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INVARIANT SUBSPACES ON
MULTIPLY CONNECTED DOMAINS

Ali Abkar and Håkan Hedenmalm

Abstract
The lattice of invariant subspaces of several Banach spaces of an-
alytic functions on the unit disk, for example the Bergman spaces
and the Dirichlet spaces, have been studied recently. A natural
question is to what extent these investigations carry over to anal-
ogously defined spaces on an annulus. We consider this question
in the context of general Banach spaces of analytic functions on
finitely connected domains Ω. The main result reads as follows:
Assume that B is a Banach space of analytic functions satisfying
some conditions on the domain Ω. Assume further that M(B) is
the set of all multipliers of B. Let Ω1 be a domain obtained from Ω
by adding some of the bounded connectivity components of C\Ω.
Also, let B1 be the closed subspace of B of all functions that ex-
tend analytically to Ω1. Then the mapping I 7→ clos(I ·M(B))
gives a one-to-one correspondence between a class of multiplier
invariant subspaces I of B1, and a class of multiplier invariant
subspaces J of B. The inverse mapping is given by J 7→ J ∩B1.

0. Introduction

The study of the lattice of invariant subspaces of a given Banach
space B consisting of analytic functions in a domain Ω of the com-
plex plane C has attracted much attentions in recent years. This is
mainly due to the applications to spectral theory as well as to polynomial
approximation theory. Let Ω be a domain, an open and connected sub-
set of the complex plane, and let B = B(Ω) be a Banach space of
analytic functions defined on Ω. We shall need three different notions
of invariant subspaces. A closed subspace M of the Banach space B
is said to be invariant provided that zM ⊂ M , where z stands for the
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coordinate function z(λ) = λ for every λ in Ω (rather than the usual
complex variable). Invariant subspaces are sometimes called simply in-
variant, or polynomially invariant subspaces. Similarly, we call a closed
subspace M of B rationally invariant provided that rM ⊂ M for every
rational function r with poles outside Ω (the closure will always be taken
in the extended complex plane C∪{∞}, whenever we have an unbounded
set). Some authors use the phrase fully invariant for rationally invariant
subspaces. An analytic function ϕ defined on Ω is said to be a multiplier
for the Banach space B, if ϕB ⊂ B. The set of all multipliers of B is
denoted by M(B). A closed subspace M of B is said to be multiplier
invariant or hyperinvariant provided that ϕB ⊂ B, for every ϕ ∈M(B).
We shall write M(B)-invariant for a multiplier invariant subspace when
we need to emphasize that M is a multiplier invariant subspace in B (and
not in some other space). In this article, we shall mainly deal with mul-
tiplier invariant subspaces. It may happen that some of these concepts
of invariance coincide for a given space B.

Throughout this paper, for Ω an open and connected subset of C∪{∞}
with Ω 6= C ∪ {∞}, we shall assume that all Banach spaces B = B(Ω)
under consideration satisfy the following axioms:

(0-1) B is a linear subspace of the space of all analytic functions on Ω.
(0-2) The functional of evaluation at λ is continuous for all λ ∈ Ω.
(0-3) If f ∈ B, then so is rf , for every rational function r with poles in

(C ∪ {∞}) \ Ω.
(0-4) If f ∈ B, λ ∈ Ω, and f(λ) = 0, then ∃g ∈ B such that (z−λ)g = f .

Such conditions have appeared in the literature before. For example,
one can find similar set-ups in L. Brown and A. L. Shields [9], and in
S. Richter [27].

Axiom (0-3) implies that M(B) contains rational functions with poles
outside Ω. In case Ω is a bounded domain, z is regarded as a rational
function with pole at infinity so that the polynomials are included in
M(B). From the first three axioms together with the closed graph the-
orem one can obtain the continuity of the operator of multiplication by
z, that is, Mz = Mz[B] : B → B defined by f 7→ zf . We denote by
σ(Mz) the spectrum of the operator Mz, that is, the set of all complex
numbers λ for which the operator λ −Mz is not invertible. Assuming
that the Banach space B is nontrivial, we conclude by exploiting the last
axiom that Ω ⊂ σ(Mz). Note that σ(Mz) consists of all λ ∈ C for which
(λ− z)−1 /∈M(B). If Ω contains the point at infinity, then Mz is not a
bounded operator, but we may still talk of σ(Mz) as the set of all complex
numbers λ for which (λ−z)−1 /∈M(B). It can be shown to be closed in C.
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More generally, we say that a closed subspace M of B is invariant
for an operator T , defined on B, if TM ⊂ M . It is obvious that poly-
nomially invariant subspaces of B are those which are invariant for the
operator Mz. In contrast, multiplier invariant subspaces of B are those
which are invariant under all the bounded linear operator Mϕ : f 7→ ϕf
from B into B, where ϕ ∈ M(B). An invariant subspace of B is called
hyperinvariant for the operator Mz, if it is invariant for all operators
which commute with Mz. For Banach spaces of analytic functions sat-
isfying the axioms (0-1)-(0-4), it is known that the operator T on B
commutes with Mz if and only if T = Mϕ for some ϕ ∈M(B) (see [27,
Proposition 2.4]). It follows that the multiplier invariant subspaces of B
are precisely the hyperinvariant subspaces for Mz.

Examples of spaces. Before advancing any further, let us take a
look at some familiar Banach spaces of analytic functions which satisfy
the above mentioned axioms.

As a first example we mention the classical Hardy spaces of analytic
functions on the unit disk Hp = Hp(D), 1 ≤ p ≤ +∞ (for definition see
[12]). Note that for p = +∞, we getH∞, the Banach algebra of bounded
analytic functions in the unit disk equipped with the supremum norm.
It is easy to see that the Hardy spaces satisfy our axioms. The invari-
ant subspaces of the Hilbert space H2 were classified by A. Beurling [8].
Later K. deLeeuw and W. Rudin showed that Beurling’s result is true for
p = 1, and finally, T. P. Srinivasan extended Beurling’s theorem to Hp,
1 ≤ p ≤ +∞ [22, p. 28]. Beurling’s theorem is even valid in the context
of the spaces Hp, for 0 < p < 1, which are not Banach spaces (however,
they are quasi-Banach spaces [25]; we use this term to denote a complete
p-normed space, for some p, 0 < p ≤ 1). Beurling’s theorem asserts that
for 0 < p < +∞, every invariant subspace M of Hp, other than {0}, is
of the type M = uHp where u is some inner function. Furthermore, if
p = +∞, the statement remains true if the word “closed” is replaced by
the expression “weak-star closed” (see [13, p. 132]). It is not difficult to
extend Beurling’s description to general simply connected domains, but
the problem of describing the invariant subspaces on mutiply connected
domains is more complicated. However, there is a characterization, sim-
ilar to Beurling’s, of rationally invariant subspaces of the Hardy spaces
on multiply connected domains. This was observed by D. Sarason [32]
for the annulus, and by M. Hasumi [15] and M. Voichick [34], [35] for
more general domains (for a brief proof, see the paper of H. L. Royden
[29]). Some effort has been made to describe the simply invariant (but
not rationally invariant) subspaces of the Hardy spaces on multiply con-
nected domains. We refer the reader to the works of H. L. Royden [29],
D. Hitt [23], V. Yakubovich [36], and A. Aleman and S. Richter [3].
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Another example of such a Banach space of analytic functions is the
Bergman space L2

a = L2
a(D), consisting of those analytic functions in

the unit disk which are square integrable with respect to Lebesgue area
measure. More precisely, f ∈ L2

a means that f is holomorphic on D, and
has finite norm (we write, for z = x+ iy, dA(z) = π−1 dx dy):

‖f‖L2
a

=
(∫

D
|f(z)|2 dA(z)

)1/2

< +∞.

The Bergman space L2
a is a Hilbert space with the inner product

〈f, g〉L2
a

=
∫
D
f(z)g(z) dA(z), f, g ∈ L2

a(D).

We define Lpa(Ω), for 0 < p < +∞, the Bergman space with exponent p
of a general domain Ω, to be the space of all holomorphic functions f on
Ω such that

‖f‖Lpa(Ω) =
(∫

Ω

|f(z)|p dA(z)
)1/p

< +∞,

where dA(z) denotes the area measure on Ω. More generally, we
define the weighted Bergman spaces Lpa(Ω, w) where the weight function
w : Ω → C is strictly positive and continuous on Ω: for 0 < p < +∞,
the space Lpa(Ω, w) consists of those analytic functions f on Ω for which

‖f‖p,w =
(∫

Ω

|f(z)|pw(z) dA(z)
)1/p

< +∞.

For 1 ≤ p < +∞, this is a norm which makes Lpa(Ω, w) a Banach space.
For w ≡ 1, Ω = D, and p = 2, we get the previously encountered
Bergman space L2

a(D). For 1 ≤ p < +∞, the weighted Bergman spaces
satisfy our axioms (0-1)-(0-4). For instance, the continuity of point eval-
uation functionals follows from the sub-mean value property for subhar-
monic functions. As we mentioned earlier, Beurling’s theorem describes
the invariant subspace structure of the Hardy spaces Hp. In contrast,
the invariant subspace structure of the Bergman spaces has never been
completely understood and is known to be extremely complicated. How-
ever, Aleman, Richter, and Sundberg have recently obtained a genuine
analog of Beurling’s theorem for L2

a [5].
As a final example of spaces that satisfy our axioms, we would like

to mention the spaces Dα, for −∞ < α < +∞. Consider an analytic
function f in the unit disk, with Taylor series f(z) =

∑∞
n=0 anz

n. The
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space Dα consists of those analytic functions in the unit disk for which
the following sum is finite:

∞∑
n=0

(n+ 1)α|an|2 < +∞.

It is a Hilbert space with the inner product

〈f, g〉 =
∞∑
n=0

(n+ 1)αanbn,

where an and bn are the coefficients in the Taylor series expansions of f
and g, respectively. The space D0 is the familiar Hardy space H2, D1

is the Dirichlet space, and D−1 is the Bergman space L2
a. The Dirichlet

space consists of those analytic functions D→ C that map the unit disk
onto a Riemann surface of finite area

∫
D |f ′|2 dA. Clearly, f ∈ D1 if and

only if f ′ ∈ L2
a(D). We refer the reader to [9], [33], and [27] for a review

of known results on the spaces Dα.

In this paper, we study how the lattice of multiplier invariant subspaces
changes with the connectivity of the underlying domain. It follows from
our main result that to characterize all multiplier invariant subspaces (of
index one) of a Bergman space Lpa(Ω) on a finitely connected smoothly
bordered domain Ω, one only needs to solve the problem for the Bergman
spaces Lpa(Ω

′), where Ω′ is a simply connected smoothly bordered do-
main. We should point out that the study of Lpa(Ω

′) is essentially the
same as that of Lpa(D).

