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NON SINGULAR HAMILTONIAN SYSTEMS
AND GEODESIC FLOWS ON SURFACES

WITH NEGATIVE CURVATURE

Ernesto A. Lacomba and J. Guadalupe Reyes

Abstract
We extend here results for escapes in any given direction of the
configuration space of a mechanical system with a non singular
bounded at infinity homogeneus potential of degree −1, when the
energy is positive. We use geometrical methods for analyzing the
parallel and asymptotic escapes of this type of systems. By using
Riemannian geometry methods we prove under suitable conditions
on the potential that all the orbits escaping in a given direction are
asymptotically parallel among themselves. We introduce a confor-
mal Riemannian metric with negative curvature in the interior of
the Hill’s region for a fixed positive energy level and we consider
the boundary as a singular part of the infinity. The associated
geodesic flow has as solution curves those of the problem for a
fixed energy. We perform the compactification of the region via
the limiting directions of the geodesic flow, obtaining a closed unit
disk with a quasi-complete metric of negative curvature.

1. Introduction

By a classical mechanical system we understand a triple (M, g, U)
where M is a Riemannian manifold with metric g, the function K :
TM → R defined by Kx(v) = 1

2g(v, v) for all v ∈ TxM is called the ki-
netic energy of the system, and U : M → R is a smooth function defined
in M called the potential of the system. We note that K is essentially the
square of the norm of the Riemannian metric, when applied to tangent
vectors of the manifold M .

The function E(x, v) = Kx(v) + U(π(v)) is called the total energy of
the system, with x ∈ M and v ∈ TxM , which means x = π(v), where
π : TM → M is the canonical projection. The variable v is known as
the velocity.

This work was partially supported by CONACYT grants with numbers 1772-E9210
and 400200-5-1406PE.



268 E. A. Lacomba, J. G. Reyes

If the Riemannian metric in local coordinates is given by g = (gij)
(a symmetric positive definite matrix), then, when we consider the local
kinetic energy K(x, v) = 1

2gijv
ivj , the total energy in these local coordi-

nates (x, v) is written E(x, v) = 1
2gijv

ivj+U(x). From now on we adopt
the summation convention on the repeated indices in a given formula.

The physical curves of a classical mechanical system are the extremal
curves of the variational principle corresponding to the Lagrangian L :
TM → R defined as

L(x, v) = Kx(v)− U(π(v)).

In coordinates L = L(x, v) the Euler-Lagrange equations for the varia-
tional principle are written

(1)
d

dt

(
∂L

∂vk

)
=

∂L

∂xk
,

dxk

dt
= vk.

In a neighborhood of the point (x, p) ∈ T ∗M , we can construct a
diffeomorphism T ∗M → TM locally defined by (xi, pi) → (xi, gijpj) =
(xi, vi). This diffeomorphism carries the total energy function E(x, v)
into a function H : T ∗M → R locally defined by H(x, p) = 1

2g
ijpipj +

U(x), and called the Hamiltonian function. The function defined locally
by vi = gijpj is called the Legendre Transformation.

The Legendre transformation carries the physical curves into T ∗M .
Those curves in local coordinates of T ∗M are the solutions of the follow-
ing system of first order diferential equations:

(2)


ẋi =

∂H
∂pi

,

ṗi =
−∂H
∂xi

,

known as the Hamilton equations.
If (x, p) =

(
x(t), p(t)

)
is a solution curve of (2) in T ∗M , we have

that dH
dt

(
x(t), p(t)

)
= ∂H

∂x ẋ + ∂H
∂p ṗ = 0, and from this we have that the

HamiltonianH is constant along the solutions of (2). This is the principle
of conservation of energy which shows that it is sufficient to consider the
system for fixed levels of energy. Since the Legendre transformation is a
diffeomorphism, the total energy E is also a constant of motion for the
physical curves or solutions of (1) in TM . In this way, we split the total
system into systems defined on the energy surfaces H = h lying in the
phase space T ∗M , with an effective reduction in one dimension.
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We note that the Hamiltonian system could be locally considered as
defined in the tangent bundle TM instead of the cotangent bundle T ∗M ,
because of the Legendre transformation.

For the fixed energy level h, in local coordinates we obtain the energy
equation h = 1

2g
ijpipj + U(x). Since gijpipj ≥ 0 the energy relation

define the set
Mh = {x ∈M | U(x) ≤ h},

the so-called Hill’s region of system for a fixed energy level h and it is
the set of possible permissible configurations for this level. We assume
here that Mh is a connected, simply connected subset of M .

The boundary curve Γ = {x ∈ Mh | U(x) = h} is where the kinetic
energy vanishes and is called the zero velocity manifold.

By Sard’s Theorem, except for a set of values h with Lebesgue measure
zero, we can suppose Mh is a submanifold of M with boundary Γ, which
we assume to be also connected.

1.1. Geodesic flows.
When we consider a system (M, g, U) such that U ≡ 0, the corre-

sponding Hamiltonian has a total energy function which coincides with
the Lagrangian and it is locally written E = L = 1

2gijv
ivj .

We have the variational problem

0 = δ

∫ Q

P

gij ẋ
iẋj dt = δ

∫ Q

P

‖ẋ‖2g dt

defined in the tangent bundle TM on all the curves γ : x = x(t) joining
the points P , Q ∈ M . The extremal curves (which satisfy the Euler-
Lagrange equations) will be called the geodesics in the space M relative
to the metric g, which in local coordinates is written gij .

The set of all the solutions of this variational problem is called the
geodesic flow in the manifold M , and are locally those curves x = x(t)
solving the following system of differential equations

ẍi = −Γijkẋ
j ẋk,

where Γijk = 1
2g
i`
(
∂g`k
∂xj + ∂gj`

∂xk
− ∂gjk

∂x`

)
are the Christoffel numbers of

the connection asociated to the metric gij ([Du], [Sp]).
We can think of the geodesic flow on a Riemannian manifold as the

set of physical curves of the Hamiltonian system locally written as H =
1
2g
ijpipj not subject to any potential.



270 E. A. Lacomba, J. G. Reyes

1.2. Systems with two degrees of freedom.
We are interested here in Hamiltonians in R2 of type

H =
1
2
gijpipj + U(x, y)

having two degrees of freedom and where gij =
(
m1 0
0 m2

)
is a mass

matrix (positive definite), that is, in Hamiltonians whose energy function
in the variables (x, y, ẋ, ẏ), have the form

E =
1
2
(
m1ẋ

2 +m2ẏ
2
)

+ U(x, y),

where U(x, y) is the potential of the system. To obtain from the Hamil-
tonian the energy function defined in the tangent bundle of R2, we use
the Legendre transformation gijpj = ẋi.

Without loss of generality, we can study the Hamiltonians such that
the energy function in the variables (x, y, ẋ, ẏ) has the form

E =
1
2
(ẋ2 + ẏ2) + Ũ(x, y),

which is obtained from the above by a linear change of coordinates.

2. Curvature of the Mechanical System

We begin this section with the Maupertuis least action principle. The
proof can be seen in the references [Du], [Ar].

Theorem 1 (Maupertuis). If our system (1) is autonomous, then
for a fixed energy level h, its physical solutions are the extremals of the
variational problem

0 = δ

∫
γ

2K
(
γ̇(t)

)
dt,

defined on all the curves (γ(t), γ̇(t)) ∈ TMh.

If in local coordinates K
(
γ̇(t)

)
= 1

2gij γ̇
iγ̇j is the kinetic energy of the

system, then the physical solutions are the extremals with fixed energy h
of the variational problem with Lagrangian L̃ = 2

(
1
2gij ẋ

iẋj
)

= ‖ẋ‖2g.
Corresponding to the metric gij we have the Lagrangian L=

√
gij ẋiẋj ,

whose corresponding functional defines arc length along curves.
Its extremals are parameter independent curves, but the values of the

functional on extremals permit to define the arc length parameter.
A simple computation gives the following standard result.
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Proposition 1 ([Du], [Sp]). The Lagrangian L̃ = gij ẋ
iẋj has the

same extremals as L =
√
gij ẋiẋj up to a reparametrization.

