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WEIGHTED NORM INEQUALITIES FOR
THE GEOMETRIC MAXIMAL OPERATOR

David Cruz-Uribe, SFO, and C. J. Neugebauer

Abstract
We consider two closely related but distinct operators,

M0f(x) = sup
I3x

exp

(
1

|I|

∫
I

log |f | dy
)

and

M∗0 f(x) = lim
r→0

sup
I3x

(
1

|I|

∫
I

|f |r dy
)1/r

.

We give sufficient conditions for the two operators to be equal
and show that these conditions are sharp. We also prove two-
weight, weighted norm inequalities for both operators using our
earlier results about weighted norm inequalities for the minimal
operator:

mf(x) = inf
I3x

1

|I|

∫
I

|f | dy.

This extends the work of X. Shi; H. Wei, S. Xianliang and S. Qiyu;
X. Yin and B. Muckenhoupt; and C. Sbordone and I. Wik.

1. Introduction

Given a real-valued, measurable function f on Rn, the geometric max-
imal function of f is

M0f(x) = sup
I

exp
(

1
|I|

∫
I

log |f | dy
)
,
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where the supremum is taken over all cubes I which contain x and whose
sides are parallel to the co-ordinate axes. Closely related to the geometric
maximal operator is the following sequence of maximal operators: for f
as before and for any r > 0 define

Mrf(x) = sup
I

(
1
|I|

∫
I

|f |r dy
)1/r

,

where the supremum is again taken over all cubes containing x. Equiv-
alently, Mrf = M(fr)1/r, where M is the Hardy-Littlewood maximal
operator. By Hölder’s inequality, for s < r, Msf(x) ≤ Mrf(x), so we
may define the limiting operator M∗0 by

M∗0 f(x) = lim
r→0

Mrf(x).

By Jensen’s inequality, M0f(x) ≤ M∗0 f(x). Since we have the well-
known limit

lim
r→0

(
1
|I|

∫
I

|f |r dy
)1/r

= exp
(

1
|I|

∫
I

log |f | dy
)

(see Rudin [9, p. 74]), it is reasonable to conjecture that for all functions f
such that for some r > 0, fr ∈ L1

loc, M
∗
0 f(x) = M0f(x) a.e. However,

as we will show below, this is not true in general.
The purpose of this paper is to study the relation betweenM0 and M∗0 ,

and to prove two-weight, weighted norm inequalities for each operator.
These problems have been considered previously, with mixed results. In
1980, X. Shi [11] proved the following one-weight norm inequality.

Theorem 1.1. Given a weight w, the following are equivalent:

1. w ∈ A∞: there exists a constant C such that for all cubes I,

1
|I|

∫
I

w dx ≤ C exp
(

1
|I|

∫
I

logw dx
)
.

2. For 0 < p <∞ the strong-type norm inequality∫
Rn

(M0f)pw dx ≤ C
∫
Rn
|f |pw dx

holds for all f ∈ Lp(w).



     

Geometric Maximal Operator 241

(The equivalence of the A∞ condition and the so-called reverse Jensen
inequality was not apparently discovered by Shi; it was discovered inde-
pendently by Garćıa-Cuerva and Rubio de Francia [6] and Hrusčev [7].)

In 1991, H. Wei, S. Xianliang and S. Qiyu [12] attempted to extend
this result to the two-weight case on spaces of homogeneous type. Their
proof, however, contained an error. This was pointed out by X. Yin and
B. Muckenhoupt [13], who proved the following pair of two-weight norm
inequalities on R1.

Theorem 1.2. Given a pair of weights (u, v), the following are equiv-
alent:

1. (u, v) ∈W∞: there exists a constant C such that for all intervals I

1
|I|

∫
I

u dx ≤ C exp
(

1
|I|

∫
I

log v dx
)
.

2. For 0 < p <∞ the weak-type norm inequality

u({x : M0f(x) > t}) ≤ C

tp

∫
R
|f |pv dx

holds for all f ∈ Lp(v).

Theorem 1.3. Given a pair of weights (u, v), the following are equiv-
alent:

1. (u, v) ∈W ∗∞: there exists a constant C such that for all intervals I∫
I

M0(v−1χI)u dx ≤ C|I|.

2. For 0 < p <∞ the strong-type norm inequality∫
R
(M0f)pu dx ≤ C

∫
R
|f |pv dx

holds for all f ∈ Lp(v).

Their proofs depend heavily on covering lemmas which are particular
to the real line. Therefore it is doubtful that they can be extended to
higher dimensions.

Yin and Muckenhoupt also gave a complicated example to show that
the class W ∗∞ is strictly contained in W∞. (Also note that in the two-
weight case the class W∞ is strictly larger than A∞ = ∪pAp —a simple
example is the pair (e|x|, e|2x|).)
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Finally, they assert in passing that M0f and M∗0 f are the same “for
suitably restricted f”. However, they give no indication of what this
means.

Independently of these three papers, in 1994 C. Sbordone and
I. Wik [10] published a different proof of Theorem 1.1. Their proof,
however, requires that for all locally integrable f , M0f(x) = M∗0 f(x),
which is false. There is a simple counter-example: let C be a nowhere
dense subset of [0, 1] such that |C| = 1/2, and define f = χC . Then
for each interval I ⊂ [0, 1],

∫
I
log |f | dx = −∞, so M0f(x) ≡ 0. But by

the Lebesgue differentiation theorem, Mrf(x) ≥ f(x) for almost every
x ∈ [0, 1] and each r > 0, so M∗0 f(x) = 1 on a set of measure one-half.
(The error in their proof is in inequality (2.11), as this example shows.)

