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I am among those who think that science has great beauty. A scientist in his laboratory is 

not only a technician: he is also a child placed before natural phenomena which impress him like 

a fairy tale. 

– Maria Skłodowska-Curie (1867 –  1934)
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Summary 

Biotechnology is an increasingly relevant field, at a time when most industries strive for 

the development of greener processes by reducing and/or eliminating the environmental impact 

of industrial processes, often by limiting the use of certain compounds (e.g. harsh solvents, 

metal-based catalysts), but also by reducing the number of reaction steps and the quantity of 

generated waste. The use of biological systems, such as biocatalysts and cells, enables operation 

at milder conditions, creating new synthetic routes, improving regio- and stereoselectivity, and 

avoiding (de)protection steps requiring harsh solvents or compounds, among other advantages. 

However, due to the complexity of biological systems, the development of fermentation or 

biocatalyst based processes is not straightforward. Similar enzymes may act on similar 

substrates but operate at different temperatures. Combinations of enzymes in cascade systems 

may require the spatial separation of the involved enzymes due to incompatible side-products 

or inhibitions from the reaction components. Certain cells present a faster growth rate at high 

densities, or different production titres depending on the formation of aggregates or cell 

adherence. The broad range of biological molecules and cells available for bioprocesses thus 

require the optimization of specific substrates or operation conditions, which as illustrated, can 

vary widely between them. Furthermore, the discovery and tailoring of new biocatalysts or cells 

involves environmental sampling and the generation of new variants, resulting in thousands of 

biological systems whose industrial or clinical potential needs to be evaluated, often in a 

relatively short timeframe. 

High-throughput analytical systems are the main tool applied to biocatalyst screening. 

They enable the parallel operation of different reactions and/or fermentations at different 

conditions (e.g. substrate concentrations, different substrates, enzymes, medium, oxygen 

availability, etc.). Thus, high-throughput systems allow to cover the possible variations and 

narrow the feasible operation conditions, substrates and biocatalysts or cells for application at 

industrial scale. The need for fast and comprehensive characterization of biocatalysts has also 

pushed the development of new screening platforms, based on microfluidics. Microfluidic 

systems involve the manipulation of small sample volumes (µL to nL) in miniaturized vessels 

and structures. Through miniaturization, mass and heat transfer becomes significantly faster, 

but surface and mass transfer limitations due to diffusion are also increased. Furthermore, 

microfluidics allows the use of different strategies for each of the unit operations involved in 

such optimization and screening studies, as well as new sensing and monitoring approaches.  

Within microfluidics there are several approaches regarding the integration of the 

required unit operations, ranging from integration on a single chip to a fully modular approach, 

where the different units correspond to a single chip but are interconnected through fluidic 

devices. The latter approach offers more flexibility at a lower cost in terms of the achievable 

studies with the same unit operations, since these can be placed in a different order depending 

on the purpose or sample being characterized. 
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The main goal of this dissertation was to develop a biocatalyst screening platform based 

on modular microfluidics. With this purpose in mind, three microfluidic modules are presented 

that can be integrated and used in such modular platform: a microreactor module with 

integrated oxygen sensors, a microfluidic dilution and quantification module compatible with 

electrochemical sensors and a module for continuous thermal inactivation of enzymes. The last 

two modules were developed specifically for applications in online screening. The focus during 

development was on achieving user-friendly and simple to use platforms that were furthermore 

easy to connect with other existing platforms and compatible with a wide range of biocatalytic 

reactions. 

The microreactor module enables the continuous monitoring of oxygen levels and was 

characterized with a biocatalytic oxidation reaction in order to highlight the operational 

limitations of the system in terms of oxygen depletion at certain enzyme and substrate 

concentrations. Strategies for in situ oxygen generation involving addition of catalase and 

hydrogen peroxide were applied as solutions to overcoming the identified oxygen depletion 

limitations. Furthermore, the reactions carried out in the microfluidic system were modelled 

using computational fluid dynamics, with a good fit between the experimental and simulated 

data, and the results provided extra insight into the reaction dynamics. The same microreactor 

was applied to the screening of whole cell variants of a dioxygenase capable of converting alkene 

substrates. It was used as a complement to the screening of genetically modified biocatalysts 

using end-point product quantification. The oxygen consumption rate of each variant in the 

presence of a standard substrate was used as the screening parameter to select the variant with 

the faster oxidation reaction rate as the best variant for a possible industrial application.  

The second module was developed for integration of different types of sensors to achieve 

online quantification. The module presents a standardized fitting enabling the connection to 

either other microfluidic platforms or laboratory scale equipment. Screen-printed 

electrochemical sensors were integrated through pockets that allowed their easy replacement 

and thus the re-use of the microfluidics’ platform. Also, the developed platform included a 

mixing/dilution channel enclosed by a two-sensor system, which allowed expanding the sensors’ 

detection range by controlling the sample dilution at which the measurements were performed. 

The dilution unit was optimized with computational fluid dynamic methods that enabled testing 

several geometries before fabrication, thus accelerating the platform development. 

The third microfluidic module was developed to allow unspecific inactivation of 

biocatalysts (especially enzymes), and thus precisely control the reaction (residence) time at the 

point of product quantification in the second module. Such control is important when different 

modules – reactors and/ or sensing units – are used and frequently changed. It can furthermore 

help to regulate the state of the biocatalyst, since it is depending on the temperature and 

exposure time. In this way, reversible or irreversible denaturation of the enzymes can be 

achieved.  

The different modules presented in the dissertation are useful additions to a modular 

microfluidic toolbox for biocatalyst screening. They provide online monitoring of biocatalytic 

reactions or biotransformations, quantification of reaction products and controlled reaction end-

points due to the potential to achieve precise temperature control. Furthermore, the developed 

computational fluid dynamic models allow for a better understanding of the reaction performed 
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in the microsystem. The model can be further improved to achieve online data acquisition of 

reaction kinetics by coupling with a mechanistic model. In the case of the developed 

mixing/dilution channel, the developed model enabled a fast optimization of the unit operation, 

thereby decreasing the cost and time spent on such endeavour.  

The potential of modular microsystems in biotechnological applications was the main 

driver for the work performed and presented in this dissertation. The objective of this 

dissertation was to provide, beside three interesting microfluidic systems, a better 

understanding of the potential that microfluidics, especially in a modular approach and tightly 

connected to mathematical modelling, can offer to biotechnology and society. 
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Resumé 

Interessen for bioteknologi har vokset støt, i en tid hvor de fleste industrier i stigende grad 

fokuserer på grøn omstilling og udvikling. Der er generelt stor fokus på at reducere og/eller 

eliminere mange af de miljøbelastende effekter fra industrielle processer. Dette afspejles i 

industrielle processers udviklingen, som går i retning mod at finde alternativer til anvendelsen 

barske opløsningsmidler og metalbaserede katalysatorer, samt at reducere antallet af 

reaktionstrin og mængden af genereret affald.  

Dette har betydet store fremskridt i udviklingen og anvendelsen af biologiske systemer, 

såsom biokatalysatorer og celler. Sådanne biologiske systemer giver mange procesmæssige 

fordele, såsom; 1) muligheden om at køre kemiske reaktioner ved mildere reaktionsforhold; 2) 

nye syntese reaktioner; 3) forbedret regio- og stereoselektivitet.; 4) overflødiggørelse af kemiske 

beskyttelses og af-beskyttelses reaktioner der er afhængige af brug af barske 

opløsningsmidler/kemikalier.  

Det er dog ret krævende at udvikle biologiske systemer til industrielle processer, idet 

udviklingen af fermenteringsprocesser og/eller biokatalysatorbaserede processer er komplekst. 

F.eks. ensartede enzymer kan håndtere ensartede substrater, men have meget stor variation i 

performance ved forskellige temperaturer. Derudover kan kombinationen af flere enzymer i 

kaskade reaktionssystemer kræve en fysisk adskillelse af enzymerne i processen, grundet 

påvirkningen af biprodukter og/eller inhibering fra forskellige reaktionskomponenter. 