This implies that the geodesics are exactly those curves extremizing
arc length.

We observe from Theorem 1 that for a fixed energy level h, it is suf-
ficient to calculate the geodesic flow corresponding to the metric gij for
obtaining the physical motions of problem (1); from Proposition 1 it is
sufficient with studying this flow as an one-dimensional foliation in Mh.

We consider now on M = Rn a Lagrangian of the form

L =
1
2
δij ẋ

iẋj − U(x),

then by the Maupertuis principle we have that for a fixed energy level h,
the extremals of the problem

S(γ) =
∫
γ

δij ẋ
iẋj dt, γ ⊂Mh ⊂ Rn

are the physical solutions of the mechanical problem

(3) ẍ = −∇U(x).

On the interior int(Mh) of the Hill’s region the identity 1 = δij ẋ
iẋj

2(h−U)

holds. In particular if the curve γ does not touch the boundary Γ of
Hill’s region, it is always valid. Hence

S(γ) =
∫
γ

δij ẋ
iẋj =

∫
γ

(δij ẋiẋj)2

2(h− U)
=
∫
γ

1
2

(δij ẋiẋj)2

(h− U)
.

From Proposition 1, the Lagrangians

L̃ = δij ẋ
iẋj =

1
2

(δij ẋiẋj)2

(h− U)

and

L =
1√
2
δij ẋ

iẋj√
h− U

have the same extremals in the interior of the Hill’s region.
In this way, we introduce the metric gh in the interior of the Hill’s

region Mh locally defined by

(gh)ij =
(√

2
δij√
h− U

)
,
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whose geodesic flow in the interior is related to the physical curves of
problem (3) and their corresponding arc length parameter is `, where
d`
dt =

(
2

h−U

)1/4

‖dγ‖ is a reparametrization of physical time, where

‖dγ‖2 = ẋ2 + ẏ2.
With this we obtain the

Proposition 2. For a fixed energy level h, the physical curves of the
system (3) are the geodesics asociated to the Riemannian metric (gh)ij =√

2 δij√
h−U defined in int(Mh).

Proof: Let ` be the arc length as we defined before. Then d`
dt =(

2
h−U

)1/4√
δij ẋiẋj , which implies that

(
d`
dt

)2
=

√
2√

h−U δij ẋ
iẋj .

If we consider the Lagrangian associated to the metric gh:

L =
1
2
(gh)ij ẋiẋj =

√
2

2
√
h− U

δij ẋ
iẋj ,

and denote by (′) the derivative respect to `, we have that

L =
√

2
2
δij(xi)′(xj)′√

h− U

(
d`

dt

)2

=
2δij(xi)′(xj)′

2(h− U)
(δij ẋiẋj)

= 2δij(xi)′(xj)′.

In the last equality we used the fact that δij ẋ
iẋj

2(h−U) = 1 in the interior of
the Hill’s region.

A curve x = x(`) is a geodesic for the metric gh, if and only if it
satisfies the Euler-Lagrange equations:

d

d`

(
∂L

∂(xk)′

)
=

∂L

∂xk
.

A straightforward calculation shows that on the curve x = x(`):

∂L

∂xk
= 0 and

d

d`

(
∂L

∂(xk)′

)
= 4δkj(xj)′′ = 4(xk)′′.

This is equivalent to (xk)′′ = 0, which ends the proof.
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We say that the metric gh is the blowing up of the metric δij on the
zero velocity curve Γ, because it carries that boundary into part of the
“infinity” of the Hill’s region, but with a different behaviour from other
points at infinity.

We define the curvature of the new mechanical system (int(Mh), gh, U)
as the Gaussian sectional curvature of the metric gh. For the case of two
variables x1 = x, x2 = y we have the following result:

Theorem 2 (Curvature). Let k(x, y) be the Gaussian curvature re-
lated to the metric gh at the point (x, y) of the interior of Hill’s re-
gion Mh. If U(x, y) is a class C2 potential, then, for the fixed level
energy h we have that

1. If ∆U(x, y) > −4‖∇
√
h− U‖2 then k(x, y) < 0.

2. If ∆U(x, y) = −4‖∇
√
h− U‖2 then k(x, y) = 0.

3. If ∆U(x, y) < −4‖∇
√
h− U‖2 then k(x, y) > 0.

Here ∆ = ∂
∂x2 + ∂

∂y2 is the Laplacian operator and ∇ denotes the gradient.

Proof: We observe that (gh)ij has the form f(x, y)δij , where

f(x, y) =
√

2√
h− U(x, y)

,

and therefore gh is conformal with the planar metric δ. We use the Gauss
formula (see [Du]) for the curvature:

k(x, y) =
−1

2f(x, y)
∆ log f(x, y).

A straigthforward calculation gives us

∆ log f(x, y) =
(h− U)∆U + ‖∇U‖2

2(h− U)2
,

and then

k(x, y) =
−
√
h− U

2
√

2
·
[
(h− U)∆U + ‖∇U‖2

2(h− U)2

]

=
−(h− U)3/2

4
√

2(h− U)2
·
[
∆U +

∥∥∥∥ ∇U√
h− U

∥∥∥∥2
]

=
−1

4
√

2
√
h− U

·
[
∆U + 4‖∇

√
h− U‖2

]
=

−1
4
√

2(h− U)
·
[
∆U + 4‖∇

√
h− U‖2

]
,

which ends the proof.
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Corollary 1. With the same conditions of the above theorem we have
that

1. If ∆U(x, y) > 0 then k(x, y) is negative.

2. If ∆U(x, y) = 0 and ∇U 6= 0 then the curvature k(x, y) is nega-
tive.

3. If 0 > ∆U > −‖∇U‖
2

h−U then the curvature k(x, y) is negative.

Proof: From Theorem 2 we have that

k(x, y) =
−
√
h− U

4
√

2

[
(h− U)∆U + ‖∇U‖2

(h− U)2

]

=
−1

4
√

2(h− U)

[
∆U +

‖∇U‖2
h− U

]
,

and this proves the statement, because the quantity in the last paren-
theses is positive in each one of the three cases.

We consider now potentials U : Mh → R not having singularities in
the sense that some of the denominators vanish as in the case of collisions
between particles in Celestial Mechanics. Then, for any initial condition
for the system of differential equations (3), there exists a solution in
the phase space whose projection in the Hill’s region is an extremal
γ(t) =

(
x(t), y(t)

)
defined in some interval J ⊂ R. Here t denotes a new

parameter, instead of the physical time.

We say that a potential U : Mh → R is bounded at infinity if there exist
two positive numbers R and A such that for every (x, y) ∈Mh \BR(0, 0)
the inequality |U(x, y)| ≤ A holds, where BR(0, 0) is the open ball of
radius R and center (0, 0).

The following result shows that all escaping geodesics have infinite arc
length in the metric gh.

Lemma 1. Let U : Mh → R be a potential of class C2, bounded at
infinity, and let γ be a solution of (3) in the Hill’s region that escapes to
infinity. Then, if long

(
γ(t)

)
is the arc length in the metric gh of curve γ

at time t, from the point P0 ∈ γ, we have that

lim
t→∞

long
(
γ(t)

)
=∞.
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Proof: Let A be a bound at infinity for the potential U , i.e., |U(x, y)| ≤
A for all (x, y) far enough from the origin.