We prove the following results: in Section 2 we give sufficient condi-
tions on a function f for the equality M0f(x) = M∗0 f(x) to hold almost
everywhere. Our main result shows that for equality to hold log f must
be locally integrable and the size of f at infinity must be controlled.

Theorem 1.4. Given a function f on Rn, the equality M0f(x) =
M∗0 f(x) holds for almost every x if one of two conditions holds:

1. f ∈ Lp(Rn) for some p, 0 < p <∞, and log f ∈ L1
loc;

2. f ∈ L∞(Rn) and for some α > 1, M(| log f |α)(x) <∞ a.e.

Neither of these conditions is strictly necessary —counter-examples
can be readily constructed using monotonically decreasing functions.
However, we give examples to show that if either condition is weakened
then equality need not hold in general.

In Section 3 we give new proofs of Theorems 1.1, 1.2 and 1.3. Our
proofs depend on the weighted norm inequalities for the minimal op-
erator: given a real-valued, measurable function f on Rn, the minimal
function of f is

mf(x) = inf
I

1
|I|

∫
I

|f | dy,

where the infimum is taken over all cubes containing x. Intuitively, the
minimal operator controls where a function is small, just as the maximal
operator controls where it is large. We introduced the minimal operator
in [2] in order to study the fine structure of functions which satisfy the
reverse Hölder inequality. In that paper we also studied the one-weight
norm inequalities which it satisfies. In [3], Cruz-Uribe, Neugebauer and
Olesen examined the two-weight norm inequalities for the minimal oper-
ator on R1. (Additional results about variants of the minimal operator
can be found in [4] and [5].)
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Our approach has two advantages. First, the proofs are considerably
simpler, though part of the reason for this is that the work is in the
proof of the norm inequalities for the minimal operator. Second, in
the two-weight case our proofs extend to higher dimensions, provided
that we can characterize the weights governing the norm inequalities for
the minimal operator in higher dimensions. We obtained partial results
in higher dimensions in [3]: for example, our proof of the two-weight,
weak-type norm inequality extends to Rn if we assume that u is doubling.
More systematic results which yield sufficient conditions (both with and
without doubling conditions) for norm inequalities for M0 and M∗0 will
appear in Cruz-Uribe [1].

At the end of Section 3 we give another example (simpler than that of
Yin and Muckenhoupt) to show that the class W ∗∞ is smaller than W∞.

In Section 4 we prove results analogous to Theorems 1.1, 1.2 and 1.3
for M∗0 . In examining this operator, a key difficulty was the fact that
there exist functions f such that if Qn is the cube of side 2n centered at
the origin, then

lim
n→∞

M∗0 (fχQn)(x) < M∗0 f(x)

for x in a set of positive measure. (In other words, we could not a priori
restrict ourselves to functions of compact support and then obtain the
final result using the monotone convergence theorem.) For example, let
f = 1− χ[0,1]. Then for all n > 0 and all x ∈ (0, 1) it is easy to see that
M∗0 (fχ[−n,n])(x) = 0 while M∗0 f(x) = 1.

Initially, we avoided this problem by assuming a growth condition on
v: we say that v satisfies the I∞ condition if

lim sup
I,σ

1
|I|

(
1
|I|

∫
I

v−σ dx

)1/σ

<∞,

where the limit supremum is taken over all cubes I containing the origin
and all σ > 0 as |I| tends to infinity and as σ tends to zero. This
condition appears unnatural; however, it is the formal limit as p tends
to infinity of the condition

(1) lim sup
|I|→∞

1
|I|

(
1
|I|

∫
I

v−p
′/p dx

)p/p′
<∞,

which Rubio de Francia [8] showed is a necessary and sufficient condition
on a weight v for there to exist u such that (u, v) is in the Sawyer
class Sp. (This class governs the strong-type norm inequalities for the
Hardy-Littlewood maximal operator. For details, see Garćıa-Cuerva and
Rubio de Francia [6]. We are grateful to A. de la Torre for pointing this
relation out to us.)
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By assuming the I∞ condition we were able to reduce first to the case of
functions of compact support, and then to the case of functions for which
M0 and M∗0 are equal. In this case we could then apply Theorems 1.1,
1.2 and 1.3. To our surprise, we were able to show that the I∞ condition
is necessary as well. In R1 we thus proved the following analogues of
Theorems 1.2 and 1.3.

Theorem 1.5. Given a pair of weights (u, v), then for 0 < p < ∞
the weak-type norm inequality

u({x : M∗0 f(x) > t}) ≤ C

tp

∫
R
|f |pv dx

holds for all f ∈ Lp(v) if and only if (u, v) ∈W∞ and v ∈ I∞.

Theorem 1.6. Given a pair of weights (u, v), then for 0 < p < ∞
the strong-type norm inequality∫

R
(M∗0 f)pu dx ≤ C

∫
R
|f |pv dx

holds for all f ∈ Lp(v) if and only if (u, v) ∈W ∗∞ and v ∈ I∞.

In the one-weight case the A∞ condition implies the I∞ condition; this
gives a result in Rn analogous to Theorem 1.1.

Theorem 1.7. Given a weight w, then for 0 < p <∞ the strong-type
norm inequality ∫

Rn
(M∗0 f)pw dx ≤ C

∫
Rn
|f |pw dx

holds for all f ∈ Lp(w) if and only if w ∈ A∞.

We conclude Section 4 with an example showing that in the two-weight
case the W ∗∞ condition does not imply the I∞ condition. This example
has the following interesting consequence: the Sawyer-type condition
associated with M∗0 , ∫

I

M∗0 (v−1χI)u dx ≤ C|I|,

while necessary, is not sufficient for the strong-type norm inequality for
M∗0 .
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Finally, Section 5 is an appendix which contains a problem about a
possible two-weight generalization of the A∞ condition.

