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THE NILPOTENCY OF SOME GROUPS
WITH ALL SUBGROUPS SUBNORMAL

Leonid A. Kurdachenko and Howard Smith

Abstract

Let G be a group with all subgroups subnormal. A normal sub-
group N of G is said to be G-minimax if it has a finite G-invariant
series whose factors are abelian and satisfy either max-G or min-
G. It is proved that if the normal closure of every element of G
is G-minimax then G is nilpotent and the normal closure of every
element is minimax. Further results of this type are also obtained.

1. Introduction

Let G be a group with all subgroups subnormal. If the normal closure
in G of every element is finitely generated then G is nilpotent [15, The-
orem 1]. We deal in the present paper with the case where every normal
closure is minimax. Let us note at the outset that there is no corre-
sponding result for the case where normal closures have finite (Prüfer)
rank; indeed, an example in [12] shows that even if G itself has finite
rank then it need not be nilpotent.

Using standard notation, we denote by S2 the class of soluble mini-
max groups; thus a group G belongs to S2 if it has a finite normal series
the factors of which are abelian and satisfy either max or min. Since
every group with all subgroups subnormal is known to be soluble [9],
the hypothesis that the normal closure of every element belong to S2

is less restrictive than it might at first appear. In fact, we shall estab-
lish a somewhat stronger result than that hinted at above. A normal
subgroup N of a group G is said to be G-minimax if it has a finite G-
invariant series of subgroups the factors of which are abelian and satisfy
either max-G or min-G. Our first result is as follows.
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Theorem A. Let G be a group with all subgroups subnormal. If 〈x〉G
is G-minimax for all x in G then

(i) G is nilpotent and
(ii) 〈x〉G is minimax for all x in G.

A group G belongs to the class S1 if it has a finite normal abelian series
the factors of which are torsion-free of finite rank or Chernikov groups.
(Thus S2 ⊆ S1. Additional care needs to be taken when dealing with
the class S1 since it is not closed under forming quotients, as may be
seen by considering the additive group of rationals.)

Theorem B. Let G be a group with all subgroups subnormal and
suppose that 〈x〉G ∈ S1 for all x in G. Then G is nilpotent.

Using Theorem B we are able to deduce a further result. For a class X

of groups, a group G is said to be an XC-group if G/CG(xG) belongs
to X for all x in G. In the case where X = S2 we have the class of
groups with “minimax conjugacy classes”. Now, by Theorem 2 of [6],
if G ∈ S2C then 〈x〉G ∈ S2 for all x ∈ G, and we have the following
consequence of Theorem B.

Corollary. Let G be a group with all subgroups subnormal and sup-
pose that G has minimax conjugacy classes. Then G is nilpotent.

There are no doubt several possible generalisations of Theorem B; we
content ourselves with establishing a result that has both Theorem A(i)
and Theorem B as special cases.

Theorem C. Let G be a group with all subgroups subnormal and
suppose that, for each x in G, 〈x〉G has a finite G-invariant series each
of whose factors is either G-minimax or torsion-free abelian of finite
rank. Then G is nilpotent.

2. max-G and min-G subgroups of locally nilpotent groups

We begin with a couple of definitions. Let G be a group, H an in-
finite normal subgroup of G. Then H is G-quasifinite if every proper
G-invariant subgroup N of H is finite and H is the join of all such
subgroups N , while H is G-just infinite if every nontrivial G-invariant
subgroup N of H has finite index in H and the intersection of all such
N is trivial. For a group G, just infinite ZG-modules were first studied
in [11] and [5], quasifinite ZG-modules in [16]. For further references
the reader is invited to consult the survey [4]. Our first requirement is
as follows.
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Lemma 2.1. Let G be a locally nilpotent group, H an infinite normal
subgroup of G. If H satisfies min-G then H contains a G-invariant
subgroup A that is G-quasifinite.

Proof: By min-G we see that H certainly contains a G-invariant sub-
group A minimal with respect to being infinite. If A is not G-quasifinite
then the join F of all finite G-invariant subgroups of A is finite; then
A/F is a chief factor of G and therefore finite (of prime order) and we
have the contradiction that A is finite.