From the chain of inequalities 0 < |h− U | ≤ |h|+ |U | ≤ h+ A = M2

with M > 0, we have that 0 <
√
h− U ≤M . This implies that

∫ γ(t)

P0

√
dx2 + dy2

√
M

≤
∫ γ(t)

P0

√
dx2 + dy2

√
h− U

,

or equivalently 1√
M

longδ
(
γ(t)

)
≤ long

(
γ(t)

)
, where longδ

(
γ(t)

)
is the

arc length of γ from P0 to γ(t) in the Euclidean metric.
Since γ(t) escapes, then limt→∞ longδ

(
γ(t)

)
= ∞, which implies nec-

essarily that limt→∞ long
(
γ(t)

)
=∞.

We now prove that the arc length in the metric gh of any geodesic
going to the zero velocity curve Γ is finite. This is related to the fact
that the metric is singular in Γ, but the corresponding improper integral
is convergent.

Lemma 2. Let γ ⊂ Mh be a geodesic such that γ intersects the zero
velocity curve Γ at the point P0, and let Q be an arbitrary point of γ in
the interior of the Hill’s region. Then the arc length of γ from Q to P0

is finite.

Proof: We consider the chain of equalities

long
(
γ(P0, Q)

)
=
∫ Q

P0

√
dx2 + dy2

√
h− U

=
∫ Q

P0

√
ẋ2 + ẏ2

√
h− U

dt

=
√

2
∫ Q

P0

√
h− U

4
√
h− U

dt =
√

2
∫ Q

P0

4
√
h− U dt.

The last integral converges because there are no singularities.

From the last results we see that the geodesics through a point escaping
to ∞ are defined for all values of the parameter in R+. On the other
hand, those intersecting the zero velocity curve Γ are defined only for
values of the parameter bounded from above. We conclude the following:

Corollary 2. Let U : Mh → R be a potential of class C2, bounded
at infinity, without singularities or critical points. Then the system
(int(Mh), gh, U) is not geodesically complete.
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We observe that the conditions on the potential in Corollary 2 are valid
in the standard repulsive problems. For some examples see Section 5.

In Section 4 we will use these results for analyzing the global behaviour
of the solutions of Hamiltonian systems with these properties.

We remark that Ong in [O] studied problems with central forces by
using conformally Euclidean metrics (the so called Jacobi metrics) in a
similar way than we did here. Such metrics have the property of vanish-
ing in the zero velocity manifold of the Hill’s region. Instead, the metric
used in this section is not defined in such set, but geodesical distance
to reach it is finite. Beginning with Section 4, we will consider suit-
able conditions on the potential, so that the curvature of the mechanical
system is negative. The resulting geometry generalizes the behavior of
the Kepler problem on positive energy surfaces, which is equivalent to
the geodesic flow on the Poincare disk, whose curvature is constant and
equal to −1.

3. Parallel escapes

We use here, a blowing up of the “infinity” in the Hill’s region, which
can be called of inversion-projective type. Such blowing up has been
used in [LR1] and [LR2] for analyzing parallel escapes to straight lines
through the origin. In other words, we analyze the solutions to prob-
lem (3) in the Hill’s region having a limiting slope at infinity. This sort
of escape is possible for Hamiltonian systems whose potential function is
homogeneous and when the energy is positive. Lacomba [L2] has shown
that in a neighborhood of infinity on a positive energy surface there
exists a foliation by submanifolds consisting of orbits escaping in each
direction of the configuration space. We include here a new proof of this
result, stated as Theorem 4.

In order to use the methods of [LR1] and [LR2] it is necessary to
eliminate the physical time t replacing it in a neighborhood of infinity
by one of the configuration variables. This is true, provided that such
variable has positive velocity at infinity. We generalize one result of
[LR2] in the following lemma:

Lemma 3. Let U = Mh → R be a potential with two degrees of
freedom in the variables (x, y), such that ∂U

∂x 6= 0, and for certain initial
conditions the coordinate x = x(t) of the corresponding solution is defined
for all physical time t > 0 and ẋ∞ = limt→∞ ẋ(t) exists and is positive.
Then limt→∞ x(t) =∞.
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Proof:

1. If ∂U
∂x > 0, then from equation (3) in the two variables x, y we

have that ẍ(t) < 0, wich implies that ẋ(t) is a decreasing function.
By the Mean Value Theorem there exists t∗ ∈ (t0, t) such that
x(t)− x(t0) = ẋ(t∗)(t− t0), and as ẋ(t) is decreasing, then x(t)−
x(t0) = ẋ(t∗)(t− t0) > ẋ(t)(t− t0). Since limt→∞ ẋ(t) = ẋ∞ then
x(t) − x(t0) > ẋ(t)(t − t0) ≥ ẋ∞(t − t0). Since ẋ∞ > 0 then the
claim is true for this case.

2. If ∂U
∂x < 0 then ẍ(t) > 0, which implies that ẋ(t) is an increasing

function. By the Mean Value Theorem there exists t∗ ∈ (t0, t)
such that x(t) − x(t0) = ẋ(t∗)(t − t0) > ẋ(t0)(t − t0), that is,
x(t) > ẋ(t0)(t− t0) + x(t0). Since limt→∞ ẋ(t) = ẋ∞ > 0, we can
chose t0 big enough such that ẋ(t0) > 0, which ends the proof.

In this way, if the partial derivative ∂U
∂x of the potential U does not

vanish, then for big enough times t ∈ [t0,∞) we can replace the vari-
able t by the variable x. This means that we can consider the other
configuration variable y as a function of x, that is y = y(x).

We have now the system of differential equations (3) in the case when
there are only two degrees of freedom

(4)


ẍ = −∂U

∂x
,

ÿ = −∂U
∂y

.

From the energy relation h = 1
2 (ẋ2 + ẏ2) + U(x, y) we have that

(5) ẋ2 =
2(h− U)

1 +
(
dy
dx

)2 .

By the chain’s rule

(6) ẏ =
dy

dx
ẋ and ÿ =

d2y

dx2
ẋ2 +

dy

dx
ẍ.

If we substitute the equations (5) and (6) in (4), we obtain

−∂U
∂y

=
d2y

dx2
· 2(h− U)

1 +
(
dy
dx

)2 +
dy

dx

(
−∂U
∂x

)
,
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or equivalently

(7)
d2y

dx2
=

[
∂U
∂x ·

dy
dx − ∂U

∂y

]
·
[
1 +

(
dy
dx

)2
]

2(h− U)
.

For x À 0 we consider the transformation Mh → Ω × RP 1 given by
(x, y)→ (1/x, y/x) = (z, ω) where Ω ⊂ R is a neighborhood of zero and
RP 1 is the one-dimensional real projective line. We have noted in [LR2]
that such transformation carries straight lines with the form y = αx+ β
into straight lines with the form ω = βz+α in Ω×RP 1, that is, it carries
straight lines in Mh into straight lines in Ω×RP 1 exchanging slopes with
ordinates at the origin. Under such transformation, equation (7) in the
variables (z, ω) is written as

(8) z2ω′′ =
−
[(
z ∂U∂z + ω ∂U∂ω

)
(ω − zω′) + ∂U

∂ω

]
[1 + (ω − zω′)2]