Throughout this paper all notation is standard or will be defined as
needed. All cubes are assumed to have their sides parallel to the co-
ordinate axes. Given a cube I, l(I) will denote the length of its sides.
By weights we will always mean non-negative functions which are lo-
cally integrable and positive on a set of positive measure. Given a
Borel set E and a weight v, |E| will denote the Lebesgue measure of E,
v(E) =

∫
E
v dx, and v/χE will denote the function equal to v on E and

infinity elsewhere. Given 1 < p <∞, p′ = p/(p− 1) will denote the con-
jugate exponent of p. Finally, C will denote a positive constant whose
value may change at each appearance.

2. Conditions for the Equality of M0f and M∗0 f

In this section we prove Theorem 1.4. We begin with a simple ob-
servation which, since we will use it in later sections, we designate as a
lemma.

Lemma 2.1. For all non-negative functions f and all p > 0,
M0(fp) = (M0f)p and M∗0 (fp) = (M∗0 f)p.

Proof: For M0 this follows immediately from the definition. For M∗0
the proof is almost as simple: given x ∈ Rn and ε > 0, for every r > 0
there exists a cube I containing x such that

M∗0 (fp)(x)− ε ≤
(

1
|I|

∫
I

(fp)r dx
)1/r

≤Mrpf(x)p.

If we take the limit as r tends to zero we get (since ε is arbitrary) that
M∗0 (fp)(x) ≤M∗0 f(x)p. An identical argument gives the reverse inequal-
ity, and we are done.

Proof of the Sufficiency of Condition (1): Fix a function f ∈ Lp(Rn)
such that log |f | ∈ L1

loc. Without loss of generality we may assume that f
is non-negative. Further, by Lemma 2.1 we may also assume that p = 1.
Now for each k > 0 define

fk(x) =
{
f(x) if f(x) ≥ 1/k,
1/k if f(x) < 1/k.
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We will first show that M0fk(x) = M∗0 fk(x) for almost every x. Since
kf ∈ L1 if f is, and since both M0 and M∗0 are positive homogeneous,
we may assume without loss of generality that k = 1. Furthermore, it
will suffice to show that M∗0 f1(x) ≤M0f1(x) a.e.

Fix x ∈ Rn. There are two cases: If M∗0 f1(x) = 1, then by the
Lebesgue differentiation theorem (since both f and log f are locally
integrable) for almost every such x, 1 ≤ f1(x) ≤ M∗0 f1(x), and so
M0f1(x) ≥ f1(x) = 1. If there exists ε > 0 such that M∗0 f1(x) >
1 + ε, then for each integer n > 0, M1/nf1(x) ≥ 1 + ε. Define the set
E = {x : f(x) > 1}. Then for any n > 0 and for any cube I such that
‖f‖1/|I| < ε,(

1
|I|

∫
I

f
1/n
1 dx

)n
≤ 1
|I|

∫
I∩E

f dx+
|I \ E|
|I| ≤ ‖f‖1|I| + 1 < 1 + ε.

Hence the cubes used to calculate M1/nf1(x) must be uniformly bounded
in volume. In particular, fix δ > 0; then for each n > 0 there exists a
cube In containing x such that |In| is uniformly bounded and

M1/nf1(x)− δ <
(

1
|In|

∫
In

f
1/n
1 dx

)n
.

Elementary calculus shows that for all x ≥ 1 and integers n > 0,
x1/n ≤ 1 + (log x)/n+ x/n2. Therefore,

(2)

M1/nf1(x)− δ <
(

1 +
1

n|In|

∫
In

log f1 dx+
1

n2|In|

∫
In

f1 dx

)n

≤
(

1 +
1

n|In|

∫
In

log f1 dx+
1
n2
Mf1(x)

)n
.

Since f ∈ L1 and since Mf1(x) ≤Mf(x)+1, Mf1(x) is finite for almost
every x. Further, since the In’s are uniformly bounded in size and all
contain x, by passing to a subsequence we may assume that they converge
either to a non-degenerate cube I or to the set {x}. In the first case

1
|In|

∫
In

log f1 dx converges to
1
|I|

∫
I

log f1 dx;

in the second case, by the Lebesgue differentiation theorem it converges
to log f1(x) for almost every x. But if a sequence {an} converges to a
and if M ≥ 0, then

lim
n→∞

(
1 +

an
n

+
M

n2

)n
= ea.
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In either case, therefore, if we take the limit in inequality (2) we have
that

M∗0 f1(x)− δ ≤M0f1(x) a.e.

Since δ > 0 was arbitrary, this establishes the desired inequality.
To complete the proof, since for each k, M∗0 f(x) ≤M∗0 fk(x)=M0fk(x)

a.e., we only need to show that

(3) lim
k→∞

M0fk(x) ≤M0f(x) a.e.

The argument is similar to the one just given. Fix x; since log f
is locally integrable, there exists γ such that M0f(x) = γ > 0. Fix
k > 2/γ and a cube I containing x such that ‖f‖1/|I| < γ/2. Define
Ek = {x : f ≥ 1/k}; then by Jensen’s inequality,

exp
(

1
|I|

∫
I

log fk dx
)
≤ 1
|I|

∫
I

fk dx ≤
1
|I|

∫
I∩Ek

f dx+ 1/k < γ.

Therefore, for each δ > 0 there exists a sequence of cubes Ik containing
x such that ∪kIk is contained in some cube J , and such that

M0fk(x)− δ < exp
(

1
|Ik|

∫
Ik

log fk dx
)

= exp
(

1
|Ik|

∫
Ik

log f dx+
1
|Ik|

∫
Ik

log(fk/f) dx
)

≤M0f(x) · exp [M(log(fk/f)χJ)(x)] .