Yderligere kan det tilføjes at visse celler har en hurtigere væksthastighed ved høje tætheder 

eller forskellige produkt koncentrationer afhængig af dannelsen af aggregater eller 

sammenhængende celler. Den brede vifte af biologiske molekyler og celler, der kan fremstilles 

vha bioprocesser, kræver således optimering af specifikke substrater eller driftsbetingelser der, 

som ovenfor illustreret, kan variere meget mellem dem. Dertil skal tilføjes at opdagelsen og 

tilpasningen af nye biokatalysatorer og/eller celler kræver omfattende udtagelse af miljøprøver 

og dannelsen af nye varianter, hvilket nemt kan resultere i tusindvis af biologiske systemer, 

der potentielt kan være af stor industriel og/eller klinisk interesse, som skal analyseres og 

evalueres på relativt kort tid. 

Analysesystemer der er i stand til at screene disse mange varianter af biokatalysatorer er 

derfor et meget vigtigt værktøj. Sådanne analysesystemer gør det muligt at analysere 

forskellige reaktioner og/eller fermenteringer i parallel ved forskellige reaktionsbetingelser. 

F.eks. varierende substratkoncentrationer, sammensætning af medier, etc. Dette gør det muligt 

at identificere mulige variationer, procesbetingelser, substrater og biokatalysatorer eller celler 

der har potentiale til industrielle applikationer.  

Dette behov for hurtig og omfattende karakterisering af biokatalysatorer har skubbet 

udviklingen af nye screeningsplatforme baseret på mikrofluidsystemer. Mikrofluidsystemer 

indebærer manipulation af små væskevolumener (μL til nL) i miniaturiserede beholder, kanaler 

og/eller strukturer. Fordelen ved miniaturisering er at masse og varmeoverførsel bliver 

markant hurtigere. Dog bliver overflade- og masseoverførselsbegrænsninger på grund af 



Micro scale reactor system development with integrated advanced sensor technology  

xii 
 

diffusion også øget. Mikrofluidsystemer gør det muligt at bruge forskellige strategier for 

forskellige enhedsoperationer, der er involveret i sådanne optimerings- og 

screeningsundersøgelser, samt nye målings- og monitoreringsmetoder. 

Der er flere tilgange til at kombinere og/eller integrere enhedsoperationer i 

mikrofluidsystemer. Disse tilgange strækker sig fra integration på en enkelt chip til fuldt ud 

modulære elementer der er linket sammen med rør og slanger. Sidstnævnte mulighed giver stor 

fleksibilitet idet det er muligt at kombinere modulerne i den rækkefølge der er krævet, afhængig 

af hvad der ønskes testet. 

 

Hovedformålet med denne afhandling var at udvikle en screeningsplatform baseret på 

modulære mikrofluidsystemer, til at ”screene” biokatalysatorer. I denne afhandling 

præsenteres tre mikrofluidmoduler, der kan integreres og anvendes som en modulær 

undersøgelseplatform. Det ene modul er et mikroreaktormodul med integrerede oxygen-

sensorer, samt et fortyndings og kvantificeringsmodul. Dette modul er kompatibelt med 

elektrokemiske sensorer og kontinuerlig termisk inaktivering af enzymer. De to sidste moduler 

blev udviklet specielt til applikationer i online screening. Fokus under udviklingen af disse 

moduler var på at opnå simpel og brugervenlig betjening af platformene, samt at de var nemme 

at forbinde med andre eksisterende platforme og kompatible med en lang række biokatalytiske 

reaktioner. 

 

Mikroreaktormodulet gjorde kontinuerlig monitorering af iltniveauer mulig og blev 

karakteriseret med en biokatalytisk oxideringsreaktion. Formålet med karakteriseringen var 

at identificere operationelle begrænsninger af systemet i form af iltudtømning ved visse enzym- 

og substratkoncentrationer. I samme system blev strategier for in-situ oxygen regenerering også 

testet, ved tilsætning af katalase og hydrogenperoxid, for at overvinde de operationelle 

iltbegrænsninger i systemet. Derudover blev reaktionerne i mikroreaktormodulet modelleret 

ved hjælp af strømnings beregninger, hvor der blev vist en god sammenhæng mellem modellen 

og de eksperimentelle data. Detter resulterede i ekstra indsigt i reaktionsdynamikken. Den 

samme mikroreaktor blev brugt til at screene variationer af en dioxygenase enzym i hele celler 

for deres potentiale til at omdanne alkensubstrater. Dette supplerede til screeningen af genetisk 

modificerede biokatalysatorer ved anvendelse af produktkvantificering ved reaktionens 

slutpunkt. Oxygenomdannelsesraten blev bestemt for hver variant, hvor et standard substrat 

blev brugt som screeningsparameter, for at bestemme varianten med hurtigst oxygen 

omdannelse som den bedste kandidat til fremtidig industribrug. 

 

Det andet modul blev udviklet for at kunne integrere forskellige typer af sensorer til at 

sikre online kvantificering. Modulet har en standardiseret samlingsopkobling, hvilket gør det 

muligt at forbinde andre mikrofluidmoduler eller standard laboratorie udstyr. Trykte 

elektrokemiske sensorer blev integreret gennem åbninger i modulet, der tillod nem udskiftning 

og dermed genbrug af modulet. Det udviklede modul omfattede også en blandings- / 

fortyndingskanal, der var vedlagt et to-sensorsystem, hvilket tillod at udvide sensorernes 

detekteringsområde ved at kontrollere fortyndingsfaktoren som målingen blev foretaget ved. 

Fortyndingsenheden blev optimeret vha fluid dynamiske beregningsmetoder, der gjorde det 
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muligt at teste flere geometrier inden fremstillingen og derved bidrog til at accelerere modul 

udviklingen. 

 

Det tredje mikrofluidmodul blev udviklet for at sikre uspecifik inaktivering af 

biokatalysatorer (især enzymer) og derved sikre præcis kontrol af reaktiontidspunktet 

(opholdstiden) ved produktkvantificering i det samme modul. Denne kontrol er vigtig når 

forskellige reaktormoduler og/eller sensorer anvendes og ofte udskiftes. Det kan endvidere 

bidrage til at regulere biokatalysatorens tilstand, da det afhænger af temperatur og 

eksponeringstid. Dermed kan reversibel eller irreversibel denaturering af enzymerne opnås. 

 

De forskellige præsenterede moduler er nyttige tilføjelser til etableringen af en modulær 

mikrofluid værktøjskasse til biokatalysator screening. Modulerne tillader online overvågning af 

biokatalytiske reaktioner eller biotransformationer, kvantificering af reaktionsprodukter og 

kontrollerede reaktionsendepunkter på grund af præcis temperaturkontrol. Desuden giver de 

udviklede fluid dynamiske modeller mulighed for en bedre forståelse af den reaktion, der 

udføres i mikrosystemet. Modellen kan forbedres yderligere for at opnå online dataindsamling 

af reaktionskinetik ved kobling med en mekanistisk model. I tilfælde af den udviklede 

blandings- / fortyndingskanal muliggjorde den udviklede model en hurtig optimering af 

enhedsoperationen, hvilket reducerede omkostningerne og den tid, der blev brugt til en sådan 

indsats. 

Demonstration af potentialet for modulære mikrosystemer i bioteknologiske anvendelser 

var hovedformålet med det udførte arbejde præsenteret i denne afhandling. Formålet med 

denne afhandling var at, udover etablering ad de tre mikrofluidsystemer, give en bedre 

forståelse for potentialet i brugen af mikrofluidsystemer til procesudvikling i bioteknologi, hvor 

specielt den modulære tilgang i kombination med fluiddynamisk modellering byder på 

spændende muligheder til fremtidig procesudvikling. 
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Chapter 1 
Introduction 

Microfluidics was defined by Whitesides in 2006 as the science and technology involving 

the study, manipulation and control of small volumes of fluids and particles in channels with 

dimensions of tens to hundreds of micrometers [1].  