Although we shall mainly be interested in a general geometric situa-
tion, we start by describing the particular case of an annulus.

We consider a bounded planar domain Ω, and keep in mind the annulus
Aρ = {z ∈ C : ρ < |z| < 1} with 0 < ρ < 1 as a typical example of Ω.
Now assume that Ω1 and Ω2 are two other planar domains satisfying the
following conditions:

(1) Ω1 is bounded,
(2) Ω2 is unbounded and non-dense in the complex plane,
(3) Ω1 ∪ Ω2 = C and Ω = Ω1 ∩ Ω2.

For example, one can think of Ω1 as {z ∈ C : |z| < 1}, and of Ω2 as
{z ∈ C : |z| > ρ}, where 0 < ρ < 1. Suppose that B is a Banach space
of analytic functions on Ω (satisfying the axioms). We assume that B
can be written as the direct sum of B = B1 ⊕B0

2 , where B1 and B0
2 are
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Banach spaces of analytic functions on Ω1 and Ω2, respectively. More
precisely, B1 = B ∩O(Ω1) and B0

2 = B ∩O0(Ω2). Here, O0(Ω2) denotes
the subspace of O(Ω2) consisting of those functions f such that f(z)→ 0
as |z| → +∞. We shall also assume that the multiplier space M(B) can
be written as the direct sum of M(B1) and M0(B2), where this latter
consists of those elements of M(B2) having the value 0 at infinity. We
wish to study the lattices of multiplier invariant subspaces of B and of
B1. Our main objective is to compare the lattice structure of multiplier
invariant subspaces of B with that of B1. Once this is done, we would
simultaneously have a knowledge of the lattice structure of multiplier
invariant subspaces of B2 as well, because we can easily interchange B1

and B2 via a Möbius transformation. The advantage of this kind of
comparison theorem is due to the fact that B1 is defined on a domain
with fewer holes, and so it is likely that its lattice structure is better
known than that of B.

Suppose that J is an M(B)-invariant subspace; then the contrac-
tion J ∩ B1 is an M(B1)-invariant subspace. Conversely, if I is an
M(B1)-invariant subspace, then the extension clos(I ·M(B)) is anM(B)-
invariant subspace. Here “clos” indicates closure, and I ·M(B) stands
for

I ·M(B) = span{fϕ : f ∈ I, ϕ ∈M(B)},

that is, the set of finite linear combinations of products of the form fϕ,
f ∈ I, and ϕ ∈ M(B). The extension clos(I ·M(B)) is the smallest
multiplier invariant subspace of B containing I. It turns out that for
a large class of subspaces I and J , multiplier invariant in B1 and B,
respectively, the following equalities hold:

I = clos
(
I ·M(B)

)
∩B1 and J = clos

(
(J ∩B1) ·M(B)

)
.

These equalities guarantee a one-to-one correspondence between parts of
the two lattices of multiplier invariant subspaces of B and B1. To make
the correspondence work, we need to assume that σ(Mz[B1/I]) ⊂ Ω2

and σ(Mz[B/J ]) ⊂ Ω2. Here, the notation σ(Mz[B/J ]) is used for the
spectrum of the operator Mz[B/J ] : B/J → B/J defined by

f + J 7→ zf + J,

where J is an invariant subspace of B. Similarly, one defines the operator
Mz[B1/I] and its spectrum σ(Mz[B1/I]). It turns out that it is possible
to describe the structure of all multiplier invariant subspaces of index
one (see Definition 2.1) in B in terms of the corresponding lattices of
multiplier invariant subspaces of B1 and B2.
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This paper generalizes the methods introduced in [16] to establish a
correspondence of this type between the closed ideals of B1 and those of
B in the Banach algebra setting. Related comparison theorems regarding
the structure of closed ideals in some Banach algebras can be found in
[17], [18]. The results of this paper can be generalized to quasi-Banach
spaces (see [1]). In particular, the results apply to the Bergman spaces
Lpa(Ω), 0 < p < 1, as well.

1. Preliminaries

For an unbounded domain Ω, we mean by O0(Ω) the subspace of O(Ω)
consisting of those functions f(z) which tend to 0 as |z| → ∞ within Ω.
Note that here the notation O(Ω) is used to indicate the vector space
of all analytic functions on the domain Ω regardless of whether Ω is
bounded or unbounded.

Given an invariant subspace J of the Banach space B of analytic func-
tions defined on Ω, we consider the operator Mz[B/J ] : B/J → B/J
defined by the following relation:

Mz[B/J ](f + J) = zf + J, f ∈ B.

As we shall see later on, this operator and especially its spectrum plays a
significant role in our future work. Recall that the notation σ(Mz[B/J ])
stands for the spectrum of this operator, that is, the set of all λ ∈ C for
which the operator λ −Mz[B/J ] acting on B/J , is not invertible. We
note that the spectrum σ(Mz[B/J ]) is a compact non-empty subset of
Ω (see [19]). Similarly, if J is a multiplier invariant subspace of B and
if ϕ ∈M(B), then we define the operator Mϕ[B/J ] : B/J → B/J by

f + J 7→ ϕf + J, f ∈ B.

Our first three axioms together with the closed graph theorem imply that
Mϕ is a bounded linear operator on B/J . We would like to mention that
the multiplier space M(B) can be made into a Banach space by putting
‖ϕ‖M(B) = ‖Mϕ‖L(B). It follows immediately that

‖ϕ · f‖B ≤ ‖ϕ‖M(B) · ‖f‖B , for every ϕ ∈M(B), f ∈ B.

Because of its very important role in our future disscusions, we would
like to recall some holomorphic functional calculus. Let O

(
σ(Mz[B/J ])

)
denote the algebra of all functions analytic in some neighbourhood of the
spectrum of the operatorMz[B/J ]. Note that every such function h is de-
fined and analytic in a corresponding neighbourhood Uh of the compact
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set σ(Mz[B/J ]); strictly speaking, O
(
σ(Mz[B/J ])

)
is thus an algebra

of germs of analytic functions. Consider h ∈ O
(
σ(Mz[B/J ])

)
and let

Dh be a compact subset of Uh such that its interior contains the spec-
trum σ(Mz[B/J ]). Now let γh be the positively oriented boundary of
the compact set Dh consisting of a finite number of piecewise smooth
curves, each homeomorphic to the unit circle T. For λ ∈ C\σ(Mz[B/J ])
define the operator HJ : O

(
σ(Mz[B/J ])

)
→ L(B/J) by

h 7→ HJ(h) =
1

2πi

∫
γh

h(λ)(λ−Mz[B/J ])−1 dλ.

Here, we identify the complex number λ and the operator λ·id, where
id stands for the identity operator on B/J . We also note that in fact
HJ(h) = h(Mz[B/J ]), the image of the operator Mz[B/J ] under the
holomorphic function h, under what is customarily called the holomor-
phic functional calculus. The mapping h 7→ HJ(h) from O

(
σ(Mz[B/J ])

)
into L(B/J), the Banach algebra of all bounded linear operators on B/J ,
is linear and multiplicative (see [26, p. 84] or for an interesting discussion
of general spectral theory [11]). That is, for functions h and g analytic
in a neighbourhood of the spectrum of the operator Mz[B/J ], we have
HJ(hg) = HJ(h)HJ(g). Note that for λ /∈ σ(Mz[B/J ]), the inverse
operator

(λ−Mz[B/J ])−1 : B/J −→ B/J

exists, and that by the analyticity in the λ variable the integral defining
HJ(h) does not depend on the particular choice of γh, so that there is
no ambiguity in the above integral formula. Assume that the constant
function 1 ∈ B, so that 1 + J ∈ B/J . Associate to each S ∈ L(B/J),
the element S(1 + J) which is in B/J . This defines a mapping PJ :
L(B/J)→ B/J , which sends

S 7→ PJ(S) = S(1 + J).

We then have a mapping LJ = PJ ◦HJ from O
(
σ(Mz[B/J ])

)
into B/J ;

in fact we have the following chain of mappings

O
(
σ(Mz[B/J ])

)
→ L(B/J)→ B/J.

More precisely, we define the mapping LJ : O
(
σ(Mz[B/J ])

)
→ B/J by

h 7→ PJ(HJ(h)) = (HJ(h))(1 + J).
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Let ϕ be a multiplier for the Banach space B of analytic functions,
which contains the constant function 1 and satisfies our axioms. Since
for f ∈ B, both f and ϕf are analytic functions on Ω, it follows that ϕ
itself is an analytic function. We would like to mention that if we do not
assume that 1 ∈ B, then our axiom (0-4) implies that ϕ is an analytic
function. It turns out that the mapping from (M(B), B) into B, sending
the pair (ϕ, f) to ϕf , induces a module structure on B. In other words,
B is an M(B)-module. For this reason, we call a module-homomorphism
any bounded linear mapping on B which preserves this module structure
of B. More precisely, we make the following definition, in which we shall
temporarily use the notation A for a Banach space of analytic functions
on a domain Ω.

Definition 1.1. Let A be a Banach space of analytic functions
on Ω, and let Y be a Banach space. A bounded linear mapping
L : A → Y is said to be a module-homomorphism provided that there
exists a continuous homomorphism LM : M(A)→ L(Y ) such that

L(ϕf) = LM (ϕ)L(f),

for every ϕ ∈M(A) and every f ∈ A.

Remark 1.2. If L is a module-homomorphism A → Y , then the
kernel kerL is anM(A)-invariant subspace ofA. To see this, let f ∈ kerL
and ϕ ∈ M(A); the space of multipliers of A. We then have L(ϕf) =
LM (ϕ)L(f). But L(f) = 0, therefore L(ϕf) = LM (ϕ)(0) = 0, which
shows that ϕf ∈ kerL. Moreover, if the linear mapping L is onto then
the associated homomorphism LM is unique. To see this, assume that
L∗M is another continuous homomorphism satisfying the requirements of
above definition. Then, for a fixed ϕ ∈M(A) and any f ∈ A, we have

LM (ϕ)L(f) = L∗M (ϕ)L(f).

Since L(f) can be any element of the Banach space Y , we get LM = L∗M .
When we need to emphasize the associated homomorphism LM , we shall
speak of the pair (L,LM ) as a module-homomorphism pair.

In the special case that the target Banach space is the complex plane,
the associated homomorphism LM sends multipliers to the complex num-
bers, because L(C) = C.