Inequality (3) would follow immediately if we could show that

(4) lim
k→∞

M(log(fk/f)χJ)(x) = 0 a.e.

To show equation (4), first note that

log(fk/f)(x) =
{

0 if f(x) ≥ 1/k
log(1/f)− log k if f(x) < 1/k.

Therefore 0 ≤ log(fk/f) ≤ | log(1/f)|, and so log(fk/f) ∈ L1(J). Since
log(fk/f) tends to zero pointwise as k tends to infinity, by the dominated
convergence theorem it tends to zero in L1 norm (on J). By the weak
(1, 1) inequality for the Hardy-Littlewood maximal operator, for each
t > 0,

|{x ∈ J : M(log(fk/f)χJ)(x) > t}| ≤ C

t

∫
J

log(fk/f) dx.
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Therefore the sequence {M(log(fk/f)χJ)} tends to zero in measure, and
so has a subsequence which converges to zero pointwise almost every-
where. However, the whole sequence is monotonically decreasing, so in
fact (4) holds. This completes the proof of the sufficiency of condition (1).

This proof has the following corollary which we will need below.

Corollary 2.2. Let I0 be a cube, and suppose supp f = I0. If for some
p, 0 < p < ∞, f ∈ Lp(I0) and log f ∈ L1(I0) then M∗0 f(x) = M0f(x)
for almost every x.

Proof: For x ∈ I0 the above proof holds with essentially no modifica-
tion. For x outside the support of f a direct computation shows that
M0f(x) = M∗0 f(x) = 0.

Proof of the Sufficiency of Condition (2): Fix f ∈ L∞; again we may
assume that f is non-negative. If α > 2 then by Hölder’s inequality,
M(| log f |2)(x) ≤ M(| log f |α)(x)2/α < ∞, so without loss of generality
we may assume that 1 < α ≤ 2. But then we have the inequality

1 + x ≤ ex ≤ 1 + x+ |x|α, 0 ≤ x ≤ 1.

Let g(x) = f(x)/‖f‖∞. Then for any n > 0, any x and any cube I
containing x,

(
1
|I|

∫
I

g1/n dx

)n
=
(

1
|I|

∫
I

e(1/n) log g dx

)n
≤
(

1 +
1
n|I|

∫
I

log g dx+
1

nα|I|

∫
I

| log g|α dx
)n

≤M0g(x) · exp
(
n1−αM(| log g|α)(x)

)
.

Now for almost every x,

M(| log g|α)(x) ≤ 2αM(| log f |α)(x) + 2α| log(‖f‖∞)| <∞.

Therefore, for each such x we can take the supremum over all I containing
x and then the limit as n tends to infinity to get M∗0 g(x) ≤M0g(x) a.e.
Then by homogeneity, M∗0 f(x) ≤M0f(x) a.e. and we are done.
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Examples. We now give three examples to show that the hypothe-
ses of Theorem 1.4 cannot be weakened in general. For simplicity we
construct all the examples on the real line.

First recall the example f = χC , C nowhere dense and |C| = 1/2, given
in Section 1 above. This shows that log f needs to be locally integrable.

Example 2.3. There exists a non-negative function f such that
log f ∈ L1

loc, f /∈ Lp(R) for any p, 0 < p < ∞, and such that for all
x, M∗0 f(x) =∞ and M0f(x) <∞.

Proof: Define the function f by

f(x) =
{
en

2
if |x| ∈ [en − 1, en], n ≥ 1,

e−1 otherwise.

Then log f is locally integrable but f /∈ Lp(R) for any finite p. Now fix
n and let k > n. Then(

1
ek

∫ ek

0

f1/n dx

)n
≥
(
ek

2/n−k
)n

.

The right-hand side tends to infinity as k tends to infinity. Therefore,
for all x ≥ 0, M1/nf(x) = ∞, and so M∗0 f(x) = ∞. An identical
argument holds for x < 0.

To see that M0f is everywhere finite, first note that since log f is
locally bounded, given x ∈ R, M0f(x) will be infinite only if

(5) lim sup
|I|→∞
I3x

1
|I|

∫
I

log f dx =∞.

Let x = 0; then

1
en

∫ en

0

log f dx =
1
en

n∑
k=1

k2 − en − n
en

= −1 +O(n3/en),

and it follows from this that the limit supremum in (5) is finite. A similar
argument shows that M0f(x) <∞ for all x.

Example 2.4. There exists a function f ∈ L∞(R) such that
M(log f)(x)<∞ for all x, and for all x < 0, M∗0 f(x)=2 and M0f(x)=1.
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Proof: For each integer n ≥ 0, let an = 2−(22n−1−1), and define f by

f(x) =


1 if x < 0,
2 if x ≥ 0 and x /∈ [2n − 1/2n, 2n], n ≥ 0,
an if x ∈ [2n − 1/2n, 2n], n ≥ 0.

Since log f is locally bounded, to show that M(log f) is everywhere finite
we only need to show that for any x ∈ R, the limit supremum in (5) is
finite. Let x = 0. Then

1
2n

∫ 2n

0

| log f | dx ≤ log 2
2n

+
1
2n

n∑
k=0

22k−1 − 1
2k

≤ log 2
2n

+ 1.

Hence M(log f)(0) < ∞. A similar but lengthier argument shows that
M(log f)(x) <∞ for all x.

Now for any x < 0, r > 0 and n > 0,(
1

2n − x

∫ 2n

x

fr dx

)1/r

≥
(

2r

2n − x (2n − 2 + 1/2n)
)1/r

.

The right-hand side tends to 2 as n tends to infinity. ThereforeMrf(x) =
2 for all r > 0, so M∗0 f(x) = 2.

