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ON RADIAL LIMIT FUNCTIONS FOR
ENTIRE SOLUTIONS OF SECOND ORDER

ELLIPTIC EQUATIONS IN R2

André Boivin∗ and Peter V. Paramonov†

Abstract
Given a homogeneous elliptic partial differential operator L of
order two with constant complex coefficients in R2, we consider
entire solutions of the equation Lu = 0 for which

lim
r→∞

u(reiϕ) =: U(eiϕ)

exists for all ϕ ∈ [0, 2π) as a finite limit in C. We characterize the
possible “radial limit functions” U . This is an analog of the work
of A. Roth for entire holomorphic functions. The results seem new
even for harmonic functions.

1. Introduction and Main Results

Let
Lv = c11vx1x1 + 2c12vx1x2 + c22vx2x2

be an homogeneous partial differential operator of order two with con-
stant complex coefficients in R2 satisfying the ellipticity condition

c11ξ
2
1 + 2c12ξ1ξ2 + c22ξ

2
2 6= 0

for all (ξ1, ξ2) 6= (0, 0), ξ1, ξ2 ∈ R.
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Let λ1, λ2 be the (complex) roots of the characteristic equation c11λ
2+

2c12λ+ c22 = 0. It follows from the ellipticity condition that λ1, λ2 /∈ R.
We define

∂1 =
∂

∂x1
− λ1

∂

∂x2
, ∂2 =

∂

∂x1
− λ2

∂

∂x2
if λ1 6= λ2,

or

∂1 =
∂

∂x1
− λ1

∂

∂x2
, ∂2 =

∂

∂x1
+ λ1

∂

∂x2
if λ1 = λ2.

We then have the following decomposition of L:

Lv =

{
c11∂1(∂2(v)), if λ1 6= λ2;

c11∂
2
1(v), if λ1 = λ2.

We also introduce the following new coordinates:

z1 =
λ2

λ2 − λ1

(
x1 +

1
λ2
x2

)
, z2 =

λ1

λ1 − λ2

(
x1 +

1
λ1
x2

)
if λ1 6= λ2;

or

z1 =
1
2

(
x1 −

1
λ1
x2

)
, z2 =

1
2

(
x1 +

1
λ1
x2

)
if λ1 = λ2.

The following “orthogonality” relations then are easily obtained:

(1)
∂1z1 = 1 ∂1z2 = 0

∂2z1 = 0 ∂2z2 = 1.

Finally, we identify z = x1 + ix2 in C and x = (x1, x2) in R2 and,
for s = 1 and 2, we define Ts(z) = zs (which are linear nondegenerate
transformations of R2).

For any set E in R2, denote by L(E) the family of all functions v,
each defined on its own neighbourhood Ωv of E, such that Lv = 0 in Ωv
in the classical sense. We note that for E open, one can take Ωv = E
for all v. Functions in L(E) and L(R2) are called L-analytic on E and
L-entire respectively.

It is well known that (for E open) each function v ∈ L(E) is real-
analytic on E, and that each continuous function v satisfying Lv = 0 on
E in the distributional sense is in L(E). From these facts, using (1), one
can prove the following well known result [1, Chapter IV, §6, (4.77)] (see
also [5] for a simple direct proof).
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Proposition 1. Let D be any domain in C and L be as above.

1. If D is simply connected and if λ1 6= λ2, then

1a) v ∈ L(D) if and only if there exist f1 holomorphic in T1(D)
and f2 holomorphic in T2(D) such that

v(z) = f1(T1(z)) + f2(T2(z)) = f1(z1) + f2(z2)

for all z ∈ D. In particular, L-entire functions u are of the
form u(z) = f1(z1) + f2(z2) where f1, f2 are entire holomor-
phic functions.

1b) There exist in C \ {0} a fixed analytic branch log(z1z
ν
2 ) of

the multivalued function Log(z1z
ν
2 ) and a nonzero complex

constant CL depending only on L such that

ΦL(z) = CL log(z1z
ν
2 )

is a fundamental solution of L, where ν = 1 if sgn(Imλ1) 6=
sgn(Imλ2), and ν = −1 otherwise.