From its birth, microfluidics has been referenced as the “promised land” of technology. 

Microfluidics has for example been envisioned as: (1) capable of miniaturizing industrial plants, 

thereby increasing their automation and operational safety at low cost; (2) being able to identify 

rare diseases by running bioanalytics directly on the patient’s skin; (3) allowing health 

diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current 

state of microfluidics, although technologically advanced, has failed to reach the originally 

promised widespread use.  

In this chapter, some of the key aspects that have prevented microfluidics from reaching 

its full potential are identified and discussed, addressing mainly the specialization on a single 

target of most microfluidic devices. The alternate, multi-use, “plug and play” approach is offered 

as a possible solution. An overview of the current possibilities for modular unit operations for 

use in such approach is presented, as well as a brief review of the main materials and fabrication 

strategies applied in microfluidics. Furthermore, a step-wise guide towards the development of 

microfluidic platforms is introduced with special focus on the integration of sensors in 

microfluidics. Finally, the potential of microfluidics in biotechnology is described as the 

motivation for the work presented in this dissertation. A thesis outline stating the main goals 

of the presented work, and a brief description of the thesis’s different chapters, concludes this 

introductory chapter. 

1.1 Introduction 
Nowadays, the use of micro- or nanofluidics is moderately wide-spread across several 

academic fields, from proteomics and drug discovery to waste management and point-of-care 

(POC) diagnostics [2],[3]. Since the first proof-of-concept [4], the rapidly increasing interest on 

the micro- or nanofluidics technology can be associated with its advantages, such as the low 

manufacturing costs, reduced usage of reagents and the possibility for parallelization and 

automation [5]. These characteristics along with a highly automated control of the fluidic flow, 

an easy tuning of temperature and concentration diffusion gradients, as well as the available 

semiconductor technology, have pushed the interest towards miniaturization of unit operations, 

together with the development of suitable analytical devices and techniques. This subsequently 

led to an effort towards the integration of these miniaturized units in a single device.  
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1.1.1 Physics in microfluidics 

The main advantages associated with microfluidics are related with the decreased scale of 

the vessels, such as a lower reagent consumption, smaller sample volumes and faster heat and 

mass transfer rates. Furthermore, at microscale, certain boundary effects (e.g. surface tension) 

and physical phenomena that increase inversely with scale (e.g. pressure drop), become more 

relevant. To fully understand the impact and potential of the strategies employed in 

microfluidics, it is therefore important to know not only the more relevant phenomena occurring 

at microscale, but also the mathematical description behind them. This mathematical 

description is used both in the design of new microfluidic platforms and in the fluidic and 

mathematical models developed for studying and predicting reactions and molecular 

interactions in microstructures. 

 

Most microfluidic systems currently used are pressure-driven [6]. In this case, the flow 

(velocity) of fluids that can be considered as incompressible and uniform-viscous Newtonian (e.g. 

aqueous solutions) can be described using the Navier-Stokes equation (Equation 1), where �⃗�  is 

the velocity field, dependent on spatial position and time (m s-1), 𝜌  is the fluid density (kg m-3), 

𝜂 is the viscosity (Pa s) and 𝑝 is the pressure (Pa) [6].  

Equation 1 

 
The velocity field of fully developed laminar flow in steady-state is unidirectional and can 

in turn be described by Equation 2, where the frictional forces the liquid is subjected to at the 

channel walls due to its viscosity are considered. In the case of circular channels of radius R 

(m), this is termed Poiseuille flow (Equation 3) and results in a parabolic velocity profile (velocity 

at the center is higher than close to the walls, as observed in Figure 1) [6]. This assumes a no-

slip boundary condition for the velocity field at the interface between liquid flow and the channel 

walls. The no-slip assumption at a solid-liquid interface results from the assumption of complete 

momentum relaxation of the molecules at the interface in a length scale in the order of the 

molecular mean free path in the fluid [7]. This assumption may not always be valid in 

microchannels, especially in the case of non-wetted hydrophobic surfaces [8]. 

Equation 2 

 

Equation 3 
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Figure 1 – Schematic representation of parabolic velocity profile in circular channels. 

 

From the Poiseuille flow, assuming a straight and infinitely long channel, Hagen-

Poiseuille’s law (Equation 4) can be obtained for a straight channel of length L (m) with a 

uniform pressure gradient and L/R>>1 and L/R>>Re (fully developed flow). The Hagen-

Poiseuille law is applied to most pressure-driven microfluidic channels, as a simple 

(approximate) way of calculating the pressure drop between the inlet and the outlet [6]. 

Equation 4 

 

From the previous equation, it is possible to define the hydraulic resistance (RH) 

(Pa s3 m-1) for circular channels (Equation 5), where rH (m) is the hydraulic radius (a geometric 

constant defined as twice the cross-sectional area over the wetted perimeter). This equation can 

also be applied to rectangular channels with a low aspect ratio, however with around 20% of 

error in the obtained value. Other expressions have been derived for rectangular channels that 

result in a lower error [7]. For H(height)/W(width)<<1 aspect ratio channels, Equation 6 can be 

used [6]. 

Equation 5 

 
Equation 6 

 

The type of flow (laminar, transient or turbulent) can be characterized through the 

Reynolds (Re) number (Equation 7), which is defined as the ratio between inertial and viscous 

forces. In Equation 7, V (m s-1) is the characteristic velocity, U (m s-1) is the area-averaged 

velocity, D (m) is the characteristic length and DH (m) is the hydraulic diameter. Surface 

roughness in microchannels can significantly affect flow behaviour, surface functionalization 

and molecular adsorption dynamics, however at the Re numbers found in microchannels, the 

friction factor follows the Hagen-Poiseuille theory, being equal to 64/Re [9].  

Equation 7 

 

In microfluidic channels flow is laminar (Re<2100) and usually in the Stokes regime 

(Re<1), and so inertial effects are usually negligible [6]. However, for flows with 1<Re<100, 

inertial forces become relevant and can be used to achieve facilitated separation, focusing and 

concentration of cells and particles with inertial microfluidics [10]. In the inertial microfluidics 

regime two phenomena occur: inertial migration and secondary flow. Inertial migration involves 

the migration of particles randomly dispersed in the fluid to equilibrium positions next to the 
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channel walls, after a certain distance from the inlet. This occurs due to two counteracting 

effects resulting from the interaction of the fluid either with the particles (the shear gradient 

lift force, directing particles towards the channel walls) or the channel walls (the wall lift force, 

directing particles away from the channel walls) [10]. Secondary flow usually occurs in curved 

channels or straight channels with obstacles. In curved channels it results from a pressure 

gradient in the radial direction due to higher momentum of the fluid in the centerline relative 

to the walls, which leads it to flow outwards, pushing the stagnant flow inwards and creating 

counter-rotating streams (Dean vortices), illustrated in Figure 2 [10]. 

 

 
Figure 2 – Schematics of Dean flow effects in a curved circular microchannel, where the arrows indicate the counter-

rotating streams. 

 

An extremely relevant phenomenon at microscale is diffusion. Diffusion is the permeation 

of molecules or particles in a fluid across an interface due to the random Brownian motion 

resulting from the frequent collisions with atoms or molecules in the liquid or gas [11]. The 

diffusion coefficient increases with the temperature and depends on the material diffusing and 

the fluid where diffusion is occurring [11]. The minimum length LD (m) required for the complete 

diffusion of a certain molecule or compound in a channel can be calculated by Equation 8, 

knowing U (m s-1) the area-averaged velocity, DD (m2 s-1) the diffusion coefficient of the molecules 

or compounds diffusing, d (m) the distance it travels in a time t (s) (Equation 9) and the 

approximate diffusion time, tD it takes to cross the width of the channel (Equation 10) [6]. 

However, due to the parabolic velocity profile, since the fluid near the walls moves slower than 

in the centerline, the growth of the interdiffusion zone varies from l1/3 near the top and bottom 

walls to l1/2 in the center of the channel, where l (m) is the distance traveled along the channel 

[8]. 