Finally, fix y > 0. Then for some k ≥ 0, 2k−1 < y ≤ 2k − 1/2k, or
2k − 1/2k ≤ y ≤ 2k. In either case, by our choice of the an’s,∫ y

0

log f dx ≤
∫ 2k−1/2k

0

log f dx = 0.

It follows from this that for all x < 0, M0f(x) = 1.

Finally, note that an estimate similar to the one in Example 2.3 shows
that for all x and all α > 1, M(| log f |α)(x) =∞.

3. Norm Inequalities for M0

In this section we give new proofs of Theorems 1.1, 1.2 and 1.3. For
each theorem we restrict ourselves to proving the sufficiency of the given
weight classes: the necessity follows at once if we substitute the test
function v−1χI into the corresponding norm inequality.

Our proofs depend on the weighted norm inequalities for the minimal
operator.
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Theorem 3.1. Given p > 0 and a pair of weights (u, v) on R, the
following are equivalent:

1. (u, v) ∈Wp: there exists a constant C such that given any interval
I ⊂ R,

1
|I|

∫
I

u dx ≤ C
(

1
|I|

∫
I

v1/(p+1) dx

)p+1

;

2. the weak-type inequality

u({x :mf(x) < 1/t}) ≤ C

tp

∫
R

v

|f |p dx

holds for every f such that 1/f is in Lp(v);
3. (u, v) ∈W ∗p : there exists a constant C such that given any interval
I ⊂ R, ∫

I

u

m(σ/χI)p
dx ≤ C

∫
I

σ dx,

where σ = v1/(p+1);
4. the strong-type inequality∫

R

u

(mf)p
dx ≤ C

∫
R

v

|f |p dx

holds for every f such that 1/f is in Lp(v).
The constants in (2) and (4) only depend on the constants in (1) and (3)
and are independent of p.

In the special case where u = v then Wp = W ∗p = A∞ and inequali-
ties (2) and (4) hold in Rn for all n ≥ 1.

The proof of Theorem 3.1 for equal weights is in Cruz-Uribe and
Neugebauer [2]. The two-weight case is in Cruz-Uribe, Neugebauer and
Olesen [3].

To make the connection between the minimal operator and the geo-
metric maximal operator, we first define the geometric minimal operator:
given a function f on Rn, the geometric minimal function of f is

m0f(x) = inf
I

exp
(

1
|I|

∫
I

log |f | dy
)
,

where the infimum is taken over all cubes I containing x. It is immediate
from this definition that (m0f)−1 = M0(f−1) for all f . Now, as we did
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for the geometric maximal operator, we define a sequence of minimal
operators

mrf(x) = inf
I

(
1
|I|

∫
I

|f |r dy
)1/r

=m(fr)1/r,

and a limiting minimal operator

m∗
0f(x) = lim

r→0
mrf(x).

(This sequence is decreasing so the limit exists.) In light of the results
in Section 2 above, the next result is quite surprising, especially since
the proof is so elementary.

Lemma 2. Given a cube I0 (possibly infinite), let f be a function
on Rn such that for some r > 0, fr ∈ L1

loc on I0. Then for all x,
m0(f/χI0)(x) =m∗

0(f/χI0)(x).

Proof: Fix x. By Jensen’s inequality,m0(f/χI0)(x) ≤m∗
0(f/χI0)(x).

To see the reverse inequality, fix ε > 0. If x ∈ I0 then there exists a
cube I ⊂ I0 containing x such that

m0(f/χI0)(x) + ε > exp
(

1
|I|

∫
I

log |f | dy
)

= lim
r→0

(
1
|I|

∫
I

|f |r dy
)1/r

≥ lim
r→0
mr(f/χI0)(x)

=m∗
0(f/χI0)(x).

Since ε was arbitrary, we are done.
Finally, if x /∈ I0 then both m0(f/χI0)(x) and m∗

0(f/χI0)(x) are
infinite.

An immediate consequence of Lemma 3.2 and the preceding observa-
tion is that if f−1 is locally integrable then for any cube I, the sequence
{mr(f−1/χI)−1} increases to M0(fχI) for all x.

The weight classesW∞ andW ∗∞ of Theorems 1.2 and 1.3 are the formal
limits of the classes Wp and W ∗p as p tends to infinity. Furthermore, by
Jensen’s inequality, if the pair (u, v) is in W∞ then it is in Wp for all
p > 0 with a constant independent of p. Similarly, suppose (u, v) ∈W ∗∞.
Then for all cubes I and all x ∈ I,
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M0(v−1χI)(x) =m0(v/χI)(x)−1

≥m(v1/(p+1)/χI)(x)−(p+1)

≥m(v1/(p+1)/χI)(x)−p
(

1
|I|

∫
I

v1/(p+1) dx

)−1

.

If we substitute this into the W ∗∞ condition we see that (u, v) is in W ∗p
for all p > 0, again with a constant independent of p.

The proofs of Theorems 1.1, 1.2 and 1.3 are now straightforward. We
will prove Theorem 1.3; the proofs of the other two are identical. By
Lemma 2.1 we only need to consider the case p = 1. Fix f ∈ L1(v) and
for each n > 0, let In = [−n, n]. Then for each ε > 0, 1/(f + ε) is locally
integrable. For every r > 0, since (u, v) ∈W ∗∞ ⊂W ∗1/r, by Theorem 3.1∫
R

u

mr((f + ε)−1/χIn)
dx=

∫
R

u

m((f + ε)−r/χIn)1/r
dx≤C

∫
In

(f + ε)v dx.

Since the constant C is independent of r, by Lemma 3.2 and the remark
following, if we let r tend to 0, by the monotone convergence theorem
we get∫

R
M0(fχIn)u dx ≤

∫
R
M0((f + ε)χIn)u dx ≤ C

∫
In

(f + ε)v dx.