Now let G and A be as above. If B is a proper G-invariant subgroup
of A then B is finite and therefore so is A/CA(B), and it follows that B
is contained in the centre of A; thus A is abelian. Clearly A is a p-group
for some prime p. If the subgroup C generated by all elements of order p
in A is infinite then C = A; otherwise C is finite and A is Chernikov [10,
25.1] and therefore divisible. Thus we have the following.

Lemma 2.2. Let G be a locally nilpotent group, A a G-quasifinite
subgroup of G. Then A is abelian and either of exponent p or a divisible
Chernikov p-group, where p is a prime.

Next we establish a result that rules out the first of these two possi-
bilities in certain circumstances. Recall that a Baer group is a group in
which every cyclic subgroup is subnormal.

Lemma 2.3. Let G be a Baer group, A a G-quasifinite subgroup of G.
If G/CG(A) is hypercentral then A ≤ Z(G); in particular A is divisible
Chernikov.

Proof: Supposing the result false, choose z ∈ G with zCG(A) a non-
trivial element of Z(G/CG(A)). By Lemma 2.2 A is abelian; from the
choice of z it follows easily that both [A, z] and CA(z) are normal in
G. Further, if [A, z] < A then [A, z] is finite and so CA(z) has finite
index in A and hence equals A, a contradiction; thus A = [A, z]. Write
H = A〈z〉. Since G is a Baer group, H is nilpotent. But H ′ = [A, 〈z〉] =
A = [A,H] = [H ′, H] and it follows that H ′ = 1. This again contradicts
the choice of z and establishes the result.

We are now able to prove the following.

Lemma 2.4. Let G be a Baer group, A a normal subgroup of G such
that G/CG(A) is hypercentral. Suppose that A satisfies min-G. Then A
is Chernikov and A ≤ Zn(G) for some positive integer n.
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Proof: If A is finite the result is clear. Otherwise, we may apply
Lemma 2.1 to obtain a G-invariant subgroup B1 of A that is G-quasifinite
and hence, by Lemma 2.3, divisible Chernikov and central in G. Assum-
ing the statement of the lemma false, repeated application of this argu-
ment gives an ascending chain of G-quasifinite factors Bi/Bi−1 where,
for each i ≥ 1, Bi ≤ Zi(G) and Bi/Bi−1 is divisible Chernikov (inter-

preting B0 as 1). Write B =
∞⋃
i=1

Bi. Each Bi is divisible Chernikov and

hence abelian, so that B is abelian but not Chernikov. By min-G, some
prime component P of B has infinite rank and hence contains an infi-
nite G-invariant subgroup Q(= Ω1(P )) of exponent p [1, 25.1]. But Q
satisfies min-G and so by Lemma 2.1 contains a G-invariant subgroup R
that is G-quasifinite. Lemma 2.3 now gives the contradiction that R is
divisible, and the lemma is proved.

We turn now to discussion of normal subgroups satisfying max-G,
beginning with the counterpart to Lemma 2.1.

Lemma 2.5. Let G be a locally nilpotent group, H an infinite normal
subgroup of G. If H satisfies max-G then H contains a G-invariant
subgroup A such that H/A is G-just infinite (that is, G/A-just infinite).

Proof: Let A be a G-invariant subgroup of H maximal with respect to
H/A being infinite and let B denote the intersection of all G-invariant
subgroups N of H that properly contain A. If B > A then H/B is
finite and B/A is a chief factor of G and therefore finite. This gives the
contradiction that H/A is finite.

Lemma 2.6. Let G be a locally nilpotent group, A a G-just infinite
subgroup. Then either A is torsion-free or A is an elementary abelian
p-group for some prime p.

Proof: Let T denote the torsion subgroup of A; then T is normal in
G and so T = 1 or T = A and we may assume that A is torsion and
therefore a p-group for some prime p. Certainly A is not minimal normal
in G and so A contains a proper G-invariant subgroup C of finite index.
By local nilpotency C may be chosen so that |A/C| = p. Let B denote
the intersection of all subgroups of index p in A, so that B is normal in
G. If B = 1 the result follows, so we shall assume for a contradiction
that A/B is finite and hence that A = KB for some finite subgroup
K. Now let F be some finite subgroup of A. There exists a G-invariant
subgroup E of finite index in A such that F ∩ E = 1. Let L/E be the
Frattini subgroup of A/E; thus B ≤ L and we have A/E = KL/E, which
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implies that A/E = KE/E ∼= K/K ∩ E (by the usual property of the
Frattini subgroup). But then the rank of F is at most that of K, and the
fact that F was arbitrary tells us that A has finite rank and is therefore
Chernikov (see, for example, Corollary 2 of [10, Theorem 6.36]). But A
is residually finite and we obtain the contradiction that A is finite.