Definition 1.3. Suppose that A is a Banach space of analytic func-
tions on Ω containing 1 and that M(A) is the set of all multipliers of A.
We mean by a module-functional on A, a linear functional φ : A → C
with φ(1) = 1 such that φ is a module-homomorphism A→ C : φ(ϕf) =
φM (ϕ)φ(f), for every ϕ ∈M(A) and every f ∈ A.



530 A. Abkar, H. Hedenmalm

We now return to our previous notation B for the Banach space of
analytic functions on Ω.

Proposition 1.4. Assume that B is a Banach space of analytic func-
tions on Ω satisying the axioms (0-1)-(0-4), and that z denotes the co-
ordinate function. If 1 ∈ B, then for each λ, the point evaluation is the
only module-functional φ which satisfies φ(z) = λ.

Proof: Having fixed λ ∈ Ω, we want to show that φ(f) = f(λ) for
every f ∈ B. First, we note that

1 = φ(1 · 1) = φM (1) · φ(1).

Therefore, φM (1) = 1. Secondly, φM (z) = λ, because

λ = φ(z) = φ(z · 1) = φM (z) · φ(1) = φM (z).

Let f ∈ B be arbitrarily chosen. Using axiom (0-4), we can write

f = f(λ) + (z − λ)g for some g ∈ B.

Note that z − λ belongs to the multiplier space M(B). Hence

φ(f) = φ(f(λ)) + φM (z − λ)φ(g)

= f(λ)φ(1)+
(
φM (z)− λφM (1)

)
φ(g)

= f(λ),

and the proof is complete.

We shall bring this section to an end by the following proposition on
the essential ingredients of this manuscript.

Proposition 1.5. Assume that B is a non-trivial Banach space of
analytic functions satisfying the axioms (0-1)-(0-4) on the bounded do-
main Ω. Then the following hold:

(a) σ(Mz) = Ω.

(b) O(Ω) ⊂M(B) ⊂ H∞(Ω), and if 1 ∈ B, then we have

O(Ω) ⊂M(B) ⊂ H∞(Ω) ∩B ⊂ B ⊂ O(Ω).
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Proof: To prove part (a), we fix λ ∈ Ω. Since B is non-trivial, there
exists a function f ∈ B which is not identically zero. We may assume
that f(λ) 6= 0. Suppose that λ ∈ C \σ(Mz), then λ−Mz as an operator
on B is invertible and in particular, it is onto. That is, there exists a
function g ∈ B such that (λ− z)g = f . But this is not possible, because
f(λ) 6= 0. Thus Ω ⊂ σ(Mz), and since the spectrum of Mz is compact,
we get Ω ⊂ σ(Mz). For the reverse inclusion, suppose that λ /∈ Ω; then
by axiom (0-3), we have 1/(λ − z) ∈ M(B). Now it is easily seen that
the operator λ−Mz is invertible, so λ /∈ σ(Mz) which proves the desired
inclusion. Thus part (a) is proved.

Proof of (b): For the first inclusion we shall use the holomorphic func-
tional calculus. Let ϕ ∈ O

(
σ(Mz)

)
, and let f ∈ B. We intend to

show that ϕf ∈ B. Using the holomorphic functional calculus, we get
ϕ(Mz) ∈ L(B). Note that here, we use the assumption that ϕ is holomor-
phic in a neighbourhood of the spectrum of the operator Mz. Choosing
an arbitrary function f ∈ B, we have ϕ(Mz)f ∈ B. What therefore
remains to be proved is that ϕ(Mz)f = ϕf . To this end, we first recall
that

ϕ(Mz) =
1

2πi

∫
∂U

ϕ(λ)(λ−Mz)−1 dλ,

where U is a finitely connected smoothly bordered domain containing
σ(Mz) and such that U lies in the domain of analyticity of ϕ, and ∂U is
oriented in the positive direction. Hence

ϕ(Mz)f =
1

2πi

∫
∂U

ϕ(λ)(λ−Mz)−1f dλ

=
1

2πi

∫
∂U

ϕ(λ)(λ− z)−1f dλ

= ϕf.

So far the first inclusion is proved. The facts that M(B) ⊂ H∞(Ω) and
that if 1 ∈ B, then M(B) ⊂ H∞(Ω) ∩ B, are the contents of Proposi-
tion 2.6 of [27].

2. Basic Concepts

Let M be an invariant subspace of B and let λ ∈ Ω. It is known that
the dimension of the quotient space M/(z − λ)M does not depend on
λ [27]. Therefore, we can make the following definition.

Definition 2.1. We say that the invariant subspace M 6= {0} of B
has index n if dim(M/(z − λ)M) = n. In particular, if M is the trivial
null subspace, then the index of M is 0.
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The invariant subspaces of index n are also known as invariant sub-
spaces having the codimension n property. Before advancing any further,
we turn to a class of examples of invariant subspaces of index one. As
we mentioned earlier, we shall assume that the multiplier invariant sub-
space J satisfies the condition σ(Mz[B/J ]) ⊂ Ω2. This entails that J
has index one (see Corollary 2.4). Hence we need to have a reasonable
class of examples.

Examples of index one invariant subspaces. For a subset S of
B, the notation [S] is used for the smallest invariant subspace of B which
contains S. If S consists of just one single element f , then the notation
[f ] is used for the smallest invariant subspace of B containing f . Such
invariant subspaces are called cyclic or singly generated. Note that [f ]
is the closure of the polynomial multiples of f in B. Similarly, one may
consider M [f ], the closure in B of multiplier multiples of f . Invariant
subspaces of this kind always have index one ([27, Corollary 3.3]). On the
other hand, by Beurling’s theorem, every invariant subspace of the Hardy
spaceH2 is cyclic (see [14, p. 82] or [24, p. 99]). In fact, unless it is {0}, it
is of the type uH2 = [u] for some inner function u. Thus every invariant
subspace of H2 has index one. It is also known that every nontrivial
invariant subspace of the Dirichlet space D1 has index one. This was
noticed by S. Richter and A. L. Shields [28]. This result remains true for
weighted Dirichlet spaces, as was observed by A. Aleman [2]. Moreover,
by recent work of Aleman, Richter, and Ross [4], many other Banach
spaces of analytic functions share this property. However, given α < 0,
and 1 ≤ n ≤ ∞, there exists an invariant subspace Mn of Dα having
index n, as was observed by Apostol, Bercovici, Foiaş, and Pearcy [6].
The Bergman space L2

a is the special case α = −1, L2
a = D−1, [6], [7].

The proofs presented for the existence of invariant subspaces of a given
index in both of the last two examples have abstract natures involving
the axiom of choice. A concrete construction of such invariant subspaces
was first found by H. Hedenmalm [20] for the Bergman space L2

a, and
then by H. Hedenmalm, S. Richter, and K. Seip [21] for the Bergman
spaces Lpa.

In any Banach space of analytic functions satisfying our axioms, every
invariant subspace of index larger than 1 contains an invariant subspace
of index 1. Also every closed ideal in a unital Banach algebra, for instance
H∞, has index one [27]. The spaces Dα are algebras for α > 1. Since
the polynomials are dense in Dα, every invariant subspace of Dα for
α > 1 has index one [27]. This is so even for 0 < α < 1 (see [4, p. 260]).
Finally, we note that the invariant subspaces of index 1 form a complete
lattice with respect to intersection and span [27].
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Definition 2.2. The collection of all λ ∈ C for which the operator
λ−Mz[B/J ] is not onto is denoted by σ′J = σ′(Mz[B/J ]) and is called
the weak spectrum of the operator Mz[B/J ].

It is clear that the weak spectrum σ′J is a subset of the spectrum
σJ ⊂ Ω. For an invariant subspace J we have in general σ′J ∩Ω = Z(J),
where the notation Z(J) stands for the common zero set of J in Ω,
that is, the intersection of zero sets of all the elements of J (see [27,
Proposition 4.4]). So far we know that σ′J ∩ Ω ⊂ σJ ∩ Ω. Now, assume
that the invariant subspace J has index one and that λ ∈ Ω \ σ′J , so
that the operator λ −Mz[B/J ] is onto. We claim that it is also one-
to-one. To see this, let (λ −Mz[B/J ])(f + J) = 0 + J , which implies
that (λ − z)f ∈ J . Now, we use Lemma 3.1 of [27] to obtain f ∈ J , or
equivalently f + J = 0 + J which in turn proves that λ −Mz[B/J ] is
one-to-one. Therefore, λ ∈ Ω \ σJ , making σ′J ∩ Ω = σJ ∩ Ω (see [27,
Theorem 4.5]). An alternative way to define the weak spectrum is the
following: λ ∈ C \ σ′J if and only if (λ − z)B + J = B. The following
proposition sheds some light on the relationship between the spectrum
of the operator Mz[B/J ] and the index of J .

Proposition 2.3. Assume that B is a Banach space of analytic func-
tions satisfying the axioms (0-1)-(0-4) on Ω. If J is an invariant sub-
space of B such that index(J) > 1, then we have σ(Mz[B/J ]) = Ω.

Proof: We know that for λ ∈ Ω, dim(J/(λ− z)J) = index(J) and also

σ(Mz[B/J ]) ⊂ σ(Mz) = Ω.

For the reverse inclusion, it suffices to show that Ω\Z(J) ⊂ σ(Mz[B/J ]).
Assume that λ−Mz[B/J ] is invertible, for λ ∈ Ω\Z(J). Then it is one-
to-one, so (λ −Mz[B/J ])(f + J) = 0 + J must imply f ∈ J . But the
above equality is equivalent to (λ − z)f ∈ J , therefore this latter must
imply f ∈ J . Since we have

(λ− z)f ∈ (λ− z)B = {g ∈ B : g(λ) = 0} = Mλ,

we obtain (λ−z)f ∈ J∩Mλ. But f ∈ J if and only if (λ−z)f ∈ (λ−z)J .
Now, the question is the same as asking whether we have

(λ− z)J = J ∩Mλ.

This is true for λ ∈ Ω\Z(J) precisely for invariant subspaces J of index 1
[27, Lemma 3.1]. This means that σ(Mz[B/J ]) cannot be smaller than
Ω. The proof is complete.
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Corollary 2.4. The only possibility for the invariant subspace J of
the Banach space B of analytic functions on Ω to satisfy the condition
σ(Mz[B/J ]) 6= Ω is that J has index one.

Proposition 2.5. Assume that B is a Banach space of analytic func-
tions satisfying the axioms (0-1)-(0-4) on Ω, and that J is a multiplier
invariant subspace of B. If σJ = σ(Mz[B/J ]) ⊂ Ω, then there exists a
polynomial p with zeros in Ω such that J = pB = {pf : f ∈ B}.