Equation 8 

 
Equation 9 

 
Equation 10 

 

A measure of whether mixing between two fluids occurs through diffusion or convection is 

given by the Péclet (Pe) number ( 

Equation 11), where V (m s-1) is the characteristic velocity transverse to the diffusion, U 

(m s-1) is the area-averaged velocity, D (m) is the characteristic length, DH (m) is the hydraulic 
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diameter and DD (m2 s-1) is the diffusion coefficient [6]. Pe gives an idea of the number of channel 

widths required for complete diffusional mixing to occur [8]. The larger Pe, the more relevant 

convection is in the transport of particles or fluid mixing [11]. 

 

Equation 11 

 

Another relevant effect in microchannels is the effect that the channel walls surface has 

on the flow, such as adhesion (in the case of cells and biomolecules), adsorption and shear stress. 

At microscale, these effects are not negligible. Adhesion and adsorption may be tailored by 

changing the material forming the channel or by surface functionalization. Surface 

functionalization (e.g. with hydrophobic stripes created through selectively coating portions of 

the channel bottom wall) can even be used to achieve wall-less channels [8]. However, shear 

stress is mainly dependent on the geometry and type of flow. Shear stress is the ratio between 

a force applied on the fluid in motion, which has the opposite direction of the velocity applied, 

and the area of the surface of the wall in contact with the fluid in motion. When motion begins, 

it starts from a position away from the wall, being then transmitted linearly, at steady state, to 

the other “layers” of liquid until the layer next to the wall. This transmission of motion depends 

on the liquid properties, namely the liquid viscosity. The shear stress at the wall can thus be 

described by Newton’s law of viscosity (Equation 12), where 𝜏𝑊 (Pa) is the shear stress at the 

wall, η (Pa s) is the viscocity, u (m s-1) is the flow velocity and h (m) is the position along the 

height of the channel [6]. For aspect ratio (H/W<<1) channels with parabolic flow, the expression 

for shear stress can be approximated by Equation 13 [6].   

Equation 12 

 
Equation 13 

 

Another interesting phenomenon at microscale involves the competition between surface 

tension to reduce the interfacial area of an immiscible fluid and the viscous stresses, which 

extend the interface in the direction of flow. This can be described by the Capillary number (Ca) 

(Equation 14), where 𝛾 (N m-1) is the surface tension [8]. The manipulation of surface tension at 

microscale gave rise to droplet microfluidics  [12], a growing area in microfluidics with wide 

applicability [13]. Capillary forces have also been used to drive and manipulate flow in 

microfluidics, using thermal, electric or wettability gradients for example, as an alternative to 

external pumping devices [8]. 

Equation 14 

 

The presented physical description of flow in microchannels is a summary of the main 

phenomena involved in flow at the microscale and a simplification of the principal equations 

describing these phenomena. Other important phenomena, used in more specific applications, 

that were not mentioned involve polymer deformability and elastic behavior (used in rheology 
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and the study of polymers), properties of buoyancy-driven flows (influence of gravity on solution 

density gradients that are described by the Rayleigh and Grashof numbers and are highly 

relevant for protein crystallization in microfluidics), effects of charge accumulation on the 

surface and formation of the Debye layer (frequently applied in electrokinetics to drive flow [14] 

and separate molecules) [8]. 

The particularity of the phenomena presented, and the possibilities they offer in terms of 

device geometry, flow and material manipulation, and types of study, are one of the main 

characteristics driving the interest and investment in microfluidic-based devices. Microfluidics 

is thus a powerful tool to perform both fundamental studies in diverse areas of physics, 

chemistry and biology [15], as well as a powerful technology to improve industrial processes, 

clinical diagnostics and applied research. 

1.1.2 Microfluidics and the technological market 
Initially, microfluidics’ research and development activities focused on areas where the 

highest potential for short-term commercial success was expected [5]. For example, 

pharmaceutical companies started performing initial screening tests in lab-on-a-chip devices 

since these presented less false positives and thus higher quality results [16]. Despite the 

obvious potential, microfluidics has still a very small impact in the technological/analytical 

market today [2],[3]. Current fields of application of microfluidics are confined to in vitro 

diagnostics (e.g. DNA/RNA hybridization and PCR) [17], [18], [19] pharmaceutical applications 

(such as drug discovery and screening, as well as drug delivery) [20], [21], biotechnology (e.g. on 

and in-line process monitoring of fermentations and biocatalytic reactions at small scale) [22], 

[23], and ecology (e.g. water quality assessment and biological threat detection) [24], [25]. Even 

though a few microfluidic-based technologies or solutions that include microfluidic parts are 

available in the market [26], they are mainly used in research laboratories [3]. It is therefore 

important to reflect on the reason for this relatively low impact, which stands in sharp contrast 

with the original sky-high ambitions for this field. A more thorough analysis reveals a relatively 

low impact of microfluidics due to the systems complexity, frequently observed repeatability 

issues of the existing platforms and the low application flexibility of the majority of the 

developed microfluidic systems. The difference in physical phenomena occurring at microscale 

relative to larger scale (e.g. laboratory and large scale fermenters), can lead to the selection of 

sub-optimal parameters, resulting in process failures, and consequently in a lower trust on data 

obtained with these platforms. Also, the manufacturing costs and the required initial 

investment, which translate into high costs of the final devices, lead to a specific and closed 

company-customer based business model, instead of a general model relying on publicly 

available and well described systems that can be combined in order to address a wide range of 

specific customer needs [2]. In this respect, the solution to the low market spread might be found 

in the development of simpler devices which are easier to (inter)connect, whether in ”plug and 

play” approaches or to already existing external analytical equipment. Changing the focus from 

finding the “killer application” [27], [28], to designing and manufacturing  generic platforms, 

more flexible in terms of connectivity and application [16], [2], [29], which are capable of 

facilitating the integration of multiple unit operations and their associated fluid handling, 

would undoubtedly boost the microfluidic field’s influence in the global market [2], [30]. Multi-
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purpose devices, especially reusable ones, enable to: (i) lower the cost of the method(s) used; 

(ii) increase the diversity of tests that can be performed, as well as the diversity of samples that 

can be handled; and, (iii) probably allow for a higher degree of comparison between samples, 

since the same devices can be used even if assembled differently. It is important to note here 

that the wide-spread application of microfluidics is bound by the costs of the final device, the 

complexity of operation and the dependency on external equipment [31].  

Some companies, focused on the development of microfluidic systems have already shifted 

towards more flexible chips. Nanogen’s (Nanogen, Inc., San Diego, US) electronic addressing 

technology (NanoChip® Electronic Microarray) allows capturing DNA probes in specific 

locations towards detection of single-base-pair differences, in a “blank slate” platform where the 

users can define their own assay [32]. This system however, as other similar devices, requires a 

bulky benchtop workstation for microfluidic device operation, such as the use of robotic liquid 

handling instruments for liquid handling automation in microfluidic systems [16]. Epigem 

(Redcar, United Kingdom) designs and fabricates devices for specific applications, while also 

providing their own strategy for fluidic connection and gaskets for reversible encapsulation, as 

well as embedded circuit layers. However, there is no standardization, since the systems are 

either application or client specific. Other commercial producers, such as Micronit 

Microtechnologies (Enschede, the Netherlands), Microfluidic ChipShop (Jena, Germany) and 

ThinXXS Microtechnology (Zweibrücken, Germany) also strive towards multiple application 

systems by having developed standard chips for certain unit operations (capillary 

electrophoresis, reactors, mixers, etc.) [27]. They also manufacture chips with standardized 

sizes (for instance microscopy slides and microtiter plates) and microfluidic connections, 

providing even stages for easy fluidic connection. Connectivity between their own chips is 

facilitated, while the connectivity with chips from other manufacturers or developed in house 

by the end user is not easily achieved. Some academic groups have also tackled this issue with 

interesting approaches based on the LEGO® (Billund, Denmark) “plug and play” concept [33], 

[34], [35], [36], [37], or even using LEGO® components [30], [38], [39]. There exists also a 

commercial prototyping system called The LabMatrixTM that provides a set of standard modular 

chips for molecular studies that can be assembled on a microfluidic breadboard. The set includes 

microvalves, syringe pumps, a stereomicroscope, UV detection and NanoFlow flow cells [40]. 