2. If λ1 = λ2, then

2a) v ∈ L(D) if and only if there exist g1 and g2 holomorphic in
T2(D) such that

v(z) = T1(z)g1(T2(z)) + g2(T2(z)) = z1g1(z2) + g2(z2)

for all z ∈ D. In particular, L-entire functions u are of
the form u(z) = z1g1(z2) + g2(z2) where g1, g2 are entire
holomorphic functions.

2b) ΦL(z) = CL
z1
z2

is a fundamental solution of L, where CL is
a nonzero complex constant depending only on L.

3. If {vn} ⊂ L(D) and {vn} converges uniformly to v on compact
subsets of D as n −→∞, then v ∈ L(D).

We just note that 1b) and 2b) follow from 1a) and 2a) respectively, and
from the definition of fundamental solution. It is not difficult to check
that if sgn(Imλ1) 6= sgn(Imλ2) (respectively sgn(Imλ1) = sgn(Imλ2)),
then the increment of the polar argument of (z1z2) (respectively (z1/z2))
around the origin is zero, and thus some analytic branch of the function
log(z1z2) (respectively log(z1/z2)) exists in R2 \ {(0, 0)}.
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Example 1. For the Laplacian L = ∆, one has λ1 = i, λ2 = −i,
z1 = z/2, z2 = z̄/2 and

∂1 =
∂

∂x1
− i ∂

∂x2
=: 2

∂

∂z
,

∂2 =
∂

∂x1
+ i

∂

∂x2
=: 2

∂

∂z̄
,

Φ∆(z) =
1

4π
log
(zz̄

4

)
.

For the Bitsadze operator

L =
∂2

∂z̄2
=

1
4

(
∂2

∂x2
1

+ 2i
∂2

∂x1∂x2
− ∂2

∂x2
2

)
,

one gets λ1 = λ2 = −i, z1 = z̄/2, z2 = z/2 and

∂1 = 2
∂

∂z̄
, ∂2 = 2

∂

∂z
, ΦL(z) =

1
π

z̄

z
.

In order to formulate our main results (Theorems 1 and 2), we need
the following characterization of radially constant solutions of the equa-
tion Lv = 0.

Proposition 2. Let J = {z ∈ C : ϕ1 < arg z < ϕ2}, ϕ1 < ϕ2 ≤
ϕ1 + 2π denote an (infinite) open sector with vertex at 0. Let v ∈ L(J)
and assume that v(z) = v(reiϕ) = v(eiϕ) does not depend on r.

1. If λ1 6= λ2, then there exist α, β ∈ C and a fixed analytic branch
log(z1/z2) of Log(z1/z2) in J such that, for z ∈ J ,

(2)

v(z) = α log
z1

z2
+ β

= α log

(
cosϕ+ 1

λ2
sinϕ

cosϕ+ 1
λ1

sinϕ

)
+ β =: v∗12(eiϕ).

2. If λ1 = λ2, then there exist α, β ∈ C such that, for z ∈ J ,

(3)

v(z) = α
z1

z2
+ β

= α

(
cosϕ− 1

λ1
sinϕ

cosϕ+ 1
λ1

sinϕ

)
+ β =: v∗1(eiϕ).

(For this case, J = C \ {0} is also allowed.)
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Example 2. For L = ∆, one has v∗12(eiϕ) = αϕ+β, ϕ1 < ϕ < ϕ2, and
for L = ∂2/∂z̄2, v1(eiϕ) = αe−2iϕ + β, where α and β are any complex
constants.

Theorem 1. Let u be an entire solution of the equation Lu = 0 such
that

(4) lim
r→+∞

u(reiϕ) =: U(eiϕ)

exists and is finite for all ϕ ∈ [0, 2π). Then

A) U is of Baire class 1 on S = {eiϕ : ϕ ∈ [0, 2π)}; that is, U is a
pointwise limit on S of a sequence of continuous functions on S.