With the hypotheses of the above lemma, if A is torsion-free then it is
in fact central in G and therefore cyclic. This result is not essential for
the proofs of the theorems but, apart from the fact that it allows us to
establish a “just-infinite version” of Lemma 2.4 without the hypothesis
that G be a Baer group, it appears to be of interest in its own right. It
is no further trouble to establish a somewhat stronger result, namely the
following, which may indeed be well known.

Theorem 2.7. Let G be a locally nilpotent group, N a normal torsion-
free subgroup of G, and supose that N/M is periodic for all nontrivial
G-invariant subgroups M of N . Then N is central in G and hence of
rank (at most) one.

Proof: Suppose that N is not central, let a ∈ N , g ∈ G with [a, g] 6= 1
and write c = [a, g]. By hypothesis N/〈c〉G is periodic; in particular
∃ n ∈ N such that an ∈ 〈c〉G and hence an ∈ 〈c〉F for some finitely
generated subgroup F of G. Let H = 〈a, g, F 〉, A = 〈a〉H , so that c ∈ A.
Since H is nilpotent we have [A, rH] = 1 for some r ∈ N. Now c ∈ [A,H],
a normal subgroup of H, and so an ∈ [A,H]. Since A = 〈a〉[A,H] it
follows that An ≤ [A,H]. For each i ≥ 0 write Ai = [A, iH], and suppose
that Ani ≤ Ai+1 for some i. Then Ani+1 = [Ai, H]n and, modulo Ai+2, we
have [Ai, H] central in H and generated by elements [x, y], where x ∈ Ai,
y ∈ H, and so (modAi+2)[Ai, H]n is generated by the nth powers of
such commutators. But [x, y]n ≡ [xn, y] modAi+2, by centrality, and
we deduce that Ani+1 ≤ [Ani , H]Ai+2 = Ai+2. By induction, therefore,
An

r ≤ Ar = 1. But A ≤ N and N is torsion-free and so we have A = 1
and hence the contradiction [a, g] = 1. Thus N is central. If z is a
nontrivial element of N then 〈z〉 is normal in G and therefore N/〈z〉 is
periodic. The result follows.

Corollary 2.8. Let G be a locally nilpotent group, N a G-just infinite
subgroup of G. If N is torsion-free then N is central and cyclic.

Proof: By Theorem 2.7 N is central. If z is a nontrivial element of N
then 〈z〉 C G and N/〈z〉 is finite, so N is cyclic.
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The following result may be compared with Lemma 2.3, where the hy-
pothesis that G be Baer could not be replaced by that of local nilpotency,
as shown by the example G = A]〈g〉 where A ∼= Cp∞ and g ∈ AutA is
determined by ag = ap+1 for all a ∈ A.

Lemma 2.9. Let G be a locally nilpotent group, A a G-just infi-
nite subgroup of G, and suppose that G/CG(A) is hypercentral. Then
A ≤ Z(G). In particular, A is infinite cyclic.

Proof: By Lemma 2.6 and Corollary 2.8 we need only dispose of the
case where A is assumed to be an elementary abelian p-group. Let
zCG(A) be a nontrivial element of the centre of G/CG(A) and choose
a nontrivial element d of A such that [d, z] = 1 (such exists by local
nilpotency). Let g ∈ G; by the choice of z we have 1 = [d, z]g = [dg, z]
and so z centralises 〈d〉G. Now A/〈d〉G is finite and the map a → [a, z]
for all a ∈ A is a homomorphism whose kernel contains 〈d〉G, hence
[A, z] is finite (and G-invariant) and therefore trivial. This yields the
contradiction that z ∈ CG(A) and thus establishes the lemma.

We have been unable to decide whether the hypothesis of solubility is
necessary in the following.

Lemma 2.10. Let G be a locally nilpotent group, A a normal solu-
ble subgroup of G such that G/CG(A) is hypercentral. Suppose that A
satisfies max-G. Then A is finitely generated and A ≤ Zn(G) for some
positive integer n.