Since v is locally integrable, the right-hand side is finite, so we can take
the limit as ε tends to 0 to get∫

R
M0(fχIn)u dx ≤ C

∫
In

fv dx.

Since M0(fχIn) increases to M0f , the desired inequality follows from
the monotone convergence theorem.

We conclude this section with an example of a pair of weights (u, v)
which is in W∞ \W ∗∞. Our example is simpler than the one given by
Yin and Muckenhoupt [13]. Initially we believed that no such example
existed, since for all p > 0 the classes Wp andW ∗p are the same. However,
a close examination of the proof that they are the same showed that the
constant depended on p. Attempts to eliminate this dependency instead
yielded the following example. The underlying idea of the construction
is to fix an increasing function v which is not a doubling weight and find
the “largest” function u such that (u, v) ∈W∞.

Example 3.3. There exists a pair of weights (u, v) on R in W∞ \W ∗∞.



    

254 D. Cruz-Uribe, SFO, C. J. Neugebauer

Proof: For x > 0 define the the functions

u(x) = (1 + 1/
√
x)e−2/

√
x, v(x) = e−1/

√
x,

and extend them to R by making them identically zero for x ≤ 0. For
intervals of the form I = [−s, t], s ≥ 0, t > 0, we have

1
|I|

∫
I

u dx =
te−2/

√
t

s+ t
, and exp

(
1
|I|

∫
I

log v dx
)

= exp
(−2

√
t

s+ t

)
.

Since

exp
(−2

√
t

s+ t
+

2√
t

)
≥ 1 ≥ t

s+ t
,

it follows that (u, v) satisfies the W∞ condition on all such intervals.
(Note that when s = 0 equality holds; it is in this sense that u is the
largest possible function.)

Now fix I = [s, t], 0 < s < t. The W∞ condition follows from the
inequality

(6)
te−2/

√
t − se−2/

√
s

t− s ≤ 2 exp
( −2√

s+
√
t

)
.

If t ≥ 2s then this inequality is immediate. Now suppose that t ≤ 2s.
Since u is an increasing function, the left-hand side of inequality (6) is
smaller than u(t). Hence it will suffice to show that

1 + 1/
√
t ≤ 2 exp

(
2
√
s√

t(
√
s+
√
t)

)
.

However, since ex ≥ 1 + x,

2 exp
(

2
√
s√

t(
√
s+
√
t)

)
≥ 2 +

4
√
s√

t(
√
s+
√
t)
≥ 2 +

1−
√
t√

t
= 1 + 1/

√
t.

(The last inequality holds since t ≤ 2s.) Therefore, (u, v) is in W∞.
To see that (u, v) /∈ W ∗∞, let I = [0, t], t > 0. Then for all x ∈ I,

M0(v−1χI)(x) ≥ e2/
√
x. Therefore,

1
|I|

∫
I

M0(v−1χI)u dx ≥
1
t

∫ t

0

(1 + 1/
√
x) dx = 1 + 2/

√
t.

Since the right-hand side tends to infinity as t tends to zero, (u, v) cannot
be in W ∗∞.
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4. Norm Inequalities for M∗0

In this section we prove Theorems 1.5, 1.6 and 1.7. Each of these
theorems is a consequence of the corresponding norm inequality for M0.

Proof of Sufficiency: We begin with three lemmas which together show
that the I∞ condition allows us to reduce the proof to the case of func-
tions of compact support.

Lemma 4.1. Suppose v ∈ I∞. Then for all x0 ∈ Rn,

lim sup
I,σ

1
|I|

(
1
|I|

∫
I

v−σ dx

)1/σ

<∞,

where the limit supremum is taken over all cubes I containing x0 and
σ > 0 as |I| tends to infinity and σ tends to zero.

Proof: Suppose to the contrary that there exists an x0 such that the
given limit supremum is infinite. Then there exists a sequence of cubes Ik
containing x0 such that |Ik| tends to infinity, and a sequence of real
numbers σk tending to zero such that

lim
k→∞

1
|Ik|

(
1
|Ik|

∫
Ik

v−σk dx

)1/σk

=∞.

By Hölder’s inequality we may assume that the σk’s tend to zero as
slowly as desired.

Now let Jk be the smallest cube containing both Ik and the origin.
Then |Jk| = (1 + εk)n|Ik|, where

1 + εk =
l(Jk)
l(Ik)

≤ l(Ik) + |x0|
l(Ik)

.

Hence the εk’s tend to zero, so by the above observation we may assume
that σk ≥ εk. But then

1
|Jk|

(
1
|Jk|

∫
Jk

v−σk dx

)1/σk

≥ 1
(1 + εk)n(1+1/σk)

1
|Ik|

(
1
|Ik|

∫
Ik

v−σk dx

)1/σk

.

Since for all k, (1 + εk)1/σk ≤ e, this implies that v /∈ I∞, a contradic-
tion.
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Lemma 4.2. Suppose f is a non-negative function on Rn such that
for some r > 0, fr ∈ L1

loc, and K is any compact set. If fK = fχRn\K ,
then for each x0 ∈ Rn,

(7) lim sup
I,σ

(
1
|I|

∫
I

fσ dx

)1/σ

= lim sup
I,σ

(
1
|I|

∫
I

fσK dx

)1/σ

,

where the limit supremum is taken over all cubes I containing x0 and
σ > 0 as |I| tends to infinity and σ tends to zero.