B) There is an open set I = ∪∞j=1Ij, where the Ij are disjoint open
arcs on S (and Ij = ∅ is possible for some j, but Ij 6= S) with the
following properties:

B1) I is everywhere dense on S;

B2) On each Ij, U(eiϕ) is of the form v∗12(eiϕ) if λ1 6= λ2 (respec-
tively of the form v∗1(eiϕ), if λ1 = λ2), (see (2) and (3));

B3) The limit (4) is uniform on each compact subset of each Ij.
Conversely, let U be a function defined on S and I be an open subset

of S with I = ∪∞j=1Ij, where the Ij are disjoint open arcs. If (A), (B1)
and (B2) above are satisfied, then there exists an L-entire function u
with the properties:

a) lim
r→∞

u(reiϕ) = U(eiϕ) for each ϕ;

b) The limit in (a) holds uniformly on each compact subset of Ij for
each j.

Moreover, if U1 is of Baire class 1 on S and U1(eiϕ) = ∂U(eiϕ)/∂ϕ on
I, then the function u can be chosen such that (a) and (b) are satisfied
and

lim
r→+∞

∂u(reiϕ)
∂r

= 0, lim
r→+∞

∂u(reiϕ)
∂ϕ

= U1(eiϕ)

for all ϕ ∈ [0, 2π).

Let K be a compact set in S. Let RP (K) (respectively RU(K)) denote
the set of all functions g on K for which there exists u = ug ∈ L(R2) such
that u(reiϕ) −→ g(eiϕ) for each ϕ ∈ K (respectively u(reiϕ) −→ g(eiϕ)
uniformly on K) as r →∞.
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Theorem 2.

a) For each compact set K in S, g ∈ RP (K) if and only if g is of
Baire class 1 on K and there exists a countable family of disjoint
open arcs {Ij}∞j=1 in K such that K \ ∪∞j=1Ij is nowhere dense
in S and on each Ij, g is of the form v∗12(eiϕ) (when λ1 6= λ2)
or v∗1(eiϕ) (when λ1 = λ2) (see Proposition 2). In particular,
RP (K) consists of all Baire class 1 functions on K if and only if
K has an empty interior on S.

b) Let K be a compact set in S, K 6= S. Then g ∈ RU(K) if and
only if g ∈ C(K) and g is of the form v∗12(eiϕ) (when λ1 6= λ2)
or v∗1(eiϕ) (when λ1 = λ2) in each connected component of the
interior of K in S. In particular, RU(K) = C(K) if and only if
K is nowhere dense in S. If K = S, then RU(K) contains only
constant functions.

2. Proofs

We first establish the following uniqueness theorem for L-analytic func-
tions.

Lemma 1. Let D be any domain in C and v ∈ L(D). If the set
Gv = {z = x1 + ix2 ∈ D | ∇v(z) := (∂v(z)/∂x1, ∂v(z)/∂x2) = (0, 0)}
has at least one accumulation point inside D, then v is constant in D.

Proof: From Proposition 1 and equations (1), one has ∂1v = f ′1(z1) for
λ1 6= λ2 and ∂1v = g1(z2) for λ1 = λ2, where f ′1 and g1 are holomorphic
on T1(D) and T2(D) respectively. By assumption, f ′1 = 0 on T1(Gv)
(respectively g1 = 0 on T2(Gv)). It thus follows from the uniqueness
theorem for holomorphic functions that f1 ≡ const in T1(D) (respectively
g1 ≡ 0 in T2(D)). An analogous study of ∂2v completes the proof of
Lemma 1.