 

An extremely relevant market for modular microfluidics has been synthetic chemistry and 

the production of valuable chemicals [41], such as positron emission tomography (PET) tracers, 

active pharmaceutical ingredients (API) [3], natural products [42], fine and bulk chemicals, 

particle synthesis, pigments [43], among others. Microfluidics provides valuable advantages in 

chemistry such as improved selectivity and process safety, smaller footprint, acceleration of 

mass-transfer limited reactions, faster kinetic information, increase in production rates through 

a scale-out approach and the intrinsic continuous, rather than batch, production [3]. Hartman 

et al. (2011) provided a good analysis of flow chemistry vs. batch reactors [44], illustrating the 

advantageous vessel dimensions and mixing properties of microfluidics for flash-chemistry and 

fast and/or exothermic reactions. Microfluidics, especially based on droplet generation, is 

enabling the production of new microparticles and nanomaterials [3], but there are already 

examples of modular-based flow chemistry being applied to industrial or industrial sized 

production [43]. For example, Adamo et al. (2016) presented a module-based continuous 
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manufacturing platform capable of combining both synthesis and formulation of several 

pharmaceutical compounds. As proof-of-principle, they produced four different compounds in a 

gram-per-hour scale. The use of such flexible, reliable and compact manufacturing platforms 

could simplify formulation of compounds with short shelf-life as well as lower the price of 

pharmaceuticals for small patient populations [45]. 

Another relevant example of the potential of modular platforms is biotechnology, by taking 

advantage of novel approaches to synthesis developed in flow chemistry [46], [47] . 

1.1.3 Microfluidics and Biotechnology 

Enzyme and strain screening, as well as optimization of bioprocess operation conditions 

are key steps in the development of a biotechnological process (Figure 3). They involve a reliable 

and scalable study of all process parameters, along with mapping their influence and 

interactions for each of the potential biocatalysts/strains [48]. The final process target 

determines the different requirements and conditions which are in focus during design 

development, thus further increasing the number of variables to consider during optimization, 

as well as the variability of the process development as a whole. The high number and variety 

of enzyme/strain candidates [49] and corresponding optimal conditions, thus result in an 

expensive and time-consuming development process. Often it is not possible to test all the 

desired options. Therefore, dependent on the application, high throughput methods [50],[51], 

mainly performed on microtiter plates and shake flasks are the preferred experimental test 

platforms. These allow a high throughput due to the use of easily programmed and flexible 

automatic fluid handling systems [2]. Despite the level of obtained parallelization, these 

systems offer a reduced amount of available analytics, as well as low process controllability, 

which results in low quality of information retrieved. Thus the knowledge gained about the 

process and enzyme/strains is strongly limited [52]. Additionally, the differences in scale 

between the vessels used for optimization and for the final bioprocess, can lead to the selection 

of a set of parameters or conditions during the process screening stage which are sub-optimal 

for the larger scale. This will often result in a less effective industrial process that requires 

further optimization at the final stage, or even lead to scale-up failure with large economic 

impact [53]. An increase of monitoring and control of reaction parameters in the screening stage 

potentially contributes to improve the scale-up of bioprocesses. When developing or choosing a 

high throughput platform (HTP), it is very important to consider the maximum variation 

between reactors in the platform (in terms of reproducibility of reaction kinetics, product 

formation, cell growth, metabolic activities and productivity), which should be less than the 

detectable level of change in the parameters under investigation. Also, the type of reaction, 

biocatalyst or cell, the fermentation and minimum culture/reaction volume, as well as, the 

sampling volume for process characterization (including product titre and quality analysis), the 

sampling frequency and the required oxygen transfer rate should be taken into account. The 

capability for online monitoring towards high information on process conditions plus actuation 

on these conditions for a more tightly controlled process is highly desirable [54], [55], [51]. 
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Figure 3 - Schematics of scale-up in bioprocesses and possible role of microfluidics. 

Microfluidics and miniaturized analytics can greatly contribute to accelerate the first 

stage of process development, where the optimization of process parameters is primarily 

achieved [56]. They can also decrease the error obtained during the first stage of process 

development by providing platforms capable of parallelization in high numbers and with a 

variety of integrated sensors, providing both reliable data and substantial process control. The 

application of microfluidics to biocatalysis, for example, has been considered a key step towards 

greener processes and process development, by enabling safer handling and point-of-use 

generation of hazardous compounds [57], as well as production of a lower amount of waste [47]. 

Microreactors can also increase the process window of a given bioprocess by allowing the 

performance at wider ranges of temperature, pressure, reaction rate and compound 

concentrations [47], [57]. Furthermore, due to the different phenomena occurring at small scale 

(higher influence of surface tension, diffusion control of mass and heat transfer, capillary forces) 

they can more easily mimic and study the influence of phenomena such as adsorption of 

biomolecules, cell-cell interaction, formation of biofilms, substrate depletion or excess, etc. These 

characteristics also allow the use of microdevices for process intensification, especially for 

multiphase processes [46]. Since a lower consumption of sample and reagents is used, and 

smaller laboratory space is required, even for the parallelized platforms, a reduction in cost of 

this development stage is also generally achieved. Microsystems can also contribute to quality-

by-design (QbD) by enabling continuous production in the same microreactors used for reaction 

screening and optimization, through a scale-out approach [46], [47]. The miniaturized platforms 

and corresponding scale-up strategies towards an industrial process will however vary from 

field to field. Therefore, the development of single-unit microfluidic platforms, with the above-

mentioned characteristics, which can also be easily inter-combined according to the needs of 

each process, would greatly decrease the equipment cost of this developmental stage. 

Microfluidics has been applied to cell cultures and fermentations in the form of 

microbioreactors, with interesting results and challenges, as can be observed in the reviews 

written by Schäpper et al. in 2009 [52] and Lattermann and Büchs in 2015 [58], but also to 
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biocatalysis enabling improving yield and/or biocatalyst activity and stability, as presented in 

Asanomi et al. (2011) [59], Wohlgemuth et al. (2015) [47] and Gruber et al. (2017) [60]. 

Microfluidic systems can accelerate first stage parameter optimization besides biocatalyst/ 

cell strain characterization and screening. It is however important to take into consideration 

that there are still differences in phenomena which must be considered when scaling up the 

optimized parameters. Furthermore, current microfluidic devices, except droplet microfluidic 

systems [61], still cannot rival with the screening capacity of most microtiter plate systems, 

especially when supported with robotic fluid handling equipment [46]. Also, due to the decreased 

dimensions, the available liquid volume for sampling is limited and thus the integration of 

sensors previously validated using standard analytical equipment is of upmost importance in 

these systems. Mathematical and fluid dynamic simulation tools could ease the scaling-up from 

microfluidic systems, by providing a good understanding of the phenomena occurring at both 

scales and allowing a faster testing and validation of the key operating parameters to consider 

when scaling. 

On the other hand, the small sampling volume required for the integrated sensors can also 

be used for on-line sensing of processes in larger vessels [62], [63], [64], [65]. However, the type 

of sample that needs to be handled might require pre-processing due to the presence of 

contaminants or particles that lead to channel clogging. When pre-treatment is not possible, 

both the integrated sensor and microchannel need to be resistant to biofouling. Biofouling can 

be decreased by varying the surface charge or by covering the channel surface with excess of a 

molecule that does not participate in the process (e.g. proteins like Bovine serum albumin 

(BSA)). Another issue with detection systems that require biomolecules or dry reagents to 

achieve target detection is shelf-life of the molecules and reagents in immobilized form before 

denaturation or degradation occurs, which will, in turn, limit the life-time of the final device. 