Proof: As we have seen before, σJ ∩Ω = Z(J), so that σJ = Z(J). It
is evident that Z(J) consists of finitely many points of Ω, otherwise it
would accumulate at some point in Ω, in which case the unicity theorem
for analytic functions would force J = {0}, making B/J = B, whence
σJ = σ(Mz[B]) = Ω, contradicting our assumption. Let p be a polyno-
mial with zeros in Z(J), such that the multiplicity of each zero equals
the least common multiplicity of all the functions in J . As a result of
the axiom (0-4) we know that pB can be described as those functions
in B vanishing to the required multiplicities on Z(J). Note that our
axiom (0-2) (the continuity of point evaluation at each λ ∈ Ω) implies
that pB is closed in B. It is easily seen that pB is a multiplier invariant
subspace of B containing J . We claim that J = pB. Put J/p = J1.
It is clear that J1 is a multiplier invariant subspace of B, and that
J = pJ1 ⊂ J1. We first note that our assumption on σJ entails that
J has index one (see Corollary 2.4), and secondly if we temporarily ac-
cept that

σJ1 = σ(Mz[B/J1]) ⊂ σ(Mz[B/J ]) ⊂ Ω,

then using the fact that Z(J1) = ∅ we conclude that σJ1 = Z(J1)∩Ω = ∅.
Therefore B/J1 = {0}, or equivalently J1 = B and finally J = pJ1 = pB.
Now, the only thing which requires verification is σJ1 ⊂ σJ . To this end,
define Ψ : pB/J → B/J1 by pf + J 7→ f + J1, for f ∈ B. First note
that for f and g in B, the equality pf + J = pg + J is equivalent to
(f − g) ∈ J/p = J1, or f + J1 = g + J1, so that the mapping Ψ is
well-defined and one-to-one. The surjectivity of Ψ is also clear, making
it an isomorphism. Now, assume that T1 and T2 are the operators of
multiplication by z on B/J1 and pB/J , respectively. We then have

Ψ(T2(pf + J)) = Ψ(zpf + J) = zf + J1 = T1(f + J1)

= T1(Ψ(pf + J)).

Therefore ΨT2 = T1Ψ, or equivalently T2 = Ψ−1T1Ψ. Similarly, we can
obtain λ − T2 = Ψ−1(λ − T1)Ψ for every λ ∈ C, which in turn shows
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that σ(T1) = σ(T2). Now, let λ ∈ C \ σJ , and define the operator
Aλ : pB/J → pB/J by the following:

Aλ(pf + J) = p(Mz[B/J ])(λ−Mz[B/J ])−1(f + J), f ∈ B.

We first note that for every natural number n, and every f ∈ B we have

(Mz[B/J ])n(f + J) = (Mz[B/J ])n−1(zf + J),

so that

(Mz[B/J ])n(f + J) = znf + J = Mzn [B/J ](f + J).

Therefore p(Mz[B/J ]) = Mp[B/J ] takes B/J onto pB/J . A straightfor-
ward calculation shows that for λ ∈ C \ Ω, one has

(λ−Mz[pB/J ])Aλ(f + J) = f + J,

that is, (λ −Mz[pB/J ])Aλ equals the identity operator for every λ ∈
C \ Ω. It is easy to see that for such λ, the operator Aλ commutes with
λ−Mz[pB/J ]. But Aλ is analytic in the λ variable in C \ σJ , and also
λ −Mz[pB/J ] is an entire function of λ, therefore their composition is
analytic in C\σJ . It follows from the uniqueness theorem for vector val-
ued analytic functions that in fact (λ−Mz[B/J ])Aλ equals the identity
operator for all λ ∈ C \ σJ , which means that Aλ is the inverse operator
to λ−Mz[pB/J ] for all λ ∈ C \ σJ , and hence

σJ1 = σ(T1) = σ(T2) = σ(Mz[pB/J ]) ⊂ σJ .

The proof is complete.

3. The main result

This section aims to carry out the following plan. Suppose Ω is a
bounded planar domain and B a Banach space of analytic functions on
Ω which contains 1 and satisfies the axioms (0-1)-(0-4). Let B1 be a
closed subspace of B containing both the constant function 1 and the
coordinate function z, and let I be a proper multiplier invariant subspace
of B1. Consider the mapping HI : O

(
σ(Mz[B1/I])

)
→ L(B1/I) defined

by

f 7→ 1
2πi

∫
∂U

f(λ)(λ−Mz[B1/I])−1 dλ,
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where U is some finitely connected smoothly bordered domain surround-
ing the spectrum σ(Mz[B1/I]) such that U lies in the domain of ana-
lyticity of f , and ∂U is oriented in the positive direction. Note that by
Cauchy formula the above integral does not depend on the choice of U ,
moreover, if O

(
σ(Mz[B1/I])

)
, the algebra of all analytic functions on

σ(Mz[B1/I]), is endowed with compact open topology, then the above
mapping is continuous. Aside from these properties, this mapping has
the following specifications:

(1) It is a homomorphism, because it is multiplicative, and

(2) It maps unit to unit, and z to Mz[B1/I].

Therefore, with some abuse of notation, we have a module-homom-
orphism LI , from O

(
σ(Mz[B1/I])

)
into B1/I which takes unit to unit

and z to z + I. We recall that the action of LI on an element h ∈
O
(
σ(Mz[B1/I])

)
is defined to be the action of HI(h) on the element 1+I

of B1. We shall at times refer to this mapping as HFC for the involve-
ment of the holomorphic functional calculus. However, we notice that
this mapping is in fact LI = PI ◦HI as defined earlier. One of the most
important features of HFC as defined above is its compatibility in the
following manner: If B = B1⊕B0

2 then the canonical surjective module-
homomorphism B1 → B1/I , the module-homomorphism which sends f
to f + I, and the HFC module-homomorphism are compatible in such a
way that they define a module-homomorphism LI : B → B1/I. Further-
more, the quotient Banach spaces B1/I and B/ kerLI are canonically
module-isomorphic; this means that L̄I : B/ kerLI → B1/I is injective
and surjective, furthermore, its inverse is also a module-homomorphism.
It is desirable to reveal the relationship between I and kerLI . The ob-
jective of this paper is achieved whenever this is done for a reasonable
class of M(B1)-invariant subspaces.

For a bounded planar domain Ω, we can find two other planar domains
Ω1 and Ω2 such that:

(1) Ω1 is bounded,

(2) Ω2 is unbounded and non-dense in the complex plane,

(3) Ω = Ω1 ∩ Ω2 , and Ω1 ∪ Ω2 = C.

Define the projection P1 : O(Ω)→ O(Ω1) by the following formula

P1f(z) =
1

2πi

∫
∂Vn

(ζ − z)−1f(ζ) dζ z ∈ Vn,
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where {Vn}∞n=1 is an increasing sequence of finitely connected smoothly
bordered subdomains of Ω1 satisfying the relations V1 ⊃ C \ Ω2 and
∪∞n=1Vn = Ω1. As usual in the theory of one complex variables, the
boundary of Vn is oriented in the positive direction. The above formula
does not depend on the choice of Vn, and furnishes us with a continuous
projection P1 : O(Ω) → O(Ω1). Similarly one can find a continuous
projection P2 : O(Ω) → O0(Ω2) with the condition that P1 + P2 =
identity. Note that by Liouville’s theorem both P1 and P2 are uniquely
determined. We also note that P1 and P2 map B into O(Ω1) and O0(Ω2),
respectively. Keeping in mind that B is a Banach space of analytic
functions on Ω which contains 1 and satisfies the axioms (0-1)-(0-4), we
put B1 = B ∩ O(Ω1), B2 = B ∩ O(Ω2), and B0

2 = B ∩ O0(Ω2). It is
evident that B1 and B0

2 are two closed subspaces of B. Let f ∈ B1∩B0
2 ,

then f ∈ O(C) and f(z)→ 0 as |z| → ∞; so that by Liouville’s theorem,
f is identically 0. It is also obvious that B ⊃ B1 ⊕ B0

2 , the direct sum
of B1 and B0

2 . We shall assume that B can be written as the direct
sum of B1 and B0

2 , and that B1 and B0
2 satisfy the axioms (0-1)-(0-4) on

Ω1 and Ω2, respectively. We emphasize that B1 and B0
2 automatically

satisfy the first three axioms. Furthermore, B1 satisfies the fourth axiom
for every λ ∈ Ω1 except those on the boundary of Ω2. The same is true
for B0

2 also. Note that our assumption that B = B1 ⊕ B0
2 is equivalent

to either of P1B ⊂ B or P2B ⊂ B.

Now, suppose that I is a proper multiplier invariant subspace ofB1 and
recall the HFC module-homomorphism O

(
σ(Mz[B1/I])

)
→ B1/I given

by

f 7→

 1
2πi

∫
∂U

f(λ)(λ−Mz[B1/I])−1dλ

 (1 + I),

where U is some finitely connected smoothly bordered domain surround-
ing the spectrum of the operator Mz[B1/I] : B1/I → B1/I. If we assume
that σ(Mz[B1/I]) ⊂ Ω2, then HFC module-homomorphism furnishes us
with a continuous module-homomorphism B0

2 → B1/I, because of

B0
2 ⊂ O0(Ω2) ⊂ O

(
σ(Mz[B1/I])

)
.

Now we are in a place which allows us to construct our desired surjective
module-homomorphism which we again write

LI : B = B1 ⊕B0
2 → B1/I,

defined to be the canonical module-homomorphism on B1, that is,
LI(f) = f + I for f ∈ B1 and the HFC module-homomorphism on
B0

2 . The following lemma tells us more about LI .
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Before proceeding, let us fix once again our assumptions on B. We
know that B is a Banach space of analytic functions defined on a bounded
domain Ω in the extended complex plane. Furthermore, B contains 1,
satisfies the axioms (0-1)-(0-4), and has B = B1 ⊕ B0

2 . We shall also
make the assumption that M(B) = M(B1)⊕M0(B2), where M0(B2) =
M(B2) ∩ O0(Ω2).

Lemma 3.1. Let I be an M(B1)-invariant subspace of B1 satisfying
σ(Mz[B1/I]) ⊂ Ω2. If O0(Ω2) is dense in M0(B2) and in B0

2 , then LI
is a surjective module-homomorphism B = B1 ⊕B0

2 → B1/I.

Proof: The surjectivity of LI is obvious and the continuity is a con-
sequence of the closed graph theorem. We just need to verify that for
every ϕ ∈M(B) and every f ∈ B, the following equality holds

LI(ϕf) = LI,M (ϕ)LI(f),

where LI,M : M(B)→ L(B1/I) is an appropriate continuous homomor-
phism. Since LI is onto, it follows from Remark 1.2 that there exists at
most one such homomorphism. Let ϕ ∈M(B) be written as ϕ = ϕ1 +ϕ2

where ϕ1 ∈M(B1) and ϕ2 ∈M0(B2). Put

LI,M (ϕ) = LI,M (ϕ1 + ϕ2) = Mϕ1 [B1/I] + ϕ2(Mz[B1/I]).