Proof: An easy induction allows us to assume that A is abelian. Let
T denote the torsion subgroup of A and suppose first that T is infinite.
By Lemma 2.5, T contains a G-invariant subgroup U such that T/U is
G-just infinite; Lemma 2.9 now gives a contradiction. Thus T is fi-
nite and, factoring, we may assume that A is torsion-free. Again by
Lemma 2.5, there is a G-invariant subgroup A1 of A with A/A1 G-just
infinite and hence, by Lemma 2.9, infinite cyclic. If A is not finitely gen-
erated then we obtain easily an infinite descending chain of G-invariant
subgroups Ai with Ai/Ai−1 infinite cyclic for each i ≥ 1 (with A0 = A).
Clearly A/Ai is a free abelian group of rank exactly i for each i. Now fix
a prime p and consider A/Ap; since this is a torsion group the previous
argument shows that A/Ap is finite of order pr, say. But A/Ar+1 has
a finite image of exponent p and order pr+1, a contradiction that shows
that A is finitely generated. We may now apply Lemma 6.37 of [10] to
deduce that A ≤ Zn(G) for some finite n, thus concluding the proof.

We are now ready to establish the final result of this section.
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Proposition 2.11. Let G be a Baer group, A a normal subgroup of
G such that G/CG(A) is hypercentral. If A is G-minimax then A is
minimax and A ≤ Zn(G) for some positive integer n.

Proof: By definition A is soluble and, by induction on the length of an
appropriate series, we may assume that A is abelian and satisfies either
max-G or min-G. Lemmas 2.4 and 2.10 now give the result.

3. Conclusion

Our main objective now is to prove Theorem C, since Theorems A and
B are easy consequences. The work of the previous section allows us to
establish the following key result without difficulty.

Proposition 3.1. Let G be a soluble Baer group and suppose that,
for each element x of G, 〈x〉G has a finite G-invariant series with abelian
factors that are either torsion-free of finite rank or G-minimax. Then G
is hypercentral, with hypercentral length at most ω.

Proof: Let G/N be a hypercentral image of G, U/V a G-invariant
section of N . If U/V is torsion-free of rank r then [U, rG] ≤ V by
Lemma 6.37 of [10], while if U/V is G-minimax then, applying Propo-
sition 2.11 to the group G/N ′, we see that there is an integer n such
that [UN ′, nG] ≤ V N ′. Now let a ∈ N , D = 〈a〉G. The given hypothe-
ses, together with the above argument, imply that ∃ m ∈ N such that
[DN ′,mG] ≤ N ′, and it follows that N/N ′ is contained in the hyper-
centre of G/N ′ and hence that G/N ′ is hypercentral. Since G/G′ is cer-
tainly hypercentral, an easy induction on the derived length shows thatG
is hypercentral. Now let x be an arbitrary element of G, X = 〈x〉G, U/V
a G-invariant section of X. Again by Lemma 6.37 of [10] and Proposi-
tion 2.11 we have [U, rG] ≤ V for some integer r, so that X ≤ Zm(G)
for some integer m. Since x was arbitrary we have G = Zω(G) as re-
quired.

Our final prerequisite is a result that is probably well known. For
the basic properties of isolators in locally nilpotent groups the reader is
referred to [3].

Lemma 3.2. Let G be a countable locally nilpotent group. Then there
exists a torsion-free subgroup K of G whose isolator in G is G.
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Proof: Write G =
∞⋃
i=1

Fi where each Fi is finitely generated and Fi ≤

Fi+1 for all i. Since the torsion subgroup of F1 is finite there is a positive
integer n1 such that K1 =: Fn1

1 is torsion-free; clearly |F1 : K1| is finite.
Suppose that for some i ≥ 1 we have a torsion-free subgroup Ki of finite
index in Fi and let Ki+1 be a torsion-free subgroup of Fi+1 maximal
with respect to containing Ki.

Claim. |Fi+1 : Ki+1| is finite. Supposing this false, write F = Fi+1,
H = Ki+1, I = IF (H) (the isolator of H in F ). Then |I : H| is finite
and ∃ n > 0 with In ≤ H. By hypothesis I ≤ F and so (by nilpotency)
I < NF (I), hence ∃ g ∈ F\I such that I C 〈I, g〉. Clearly g has infinite
order module I. Since I/In is finite ∃ k > 0 such that [I, 〈gk〉] ≤ In; but
then [H, 〈gk〉] ≤ In ≤ H and H is normal in 〈H, gk〉. Since 〈H, gk〉/H is
torsion-free we have a contradiction that establishes the claim.