The use of materials with low vapour transition rates for dry reagents, and the encapsulation 

of the biomolecules within biocompatible polymers can increase these platforms shelf life. A 

review by Gernaey et al. (2012) [56] offers further points to consider as well as improvements to 

introduce into microfluidic platforms towards a better fit in the biotechnological field (especially 

fermentation and cell culture). Some of the key points involve: (i) standardization of world-to-

chip and chip-to-chip connections, (ii) improved connectivity to benchtop analytics, as well as 

(iii) the need for improved integrated online sensors and process control software, which is 

tested and validated in the target industrial environment, and (iv) devices capable of coping 

with rapidly changing environments in order to better mimic processes at larger scales [56]. 

1.1.4 Past ideas and current state of microfluidics 
Most of the major developments in the microfluidics field foreseen in 2004 by Erickson and 

Li [5], such as decreased dependence on external equipment towards higher portability, and an 

increased use of simulation and modelling for device design optimization in the initial stages of 

device development, still remain to be achieved. Even though a decreased reliance on external 

equipment was obtained for some applications, most systems still rely on external pumps, 

potentiostats, manual/automatic external sample pre-treatment, microscopes, power sources, 

etc. A higher number of fabricated microfluidic devices are currently being studied by means of 

mathematical and numerical tools, such as Matlab® and computational fluid dynamics (CFD) 
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[66], with the aim of reducing development time. CFD allows the visualization of spatial 

distribution of flow velocity, the generation of substrate gradients, as well as the simulation of 

dynamic flow [6]. These software tools have contributed to a considerable progress in recent 

years in accommodating the challenges faced when modelling at this scale. However, the lack 

of standard analytical tools at microscale often hampers the experimental validation of the 

numerically predicted phenomena. Thus, without proper experimental validation, it is often 

difficult to convince the user of microfluidic devices of the legitimacy of simulation results.  

1.2 The challenge of integration 
The integration of several unit operations at microscale was initiated together with the 

microfluidic fabrication field at the end of the 1980’s (e.g. fluid displacement [67], sensing and 

separation [68], [69], [2]). The semiconductor industry investigated the development of 

monolithic miniaturized components called micro-electro-mechanical systems (MEMS), such as 

sensors, valves, separators and mixers, due to the discovery of a suitable material, silicon [70]. 

The development of MEMS systems was further enabled by the outsourcing of the 

semiconductor production to the upcoming Asian countries, which allowed to free the existing 

semiconductor production capacities for research purposes [71]. Miniaturized components based 

on polymeric materials were also developed, with the appearance of soft-lithography methods 

[72], [73]. The coupling of several of these components proved however to be technically 

complicated. The main reason behind this was the choice in fabrication technologies of the 

individual components, which were usually incompatible [2], as well as the design of both the 

channels with different dimensions (leading for example to disparate required flow rates for 

different components) and connections between platforms (mostly un-standardized). Therefore, 

simpler approaches, applying bench scale equipment (external pumps, microscopes, etc.) were 

pursued to facilitate the development of individual unit operations [74]. Consequently, in order 

to reduce the dependency on external devices, the effort towards the development of stand-alone 

microfabricated devices has recently increased.  

 

A microfluidic platform consists of a set of microfluidic elements, each previously and 

individually validated, capable of performing a given fluid handling or sample 

treatment/measuring step (unit operation). Ideally, these unit operations should be capable of 

being combined and assembled differently depending on the final application [2]. The 

integration of various unit operations on a single chip requires a holistic understanding of the 

characteristics of the substrate materials, the available or possible fabrication technologies, the 

characteristics of the target sample, the chip’s final application and the environment in which 

it will be applied.  

The material(s) composition of a microfluidic system is chosen according to the platform’s 

required function, degree of integration and application [75]. Characteristics such as air 

permeability, biocompatibility, nonspecific adsorption, surface functionalization, optical 

transparency, flexibility, solvent compatibility, electrical compatibility, and opportunity for 

sterilization are considered when choosing a material for a specific application. Material 

properties also influence the fabrication process and the minimum attainable feature dimension 
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[76]. The robust and leakage free integration of different materials in the same platform is a 

further challenge [77]. The most frequently used materials can be divided in three categories: 

inorganic, polymeric, and paper, and a summary of their characteristics is presented in Table 

1. 

The selection of the fabrication technique is dependent on the choice of materials, the final 

application of the device, how robust it needs to be and whether or not reusability is required. 

The choice is also dependent on the type of end user (experienced or not), location of use (point-

of-care vs. research laboratory, for example), and the time between fabrication and use (is 

storage required?). These characteristics will guide the choice of the fabrication methods, from 

a wide variety available for the production of microfluidic devices. These include prototyping 

techniques (such as hot embossing, injection molding and soft lithography) and direct 

fabrication techniques (such as thin film deposition, laser photoablation, 

photolithography/optical lithography and etching). Furthermore, the choice of a fabrication 

method takes into account the desired minimum feature dimensions, surface roughness and 

aspect ratio of the channels, as well as the tolerances and reproducibility of the method, the 

selected chip material and the final application. For more complex applications, compatibility 

between different fabrication methods should also be considered during the selection. Heckele 

et al (2003) [78], Ziaie et al (2004) [79], Becker and Gärtner (2008) [80], Wu and Gu (2011) [29], 

Iliescu et al (2012) [81], Cheng et al (2012) [82], Li et al. (2012) [83], Ho et al (2015) [84] and 

Au et al (2016) [28] present a good overview of past and current fabrication techniques, and also 

discuss the main considerations related to the selection of the different methods. A summary of 

fabrication techniques applied to polymeric substrates is presented in Table 2. 
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Table 1 –Materials used for microfluidic platforms and their main characteristics [2],[29],[75],[81],[83],[85],[86],[87],[88],[89],[90]. 

Material 

Inorganic Polymer Paper 

e.g. Silicon, glass, low-temperature co-fired ceramics 

(LTCC) 

e.g. Polydimethylsiloxane (PDMS), Polyfluoropolyethers, 

Poly(methyl methacrylate) (PMMA), Polystyrene (PS), 

Cyclic-olefin copolymer (COC), SU-8 

e.g. Whatman no. 1 

Fabrication 

strategies 
Batch Batch or continuous Batch 

Fabrication 

techniques 

Semiconductor industry techniques (etching, 

lithography, bonding, powder blasting and chemical or 

physical vapor deposition) 

Hot embossing, injection molding, soft lithography, 

thermoforming, laser ablation, micromachining and 

photolithography 

Inkjet and solid wax printing obtaining 

hydrophilic channels bound by hydrophobic 

barriers and either sealed with thin polymer 

sheets or left open 

Smallest dimension < 100 nm < 1 µm ~200 µm 

Material cost High Low Low 

Fabrication cost 
High (during development) 

Low (during mass production) 

Low (except for prototyping in the case of injection 

molding and thermoforming) 
Low 

Channel 

characteristics 

Hydrophilic, charge stable, defined walls, limited 3D 

capability 

Generally hydrophobic, channel definition dependent on 

polymer and fabrication strategy, moderate to high 3D 

capability 

Amphiphilic, not very defined channels, moderate 

3D capability 

Surface 

functionalization 
Yes Yes Yes 

Integration 
With electronic systems (e.g. for data acquisition) or 

electrodes (for detection) 
With electrodes (by deposition onto polymer) 

With electronic and magnetic systems, and 

electrodes (by containing electrical conducting 

inks) 

Combination with 

other materials 
Glass and polymers (transparent materials) Glass, silicon, other polymers 

Electrical conducting inks, carbon or metals 

(silver, gold, etc.) 