2(h− U)
,

where ′ is the derivative with respect to z.
From the above reasoning, searching solutions y = y(x) of (7) being

asymptotic to a straight line of the form y = αx + β as x → ∞, is
equivalent to search solutions ω = ω(z) of (8) crossing the axis {0}×RP 1

at the point (0, α) with a slope β. In this way, we look for analytic
solutions of the second order differential equation (8), for the initial
conditions z = 0, ω = α and ω′ = dω

dz (0) = β.
First we observe that (8) is a differential equation of the form

z2ω′′ = f(zω′, ω, z),

where the right hand side is an analytic function in its arguments.
In [F] is proven that such differential equation with singularity in

z = 0, has analytic solutions for the initial conditions z = 0, ω = α and
ω′ = β, if and only if the following conditions are satisfied:

a) α ∈ RP 1 is such that f(0, α, 0) = 0 and the parameter β must
satisfy (f100 + f010)β = −f001, where

f100 =
∂f

∂(zω′)
(0, α, 0), f010 =

∂f

∂ω
(0, α, 0) and f001 =

∂f

∂z
(0, α, 0),

and

b) the critical quadratic

λ2 − λ(f100 − 3) + (2− 2f100 − f010) = 0

associated to the differential equation (8) has no positive integers as
roots.
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We consider now homogeneous potentials of degree −1. This type
of potentials appear usually in the problems of classical mechanics and
have been studied ([L1], [L2], [LBI]). Particularly the problems of ce-
lestial mechanics and the Coulombian repulsives ones have this type of
potential. We have the following result:

Theorem 3. Let U = U(x, y) be homogeneous potential of degree −1.
Then the differential equation (8) has analytic solutions ω = ω(z) which
cross the straight line {0}×RP 1 for the initial conditions z = 0, ω = α,
ω′ = β if and only if α satisfies the relation αŨ(α)+(1+α2)dŨ(α)

dω = 0 and
β is arbitrary. Here Ũ(ω) = U(1, ω) is an analytic function depending
only on ω.

Proof: Let the change of coordinates be (x, y) → (1/x, y/x) = (z, ω);
then from the homogeneity of U , we have

U = U(x, y) = U

(
1
z
,
ω

z

)
= zU(1, ω) = zŨ(ω),

where Ũ(ω) = U(1, ω) is only a function of ω.
Therefore

∂U

∂z
= Ũ(ω) and

∂U

∂ω
= z

dŨ

dω
,

which implies that

z
∂U

∂z
+ ω

∂U

∂ω
= z

[
Ũ(ω) + ω

dŨ

dω

]
.

In this way equation (8) is written

(8′)
z2ω′′ = z ·

−
[(
Ũ(ω) + ω dŨdω

)
(ω − zω′) + dŨ

dω

]
[1 + (ω − zω′)2]

2(h− zŨ)

= f(zω′, ω, z).

A straightforward calculation shows that

f(0, α, 0) ≡ 0, f100 ≡ 0, f010 ≡ 0,

and

f001 =
−
[(
Ũ(α) + αdŨ(α)

dω

)
α+ dŨ(α)

dω

]
[1 + α2]

2h
.
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Since we have to satisfy β arbitrary and satisfies (f100 + f010)β =
−f001, it is necessary and sufficient that f001 ≡ 0, which is equivalent to
αŨ(α) + (1 + α2)dŨ(α)

dω = 0 and β arbitrary.
It follows that for all ω ∈ RP 1, f(0, ω, 0) ≡ 0, f100 ≡ 0 y f010 ≡ 0,

which implies that the critical quadratic associated to (8′) is λ2+3λ+2 =
0, whose roots are not positive integers.

Hence, we have analytic solutions only when the initial conditions
z = 0, ω = α satisfy the above relation and ω′ = β is arbitrary.

A solution of (4) is called homothetic if when it is projected in the
configuration space, it has the form (x(t), y(t)) = λ(t)(x0, y0) for some
fixed vector (x0, y0) ∈ S1 and λ(t) a scalar function. The vector (x0, y0)
is called a central configuration of the mechanical system.

Lemma 4. Let α be a direction in the configuration space for a clas-
sical mechanical system with homogeneous potential of degree −1. Then
α does satisfy the relation αŨ(α) + (1 + α2)dŨ(α)

dω = 0 in Theorem 3 if
and only if it is a central configuration of the problem.

Proof: In [LBI] it is shown that if the energy function in the variables
(x, y, ẋ, ẏ) is written H = 1

2 (ẋ2 + ẏ2)+U(x, y) with homogeneous poten-
tial U of degree −1, Q0 = (x0, y0) ∈ S1 is a central configuration if it
generates a homothetic solution and satisfies that

gradU(Q0) = −U(Q0) ·Q0.

In this way if Q0 = (x0, y0) is a central configuration then we can write
it in an equivalent form(

∂U

∂x
(Q0),

∂U

∂y
(Q0)

)
= −U(x0, y0) · (x0, y0).

In coordinates z, ω, this can be written as

z2

(
−
(
Ũ + ω

dŨ

dω

)
,
dŨ

dω

)
Q0

= Ũ(ω) · (1, ω)Q0 ,

where Q0 = (x0, y0) =
(

1
z0
, ω0
z0

)
= 1

z0
(1, ω0) = 1

z0
(1, α), because ω0 = α.

The last equality is true if and only if the vectors
(
−
(
Ũ + ω dŨdω

)
, dŨdω

)
and (1, ω) are parallel, or equivalently

det

[
−
(
Ũ + ω dŨdω

)
dŨ
dω

1 ω

]∣∣∣∣∣
ω=α

= 0,

which is the same as αŨ(α) + α2 dŨ(α)
dω + dŨ(α)

dω = 0.
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Remark. The case where the degree of homogeneity is −k with an
integer k > 1 can be treated in a similar way; but in this case we have that
equation (8′) becomes a non singular second order differential equation
as we can verify. The results hold from the classical Fuch’s Theorem
on the existence of solutions for the same given initial conditions. For
this reason, the case of homogeneity −1 in the potential is the most
interesting when we use the methods developed here.

When the value of α corresponds to a central configuration we can
write the solution of the differential equation (8) for the initial conditions
z = 0, ω = α, ω′ = β in the form ω(z) = α+βz+a2z

2+a3z
2+a3z

3+· · · .
When this solution is carried to the Hill’s region via the inverse trans-

formation Ω×RP 1 →Mh given by (z, ω)→
(

1
z ,

ω
z

)
= (x, y), it takes the

form y = β + αx+ a2
x + a3

x2 + · · · . This is a solution of (7) asymptotical
to the straight line y = β + αx as x→∞. We say in this case that α as
slope is a central direction.

We observe that in this case, the “ordinate at the origin” β is ar-
bitrary. If we return to the equations with the time as independent
variable, we note that the parameter β and the time t must generate
a two-dimensional manifold. From these considerations, we obtain the
following result.

Corollary 3 (Escapes in direction of central configurations).
Let Mh be an unbounded Hill’s region for the energy level h > 0 of the
problem (4). Then, for a central direction α of the configuration space
there exists a two dimensional submanifold formed by solutions in phase
space, which when projected in the Hill’s region Mh, become parallel to
the straight line y = αx as t→∞.

Now, for studying escapes in any other given direction, we proced
as we did in [LR2] using the coordinates change z = τρ. Then if we
substitute in (8′), obtain the new second order differential equation in
the variables τ , ω:

(8′′) τ ω̈ =
−ρ2τρ−1

[(
Ũ(ω) + ω dŨdω

)
(ω − τ

ρ ω̇) + dŨ
dω

] [
1 + (ω − τ

ρ ω̇)2
]

2(h− τρŨ)
+ (ρ− 1)ω̇,

which can be treated in a similar way for finding solutions crossing the
axis {0} × RP 1. An elaborated analysis shows that (8′′) has analytic
solutions in the variables τ , τρ−1 for the initial conditions τ = 0, ω = α
and ω̇ = β if and only if ω(0) = α is arbitrary and ω̇ = β = 0 (see [F]).
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In fact for the initial conditions obtained in this way there exist in-
finitely many solutions of (8′′) whose general form is

ω(τ) = α+ aρ−1τ
ρ−1 +

∞∑
m,n≥2

amnτ
m(ρ−1)τn,

where aρ−1 is an arbitrary constant and the coefficients amn in the series
do depend of α and aρ−1. We remark that we have chosen ρ such that
2 < ρ < 3.