Here, Mϕ1 [B1/I] stands for the operator on B1/I which sends f + I to
ϕf + I. Note that the second operator in the definition of LI,M comes
from the holomorphic functional calculus. It is not difficult to see that
LI,M is a homomorphism; the important fact which requires verification
is to show that for ϕ1 ∈M(B1) and ϕ2 ∈M0(B2), we have

LI,M (ϕ1ϕ2) = LI,M (ϕ1)LI,M (ϕ2) = LI,M (ϕ2)LI,M (ϕ1).

We first check this for ϕ2(z) = (λ− z)−1, with λ ∈ C \ Ω2. In this case

(3-1)
ϕ1(z)
λ− z =

ϕ1(z)− ϕ1(λ)
λ− z +

ϕ1(λ)
λ− z .

Note that the first term on the right hand side of (3-1) is an element of
M(B1). To see this, put Tλϕ1(z) = ϕ1(λ)−ϕ1(z)

λ−z , and let λ ∈ Ω1, f ∈ B1.
We first note that by axiom (0-4), Tλϕ1 ∈ B1. We then have

Tλϕ1(z) · f(z) =
ϕ1(λ)− ϕ1(z)

λ− z · f(z)

= Tλ(ϕ1(z)f(z)) +
ϕ1(λ)f(z)− ϕ1(λ)f(λ)

λ− z
= Tλ(ϕ1(z)f(z))− ϕ1(λ)Tλf(z).
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We now use the axiom (0-4) to get Tλϕ1(z) ∈M(B1). We also note that
ϕ1(λ)(λ − z)−1 ∈ M0(B2), because it is a rational function with pole
outside Ω2. Hence, by (3-1),

LI,M
(
ϕ1 · (λ− z)−1

)
= MTλϕ1 [B1/I] + ϕ1(λ)(λ−Mz[B1/I])−1.

We claim that the right hand side is equal toMϕ1 [B1/I](λ−Mz[B1/I])−1

and to (λ −Mz[B1/I])−1Mϕ1 [B1/I]. To prove the claim, we multiply
both sides by (λ−Mz[B1/I]) = Mλ−z[B1/I], from the right in one case
and from the left in the other. So that the question is whether

(3-2) MTλϕ1 [B1/I](λ−Mz[B1/I]) + ϕ1(λ) = Mϕ1 [B1/I].

Since in general, for ϕ and ψ in M(B1) we have Mϕ[B1/I]Mψ[B1/I] =
Mϕψ[B1/I], the question transforms into whether Mϕ1(z)−ϕ1(λ)[B1/I] +
ϕ1(λ) = Mϕ1(z)[B1/I], which is true. Therefore the claim is proved, and
consequently

LI,M (ϕ1 · (λ− z)−1) = LI,M (ϕ1)LI,M ((λ− z)−1).

Since finite linear combinations of z 7→ (λ−z)−1 for λ ∈ C\Ω2 are dense
in O0(Ω2), we obtain

(3-3) LI,M (ϕ1ϕ2) = LI,M (ϕ1)LI,M (ϕ2),

for ϕ1 ∈M(B1) and ϕ2 ∈ O0(Ω2).

Finally because of our assumption that O0(Ω2) is dense in M0(B2), the
equality (3-3) holds for every ϕ1 ∈ M(B1) and every ϕ2 ∈ M0(B2). We
now turn to prove that LI is a module-homomorphism. To do this, we
consider four cases.

Case 1: ϕ ∈M(B1) and f ∈ B1; we have ϕf ∈ B1, therefore

LI(ϕf) = ϕf + I = Mϕ[B1/I](f + I) = LI,M (ϕ)LI(f).

Case 2: ϕ ∈ M(B1) and f ∈ B0
2 ; it suffices to treat the case when

f = (λ − z)−1 for λ ∈ C \ Ω2, because O0(Ω2) is dense in B0
2 . We then

have the decomposition

ϕf =
ϕ

λ− z =
ϕ− ϕ(λ)
λ− z +

ϕ(λ)
λ− z ,
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where the first term is in M(B1) ⊂ B1 (see above) and the second one
in M0(B2) ⊂ B0

2 . Hence

LI(ϕf) = (Tλϕ+ I) + ϕ(λ)(λ−Mz[B1/I])−1(1 + I)

= MTλϕ(1 + I) + ϕ(λ)(λ−Mz[B1/I])−1(1 + I)

=
[
MTλϕ + ϕ(λ)(λ−Mz[B1/I])−1

]
(1 + I).

We now use (3-2) to obtain

LI(ϕf) = Mϕ[B1/I](λ−Mz[B1/I])−1(1 + I) = LI,M (ϕ)LI(f).

Case 3: ϕ ∈M0(B2) and f ∈ B0
2 ; the desired equality is a consequence

of the holomorphic functional calculus, since ϕf ∈ B0
2 .

Case 4: ϕ ∈M0(B2) and f ∈ B1; we may assume that ϕ(z) = (λ−z)−1

for λ ∈ C \ Ω2, because O0(Ω2) is dense in M0(B2). This time we use
the following decomposition of ϕf ;

(3-4) ϕf =
f(z)− f(λ)

λ− z +
f(λ)
λ− z = −Tλf(z) +

f(λ)
λ− z .

By the axiom (0-4), the first term is in B1 and the second one is in
M0(B2) ⊂ B0

2 . For λ ∈ Ω1, it is clear that Tλ ∈ L(B1), which associates
to a given f ∈ B1, the element Tλf ∈ B1. There is an associated operator
Tλ[B1/I] on B1/I, which maps a given f + I ∈ B1/I onto the element
Tλf + I ∈ B1/I. Therefore, on B1 we have (λ −Mz)Tλf = f(λ) − f ,
and on B1/I we have(

(λ−Mz[B1/I])Tλ[B1/I]
)
f = f(λ)− f + I,

or equivalently

(3-5) Tλ[B1/I]f = (λ−Mz[B1/I])−1
(
f(λ)− f + I

)
.

Finally, from (3-4) and (3-5) we have

LI(ϕf) = −Tλ[B1/I]f + f(λ)(λ−Mz[B1/I])−1(1 + I)

= (λ−Mz[B1/I])−1
(
f−f(λ) + I

)
+(λ−Mz[B1/I])−1

(
f(λ)+I

)
= (λ−Mz[B1/I])−1(f + I)

= LI,M (ϕ)LI(f).

The proof is now complete.
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In the proof of Lemma 3.1, we used the assumptions that O0(Ω2) is
dense in both M0(B2) and B0

2 . In the following, we shall try to get rid of
these assumptions. Let Ω2,] be a finitely connected smoothly bordered
domain such that

(3-6) (C \ Ω1) ∪ σ(Mz[B1/I]) ⊂ Ω2,] ⊂ Ω2,] ⊂ Ω2.

Lemma 3.2. Let I be an M(B1)-invariant subspace of B1 satisfy-
ing σ(Mz[B1/I]) ⊂ Ω2. Then there exists a pair (LI , LI,M ) with the
following properties:

LI : B1⊕O0(Ω2,])→ B1/I and LI,M : M(B1)⊕O0(Ω2,])→ L(B1/I),
such that LI(ϕf) = LI,M (ϕ)LI(f) for every ϕ ∈M(B1)⊕O0(Ω2,]) and
every f ∈ B1⊕O0(Ω2,]), and such that LI,M (ϕ1ϕ2) = LI,M (ϕ1)LI,M (ϕ2)
for every ϕ1 and ϕ2 in M(B1)⊕O0(Ω2,]).

Proof: The proof is exactly as that of Lemma 3.1, if we notice that
finite linear combinations of rational functions of the form (λ − z)−1

for λ ∈ C \ Ω2,] are dense in O0(Ω2,]), and that M(B1) ⊕ O0(Ω2,]) is
an algebra of analytic functions. To this end, it suffices to verify that
for every ϕ ∈ M(B1) and every f ∈ O0(Ω2,]) we have ϕf ∈ M(B1) ⊕
O0(Ω2,]). We may assume that f(z) = (λ − z)−1 for λ ∈ C \ Ω2,]. Let
us first write

ϕ(z)f(z) = −Tλϕ(z) +
ϕ(λ)
λ− z .

We have observed in the proof of Lemma 3.1 that −Tλϕ(z) ∈ M(B1),
hence ϕ(z)f(z) ∈ M(B1) ⊕ O0(Ω2,]). The last thing which requires
verification is the following

LI,M (ϕ1ϕ2) = LI,M (ϕ1)LI,M (ϕ2), ϕ1 ∈M(B1), ϕ2 ∈ O0(Ω2,]).

Since ϕ2 is analytic in a neighbourhood of Ω2,], we can then apply the
Cauchy integral formula to get

ϕ2(z) =
1

2πi

∫
∂U

ϕ2(λ)(λ− z)−1dλ, z ∈ Ω2,],

where U is some smoothly bordered domain containing Ω2,], where ϕ2

is analytic. Now we have

ϕ1(z)ϕ2(z) =
1

2πi

∫
∂U

ϕ2(λ)ϕ1(z)(λ− z)−1dλ z ∈ Ω1 ∩ Ω2,],
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and finally

LI,M (ϕ1ϕ2) =
1

2πi

∫
∂U

ϕ2(λ)LI,M (ϕ1)LI,M

(
(λ− z)−1

)
dλ

= LI,M (ϕ1)
(

1
2πi

∫
∂U

ϕ2(λ)(λ−Mz[B1/I])−1 dλ

)
= LI,M (ϕ1)LI,M (ϕ2).

The proof is complete.

Restricting to B = B1 ⊕B0
2 , we obtain the following consequence.

Proposition 3.3. Let I be an M(B1)-invariant subspace of B1 sat-
isfying the condition σ(Mz[B1/I]) ⊂ Ω2 and let LI be as in Lemma 3.2.
Consider the restriction LI : B = B1 ⊕ B0

2 → B1/I. Then LI is a
module-homomorphism.

Proof: We need to note that such an Ω2,] satisfying (3-6) always
exists, and that B = B1 ⊕ B0

2 ⊂ B1 ⊕ O0(Ω2,]), and finally that
M(B) = M(B1)⊕M0(B2) ⊂M(B1)⊕O0(Ω2,]).