Proof of Proposition 2: We shall consider only the case λ1 6= λ2, the
proof for the case λ1 = λ2 being similar. Let v ∈ L(J), v = v(eiϕ).
Let v0(z) = log(z1/z2) be some fixed analytic branch of Log(z1/z2) in
J . Simple calculations show that ∂v0(z)/∂ϕ 6= 0 and ∂v0/∂r ≡ 0 in J .
Fixing some ϕ0 ∈ (ϕ1, ϕ2), we can thus find α and β in C such that
v − αv0 − β = 0 and ∂(v − αv0 − β)/∂ϕ = 0 on the ray {arg z = ϕ0}. It
thus follows that ∇(v−αv0− β) = 0 on the ray {arg z = ϕ0}. Lemma 1
now gives the desired result.
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Proof of Theorem 1: The scheme of the proof is analogous to that of
A. Roth [7] (see also [3, Chapter IV, § 5A]). The main new tools are
some recent results in approximation theory ([6] and [2]).

Let u∈L(R2) satisfy (4), then A) is a consequence of limn→∞u(neiϕ)=
U(eiϕ). Using a decreasing sequence of nested intervals and condi-
tion (4), one can prove that for each nonempty sector J ′′ with vertex at
the origin, there exists a nonempty sector J ′ = {ϕ′1 < arg z < ϕ′2} ⊂ J ′′
with ϕ′1 < ϕ′2 ≤ ϕ′1+2π such that u is bounded on J ′ (see [3, p. 164]). Fix
any ϕ1 and ϕ2 with ϕ1 < ϕ2 and [ϕ1, ϕ2] ⊂ (ϕ′1, ϕ

′
2). Let un(z) = u(2nz).

We claim that the sequence {un(z)}∞n=1 converges uniformly on compact
subsets of the “closed” sector J = {ϕ1 ≤ arg z ≤ ϕ2}. From (4), it will
follow that the limit function v does not depend on r. Since v ∈ L(J)
(see 3 of Proposition 1), Proposition 2 will give us B) in our theorem
(see [3, p. 166] for more details). To prove the claim, it suffices to es-
tablish that {un} converges uniformly on the compact set K = {ϕ1 ≤
arg z ≤ ϕ2, 1 ≤ |z| ≤ 2}. In order to prove this last assertion, it is
enough to check that |∇un| is uniformly bounded on K and to use Ascoli-
Arzela’s theorem. Notice that sup{|un(z)| | z ∈ J ′, n ≥ 1} < +∞, and
d := dist(K, ∂J ′) > 0 (here and in the sequel, ∂E is the boundary of a set
E). Denote by Φ the fundamental solution of L, which is found in Propo-
sition 1, and set B(a, δ) = {z ∈ C | |z− a| < δ}, where a ∈ C and δ > 0.
Fix ψ ∈ C∞0 (B(0, d)) such that ψ = 1 in B(0, d/2). Now fix z0 ∈ K and
put ψ0(z) = ψ(z − z0). Then ψ0 = 0 outside the ball B(z0, d) ⊂ J ′ and
ψ = 1 on B(z0, d/2). One has ([6, p. 255]) unψ = Φ ∗ L(unψ), so that
in B(z0, d/2), we can write (in the case λ1 6= λ2)

un(z) = Φ ∗ (Lun ψ + a11∂1un∂2ψ + a11∂2un∂1ψ + unLψ)(z).

Since ψLun ≡ 0 and a11∂sun∂3−sψ = a11∂s(un∂3−sψ) − unLψ (s = 1
and 2), we obtain that, in B(z0, d/2),

un = Φ ∗ (a11∂1(un∂2ψ) + a11∂2(un∂1ψ)− unLψ)
= a11(∂1Φ) ∗ (un∂2ψ) + a11(∂2Φ) ∗ (un∂1ψ)− Φ ∗ (unLψ).

Now the desired uniform estimate for |∇un(z0)| can be obtained by mak-
ing trivial estimates in the formula

∇un(z0) = a11

[
(∇∂1Φ) ∗ (un∂2ψ) + (∇∂2ψ) ∗ (un∂1ψ)

]
− (∇Φ) ∗ (unLψ))

∣∣∣
z=z0

.