Functional 

elements (e.g. 

valves and pumps) 

Yes (complex fabrication) 
Yes (simple to complex fabrication depending on 

technique) 
Yes 

Advantages 

High chemical stability, known surface and insulating 

properties, high thermoconductivity, high aspect ratio 

channels 

More resistant to mechanical shock, high to low oxygen 

permeability, easy bonding strategies, less stringent 

cleaning techniques, disposability, biocompatibility, 

transparency to most wavelengths 

Highly porous matrix, fluid flow through wicking, 

low cost, easy reagent storage on channel (by 

dried spots), easy assembly of multiple operation 

units (e.g. sample metering, filtering and 

separation), disposability, visual readout 

Limitations 

High cost of development and fabrication, fragile, low 

oxygen permeability, requires annealing at high 

temperatures 

Low to high resistance to organic solvents, water 

evaporation 

Challenging precise liquid handling, sample 

retention during transport, relatively high limit of 

detection (LOD), limited detection techniques 

Commercial 

availability 
Yes 

Yes (genetic and molecular biology analysis, protein 

crystallization, immunoassays) 
Yes (mostly qualitative output) 
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Table 2 - Summary table of the characteristics of the main fabrication strategies used for polymeric microfluidic devices [78], [79], [80], [84], [91], [92], [93], [94]. 
Fabrication 

process 
Description Throughput 

Surface 

roughness 

Material 

choice 
Cost Replication Characteristics 

Photolithography 
Exposition of a polymeric 

surface using a laser or UV light 

limited 

Low High 
Low to 

high 

Medium to 

high 
- 

Stereolithography 

Exposition and polymerization 

of a liquid resin, forming 3D 

structures 

High Limited 
Medium to 

high 

Medium to 

high 

3D fabrication with no additional mechanical 

process steps 

Laser ablation 
Removal of a defined amount of 

material (depending on material 

type, laser wavelength and 

intensity/ tool size and velocity 

Good (fast 

techniques) 

Medium to 

High 

High 
Low to 

medium 
High 

Surface chemistry and charge are changed in the 

process 

Micromachining High 
Low to 

medium 
High - 

Hot embossing 

Application of a pattern (via a 

stamp) onto a polymer heated 

just above its glass transition 

temperature 
Good (fast 

techniques) 
Low 

High Low High Low stress replication of nanometer structures 

Injection molding 

Injection of a heated polymer in 

a mould with the desired 

microfluidic structure 

High Low High 
3D objects fabrication with no additional 

mechanical process steps 

Casting 

Pouring of a heated polymer into 

a mould with the desired 

microfluidic structure 

Limited Low High Low Medium 

Allows manufacturing highly complex structures 

(e.g. pumps and valves), using thermoset resins 

containing metal powder is possible to fabricate 

embedded electronic components by casting 

3D printing 

In situ polymerization by layer-

by-layer focusing if a laser on a 

photopolymeric liquid or powder 

resin or bonding of multiple 

polymer, metal or ceramic laser 

cutted layers 

Limited 
Medium to 

high 
High 

Low to 

High 
Low to High 

Requires expensive equipment; thickness of each 

layer during fabrication depends on resolution of 

the stage; allows re-use of left-over polymer 
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Along with the choice of the material and the fabrication technique, the type of microfluidic 

platform needs to be considered in advance, such as: (i) single or multiple unit operations on the 

same chip; (ii) single platform or part of a platform; (iii) integrated quantification and fluidic 

handling or connection with external equipment; and, (iv) how to perform data and signal 

acquisition and treatment.  

When considering connectivity of the microfluidic chip, several other aspects should also 

be taken into account: (i) disposability of the device; (ii) to which devices it will connect; (iii) 

inlets positioned in-plane or perpendicular to the chip; (iv) should it be application-specific; (v) 

area occupied by connections; (vi) fabrication process; (vii) pressure and temperature tolerance; 

(viii) compatibility between materials used (e.g. solvents as target detection solutions); (ix) dead 

volume generated in the connections; (x) sterility; (xi) permeability; (xii) type of sample; and,  

(xiii) price [81]. Microfluidic interconnections need to provide a low pressure drop and dead 

volume and hermetic seal, coupled with a reliable performance under multiple uses [95]. 

Manually fabricated connections may not be built reproducibly, and are thus adding variability 

to the flow or the operation of the system. The adoption of a standard size inlet diameter, that 

allows the use of finger tight fittings and standard tubing, facilitates interconnection with other 

platforms using the same type of connectors, as well as connectivity to most external equipment 

(HPLC devices and mass spectrometers [96] or Raman spectrophotometers [97] as well as 

syringe pumps).  

1.2.1 Available unit operations in microfluidic chips 
To guarantee a wide applicability of modular microfluidic platforms it is essential that the 

relevant unit operations to most applications are available, and exist or can rapidly be made in 

such a format. In general, a “plug-and-play” system should contain the following elements: 

• Fluid handling unit: Such a unit could function as a pump, allowing appropriate flow of 

the sample in the system, with good control of flowrate and type of flow, ideally allowing 

a range of possible flow velocities. Another important fluid handling function is a valve 

system, especially a multi-port valve that enables the control of fluid introduction and 

followed path inside the system. Sabourin et al (2013) [30] developed a very interesting 

system where liquid handling is automatically achieved with miniaturized and integrated 

pumps. Other groups decided on a simpler approach such as a magnetically actuated 

stirrer-based micropump [98], valves actuated by tightening a screw [99], using a Braille 

display [100], or even capillary forces [101]. Oh et al. (2012) presented an interesting guide 

on design of microfluidic networks to ease fluid handling [6]. Electroosmotic flow (EOF) 

offers an interesting alternative to pressure driven flow, where the flow front has a flat 

profile, being capable of generating high flowrates without moving parts [102], [14]. It has 

been widely applied in bioassays, drug delivery, fuel cells, sludge treatment and 

microelectronic chip cooling [14], [103]. 

• Mixing/dilution unit: Mixing is an extremely important function when performing 

reactions or studying the influence of certain compounds, since it needs to occur faster 

than the reaction effect being studied in order not to influence the outcome [104]. At 

microscale, mixing occurs mainly through diffusion, but certain strategies can be adopted 

to improve mixing efficiency. Significant mixing strategies involve passive approaches 



Micro scale reactor system development with integrated advanced sensor technology  

16 
 

which are based on the generation of chaotic mixing with channel bends or topology in the 

channel [104], or in increasing the contact area between samples via lamination or 

intersecting channels [105]. Diverse active mixing strategies, such as acoustically-induced 

microstreams, dielectrophoretic micromixers, electrokinetic actuation [14], velocity 

pulsing and magneto-hydrodynamic flow have also been thoroughly developed and applied 

[105]. 

Mixing can also be performed in order to achieve gradients of certain components through 

dilution. Niu et al. (2011) developed a droplet-based platform capable of performing 

dilutions within a range of four orders of magnitude by splitting and (re)merging droplets 

to create reagent gradients [106]. Rho et al.  (2016) used peristaltic mixing in controlled 

volume microreactors to generate stepwise concentration gradients of two reagents [107]. 

• Sample concentration unit: This is especially critical for applications that involve 

extremely diluted samples [77], from water quality testing to detection of cancer cells or 

viruses in blood. Also, in the human body the physiological concentration of considerable 

compounds is in the order of nM or lower, thus requiring pre-concentration units for 

detection. Several strategies involve adhesion of the molecules or cells to the channel 

walls, which can be functionalized [108] or not [109], using chaotic flow induction to 

increase enrichment performance. Recently, Pereiro et al. (2017) developed a fluidized bed 

microreactor capable of capturing bacteria from liquid raw samples (e.g. milk) using 

functionalized magnetic beads [110].  

• Filtration/ purification unit: Units capable of removing contaminants, or separating 

cell debris or types of cells from the sample are highly valuable as sample treatment units. 