When we carry these solutions into Hill’s region via the inverse trans-
formation (x, y)→

(
1

x1/ρ , y/x
)
, they take the form

y = αx+ aρ−1x
1/ρ +

∞∑
m,n≥2

amnx
m(1/ρ−1)x1−n/ρ

having a limiting slope at infinity equal to α, but they are not all asymp-
totical to a straight line of the form y = αx+ β as x→∞.

When we fix the direction α, the aρ−1 is an arbitrary constant of
integration not depending of the initial conditions ω(0) = α, β = 0 of the
diferential equation (7) (see [F]). Then aρ−1 generate a one-parameter
family of solutions on the Hill’s region which escape in the direction α.
These results rederive constructively the one obtained by Lacomba in
[L2] on the existence of a two-dimensional submanifold formed by orbits
which escape in each direction α, and all the projected solutions escaping
in this direction can be written in this way:

Theorem 4. Let U be a homogeneous potential of degree −1, and let
us fix the energy h > 0. Then, for a given direction α of escape in the
configuration space, there exists a two dimensional submanifold in the
phase space formed by solutions of (4), which when projected into the
Hill’s region become parallel or asymptotic to the straight line y = αx as
t→∞.

We note that in this case we impose the unboundedness condition on
the Hill’s region and no topological condition; the direction on which
there are parallel escapes are constrained to the possible escapes in the
Hill’s region: the blowing up used for studying those escapes must be
able to detect such constraints in particular problems. We refine the
above result in the following section, by imposing suitable conditions on
the potential U . In that case, escape in any direction will always be
in such a way that the geodesics become asymptotically parallel among
themselves. In fact, the above two dimensional submanifold projects
nicely into a foliation of (intMh). We give examples of this in Section 5.
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4. Compactification of the Hill’s region

From now on we assume that the potential U(x, y) satisfies any one of
the three conditions in Corollary 1, so that the conformal metric gh has
negative curvature for a fixed energy level. We also assume that U is
homogeneous of degree −1, so that escape geodesics have limiting direc-
tions, as shown in Section 3. For any negative degree of homogeneity of
the potential any escape solution has an asymptotic direction at infinity.
This can be checked as in [L2], so the results below can be extended to
this general case.

We recall that the zero velocity curve is defined by Γ = {(x, y) ∈
Mh | U(x, y) = h} and is the boundary of the Hill’s region. We recall
also that classical mechanical systems are reversible. This means that
if γ(t) is the projection on the Hill’s region of a solution curve in the
phase space which intersects the curve Γ at time t = 0, then for any time
t we have that γ(t) = γ(−t) which can be verified in (4) by a simple
substitution. Hence, we can contruct a local one-dimensional foliation of
a neighborhood of the zero velocity curve Γ contained in Mh, formed by
the projections of the local solutions in phase space which touch it. This
is because of the uniqueness of solutions with respect to initial conditions
on Γ. In fact, the above one dimensional foliation of geodesics touching
Γ is global. This is proved in Theorem 5.

We study now the flow of problem (4) as the geodesic flow in int(Mh)
associated to the metric gh, parametrized by arc length. We begin with
the following result.

Theorem 5. For any point P ∈ int(Mh) there exists one and only
one geodesic curve through P whose projection intersects the zero velocity
curve Γ.

Proof: (Existence): Let P be an arbitrary point in int(Mh). If there
is no such a curve, then all curves through P escape, because there
are neither non trivial critical points nor periodic orbits (Gauss-Bonnet
Theorem for manifolds with negative curvature). By Lemma 1 all of
them are defined for all the values of the parameter t ∈ R, which implies
that the system is complete in P . Therefore, int(Mh) is complete itself
because it is connected and simply connected. This is not posible because
there are curves begining in the zero velocity curve and from Lemma 2
the points on that curve have finite distance from Γ. Then there exists
a geodesic which we denote by γP converging to Γ.

From Gauss-Bonnet Theorem again, γP intersects any geodesic of the
local foliation of a neigborhood of Γ in at most one point, and therefore
γP does not acumulate in Γ, and is one of the leaves of the local foliation.
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(Uniqueness): If there are two geodesics through P converging to the
zero velocity curve in finite time, it follows from Gauss-Bonnet that any
geodesic between them converges also to the zero velocity curve. Let us
refer to such set of geodesics as a pencil with vertex P .

We claim that the above mentioned pencil is bounded. If it is not
the case, then we choose a point Q outside the pencil, and consider a
geodesic γQ through Q converging to the zero velocity curve and inter-
secting Γ at the point Q0. This point is contained in the unbounded
pencil with vertex P and therefore there exists a geodesic γP through P
converging to Q0. This is not posible because of the uniqueness of the
physical solution through Q0 ∈ Γ with zero initial velocity. Since the
above reasoning is symmetrical, the aforementioned pencil is bounded.

Let γ2 be the lower geodesic for the pencil, and γ1 an arbitrary geodesic
in the pencil. If the corresponding points for these geodesics in Γ are Q2

and Q1 respectively, then all the intermediate geodesics from P converge
to Γ between Q1 and Q2. Now, by using continuity respect to initial
conditions, we can choose a point Y ∈ Γ below Q2 (outside the pencil)
such that the unique geodesic going to Y intersects the other half part
of the pencil (with vertex in P ) at the point R 6= P . For such a point R
passes a geodesic which also passes through P and converges to the zero
velocity curve at the point R0.

We consider now the pencil with vertices P , Q1, Q2, then, any geodesic
reaching between Q1 and Q2 passes through P . Similarly, for the pencil
with vertices R, R0, Y , any geodesic reaching between R0 and Y passes
through R. Therefore, for any geodesic arising between R0 and Q2 we
have that simultaneously passes through P and passes through R. This is
not possible because of the uniqueness of the solutions reaching the zero
velocity curve. Therefore, there is only one geodesic passsing through P
and converging to Γ in finite time.

Definition. Let P ∈ int(Mh) be an arbitrary point. The polar neigh-
borhood Bρ(P ) of radius ρ of P , is a neighborhood contained in int(Mh)
such that all the points inside can be joined by a minimizing geodesic of
length smaller than ρ.

We obtain the following lemma on distances between arbitrary points
in the interior of Hill’s region, via points in the boundary of polar neigh-
borhoods. We define the distance from P ∈ int(Mh) to Γ, denoted
d(P,Γ), as the distance from P to P0, where P0 is the point of intersec-
tion with Γ of the unique geodesic through P given by Theorem 5.



Hamiltonian systems and geodesic flows 285

Lemma 5. For any pair of points P , Q ∈ int(Mh) and any polar
neighborhood of P with radious ρ < d(P,Γ), there exists one point R in
the circle Sρ(P ) = ∂(Bρ(P )) such that

d(P,R) + d(R,Q) = d(P,Q).

Proof: Since the circle Sρ is compact, then there exists a point R∗ ∈ Sρ
such that

d(P,R∗) + d(R∗, Q)

is minimal.
Let us suppose that

d(P,R∗) + d(R∗, Q) = d(P,Q) + η

for some number η > 0.
For ε > 0 there exists a curve γ such that

d(P,Q) + ε = long(γ).

If we take ε = η
2 , then

d(P,R∗) + d(R∗, Q) = η + long(γ)− ε =
η

2
+ long(γ)

which implies that

d(P,R∗) + d(R∗, Q) > long(γ)

contradicting the fact that at R∗ we obtain the minimum over all the
curves joining the points Q and P . This proves the lemma if we put
R = R∗.

The following result is a generalization of the Lemma 2.1.2 in Klin-
genberg [Kl] for non-complete connected, simply connected surfaces with
negative curvature.