Proposition 3.4. Let I be an M(B1)-invariant subspace of B1 sat-
isfying the condition σ(Mz[B1/I]) ⊂ Ω2 and let LI be as in Proposi-
tion 3.3. If J = kerLI , then

(a) clos(I ·M(B)) ⊂ J ,
(b) J ∩B1 = I, and
(c) σ(Mz[B1/I]) = σ(Mz[B/J ]).

Proof: For ease of notation, we put Λ(I) = clos(I ·M(B)). Suppose
that f ∈ Λ(I), then there exists a sequence fn → f , fn ∈ I ·M(B). Put
fn =

∑m
k=1 hn,k gn,k where hn,k ∈M(B) and gn,k ∈ I. Now, we have

LI(fn) =
m∑
k=1

LI,M (hn,k)LI(gn,k) =
m∑
k=1

LI,M (hn,k)0 = 0,

which proves LI(f) = 0, by continuity. This shows that Λ(I) ⊂ J .

To prove part (b), we first note that the inclusion I ⊂ J∩B1 is obvious.
For the reverse inclusion, let f ∈ J ∩ B1, then from the definitions of
LI and J we have LI(f) = f + I = 0 + I or equivalently f ∈ I, hence
J ∩B1 ⊂ I and finally

J ∩B1 = (kerLI) ∩B1 = I.
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The last thing to be proved is the equality

σ(Mz[B/J ]) = σ(Mz[B1/I]),

for all M(B1)-invariant subspaces I with σ(Mz[B1/I]) ⊂ Ω2. To prove
this, we first recall the connection between the mapping LI : B → B1/I
and the operator Mz[B1/I] defined on B1/I. It is immediate that for
every f ∈ B1 we have LI(zf) = Mz[B1/I]LI(f). Moreover, if f ∈ B0

2

then LI = PI ◦HI (see section 1) and we have

LI(zf) = PI(HI(zf)) = PI(HI(z)HI(f)) = HI(z)HI(f)(1 + I)

= Mz[B1/I]LI(f).

Therefore the equality LI(zf) = Mz[B1/I]LI(f) holds for every f ∈ B.
We know that J = kerLI , therefore the surjective module-homomo-
rphism LI induces an isomorphism L̄I : B/J → B1/I defined by
L̄I(f + J) = LI(f), hence

L̄I
(
Mz[B/J ](f + J)

)
= L̄I(zf + J) = LI(zf) = Mz[B1/I]LI(f)

= Mz[B1/I]L̄I(f + J).

So that L̄I carries over Mz[B/J ] to Mz[B1/I]; more precisely we have
L̄IMz[B/J ]=Mz[B1/I]L̄I . Now it is easily seen that if (λ−Mz[B1/I])−1

exists for some complex number λ, then (λ−Mz[B/J ])−1 exists too. In
fact we have the following equality

(λ−Mz[B1/I])−1 = L̄I(λ−Mz[B/J ])−1L̄I
−1
,

since Mz[B1/I] = L̄I(Mz[B/J ])L̄I
−1. This argument shows that the two

spectra are the same, hence the proof is complete.

As we shall see later on, Proposition 3.4 will constitute a consider-
able part of our main result, Theorem 3.10. What we intend to show
is equality in part (a), instead of inclusion. Let us temporarily as-
sume that we have been able to demonstrate the equality in part (a).
Thus, we would have a mapping, say Λ, from the collection of all
M(B1)-invariant subspaces I with σ(Mz[B1/I]) ⊂ Ω2 into the collec-
tion of all M(B)-invariant subspaces J with the same condition on the
spectrum σ(Mz[B/J ]). The image of I under the mapping Λ is defined
to be

Λ(I) = clos(I ·M(B)) = kerLI = J.
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Part (b) of the above proposition tells us that the mapping Λ is injec-
tive. Now, assume that J is an M(B)-invariant subspace of B satisfying
σ(Mz[B/J ]) ⊂ Ω2. Concerning the surjectivity of Λ, we will look at
J ∩B1 as a natural candidate, as part (b) of the above proposition sug-
gests. Unfortunately, it might happen that J ∩B1 collapses to the trivial
null subspace, which in turn will destroy the equality Λ(J ∩B1) = J . To
prevent this event, we follow Hedenmalm [16] and make the assumption
that the Banach space B of analytic functions on Ω satisfies the shrinking
domain condition (see Definition 3.5). This assumption makes it possible
to prove a factorization theorem which turns out to be crucial both to
the proof of the equality in part (a) of Proposition 3.4 and to the proof
of the surjectivity of the mapping Λ. Given f ∈ B, it is not difficult to
find two functions f1 and f2, analytic in Ω1 and Ω2 respectively, such
that f = f1 · f2. But, in general, there is no guarantee that f1 ∈ B1

and f2 ∈ B2. The “shrinking domain” condition which is easy to check
seems to be what is needed to get the proof of the factorization theorem
to go through (see Lemma 3.7). We mention that the authors in [10]
used some rather similar arguments to factor out analytic functions in
the Dirichlet space.

Let us fix two finitely connected smoothly bordered domains V1 and
V2 such that:

(1) C \ Ω2 ⊂ V1 ⊂⊂ Ω1,

(2) C \ Ω1 ⊂ V2 ⊂ V 2 ⊂ Ω2 and

(3) V 1 ∩ V 2 = ∅.
We now make the following definition.

Definition 3.5. Let B = B1 ⊕ B0
2 be a Banach space of analytic

functions on Ω satisfying the axioms (0-1)-(0-4). We say that B satisfies
the shrinking domain condition, with respect to the pair (V1, V2), if there
exist a Banach space of analytic functions B(1) on Ω1∩V2 and a Banach
space of analytic functions B(2) on V1 ∩ Ω2 such that

(a) B(1) and B(2) satisfy the axioms (0-1)-(0-4) with respect to the
domains Ω1 ∩ V2 and Ω2 ∩ V1, respectively,

(b) B(1) ∩ O(Ω1) = B1, and B(2) ∩ O0(Ω2) = B0
2 ,

(c) B(1) = B1 ⊕ B
(1)
2,0 , where B

(1)
2,0 = B(1) ∩ O0(V2), and B(2) =

B
(2)
1 ⊕B0

2 , where B(2)
1 = B(2) ∩ O(V1),

(d) M(B(1)) = M(B1) ⊕ M0(B
(1)
2 ), where M0(B

(1)
2 ) = M(B(1)

2 ) ∩
O0(V2), and M(B(2)) = M(B(2)

1 )⊕M0(B2).
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Remark 3.6. The conditions of the previous definition are somewhat
technical. It is important to realize that in the examples we have men-
tioned, they are indeed satisfied. For instance, if B = L2

a(Ω), so that
B1 = L2

a(Ω1) and B2 = L2
a(Ω2) (here, we use area measure on the Rie-

mann sphere rather than the complex plane to define these Bergman
spaces), we can then put B(1) = L2

a(Ω1 ∩ V2) and B(2) = L2
a(Ω2 ∩ V1).

These spaces split as direct summands, and so do the corresponding mul-
tiplier spaces, as in this case the multiplier space is H∞ on the respective
domain.

Note that by the holomorphic functional calculus, Proposition 1.5(b),
we know that

B1 ⊂ O(Ω1) ⊂ O(V 1) ⊂ O(Ω2 ∩ V1) ⊂ B(2).

On the other hand, B0
2 ⊂ B(2), hence B ⊂ B(2). Similar argument shows

that B ⊂ B(1).
In the sequel we shall need a factorization theorem for a func-

tion f ∈ B. To do this, we have to recall the notion of zero set of a
function f ∈ O(Ω) where Ω stands for a planar domain. Define

ZΩ(f) = {z ∈ Ω : f(z) = 0}, f ∈ O(Ω).

The following lemma has an important role in the factorization proce-
dure.

Lemma 3.7. Assume that B satisfies the shrinking domain condition.
Let f be a non-identically vanishing function in B. Then for every set E,
V 2 ⊂ E ⊂ C \ V 1, there exist f1 ∈ B1 and f2 ∈ B2 such that f = f1 · f2,
furthermore ZΩ1(f1) = ZΩ(f) ∩ E, and ZΩ2(f2) = ZΩ(f) \ E.

Proof: First of all we note that ZΩ(f) is a countable subset of Ω with-
out any limit point, since f is not identically zero. In view of Weierstrass
theorem (see [30, p. 303]), there exist ϕ1 ∈ O(Ω1) and ϕ2 ∈ O(Ω2∪{∞})
such that ZΩ1(ϕ1) = ZΩ(f) ∩ E and ZΩ2(ϕ2) = ZΩ(f) \ E, moreover,
the zeros of ϕ1 · ϕ2 have the same multiplicities as those of f . Hence
f/(ϕ1 ·ϕ2) ∈

(
O(Ω)

)−1, the set of all invertible elements of O(Ω). Let U1

and U2 be two finitely connected smoothly bordered domains satisfying
the following inclusions, respectively,

V 1 ⊂ U1 ⊂⊂ Ω1, V 2 ⊂ U2 ⊂ U2 ⊂ Ω2,

and such that U1 ∪ U2 = C (note that V1 and V2 have already been
fixed before Definition 3.5). Now, we see that U = U1 ∩ U2 is a finitely
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connected subdomain of Ω having ∂U = ∂U1 ∪ ∂U2 as its boundary.
Recalling the projections P1 and P2 as introduced at the begining of
section 3, we notice that P1 and P2 extend continuously to projec-
tions O(U) → O(U1) and O(U) → O0(U2), respectively, adding up to
identity. Since U is a finitely connected smoothly bordered domain,
we can find rational functions h1 ∈

(
O(U1)

)−1 and h2 ∈
(
O(U2 ∪

{∞})
)−1 such that the winding number of f/(ϕ1ϕ2h1h2) as an element of

(O(U))−1 is zero around each component of C\U . This allows us to write
g = log(f/(ϕ1ϕ2h1h2)) ∈ O(U), therefore we have the following factor-
ization of f ∈ O(U);

f = ϕ1ϕ2h1h2 exp(g) = ϕ1ϕ2h1h2 exp(P1g + P2g)

= ϕ1h1 exp(P1g) · ϕ2h2 exp(P2g)

= f1 · f2

where f1 ∈ O(U1) and f2 ∈ O(U2∪{∞}). Since f2 has no zeros in Ω1\U1,
we have in fact f1 = f/f2 ∈ O(Ω1). To see that f2 = f/f1 ∈ O(Ω2), we
note that f1 has no zeros in Ω2 \ E, and that f and f1 have the same
zeros with the same multiplicities in Ω2 ∩ E. Moreover,

ZΩ1(f1) = ZΩ(ϕ1) = ZΩ(f)∩E, and ZΩ2(f2) = ZΩ2(ϕ2) = ZΩ(f)\E.