Proof: The left-hand side of equation (7) is always greater than or
equal to the right-hand side, so we only need to prove the reverse in-
equality. If the left-hand side equals zero there is nothing to prove, so we
may assume that it is equal to some λ > 0. Then there exists a sequence
of cubes Ik containing x0 and a sequence of real numbers σk such that
|Ik| tends to infinity and σk tends to zero, such that

(8) lim
k→∞

(
1
|Ik|

∫
Ik

fσk dx

)1/σk

= λ.

Since λ is the limit supremum over all such I and σ, and since by Hölder’s
inequality the terms on the left-hand side get larger if we make the
σk’s larger, this limit will still hold if we replace the σk’s by any larger
sequence tending to zero. In particular, we may assume that 1/σk ≤
|Ik|1/2.

Now let Jk = Ik ∩K and Lk = Ik \K. Then

(9)

(
1
|Ik|

∫
Ik

fσk dx

)1/σk

=
(

1
|Ik|

∫
Jk

fσk dx+
1
|Ik|

∫
Lk

fσk dx

)1/σk

=
(

1
|Ik|

∫
Ik

fσkK dx

)1/σk
(

1 +

∫
Jk
fσk dx∫

Lk
fσk dx

)1/σk

.

Since K is compact and fr ∈ L1
loc, by the dominated convergence theo-

rem,

lim
k→∞

∫
Jk

fσk dx ≤ |K|.
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Further, since λ > 0, equation (8) implies that there exists τ , 0<τ <1,
such that for all k sufficiently large

1
|Ik|

∫
Ik

fσk dx > τ.

Therefore, again for all k sufficiently large,

1
|Ik|

∫
Lk

fσk dx > τ/2,

so

1 ≤
(

1 +

∫
Jk
fσk dx∫

Lk
fσk dx

)1/σk

≤
(

1 +
4|K|
τ |Ik|

)1/σk

≤
(

1 +
4|K|
τ |Ik|

)|Ik|1/2
.

The right-hand side of this inequality tends to 1 as k tends to infinity.
Therefore equations (8) and (9) imply that

λ = lim sup
k→∞

(
1
|Ik|

∫
Ik

fσkK dx

)1/σk

≤ lim sup
I,σ

(
1
|I|

∫
I

fσK dx

)1/σ

,

and this establishes the desired inequality.

Lemma 4.3. Let v ∈ I∞ and suppose f ∈ L1(v). Let Qn be the cube
centered at the origin of side-length 2n. Then for all x,

(10) M∗0 f(x) = lim
n→∞

M∗0 (fχQn)(x).

Proof: Without loss of generality we may assume that f is non-neg-
ative. Since v ∈ I∞, there exists M > 0 and σ0 > 0 such that, given a
cube I containing the origin with |I| > M , then

1
|I|

(
1
|I|

∫
I

v−σ0 dx

)1/σ0

≤ C <∞.

Therefore, by Hölder’s inequality we have that for all such cubes I,(
1
|I|

∫
I

fσ dx

)1/σ

≤
∫
Rn
fv dx · 1

|I|

(
1
|I|

∫
I

v−σ/(1−σ) dx

)(1−σ)/σ

.

Since f ∈ L1(v), fσ ∈ L1
loc provided σ/(1− σ) ≤ σ0.
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Now fix x ∈ Rn. Suppose first that there exists N > 0 and a sequence
of cubes Ik containing x and contained in QN such that

M∗0 f(x) = lim
k→∞

(
1
|Ik|

∫
Ik

f1/k dx

)k
.

Then for all n ≥ N , M∗0 f(x) = M∗0 (fχQn)(x), which establishes equa-
tion (10).

If no such sequence of cubes exists, then

(11) M∗0 f(x) = lim sup
I,σ

(
1
|I|

∫
I

fσ dx

)1/σ

,

where the limit supremum is taken over all cubes I containing x and
σ > 0 as |I| tends to infinity and σ tends to zero. We will show that
this implies that M∗0 f(x) = 0, which in turn implies that equation (10)
holds.

To see this, fix ε > 0. Then there exists a compact set K such that

∫
Rn\K

fv dx < ε.

Let fK = fχRn\K . Then by Lemma 4.2,

M∗0 f(x) = lim sup
I,σ

(
1
|I|

∫
I

fσK dx

)1/σ

,

where the limit supremum is taken over the same I and σ as in equa-
tion (11). We again apply Hölder’s inequality: since v ∈ I∞, by
Lemma 4.1 we have that

M∗0 f(x) ≤
∫
Rn\K

fv dx · lim sup
I,σ

1
|I|

(
1
|I|

∫
I

v−σ/(1−σ) dx

)(1−σ)/σ

≤ Cε.

Since ε is arbitrary, M∗0 f(x) = 0 and we are done.
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We can now prove Theorems 1.5, 1.6 and 1.7. We will only prove
Theorem 1.6; the proofs of the other two are identical. (For Theorem 1.7,
we note in passing that if w ∈ A∞ then w ∈ Ap for all p sufficiently large,
which immediately implies that w ∈ I∞.)

First, by Lemma 4.3 and the monotone convergence theorem, it will
suffice to prove Theorem 1.6 for functions f ∈ Lp(v) of compact support.
Second, by Lemma 2.1 we may assume that p = 1. Fix such an f and
suppose that supp f ⊂ QN for some N > 0. Define the sequence of
functions {fn} by

fn(x) =


f(x) if f(x) ≥ 1/n,
1/n if x ∈ QN and f(x) ≤ 1/n,
0 otherwise.

As we showed in the proof of Lemma 4.3, there exists r > 0 such that
fr is locally integrable. Therefore, frn ∈ L1(QN ), and log fn ∈ L1(QN ).
Therefore, by Corollary 2.2,

M∗0 f(x) ≤M∗0 fn(x) = M0fn(x) a.e.