Proposition 3. For any pair of points P and Q in the interior of the
Hill’s region there exists a minimizing geodesic joining them.

Proof: Let us consider again the unique geodesic γ0 through P con-
verging to the zero velocity curve at the point P0, and let ρ̃ = d(P, P0) <
∞ be the radius of the maximal polar neighborhood.
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If Q ∈ γ0 or Q ∈ Bρ̃, then there is nothing to prove, because from
Lemma 2.1.2 in [Kl] the exponential map at P is defined in Bρ̃(0) ⊂
TP (Mh), and the proposition holds on Bρ̃(P ).

So, we suppose Q is neither in γ0 nor in Bρ. From Lemma 5 given
0 < δ < ρ̃, there exists R ∈ Sδ(P ) such that

d(P,R) + d(R,Q) = d(P,Q).

Let us denote by
{Rδ, R′δ} = γ0 ∩ Sδ(P )

the points of intersection between γ0 and Sδ.
We claim that R 6= Rδ and R 6= R′δ for every 0 < δ < ρ̃. If this were

not true, consider the set

∆ = {δ | 0 ≤ δ < ρ̃, Rδ ∈ γ0, and d(P,Rδ) + d(Rδ, Q) = d(P,Q)}.

It is clear because of the continuity of distance that ∆ is a closed non
empty subset of R. Let δ∗ = sup ∆.

For given ε > 0, let γRδ∗ ,Q be a curve such that

ε+ d(Rδ∗ , Q) = long(γRδ∗ ,Q)

and consider the point

R∗ = γRδ∗ ,Q ∩ Sρ1

for some ρ1, with δ∗ < ρ1 < ρ̃.
From the definition of δ∗, is clear that R∗ is not in γ0. Then, we con-

sider the minimizing geodesic joining P and R∗. Because the distances in
Bρ̃(P ) are attained at the minimizing geodesics, then the curve joining
P with Rδ∗ and Rδ∗ with R∗ can not minimize the distance between P
and R∗ unless it is itself a geodesic. This contradicts the uniqueness of
the geodesics inside Bρ̃, because R∗ does not belong to the geodesic γ0.
Therefore R 6= Rδ for all 0 < δ < ρ̃. Similarly R 6= R′δ.

To complete the proof, we use the fact that we can extend to all the real
numbers any geodesic through P different from γ0. The same analysis
in the proof of Lemma 2.1.2 in [Kl] follows for this case, and we omit
the details.

Because of the Lemmas 1 and 2, given any geodesic γ, its maximal
domain of definition has to be one of the following three types of intervals

a) J = (−∞, a0) (it reaches Γ in finite time as time increases).
b) i) J = (a0,+∞) (it escapes to ∞, arising from Γ).

ii) J = R (it escapes if t→ ±∞).
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We say that a geodesic γ with domain of definition as in a) is positively
singular. We say that it is negatively singular if its domain falls in the
case b) i). Otherwise if J = R, we say that it is regular.

Definition. Let γ1 : J1 →Mh, γ2 : J2 →Mh be two geodesics in the
interior of Mh. We say the geodesics are positively asymptotic if

a) Both converge to points in Γ in finite time, as the time increases,
or

b) Both escape to infinite as t→∞, and they have the same limiting
direction at ∞.

Similarly we define when two geodesics are negatively asymptotic. The
following lemma is an immediate consequence of the last definition.

Lemma 6. The positively (negatively) asymptotic relation between
geodesics is an equivalence relation.

In the “direction” of Γ there exists a foliation of the geodesic flow in
a neighborhood of Γ formed by geodesics intersecting the zero velocity
curve. Even more, from Theorem 5 such a foliation is global.

In this way, when U is a homogeneous potential of degree −1, we have
that for every escape direction z = arctan(α) in the configuration space
there exists an infinity of asymptotic geodesics which are determined by
their limiting direction z at infinity. We prove below that those geodesics
foliate int(Mh) for any given direction.

We denote by z0 the direction corresponding to Γ. That is, if a geodesic
γ ⊂Mh reaches Γ, then it has as limiting direction z0.

Theorem 6. Given any direction z = arctan(α) in the Hill’s region
and any point P ∈ int(Mh) there exists a unique geodesic γP through P
and having positively asymptotic direction z. Analogously for the nega-
tively asymptotic case.

Proof: Let P ∈ int(Mh) be an arbitrary point and let z be any given
direction. If z = z0, then Theorem 5 proves the result. The other curves
through P escape to ∞. If z 6= z0, then from Theorem 4 there exists
a two dimensional submanifold in phase space formed by geodesics γ(t)
such that all these satisfy γ(t) → ∞ when t → ∞ and have as limiting
direction z. Let γz(t) be any of these geodesics such that it does not
arise from Γ (by Theorem 5 there is at most one coming from Γ) and
suppose that P is not in γz. Then γz is defined for all t ∈ R.



288 E. A. Lacomba, J. G. Reyes

If we consider the distance function d(t) = d(P, γz(t)), such a function
is convex (d′′(t) ≥ 0), never vanishes, and it is of class C1 (see Propo-
sition 3.8.1 in [Kl]). Therefore, d attains its minimum value at some
t = t0. From Lemma 3.8.2 in [Kl], the geodesic joining the points P
and γz(t0) is orthogonal to γz at the point γz(t0). Let {n : n ≥ t0}
be a sequence of positive integers going to infinity, and consider the in-
finite sequence of points {γz(n)} ⊂ γz(R). For any integer n in the
sequence there is a unique geodesic γn(t) joining the points P and γz(n).
If γn(0) = P and we put γ̇z(0) = vn, then the sequence of tangent vec-
tors {vn} ⊂ S1 ⊂ TPMh has an accumulation point namely v. As in
Lemma 3.8.5 of Klingenberg [Kl], if we define the geodesic γP (t) as the
one satisfying the initial conditions γP (0) = P and γ̇P (0) = v, this is the
desired geodesic. Uniqueness follows as in Lemma 3.8.5 in [Kl] and we
omit the details.

Morever, also in the same Lemma 3.8.5 in [Kl], it is proven that the
distance between the points γP (t) and γz(t) is bounded for t ≥ t0. That
is, there exists a positive number K = d(P, γP (t0)) such that if t ≥ t0
then d(γP (t), γz(t)) ≤ 3K − t0. From this and Theorem 4 we obtain the
following result which generalizes the one on asymptotic parallel escapes
in the direction of the central configurations given in [LR2] for isosceles
3-body problems, and for positive energy.

Corollary 4. Any pair of geodesics γ1 and γ2 escaping in the same
direction at infinity are asymptotically parallel. That is, for some big
enough t0 there exists a positive number K such that if t ≥ t0 then

d(γ1(t), γ2(t)) ≤ K.

The set of asymptotic geodesics at infinity in a given direction z =
arctan(α) will be called the geodesic pencil in that direction. If there is
no confusion we denote the pencil by the same symbol z corresponding
to its direction. For each pencil z at infinity, we denote by z+ the class
of geodesics reaching z at +∞, and by z− the class arising z at −∞. As
foliations, z+ and z− are the same object but the corresponding curves
of each class have opposite directions.

The singular geodesic pencil corresponding to the direction z0 is the
set of geodesics reaching Γ. The direction z0 is singular in the sense that
geodesics getting there, arrive in finite time and in the physical system
they retrace themselves (because of the reversibility), while geodesics
arrive at any other direction asymptotically in infinite time. Similarly
to the case at ∞, we denote by z+

0 the class of geodesics arriving to Γ as
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the time increases, and by z−0 to the class of geodesics arising from Γ as
the time increases.

We consider now the case where the boundary Γ is a connected curve
with two asymptotic straight lines Lα, Lβ having limiting directions zα
and zβ at ∞ respectively.