What therefore has to be shown is f1 ∈ B1 and f2 ∈ B2. By our choice of
E, it is clear that f1 ∈ (O(V 1))−1, and f2 ∈ (O(V 2))−1, thus, in view of
Proposition 1.5(b), we obtain f1 ∈ (M(B(2)))−1 and f2 ∈ (M(B(1)))−1.
Taking into account the fact that f ∈ B ⊂ B(1), we get

f1 =
1
f2
· f ∈ B(1) ∩ O(Ω1) = B1.

A similar argument reveals that f2 ∈ B2.

The next lemma which has spectral theory flavour constitutes a half
of ingredients of a proposition regarding the factorization of invariant
subspaces of B with index one which in turn will prove to be useful.

Lemma 3.8. Let J be any multiplier invariant subspace of B of in-
dex 1 and let E be the set defined in the formulation of the previous
lemma. Then there exist two multiplier invariant subspaces J1 and J2 of
B such that the following hold:

(a) J = J1 ∩ J2,
(b) σ(Mz[B/J1]) = σ(Mz[B/J ]) ∩ E,
(c) σ(Mz[B/J2]) = σ(Mz[B/J ]) \ E.
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Proof: To simplify the notation, let us temporarily denote by T the
operator Mz[B/J ] defined earlier on B/J . We first assume that J is
an invariant subspace of B with index one. What we really need is to
decompose T into summands with small spectra, which can be accom-
plished in the framework of classical holomorphic functional calculus.
Recall that O(σ(T )) denotes the algebra of all analytic functions on
some neighbourhood of the compact set σ(T ) and let U ⊃ σ(T ) be an
open (not neccessarily connected) set whose boundary ∂U consists of a
finite number of rectifiable Jordan curves oriented in the positive direc-
tion as customary in the theory of complex variables. Suppose U ∪∂U is
contained in the domain of analyticity of a given f ∈ O(σ(T )). Associate
to f the following operator on B/J :

f(T ) =
1

2πi

∫
∂U

f(λ)(λ− T )−1 dλ.

Since J has index one, it follows from ([27, Theorem 4.5]) that the
spectrum of the operator Mz[B/J ] is discrete in Ω. Consider now the
isolated portions σ1 = σ(T ) ∩ E and σ2 = σ(T ) \ E of the compact set
σ(T ). Let e1 be a function in O(σ(T )) which is equal to 1 near σ1 and
equal to 0 near the other portion σ2 and define Q1 = e1(T ). Analogously
one can consider the function e2, which is equal to 1 near σ2 and equal
to 0 near σ1, to obtain Q2 = e2(T ). It is well-known that Q1 and Q2 are
projections, simply because of e2

1 = e1, and e2
2 = e2. Moreover, since in

a neighbourhood of σ(T ) we have e1 + e2 = 1 and e1 · e2 = e2 · e1 = 0, it
follows that

Q1 +Q2 = identity, and Q1Q2 = Q2Q1 = 0.

These equalities imply that

B/J = imQ1 ⊕ imQ2, imQ1 = kerQ2, and imQ2 = kerQ1,

where imQj stands for the image of B/J under Qj for j = 1, 2. For the
direct sum, we note that if x ∈ imQ1 ∩ imQ2, then we have Q1(y) =
x = Q2(z) for some y and z in B/J . Thus y = Q2

1(y) = Q1Q2(z) = 0,
and hence x = Q1(y) = Q1(0) = 0. Moreover, imQ1 and imQ2 are two
closed invariant subspaces of B/J with the property σ(T |imQj ) = σj , for
j = 1, 2 [26, p. 84]. Put

J2 = {f ∈ B : f + J ∈ imQ1} ⊃ J.
It is obvious that J2 is a closed invariant subspace of B, and that imQ1 =
J2/J . The closed invariant subspace J1 ofB can be found in an analogous
manner:

J1 = {f ∈ B : f + J ∈ imQ2}.
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From the above the inclusion J ⊂ J1 ∩ J2 is obvious. For the reverse
inclusion, suppose that f is an element of the intersection of J1 and J2.
Then f + J ∈ imQ1 ∩ imQ2 = {0}, or equivalently f ∈ J . So far we
have proved (a). To prove the other two statements of the lemma we
first notice that B/J1 is isomorphic to B/J

J1/J
, and secondly that because

of B/J = J1/J ⊕ J2/J we also have B/J
J1/J

∼= J2/J . Hence we have
B/J1

∼= J2/J . Now define T1 : B/J1 → B/J1 by f + J1 7→ zf + J1,
and T2 : J2/J → J2/J sending f + J to zf + J . Since T2 = T |J2/J and
J2/J = imQ1, we get σ(T2) = σ1. But, we also have σ(T1) = σ(T2),
because of the isomorphism

Ψ : J2/J → B/J1

which takes f + J to f + J1, for f ∈ B. Hence
Ψ(T2(f + J)) = Ψ(zf + J) = zf + J1 = T1(f + J1)

= T1(Ψ(f + J)).
Therefore ΨT2 = T1Ψ or equivalently T2 = Ψ−1T1Ψ. Similarly, we
obtain λ−T2 = Ψ−1(λ−T1)Ψ, for every λ ∈ C. This means that λ−T1

is invertible if and only if λ − T2 is invertible, therefore σ(T1) = σ(T2)
and finally

σ(Mz[B/J1]) = σ(Mz[J2/J ]) = σ1,

which proves part (b). Similarly one can prove part (c). So far, we
have proved the lemma with the words “multiplier invariant” replaced
by “invariant”. Now let J be a multiplier invariant subspace of B of
index one. We want to show that J1 and J2 are also multiplier invariant
subspaces. Suppose that f ∈ J1, then f + J ∈ imQ2 = kerQ1. Assume
that ϕ ∈ M(B), and that γ2 is a curve around σ2 oriented in the pos-
itive direction. We can regard the operator Mϕ ∈ L(B/J) both as left
multiplication by ϕ, and as right multiplication by ϕ. Since the operator
Mϕ = Mϕ[B/J ] commutes with (λ− T )−1, it follows that

Q1Mϕ =
(

1
2πi

∫
γ2

(λ− T )−1 dλ

)
Mϕ

= Mϕ

(
1

2πi

∫
γ2

(λ− T )−1 dλ

)
= MϕQ1.

Hence
Q1(ϕf+J)=Q1Mϕ[B/J ](f+J)=Mϕ[B/J ]Q1(f+J)=Mϕ[B/J ](0) = 0,
since Q1(f +J) = 0. This shows that ϕf ∈ J1, that is, J1 is a multiplier
invariant subspace. Similar reasoning shows that J2 is also multiplier
invariant.
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Lemma 3.9. Let B be a Banach space of analytic functions on Ω
satisfying the axioms (0-1)-(0-4), and let J be an invariant subspace of
B. If g ∈ O(Ω), then

g(Mz[B/J ]) = Mg[B/J ],

where the right hand side is the operator of multiplication by g on the
quotient space B/J .

Proof: We first note that by Proposition 1.5(b), g ∈M(B) and hence
the operator Mg[B/J ] is well-defined. Now, let U be a finitely connected
smoothly bordered domain containing Ω and such that U lies in the
domain of analyticity of g. Assuming that ∂U is oriented in the positive
direction, and that h ∈ B, we have

g
(
Mz[B/J ]

)(
h(z) + J

)
=

1
2πi

∫
∂U

g(λ)
(
λ−Mz[B/J ]

)−1(
h(z) + J

)
dλ

=
1

2πi

∫
∂U

(
g(λ)h(z)
λ− z + J

)
dλ

= h(z)
(

1
2πi

∫
∂U

g(λ)
λ− z dλ+ J

)
= h(z)

(
g(z) + J

)
= Mg[B/J ]

(
h(z) + J

)
.

Note that for λ ∈ ∂U, we have h(z)/(λ− z) ∈ B, by the axiom (0-3).

Proposition 3.10. Assume that B satisfies the shrinking domain
condition. Let J be a multiplier invariant subspace of B having index
one, and let J1 and J2 be as in Lemma 3.8. If O(Ω1) and O(Ω2) are
dense in B1 and B2, respectively, then each f ∈ J has a factorization
f = f1 · f2, where f1 ∈ J1 ∩B1 and f2 ∈ J2 ∩B2.

Proof: Choose the functions f1 and f2 as in Lemma 3.7. What remains
to be proved is f1 ∈ J1 and f2 ∈ J2. Since the proofs are similar, we
shall just verify that f1 ∈ J1. By assumption, for f2 ∈ B2 we can find a
sequence of functions gk ∈ O(Ω2) converging to f2 in B2. We recall that
B satisfies the shrinking domain condition, so we haveB2 = B(2)∩O(Ω2).
Consequently, gk tends to f2 inO(Ω2) ⊂ O(σ1), where σ1 is the spectrum
of Mz[B/J1] as in Lemma 3.8. We know that if the space O(Ω2) is
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equipped with the uniform convergence topology, then the holomorphic
functional calculus is continuous [31, p. 244]. Therefore

gk(Mz[B/J1])→ f2(Mz[B/J1]), as k →∞.

Considering the fact proved in Lemma 3.9 that gk(Mz[B/J1]) =
Mgk [B/J1], we get

Mgk [B/J1](f1 + J1)→ f2(Mz[B/J1])(f1 + J1), as k →∞.

We claim that gkf1 → f in the norm of B. Putting off the proof of this
claim to the end, we get

(3-7) f2(Mz[B/J1])(f1 + J1) = ( lim
k→∞

gkf1) + J1 = f + J1 = 0 + J1,

because f ∈ J ⊂ J1. From the construction of f2 we know that
ZΩ2(f2) = ZΩ(f) \E, (see Lemma 3.7); thus f2 has no zeros in a neigh-
bourhood of σ1. This means that the operator f2(Mz[B/J1]) is invertible
and furthermore, its inverse in L(B/J1) is (1/f2)(Mz[B/J1]) [31, p. 244].
Therefore from the equality (3-7) we have

f1 + J1 = (1/f2)(Mz[B/J1])(0 + J1) = 0 + J1,

or equivalently f1 ∈ J1. We now turn to prove our postponed claim. We
want to show that ‖gkf1 − f‖B = ‖f1(gk − f2)‖B → 0, as k → ∞. To
see this, we first notice that

‖f‖B ³ ‖f‖B(1) + ‖f‖B(2) ,

where B(1) and B(2) are as in Definition 3.5. Here, the notation ³ is
used to indicate that the two norms are equivalent.This estimate comes
from the direct sums involved in B, B(1) and B(2) (see Definition 3.5)
together with the closed graph theorem. It is also immediate from the
definition of norm in the space of multipliers that

‖f‖B(1) ≤ ‖f2‖M(B(1)) · ‖f1‖B(1) ,

and
‖f‖B(2) ≤ ‖f1‖M(B(2)) · ‖f2‖B(2).
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Since

‖f1(gk − f2)‖B ³ ‖f1(gk − f2)‖B(1) + ‖f1(gk − f2)‖B(2) ,

we obtain

‖f1(gk−f2)‖B≤C
(
‖f1‖B(1) ·‖gk−f2‖M(B(1))+‖gk−f2‖B(2) ·‖f1‖M(B(2))

)
,

where C is some constant. We know that gk → f2 in the space O(Ω2),
so ‖gk − f2‖M(B(1)) → 0, since O(Ω2) ⊂ M(B(1)) by the holomorphic
functional calculus. Also, gk → f2 in the norm of B2, and so that we get
‖gk − f2‖B(2) → 0. As a result, ‖f1(gk − f2)‖B → 0 as k → ∞, which
completes the proof of the proposition.