Inductively, therefore, we may construct a chain K1 ≤ K2 ≤ · · ·
such that each Ki is a torsion-free subgroup of finite index in Fi. Set

K =
∞⋃
i=1

Ki; clearly K satisfies the desired condition, and the lemma is

proved.

Proof of Theorem C: Let G be as stated. By a result of Möhres [9] G
is soluble and, by Proposition 3.1, G is hypercentral of length at most ω.
Let g ∈ G, D = 〈g〉G. Applying Proposition 2.11 we see that G-minimax
sections of D are in fact minimax and hence that D has finite rank.
Whereas the original hypothesis on normal closures is not in general
inherited by subgroups and quotients of G, the hypothesis that each
〈x〉G have finite rank certainly is, and we now show that this condition
is sufficient to ensure the nilpotency of the ω-hypercentral group G.

By induction on the derived length of G we may assume that G′ is
nilpotent. IfG/G′′ is nilpotent then so isG [2, Theorem 7] and so we may
factor and assume that G is metabelian. We may also assume that G is
countable. Let A be a normal abelian subgroup of G with G/A abelian.
By Lemma 3.2 there is a torsion-free subgroup K of G with IG(K) = G.
Since K is hypercentral of length at most ω it is nilpotent [14] and so
KA, as a product of a normal and a subnormal nilpotent subgroup, is
also nilpotent (see, for example, Proposition 3.3.12 of [7]). If G/(KA)′

is nilpotent then so is G; factoring if necessary we may therefore assume
that G/A is periodic. Now let T be the torsion subgroup of G. By [8],
T is nilpotent and therefore so is TA. Since (TA)′ ≤ T , the torsion
subgroup of G/(TA)′ is T/(TA)′; factoring once more we may assume
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that T ≤ A. Next, G/T is torsion-free and abelian-by-periodic and
hence abelian [10, Lemma 6.33]. Let U be the divisible component of
T , C = CG(U). Then A ≤ C and G/C is periodic and, arguing as in
the proof of Lemma 3.13 of [10], we deduce that G/C is trivial. Then
U ≤ Z(G) and we may (finally) assume that U = 1 and hence that T is
reduced.

Let x ∈ G and write X = 〈x〉G, Y = X ∩ T . Each p-component of Y
is Chernikov and reduced and therefore finite. Let N be a G-invariant
subgroup of finite index in Y , E = CG(Y/N), so that G/E is finite. Since
G′ ≤ T we see thatG centralisesX/Y , and hence that [X,E,E] ≤ N . By
the Three Subgroup Lemma [10, Lemma 2.13], therefore, [X,E′] ≤ N .
Now consider the group G/E′, which is abelian-by-finite. Every abelian
group J is residually of rank 1 —this is well known and may be seen
by noting that, for every nontrivial element j of J , if M is maximal
with respect to not containing j then J/M is locally cyclic. It follows
that G/E′ is residually of finite rank. Now from the structure of Y we
have that the intersection of all N defined as above is trivial and hence
that the intersection Vx of all the corresponding E′ centralises X. But
G/Vx is also residually of finite rank and, further, so is G/W , where
W is the intersection of all Vx obtained as x runs through the set G.
By Theorem 2 of [13] G/W is nilpotent. But W ≤ Z(G) and so G is
nilpotent and the proof of Theorem C is complete.

Theorem B is an immediate consequence of Theorem C, as is part (i)
of Theorem A. Part (ii) follows from Proposition 2.11, and Theorem A
is therefore proved.

Finally, we recall that paper [13] was concerned with establishing
the nilpotency of ω-hypercentral groups with all subgroups subnormal
that have, in addition, certain rank restrictions on their structure. It
does not appear to be known whether every ω-hypercentral group with
all subgroups subnormal is nilpotent (the examples in [12] having
length ω + 1) and so it is perhaps worth recording the following re-
sult, which is what much of the proof of Theorem C was concerned with
establishing.

Theorem 3.3. Let G be a group with all subgroups subnormal and
suppose that G is hypercentral of length at most ω. If 〈x〉G has finite
rank for all x in G then G is nilpotent.
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