In such case, the directions z at ∞ are bounded by zα < z < zβ .

Definition (Boundary of Mh). The geodesic pencils are called the
points at infinity of Mh and the set formed by all of them is denoted
by Mh(∞). This set of points at infinity is called the ideal boundary or
absolute of Mh.

The closure of Mh(∞) will be the set

Mh(∞) = Mh(∞) ∪ {z0},
and the closure of Mh will be Mh = Mh(∞) ∪ int(Mh).

If γ : J →Mh is a regular or negatively singular geodesic then γ(+∞)
will denote the corresponding class of geodesics which contains it, and it
can be identified with the limiting direction when the parameter tends
to +∞. In a similar way if γ is regular or positively singular, γ(−∞)
will denote the corresponding class of geodesics which contains it as the
parameter tends to −∞.

The following result is an immediate consequence of Theorem 6.

Corollary 5. If P ∈ int(Mh) and z ∈ Mh(∞), then there exists a
unique geodesic γ ⊂ Mh defined for any big enough positive time, such
that γ(0) = P and γ(+∞) = z+. Similarly for the case γ(0) = P and
γ(−∞) = z−.

The following result is a direct consequence of Theorem 5.

Corollary 6. If P ∈ int(Mh), then there exists a unique geodesic
γ ⊂Mh defined in an upper unbounded interval, such that γ(0) = P and
γ ∈ z+

0 . Similarly for the case γ(0) = P and γ ∈ z−0 .

We shall denote by J = (a, b) any of the intervals defining the type
of aforementioned geodesics of the problem. We understand that a < b
could be any of the extremes of such type of intervals. For example,
a = a0 and b =∞ for the case b) i). From Theorems 5 and 6, every di-
rection z ∈Mh(∞) defines two oriented foliations z− and z+ of int(Mh),
given by the corresponding classes, whose geodesics forming each one
are the same ones but in opposite directions and are defined on suitable
domains. Because every pencil foliates totally int(Mh), then we have
obtained the following theorem.
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Theorem 7. Given two points z1, z2 in Mh(∞), there exists a unique
geodesic γ(t) such that γ ⊂ z−1 and γ ⊂ z+

2 .

Therefore, given two directions in the configuration space there exists
a unique solution of (4) whose limiting directions are the given ones.
This is summarized as

Corollary 7. Any geodesic γ ⊂ Mh can be written in a unique way
γ = z−1

⋂
z+

2 as the intersection of two classes of geodesics.

An equivalent way of stating the result in Corollary 7 is by claiming
that any geodesic γ lies in only two distinct geodesic pencils: a stable
one z+

2 and an unstable one z−1 . Figure 1 illustrates this.

γ

γ(−∞)

z−1

z+
2

γ(∞)

Figure 1. Stable and unstable geodesic pencils in the compactification.

We will now see which is the topology of the ideal boundary Mh(∞)
when Mh is a connected, simply connected region, and Γ is the connected
boundary of Mh having limiting directions as we mentioned before. Two
classical examples of repulsive problems with these properties are given
in Section 5.

For J = (a, b) defining the domain of a geodesic passing through P ,
we assume 0 ∈ J , in such a way that γ(0) = P .

We define below a topology for Mh.
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Definition.

i) Let P ∈ int(Mh), z1, z2 ∈Mh be points such that P 6= z1, P 6= z2.
We define the angle between z1 and z2 from P as angP (z1, z2) =
ang (γ̇1(0), γ̇2(0)) where γi : Ji → Mh are the geodesics going
from P to zi respectively.

ii) Given P ∈ int(Mh), z ∈ Mh(∞) and ε > 0, we define the open
cone of radius ε with vertex at P as the set CP (z, ε) = {ω ∈Mh |
ω 6= P and angP (z, ω) < ε}.

From Gauss-Bonnet Theorem, and Theorems 5 and 6, and since
k(x, y) ≤ 0, any open cone is a sector with vertex P , and it is foliated
by the geodesics through P having limiting directions contained in the
interval (z − ε, z + ε) ⊂ Mh(∞). In fact, if ω = γ(t0) for some geodesic
through P inside the cone and some t0 ∈ J , then, for any increasing
time t we have angP (z, ω) = angP (z, γ(t)).

We endow the set Mh with the topology generated by the open sets
in int(Mh) and the set of all the open cones [Gr].

We observe that a sequence of points {ωi} ⊂ int(Mh) converges to
z ∈Mh(∞) if and only if, for every fixed point P ∈ int(Mh), d(P, ωi)→
d(P, z) and angP (ωi, z)→ 0. Here d(P, z) is defined as ∞ if z 6= z0 and
as d(P,Γ) if z = z0. An equivalent statement is that the geodesic arcs
going from P to ωi converge to the geodesic arc from P to z.

The following result generalizes the Theorem 2.6.6 of Klingenberg [Kl]
for complete manifolds with negative curvature.

Lemma 7. Let P ∈ int(Mh) be an arbitrary point and let v0 ∈ TPMh

be such that the unique geodesic γ0 through P = γ0(0) with initial ve-
locity γ̇0(0) = v0 converges to Γ at finite time as the time increases.
Then the following restriction of the exponential map, which is defined
by restricting the geodesic flow to fixed point P

expP : TPMh − {tv0 | t ≥ 0} →Mh − {γ0(t) | t ≥ 0}

is a diffeomorphism.

Proof: From Theorem 5 and Proposition 3 the involved geodesics are
defined for any positive time, and any pair of points inside int(Mh) can
be joined by a minimizing geodesic. Now the proof follows as in Theo-
rem 2.6.6 of Klingenberg [Kl], and we omit the details.

In fact, since v0 6= 0, we can choose v0 such that ‖v0‖ = 1 since γ0(t)
is a minimizing geodesic from P to Γ.
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Theorem 8 (Topology of Mh(∞)). The set Mh(∞) is homeomor-
phic to S1.

Proof: Let zα < zβ be the asymptotic directions at infinity of Γ. Then
the set of possible directions at infinity in int(Mh) is the interval [zα, zβ ].
From Theorem 6, for each z satisfying zα < z < zβ there is a pencil in
that direction foliating int(Mh). Hence, z ∈ Mh(∞). We claim that
there are no geodesics escaping in the directions zα or zβ . Indeed, if
there were any geodesic γα escaping in the direction zα, by taking a
point P lying on γα and considering the geodesic γ0 through P converg-
ing to Γ, we have a region bounded by γα and γ0. By Gauss-Bonnet
Theorem, this region is foliated by geodesics escaping to infinity in the
same direction zα. We take another such geodesic γ inside the region
and consider the distance function f(t) = d(γα(t), γ(t)) defined for t ≥ 0.
This function is not convex because both geodesics are asymptotically
parallel. This is a contradiction because the curvature is non positive
(see Proposition 3.8.1 in [Kl]). A similar reasoning holds for zβ . This
completes the proof of the claim.

From Theorems 5 and 6 we know that any geodesic either escapes to
infinity or approaches Γ. Since the directions zα and zβ do not have
any associated pencils, it is natural to identify them with z0, which does
have its associated pencil. Topologically, this identifies the end points of
[zα, zβ ], getting S1 as required.

Corollary 8. Mh is homeomorphic to the closed unit disk in R2.

Proof: Since int(Mh) is connected, simply connected, and its bound-
ary Mh(∞) is homeomorphic to S1, by the Invariance of Domain Theo-
rem [Am], the assertion follows.

Finally, such a disk has complete geodesics in any direction except in
the direction of z0. We call such system quasi-complete.