For an M(B1)-invariant subspace I, we write

Λ(I) = clos(I ·M(B))

for the smallest multiplier invariant subspace of B containing I.

Theorem 3.11. Assume that B = B1 ⊕ B0
2 is a Banach

space of analytic functions on Ω which contains 1, satisfies the
axioms (0-1)-(0-4), and the shrinking domain condition. Assume fur-
ther that O(Ω1) and O(Ω2) are dense in B1 and B2, respectively. Then

(a) The mapping I 7→ Λ(I) is a bijection from the set of all M(B1)-
invariant subspaces I with σ(Mz[B1/I]) ⊂ Ω2 onto the set of all
M(B)-invariant subspaces J with σ(Mz[B/J ]) ⊂ Ω2. Also

σ(Mz[B/Λ(I)]) = σ(Mz[B1/I]),

and the inverse mapping is given by J 7→ J ∩B1.
(b) The mapping LI is a surjective module-homomorphism B → B1/I

which is canonical on B1 and has kernel Λ(I), for all M(B1)-
invariant subspaces I with

σ(Mz[B1/I]) ⊂ Ω2.

(c) The quotient Banach spaces B1/I and B/Λ(I) are canonically
module-isomorphic for all M(B1)-invariant subspaces I with

σ(Mz[B1/I]) ⊂ Ω2.
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Proof: We start by proving (b); that LI is a surjective module-
homomorphism which is also canonical on B1 follows from Proposi-
tion 3.3. What therefore has to be proved is that kerLI = Λ(I). By
Proposition 3.4(a), we have already proved that Λ(I) ⊂ kerLI . Writing
kerLI = J , we have from Proposition 3.4(b)

J ∩B1 = (kerLI) ∩B1 = I.

This equality makes the mapping I 7→ kerLI injective. Now, we want
to show that J ⊂ Λ(I). We intend to make use of our assumption that
O(Ω2) is dense in B2. By Proposition 3.4(c), we know that

σ(Mz[B/J ]) = σ(Mz[B1/I]) ⊂ Ω2,

thus Corollary 2.4 implies that the invariant subspace J has index one.
This allows us to apply Proposition 3.10 to J . According to Propo-
sition 3.10, we know that each element f of the multiplier invariant
subspace J has a product decomposition

f = f1 · f2, f1 ∈ J1 ∩B1, f2 ∈ J2 ∩B2,

where J1, J2 are multiplier invariant subspaces of B, J1 ∩ J2 = J ,
σJ1 ∩ σJ2 = ∅, σJ1 ∪ σJ2 = σJ , and σJ1 ⊂ Ω2, σJ2 ⊂ Ω1. We may
assume that J1 = J and J2 = B2, because we have made the assumption
that the spectrum of the operator Mz[B/J ] lies in Ω ∪ ∂Ω1 so that the
portion σ2 of this spectrum in the situation of Proposition 3.10 consists
of finitely many points, hence Proposition 2.5 implies that J2 = pB for
some polynomial p with zeros in σJ2 . Write f2 = pg for some g ∈ B, and
note that p devides any element of J2 (see Proposition 2.5), so that in fact
we have g ∈ B2. Therefore f = (f1 ·p) ·g, where f1 ·p ∈ J1∩J2 = J , and
g ∈ B2. But f1 ·p ∈ B1 so that f1 ·p ∈ J ∩B1 = I, by Proposition 3.4(b),
proving that

J = (J ∩B1) ·B2 = I ·B2.

We now turn to prove that J ⊂ Λ(I). For f ∈ J , we have f = f1 · f2

where f1 ∈ J ∩ B1 = I, and f2 ∈ B2. Since, by assumption, O(Ω2) is
dense in B2, it follows that f2 can be approximated in B2 by a sequence
of elements of this space, say f2,j . To show that J ⊂ Λ(I), it suffices to
verify that

‖f − f1f2,j‖B = ‖f1(f2 − f2,j)‖B → 0, as j →∞,

because

f1f2,j ∈ (J ∩B1) ·M(B2) = I ·M(B2) ⊂ I ·M(B).



Invariant subspaces on multiply connected domains 553

As in the proof of Proposition 3.10, we have

‖f1(f2 − f2,j)‖B ³ ‖f1(f2 − f2,j)‖B(1) + ‖f1(f2 − f2,j)‖B(2) ,

and therefore

‖f1(f2 − f2,j)‖B

≤ C
(
‖f1‖B(1) · ‖f2 − f2,j‖M(B(1)) + ‖f2 − f2,j‖B(2) · ‖f1‖M(B(2))

)
,

where C is some constant. Since f2,j → f2 in the space O(Ω2), we obtain
‖f2 − f2,j‖M(B(1)) → 0, because O(Ω2) ⊂ M(B(1)) by the holomorphic
functional calculus, and finally ‖f2 − f2,j‖B(2) → 0 by our assumption.
Therefore we obtain ‖f1(f2 − f2,j)‖B → 0, as j → ∞ completing the
proof of part (b).

To prove part (c), we note that for an M(B1)-invariant subspace I
with condition σ(Mz[B1/I]) ⊂ Ω2, the surjective module-homomorphism
LI : B → B1/I induces an isomorphism

L̄I : B/ kerLI = B/Λ(I) −→ B1/I.

Since LI(f) = f + I for f ∈ B1, it follows that (L̄I)−1 : B1/I → B/Λ(I)
has to coincide with the canonical homomorphism B1/I → B/Λ(I).
Note that for f ∈ B1 we have L̄I(f + kerLI) = LI(f) if and only if
(L̄I)−1(LI(f)) = f + kerLI , or

(L̄I)−1(f + I) = f + kerLI = f + Λ(I), f ∈ B1.

Concerning the isomorphism L̄I , it should be noted that for every f ∈ B
and every ϕ ∈M(B) we have

L̄I(ϕf + J) = LI(ϕf) = LI,M (ϕ)LI(f)

= LI,M (ϕ)L̄I(f + J).

This together with the fact that M(B) acts on B/J according to

ϕ · (f + J) = ϕf + J, ϕ ∈M(B) and f ∈ B,

suggest that we might call L̄I a multiplier module-isomorphism, that is,
a surjective and injective multiplier module-homomorphism.

Regarding part (a), note that we have already shown, in part (b)
above, that for any M(B1)-invariant subspace I with σ(Mz[B1/I]) ⊂ Ω2

we have
kerLI = Λ(I).
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This together with Proposition 3.4(b) gives

Λ(I) ∩B1 = (kerLI) ∩B1 = I,

which in turn proves that the mapping I 7→ Λ(I) is injective. To prove
the surjectivity of this mapping, let J be an arbitrary M(B)-invariant
subspace with σ(Mz[B/J ]) ⊂ Ω2. As above, we may again assume that
J = J1 and J2 = B2 where J1 and J2 are as in Proposition 3.10. There-
fore we have J = (J ∩ B1) · B2. Let f ∈ J be written as f = f1 · f2

where f1 ∈ J ∩B1 and f2 ∈ B2. By our assumption, we can approximate
f2 ∈ B2 by a sequence of functions in O(Ω2). As in part (b), it turns
out that

f ∈ clos{(J ∩B1) ·M(B2)},
and hence

J ⊂ clos{(J ∩B1) ·M(B2)} ⊂ clos{(J ∩B1) ·M(B)}.

This together with the obvious fact that J ⊃ clos{(J∩B1) ·M(B)} prove
that we have in fact the equality

J = clos{(J ∩B1) ·M(B)} = Λ(J ∩B1),

which in turn proves the surjectivity of Λ. Finally, we recall that the
equality of the two spectra was shown in Proposition 3.4(c). Now, the
proof of our theorem is complete.

Remark 3.12. Theorem 3.11 supplies a one-to-one correspondence
between the multiplier invariant subspaces J ofB with σ(Mz[B/J ]) ⊂ Ω2

and the multiplier invariant subspaces I of B1 with σ(Mz[B1/I]) ⊂ Ω2.
What can we do when we wish to describe the structure of all multiplier
invariant subspaces of index one in B in terms of corresponding lattices
of multiplier invariant subspaces in B1 and B2, respectively? We note
first that by a suitable Möbius transformation, we may interchange the
roles of B1 and B2. This means that under appropriate assumptions on
B, B1, and B2, Theorem 3.11 also provides a one-to-one correspondence
between the multiplier invariant subspaces J ofB with σ(Mz[B/J ]) ⊂ Ω1

and the multiplier invariant subspaces I of B2 with σ(Mz[B2/I]) ⊂ Ω1.
A general multiplier invariant subspace J of B of index one splits into
J = J1∩J2, where J1 and J2 are two other multiplier invariant subspaces
of B such that the spectra associated to the operators Mz[B/J1] and
Mz[B/J2] are disjoint parts of the spectrum σ(Mz[B/J ]) in accordance
with Lemma 3.8. By Theorem 3.11 (applied to J1 and J2, respectively),
J1 corresponds to I1 = J1 ∩ B1 and J2 corresponds to I2 = J2 ∩ B2.
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So, to describe J , we essentially just need to understand I1 and I2.
Moreover, by Proposition 3.10, each element f ∈ J has a factorization
f = f1 ·f2, where f1 ∈ I1 and f2 ∈ I2. It follows that I1 takes care of the
boundary behavior of the functions in J near ∂Ω1, and that I2 takes care
of the boundary behavior of the functions in J near ∂Ω2. It should be
pointed out that all known examples of multiplier invariant subspaces of
index one involve boundary behavior (if we omit the rather trivial ones
generated by polynomials, corresponding to finitely many zeros).
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