The proof for the case λ1 = λ2 is similar.
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Let us now prove the second part of Theorem 1. Let I = ∪∞j=1Ij , U ,
U1 be as in (the second part of) Theorem 1. Put I0 = S \ I, and for
j = 0, 1, . . . let Jj = {z ∈ C \ {0} | ei arg(z) ∈ Ij}. Finally set F0 =
{z ∈ J0 | |z| ≥ 1}, Fj = {z ∈ Jj | dist(z, ∂Jj) ≥ 1}, j = 1, 2, . . . , and
F = ∪∞j=0Fj . Notice that each Fj and F are closed subsets of C and that
the Fj (j ≥ 0) are pairwise disjoint. We note that if they are infinitely
many Fj , they are pushed to∞ (i.e. they are eventually outside any fixed
compact set). It follows that there exist pairwise disjoint neighbourhoods
Ωj of Fj , j = 0, 1, . . . , with Ωj ⊂ Jj for j ≥ 1.

We first want to show that there exists a neighbourhood Ω′0 of F0,
Ω′0 ⊂ Ω0, and a function f ∈ C1

loc(Ω′0) such that

(5)

lim
r→∞

f(reiϕ) = U(eiϕ),

lim
r→∞

∂f(reiϕ)
∂ϕ

= U1(eiϕ),

lim
r→∞

∂f(reiϕ)
∂r

= 0,

for each eiϕ ∈ I0. The proof of this elementary fact is included for
completeness.

Let A0 = {|z| < 2}, As = {2s−1 < |z| < 2s+1}), s = 1, 2, . . . , and let
{χs}∞s=0 be a partition of unity on C subordinate to {As}∞s=0 such that
χs(z) = χs(|z|) and |∇χs| ≤ c/2s, where c is a constant independent
of s. Since U and U1 are of Baire class 1 on S, there exist sequences
of continuous functions {Vs}, {Ws} on S such that Vs(eiϕ) −→ U(eiϕ)
and Ws(eiϕ) −→ U1(eiϕ), for all eiϕ ∈ S (and thus in particular for all
eiϕ ∈ I0). In addition we can choose the continuous functions Vs and
Ws so that they are bounded by 2s/2.

Since Vs and Ws are uniformly continuous on S, there exists δs, 0 <
δs < 2−s, such that |eiϕ − eiϕ0 | < δs implies |Vs(eiϕ)− Vs(eiϕ0)| < 1/2s

and |Ws(eiϕ)−Ws(eiϕ0)| < 1/2s.
Since by assumption I0 is nowhere dense in S, there exist open neigh-

bourhoods Ns of I0, s = 0, 1, . . . , such that Ns = ∪k≥1Isk is the union
of finitely many open arcs Isk whose closures are disjoint and each Isk is
of length less than δs.

Now for each s ≥ 0, define Ωs0 = N
(ϕ)
s × (2s−1, 2s+1)(r) and Ωsk0 =

I
(ϕ)
sk × (2s−1, 2s+1)(r) in the (ϕ, r)-plane. We further require that the Ns

(s ≥ 0) be chosen such that Ωs0 ⊂ Ω0.
We note that, by construction, Vs and Ws are almost constant on each

of the sets Isk. Fix ϕsk ∈ I0 ∩ Isk. For z = reiϕ ∈ Ωsk0 , let fsk(z) :=
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αskϕ + βsk, where αsk, βsk ∈ C, are chosen such that fsk(eiϕsk) =
Vs(eiϕsk) and ∂fsk/∂ϕ = αsk = Ws(eiϕsk), so that |αsk| ≤ 2s/2.

Let fs be the function defined on Ωs0 which is equal to fsk on Ωsk0 .
And let f =

∑∞
s=0 fsχs. Then f is well-defined on some neighbourhood

Ω′0 of F0. It is not too difficult to see that f satisfies (5). In the sequel,
we identify Ω0 and Ω′0.

Using the localization scheme of Vitushkin (similarly to [4, Lem-
ma 2.2(8), Corollary 6.3]), one can prove that for each R > 0, there
exists {fRn } ⊂ L(FR0 ), where FR0 = F0 ∩ {|z| ≤ R}, such that fRn −→ f
in C1

jet(F
R
0 ) as n → +∞ (see [4] and [2, section 2.1]; in our particu-

lar case, since the interior of F0 is empty and the union of all the lines
in C \ F0 is everywhere dense, we only need a very simple part of the
localization scheme).