We summarize now all the conditions for establishing our main result.
Consider a Hamiltonian system with two degrees of freedom, with

energy function of the form

E =
1
2
δij ẋ

iẋj + U(x, y)

where x1 = x, x2 = y.
Assume that U is a homogeneous potential of degree −1 without either

critical points or singularities, bounded at infinity, and ∆U ≥ 0.
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For a fixed energy level h > 0, the Hill’s region of the system Mh is
connected and simply connected with an unbounded connected boundary
curve Γ having limiting directions at infinity (see Figure 2).

Theorem 9. The set of physical curves in the configuration space Mh

is related, as a one-dimensional foliation, to the geodesic flow of a space
homeomorphic to the unit disk, associated to a conformal quasi-complete
metric with negative curvature.

γ1

γ2

γ3

γ4

γ5

Mh

Γ

x

y
Mh(∞)

z0

γ2

γ3

γ1
γ4γ5

Figure 2. Hamiltonian flow and its related geodesic flow in the unit disk
with negative curvature.

5. Examples

5.1. The Coulombian Isosceles Problem.
In [LR2] has been shown that in Jacobi cordinates with center of mass

at the origin, the equations of motion for the isosceles 3-body problem
are given by (see Figure 3)

ẍ =
γm

4x2
+

γµx

(x2 + y2)3/2
,

ÿ =
γ(µ+ 2m)y
(x2 + y2)3/2

.

Here we take γ > 0 for the Coulombian repulsive problem and γ < 0 for
the Newtonian gravitational problem. The masses µ and m are positive
parameters.

We study the flow for the repulsive case (γ > 0) and an energy level
h > 0.
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After a linear transformation of coordinates in the configuration
space Mh given by (x, y) →

(√
2mx,

√
2mµ

2m+µy
)

the energy relation be-
comes

h =
1
2
[ż2 + ω̇2] +

γNm2

2z
+

2γMNmµ

(M2z2 +N2ω2)1/2

where z =
√

2mx, ω =
√

2mµ
2m+µy, N =

√
2m and M =

√
2mµ

2m+µ .

By relabeling the variables z and ω by the old variables x and y, we
study the flow in the Hill’s region

Mh =
{

(x, y) | γNm
2

2x
+

2γMNmµ

(M2x2 +N2y2)1/2
≤ h

}
.

Then, the potential function in such variables is written

U(x, y) =
γm2N

2x
+

2γµMNm

(M2x2 +N2y2)1/2
.

A straightforward calculation in order to estimate the curvature, shows
that

∆U =
γm2N

x3
+

2γmµMN
[
(2M2 −N2)M2x2 + (2N2 −M2)N2y2

]
(M2x2 +N2y2)5/2

.

Therefore ∆U ≥ 0 if 2M2−N2 ≥ 0 and 2N2−M2 ≥ 0, and this holds
if µ ≥ 2m.

The Hill’s region for the fixed energy level h > 0 is a region in the
plane which is connected, simply connected, while the potential U is
bounded at infinity and homogeneous of degree −1. Morever, the con-
nected boundary curve Γ = {h = U(x, y)} of int(Mh) has limiting direc-
tions zα = −π2 and zβ = +π

2 .
In this way, by Theorem 4 and Corollary 4, there exist asymptotic par-

allel escapes in every direction of the configuration space. Summarizing
all this, we get

Theorem 10 (Geometry of the Repulsive Isosceles Problem).
If the masses satisfy the relation µ ≥ 2m, we have that the set of physical
curves of this problem is related, as a one-dimensional foliation, to the
geodesic flow in a space homeomorphic to the unit disk, with respect to
a conformally Euclidean quasi-complete metric with negative curvature
(see Figure 3).
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α̃1 α̃2 α̃3
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α1

γ0

γ1
γ2

γ3

p

Mh

Γ
x

α2

α3

y =
α
3x +

β

z0

z̃1

z̃2

z̃3
z

z1

z2

D

z3

Mh(∞)

p

Figure 3. Geodesic flow for the repulsive isosceles problem.

5.2. The Rhomboidal Coulombian Problem.
We consider the problem obtained when we have 4 bodies with

masses m1, m2, m3, m4 with Coulombian repulsive or gravitational at-
tractive forces, having always a planar rhomboidal configuration (see
[LPCh]).

By using Jacobi-like coordinates with center of mass at the origin, if
x is the half distance between the particles of mass m1 and m2 with
m1 = m2 and y

A is the half distance between the particles of mass m3

and m4 with A = m3 = m4, the equations of motion are given by

(9)


ẍ =

γ

4x2
+

2γA5/2x

(Ax2 + y2)3/2

ÿ =
γA5/2

4y2
+

2γA3/2y

(Ax2 + y2)3/2

,

where we suppose that m1 = m2 = 1 (see Figure 4).
Here γ is a parameter, where if γ > 0 we have the Coulombian repulsive

problem and if γ < 0 we have the Celestial mechanics problem.
We observe that (9) can be studied as a Hamiltonian system whose

energy function in the variables x, y, ẋ, ẏ is written

E =
1
2
[2ẋ2 + 2ẏ2] + γ

(
1
2x

+
A5/2

2y
+

4A3/2√
Ax2 + y2

)
.
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If we make the linear change of coordinates u =
√

2x, v =
√

2y then
the equations (9) become

(10)


ü =

√
2

2
γ

u2
+

4
√

2A5/2γu

(Au2 + v2)3/2
,

v̈ =
√

2
2
A5/2γ

v2
+

4
√

2γA3/2v

(Au2 + v2)3/2
,

which has a Hamiltonian function in the variables u, v, pu, pv given by

H =
1
2
[p2
u + p2

v] + U(u, v)

where

U(u, v) =
√

2
2
γ

[
1
u

+
A5/2

v
+

8A3/2

√
Au2 + v2

]
.

By relabeling the variables, we can work with the Hamiltonian whose
energy function in the variables x, y, ẋ, ẏ has the form

E =
1
2
[ẋ2 + ẏ2] +

√
2

2
γ

[
1
x

+
A5/2

y
+

8A3/2√
Ax2 + y2

]
.

We now restrict ourselves to the case γ > 0 (Coulombian repulsive
case). To estimate the curvature, we compute the Laplacian of the po-
tential

(11) U(x, y) =
√

2
2
γ

[
1
x

+
A5/2

y
+

8A3/2√
Ax2 + y2

]
,

obtaining

∆U =
√

2
2
γ

[
2
x3

+
2A5/2

y3
+

8A5/2x2(2A− 1) + 8A3/2y2(2−A)
(Ax2 + y2)5/2

]
.

And therefore, for ∆U ≥ 0 is sufficient that 2A− 1 ≥ 0 and 2− A ≥ 0,
because x > 0, y > 0. But such conditions are equivalent to m1

2 ≤ m3 ≤
2m1.

On the other hand, the potential (11) is homogeneous of degree −1
and it is easy to verify that is bounded at infinity.

Since the Hill’s region in this case is connected and simply connected,
and the connected boundary curve Γ = {U(x, y) = h} has two limiting
directions zα = 0 and zβ = π

2 (see Figure 4), we obtain the
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Theorem 11 (Geometry of the Repulsive Rhomboidal Prob-
lem). If the masses satisfy the relation m1

2 ≤ m3 ≤ 2m1, we have that
for a fixed energy level h > 0, the set of physical curves is related, as a
one-dimensional foliation, to the geodesic flow in a space homeomorphic
to the unit disk with respect to a quasi-complete conformal metric with
negative curvature (see Figure 4).

y

x

z0

Γ

α3

α1

γ1

γ2

γ3 Mh

α2 z1

D

z2

z3

Mh(∞)

γ3

γ2

γ1

γ4

γ5

γ6

m3

m4

m1 m2
{

γ4

γ5
γ6

xy

{

a) Describes the problem in Jacobi-like coordinates.

b) Illustrates Theorem 11.

Figure 4. Geodesic flow for the rhomboidal repulsive problem.
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