
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Let

Ωε := {x ∈ Ω : δ (x) > ε} ,

Aε := Ω − Ωε.

δ (x) := dist (x, ∂Ω)

P ◦ := interior of the positive cone of C
1+θ,(1+θ)/2
T .

Theorem 3.4. Let 0 < p, q < 1, and let 0 ≤ a, b ∈ Lr
T , r > N + 2.

Assume

(H2) Either there exist ε, K > 0 and γ > 1 − q − 1/ (N + 2) such that
b ≤ Kδγ a.e. (x, t) ∈ Aε × R, or q > 1 + 1/r − 1/ (N + 2).

Then, there exists λ0 > 0 such that for all λ > λ0 problem (1.3)

has a solution u ∈ W 2,1
r,T ∩ P ◦.

Assume in addition that

(H3) p ≤ q, and either there exist ε, K > 0 and γ > 1 − p − 1/ (N + 2)
such that a ≤ Kδγ a.e. (x, t) ∈ Aε×R, or p > 1+1/r−1/ (N + 2).

Then, there exists λ0 > 0 such that a solution u = uλ of (1.3)
can be chosen such that λ→uλ is a C1 increasing map from (λ0,∞)

into W 2,1
r,T ∩ P ◦.

Proof: Assume in (H1) that e, K and γ exist and let v ∈ CT such
that v ≥ cδ for some c > 0. Since 1 − q < γ + 1/ (N + 2) we can pick α
and σ with σ > N + 2 such that 1 − q < α < γ + 1/σ. Now,

‖b/vα‖
σ
Lσ(Aε×(0,T )) =

∫

Aε×(0,T )

bσ/vασ ≤ c−ασKσ

∫

Aε×(0,T )

δσ(γ−α) < ∞

the last inequality because σ (γ − α) > −1. So, b/vα ∈ Ls
T for s :=

min (σ, r) > N +2. If in (H1) it holds that q > 1+1/r−1/ (N + 2) then
1 − q < 1/s − 1/r for some s > N + 2 and so we can pick α such that
1 − q < α < 1/s − 1/r. Now, by Hölder’s inequality,

∥∥∥∥
b

vα

∥∥∥∥
s

Ls
T

≤ ‖b‖s
Lr

T

∥∥v−α
∥∥s

L
( r

s )
′

T

≤ c−αs ‖b‖s
Lr

T

(∫

Ω×(0,T )

δ−α rs
r−s

) r−s
r

<∞,

the last inequality because α rs
r−s < 1. Thus in any case we have b/vα ∈

Ls
T for some α > 1 − q and s > N + 2. Then Theorem 3.4 in [12] gives

a positive solution uλ ∈ L∞
T for the problem

(3.8)






(L + b/vα)uλ = λaup
λ in Ω × R

uλ = 0 on ∂Ω × R

uλ T -periodic,
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for all λ > 0. Recalling Remark 2.1 (ii) we have that uλ ∈ P ◦, and,
due to the homogeneity, it holds that uλ = λ1/(1−p)U for some U ∈ P ◦

solution of (L + b/vα)U = aUp in Ω×R, U = 0 on ∂Ω×R. Hence, since
α ≥ 1 − q, there exists λ0 > 0 such that uλ ≥ vα/(1−q) for all λ > λ0.
Therefore, from (3.8) we get Luλ ≤ λaup

λ − buq
λ in Ω × R.

On the other hand, since we can construct supersolutions wλ of (1.3)
such that wλ ≥ c in Ω × R for all c > 0 and all λ > 0 (see [12,
Lemma 2.3]), Theorem 1 in [7] applies and thus the first assertion of
the theorem is proved.

Let λ > λ0, let uλ be the solution of (1.3) found above, and let

mλ := λpaup−1
λ − qbuq−1

λ , m̃λ := λaup−1
λ − buq−1

λ . Note that (H2) and
(H3) imply that mλ and m̃λ belong to Ls

T for some s > N +2. We claim
that the implicit function theorem can be applied in the point (λ, uλ).
Indeed, to see this it suffices to show that for a given g ∈ Lr

T there is a

unique solution h ∈ W 2,1
r,T of the problem

(3.9)






(L − mλ)h = g in Ω × R

h = 0 on ∂Ω × R

h T -periodic,

and that the solution operator Sλ for this problem is continuous. Con-
sider first the case when λ1 (mλ) exists. From (1.3) it follows that
λ1 (m̃λ) = 1. Since m̃λ ≥ mλ/q, recalling the comparison principle
in Remark 2.2 (iv) we obtain

(3.10) 1 ≤ qλ1 (mλ) < λ1 (mλ)

and so µmλ
(1) > 0. If λ1 (mλ) does not exist the same conclusion holds.