Let us now consider the Banach space

V =
{
g ∈ C1(R2)

∣∣ ‖g‖ := sup
z∈R2

{
max{|g(z)|, |∇g(z)|}(1 + |z|2)

}
<∞

}
with norm ‖ · ‖. This space satisfies the conditions (1)-(4) of [2]. From
the fact that V is locally equivalent to the space C1(R2) and from the
approximation properties of f on FR0 mentioned above, it follows also
that there exists a locally finite family of balls covering F0 such that
for each ball B in this family and for each ε > 0, there exists g such
that Lg = 0 on some neighbourhood of F0 ∩ B and ‖f − g‖F0∩B < ε

i.e. f is approximable locally on F0 in the norm of V by (local) L-
analytic functions. Theorem 2 in [2] now states that this is equivalent to
global approximation, that is, for each ε > 0, there exists an L-analytic
function g on (all of) F0 such that ‖f − g‖F0 < ε.

Denote by R2
∞ = R2 ∪ {∞} the one-point compactification of R2.

Since R2
∞ \ F0 is connected and locally connected (that is, F0 is a

RKL-set in the terminology of [2] (the letters stand for Roth-Keldysh-
Lavrentieff)), we can use an analog of Runge’s theorem obtained in [2,
Theorem 1] to approximate in the norm of V L-analytic functions on F0

by L-entire functions. We thus conclude that we can find an L-entire
function h such that ‖f − h‖F0 ≤ 1. Using the estimate

(6) |∂ψ(z)/∂ϕ| < |∇ψ(z)||z|,
this gives that (5) is satisfied when h is substituted for f .

Now define v(z) = h(z) in Ω0 and v(z) = U(ei arg(z)) in ∪∞j=1Ωj . Then
v ∈ L(Ω), where Ω = ∪∞j=0Ωj is a neighbourhood of F , and F is a
RKL-set. Thus again by [2, Theorem 1], we can find u ∈ L(R2) with
‖v − u‖F ≤ 1. It suffices to notice, using (6) with ψ = u − v, that u is
the desired L-entire function. Theorem 1 is proved.
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Proof of Theorem 2: Part (a) of Theorem 2 trivially follows from The-
orem 1, since it suffices to extend g from K to S by setting g = 0 on
S \K.

Suppose that K 6= S. The necessity in (b) is also a simple consequence
of the proof of Theorem 1. To obtain the sufficiency in (b), we consider
the closed set F = {z = reiϕ ∈ C | eiϕ ∈ K, r ≥ 1} and the function
f(z) = f(reiϕ) := g(eiϕ) on the RKL-set F .

An elementary proof (using only well known facts from one-dimension-
al real analysis) shows that for each ε > 0, there exists a finite number
of disjoint open arcs Ij , whose union I = ∪Ij contains K, and a function
hε on I such that hε has the form v∗12 (or v∗1) (see Proposition 2) on each
Ij , and

sup
{
|g(eiϕ)− hε(eiϕ)|

∣∣ eiϕ ∈ K} < ε.

Thus f(z) is approximable uniformly on F by functions hε(z) =
hε(ei arg(z)) ∈ L(F ).

The end of the proof is now similar to that of Theorem 1. We just
need to take the following new approximation space:

V =
{
ψ ∈ C(R2)

∣∣ ‖ψ‖ = sup
z∈C

(|ψ(z)|(1 + |z|)) <∞
}
.

Finally, if K = S, then u = ug must be bounded in R2, and hence |∇u|
is also bounded (see the beginning of the proof of Theorem 1). Then,
considering ∂1u and ∂2u and using Proposition 1, we reduce the proof
to an application of Liouville’s Theorem for holomorphic functions.
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darrera versió rebuda el 23 de juny de 1998