Since (u, v) ∈W ∗∞, for all n > 0, by Theorem 1.3

∫
R
M∗0 fu dx ≤

∫
R
M0fnu dx ≤ C

∫
R
fnv dx.

Since fn ≤ f + 1
nχQN and v is locally integrable, by the dominated

convergence theorem we can take the limit as n tends to infinity and get
the desired inequality.

Proof of Necessity: The necessity of the W∞ and W ∗∞ conditions in
Theorems 1.5, 1.6 and 1.7 follows from their necessity in the correspond-
ing theorems for M0. The necessity of the I∞ condition follows from the
next lemma since u is positive on a set of positive measure.

Lemma 4.4. Given a weight v /∈ I∞, there exists a function f ∈
L1(v) such that M∗0 f(x) =∞ for all x.
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Proof: Since v /∈ I∞, there exists a sequence of cubes Ik containing
the origin such that |Ik| tends to infinity, and a sequence of real numbers
σk tending to zero such that for all k,

(
1
|Ik|

∫
Ik

v−σk dx

)1/σk

> k3|Ik|.

For each k let ak be such that ak|Ik| = 1/k2, and define the function
f by

f(x) =
∞∑
k=1

akv(x)−1χIk(x).

It is immediate that f ∈ L1(v). Now fix x ∈ Rn and let Jk be the
smallest cube containing x and Ik. Then, as we showed in Lemma 4.1,
|Ik|/|Jk| tends to 1 as k tends to infinity.

Let r > 0; then for all k such that σk < r,

Mrf(x) ≥
(

1
|Jk|

∫
Jk

fr dx

)1/r

≥
( |Ik|
|Jk|

)1/r ( 1
|Ik|

∫
Ik

fσk dx

)1/σk

≥ ak
( |Ik|
|Jk|

)1/r ( 1
|Ik|

∫
Ik

v−σk dx

)1/σk

≥ akk3|Ik|
( |Ik|
|Jk|

)1/r

= k

( |Ik|
|Jk|

)1/r

.

Therefore Mrf(x) =∞, so M∗0 f(x) =∞.

The Independence of I∞ and W ∗∞. We give an example to show
that the W ∗∞ condition does not imply the I∞ condition. For simplicity
we construct our example on R.

Example 4.5. There exists a pair of weights (u, v) ∈ W ∗∞ such that
v /∈ I∞.
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Proof: Define u(x) = χ[0,1](x). For n ≥ 1 let In = [2n − 1/2n, 2n],
I0 = R \ ∪nIn, and an = exp[−22n−1(n+ 1) log 2]. Now define

v(x) = χI0(x) +
∞∑
n=1

anχIn(x).

By our choice of the an’s, if Jn = [2−n, 2n] and x ∈ [0, 1] then a
straight-forward induction argument shows that

M0(v−1χJn)(x) ≤ exp

(
1
2n

n∑
k=1

log(1/ak)|Ik|
)

= 2n.

Therefore, if J is an interval such that 2n−1 < |J | ≤ 2n and which
intersects [0, 1], then∫

J

M0(v−1χJ)u dx ≤
∫
Jn+1

M0(v−1χJn+1)u dx ≤ 2n+1 ≤ 4|J |.

Hence (u, v) ∈W ∗∞.
However, if we let σ = 1/n, then

1
|Jn|

(
1
|Jn|

∫
Jn

v−σ dx

)1/σ

=
1
|Jn|

(
1
|Jn|

∫
Jn

v−1/n dx

)n

≥ 1
|Jn|

(
1
|Jn|

n∑
k=1

a
−1/n
k |Ik|

)n

≥ 1
|Jn|

(
1
|Jn|

a−1/n
n |In|

)n
=

exp[22n−1(n+ 1) log 2]
22n2+2n+1

.

The right-hand side tends to infinity as n tends to infinity, so v does not
satisfy the I∞ condition.

We conclude with the following observation. In this example both v
and v−1 are locally integrable, so by Corollary 2.2, for any interval I,
M∗0 (v−1χI) = M0(v−1χI) a.e. Hence the pair (u, v) satisfies the Sawyer-
type condition associated with M∗0 , namely,∫

I

M∗0 (v−1χI)u dx ≤ C|I|,

but the strong-type norm inequality does not hold for M∗0 . Hence this
condition is necessary but is not sufficient.
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5. Appendix: A Two-Weight Generalization of A∞

As we noted in Section 1, the two-weight reverse Jensen inequality,
W∞, does not characterize the union of the two-weight Ap classes. Simi-
larly, the stronger W ∗∞ condition does not characterize this union either.
The same example shows this: the pair (e|x|, e|2x|) is in W ∗∞ but is not
in any Ap class.

However, suppose (u, v) ∈ W ∗∞ and v ∈ I∞. Then by the remarks at
the beginning of the proof of Lemma 4.3, for all p > 0 sufficiently large,
v satisfies the Rubio de Francia condition (1) mentioned in Section 1. In
other words, for all p sufficiently large, there exists a function up such
that (up, v) ∈ Sp ⊂ Ap. The function up need not equal u for any p;
however, it is natural to ask the following question.

Question 5.1. Is it possible to find functions up such that (up, v) ∈ Sp
and the up’s converge to u (pointwise or as measures) as p tends to
infinity?

If this were true it would establish the two conditions W ∗∞ and I∞ as
the “natural” limit of the Ap condition and so give a two-weight notion
of A∞.

This question arose as the final draft of this paper was being written
and we have no conjecture as to its veracity. However, a straightforward
calculation does show that e|2x| ∈ I∞, and that for the pair (e|x|, e|2x|)
we may take up = e|x|χ[−np,np] for np sufficiently large.
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Primera versió rebuda el 20 de setembre de 1997,
darrera versió rebuda el 20 d’octubre de 1997