Hence, by the results in Remark 2.2 (iii) and Remark 2.1 (ii) in both

cases Sλ is well defined and continuous on W 2,1
r,T .

Let (α, β) be a maximal interval in which λ → uλ is a C1 map

into W 2,1
r,T ∩ P ◦. Observe that λ → uλ is increasing. Indeed, differ-

entiating (1.3) with respect to λ gives

(L − mλ)
∂u

∂λ
= bup

λ ≥ 0 in Ω × R.

If λ1 (mλ) exists, Remark 2.2 (iii) and (3.10) imply ∂u
∂λ > 0. If λ1 (mλ)

does not exist, then µmλ
is positive everywhere, thus µmλ

(1) > 0 and
so, again by Remark 2.2 (iii) we get ∂u

∂λ > 0 also in this case.
Now, suppose β < ∞, and let uj ∈ P ◦ be the solutions of (1.3)

corresponding to some sequence λj → β−. Recalling Remark 2.1 (i), a
standard compactness argument gives some uβ solution of (1.3) for λ=β.
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Moreover, since λ → uλ is increasing we have uβ ∈ P ◦. But then
reasoning as above we can apply the implicit function theorem in the
point (β, uβ), contradicting the maximality of (α, β).

Concerning the matter of uniqueness or multiplicity of positive solu-
tions, there are examples of different nonnegative solutions for similar
problems to (1.3) with p = q both in the elliptic and the periodic para-
bolic case (cf. [2], [16]), so we cannot expect uniqueness here. Moreover,
when p > q, a = b ≡ 1, L = −∆p and N = 1, it is shown in [8] that for
some λ there are exactly two solutions in the interior of the positive cone
for (1.3), and therefore we cannot expect a general uniqueness theorem
for the case p > q neither. However, when p ≤ q the solution in the
interior of the positive cone for (1.3) (if such a solution exists) turns out
to be unique as the following theorem shows. Its proof is inspired in the
proof of Proposition 2.2 in [6] and uses a change of variable introduced
(for the elliptic case and b = 0) by L. Nirenberg (see [3, Appendix II,
Method IV]).

Theorem 3.5. Let 0 < p ≤ q < 1, λ > 0, and let 0 ≤ a, b ∈ Lr
T ,

r > N + 2. Then there exists at most one solution u ∈ W 2,1
r,T ∩ P ◦

of (1.3).

Proof: Suppose that there exist u, v ∈ W 2,1
r,T ∩P ◦ solutions of (1.3), and

let C := {(x, t) ∈ Ω × R : u (x, t) > v (x, t)}. Let s be such that p≤s≤q.
A simple computation gives that h (ξ) := (λa (x, t) ξp − b (x, t) ξq) /ξs

is nonincreasing in (0,∞) a.e. (x, t) ∈ Ω × R. For (x, t) ∈ C, define

w (x, t) :=
∫ u(x,t)

v(x,t)
ξ−s dξ. Then clearly w = 0 on ∂C and taking into

account that u, v ∈ P ◦ it also follows that w is continuous in C. Now,
since h (ξ) and ξs−1 are nonincreasing, a computation shows that, in C,

Lw − c0w = u−sLu − v−sLv + su−s−1 〈A∇u,∇u〉

− sv−s−1 〈A∇v,∇v〉 − c0

(
u1−s − v1−s

)

≤ h (u) − h (v) + su−s−1 〈A∇u,∇u〉 − sus−1v−2s 〈A∇v,∇v〉

≤ sus−1 〈∇u/us + ∇v/vs, A∇w〉 .

Thus, recalling the maximum principle in Lemma 2.3 and Remark 2.4,
the theorem follows.
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Facultad de Matemática, Astronomı́a y F́ısica
Universidad Nacional de Córdoba
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