Strategies applied to sample filtration/ purification use differences in (i) size (e.g. using 

capillary forces in a microchannel integrated micropillars (MIMPs) chip to separate 

plasma from blood [101] or simultaneous isolation of multiple antibodies from serum and 

multiple cell types from blood using microbeads [111]), (ii) functionalization of channel 

surface (e.g. with avidin and treated with antibodies conjugated with biotinylated 

photocleavable crosslinkers with a specific 19-mer DNA sequence to capture cancer 

biomarkers directly from whole blood [112]), (iii) immunomagnetic separation (e.g. 

immunomagnetic beads and a micro-aperture chip to separate circulating tumour cells 

(CTC) from whole blood samples [113]), (iv) adhesion to silica (e.g. extraction of RNA from 

prepared rat tissue samples using a porous silica monolith column [114]), and (v) solid-

phase extraction (e.g. using cation exchange resins [115]). 

 

Concentration and filtration/purification units often function as the same unit, since by 

isolating or separating a target cell/particle/molecule, its concentration from the initial sample 

is achieved. 

 

• Sorting unit: Besides the ability to isolate a target molecule or cell from a complex 

sample, it might also be required to differentiate among the purified molecules or cells for 

a certain characteristic, for which sorters can be used. This is especially relevant when 

establishing protein or genetic libraries or developing mutants. Sorting of molecules, cells, 

particles or droplets can be performed using electrostatic actuation (such as, 

dielectrophoresis [116], [117], [118] or electrostatic charging [119]), optical approaches 
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(such as optical tweezers or traps [120] or fluorescent activated cell sorting (FACS)), 

mechanical approaches (e.g. with membrane valves [121]), acoustic approaches (e.g. 

surface acoustic waves [122]), magnetic approaches (e.g. magnetophoresis or magnetic 

activated cell sorting (MACS)), channel topography [123],  inertial or hydrodynamic 

focusing or affinity approaches [124]. 

• Sample amplification: Such a unit may enable working around the issue of highly 

diluted samples, allowing to replicate the target molecules (e.g. DNA or mRNA) [77]. 

However, the issue of retaining or capturing such molecules remains. Most amplification 

units perform polymerase chain reaction (PCR) either in chambers (e.g. reverse 

transcription PCR (RT-PCR) using a thermoelectric Peltier element for temperature 

control during amplification [114]) or continuously in channels (e.g. real-time PCR of 

single-DNA per droplet in a circular channel design with zones at different temperatures 

[125]). Other amplification techniques such as multiple annealing and looping-based 

amplification cycles (MALBAC) [126]  and nucleic acid sequence-based amplification 

(NASBA) [127] have also been miniaturized in microfluidic devices. 

• Incubation unit: Such a unit can either work as a reactor, allowing a certain reaction to 

occur for a defined residence time, a labelling unit, or even as an incubation chamber, 

allowing growth of organisms. This type of unit requires an excellent control of volume 

and residence time, and has been extensively used together with droplet microfluidics or 

single-cell platforms. Several droplet microfluidic platforms present incubation units, 

which are chambers where the cells or droplets are stored [128], [129] or long channels 

that allow for a tight control of incubation (residence) time [117]. 

 

Strategies for other sample pre-treatment units are presented by de Mello and Beard 

(2003) [130], Chen and Cui (2009) [131] and Huang et al. (2002) [132]. 

 

• Detection unit: Quantitation of target compounds is one of the major functions and 

advantages of microfluidics, due to the variety of available sensors, which offer a 

possibility for real-time and continuous monitoring and proximity to the samples. An 

overview of the different types of available sensors for microfluidic applications is 

presented later in the text, but the variety of available sensors ranges from dielectric (e.g. 

determination of size, shape and composition of droplets at high speed [116]) to optical 

(e.g. recent application of stroboscopic epifluorescence imaging to hundreds of droplets 

simultaneously [133] or surface-enhanced Raman scattering (SERS) detection of 

hazardous materials [134]) and even nano-wires (e.g. nanoribbons capable of performing 

the detection of multiple biomarkers simultaneously [112]). 

 

The presented list of existing microfluidic chips capable of performing the most relevant 

and essential unit operations in any screening, optimization or development study is not 

exhaustive. There is a multitude of approaches for solving pre-treatment and sample 

concentration issues for example, that with little or no modification could be coupled and/or 

integrated in a modular platform. By combining the different presented microfluidic systems, 

most processes in the biotechnological and health fields could be studied on-chip in a flexible 

“plug-and-play” approach. 
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A wide application of microfluidics can be achieved if not only modularization, but also 

standardization of connectors is achieved. Connectivity between the above units could be 

attained with some of the connectors and interconnectivity ports presented in Pepper et al. 

(2007) [33], where “click on” connectors to standard tubing sizes were developed, and Sabourin 

et al. (2013), which developed multi-connector ports. Connectivity to electrical interfaces could 

be carried out as presented in Yuen et al.  (2008) [34], who based their design of fluidic and 

electrical connections on an electrical breadboard. Adaptation of the above units to the building 

block concept introduced by Rhee and Burns (2008) [35], Langelier et al.  (2011) [38] and 

Vittayarukskul and Lee (2017) [39] would further increase the flexibility and potential of the 

modules as part of a multi-use “plug-and-play” platform. A set of building blocks that can be 

arranged in a multitude of different channels and even 3D shapes could be acquired by every 

research institute, company or diagnostics center, for easy assembly towards their target 

research. The building blocks could be available together with a simple set of miniaturized 

electronic components (e.g. pump, charge-coupled device (CCD) imaging technology, 

potentiostat) that function both as part of the fluidic and detection units, but also as user-

friendly validation units for the assembly. For applications that require a higher degree of 

validation, such as biomedical applications, more complete individual unit blocks could be used.  

A concern in the use of a modular approach is the accumulation of fluidic resistance with 

each module, which can affect flow (and thus downstream) performance and lead to the loss of 

reagents or involved particles/cells [3]. However, there are several strategies available to reduce 

pressure drop (e.g. division of flow in different channels) and fluidic resistance (e.g. surface 

modification towards high hydrophilicity). Furthermore, diverse flow generating strategies (e.g. 

electroosmotic or capillary flow) could be applied in combination with pressure-driven flow. Also, 

modules to control backpressure in the pumps, or facilitating pressure equalization along the 

module assembly, can be integrated.  

 

It is also relevant to highlight the importance of applying mathematical modeling and 

fluid dynamic simulation to the first stage of development of individual fluidic parts [74]. Such 

tools can help boost the development progress of microfluidic platforms [135], by aiding in 

geometry optimization, evaluation of transport phenomena, determination and prediction of 

reaction (kinetic) parameters and mechanisms and in analyzing experimental data [135]. 

Modelling provides a more targeted and therefore often more efficient strategy of device 

development and sensor design, which can result in faster, less wasteful, and more economical 

device development processes [66]. It also provides information for evaluation and choice of 

materials (either by modeling interaction between materials, absorption of molecules on the 

surface or elucidating the influence of properties such as, for example, thermal coefficients). The 

development of numerical simulation tools with a simple user interface might also contribute to 

spreading the use of microfluidics to other fields (e.g. environmental sampling, resource 

recovery, structural analysis of soils or buildings, etc.), including transferring their use to non-

microfabrication specialists [74]. As suggested by Chiu et al. (2017), the assembly of the building 

blocks of a modular microfluidic system could be guided by software, taking into consideration 

both the requirements of the specific application along with the characteristics of the available 

building blocks [3].  
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Most modelling approaches applied to microfluidics assume a discretization of the 

continuum approximation of Navier-Stokes equations to describe flow and phenomena at the 

microscale through finite difference/volume/element or boundary element methods [47]. 

Computational fluid dynamic software such as COMSOL Multiphysics® (Burlington, MA, 

USA), or ANSYS CFX (Canonsburg, Pennsylvania, USA) are used for description of fluid flow 

in micrometer channels [136]. This, however, cannot appropriately describe phenomena 

occurring at the molecular scale (such as, for example, chemical bond interactions). As the 

dimensions of the channels decrease from micrometer to nanometer size, the continuum model 

no longer holds [136]. The use of hierarchical multi-scale modelling might improve modelling of 

the involved phenomena (mainly, molecular interactions and biochemical processes) in the 

reactions/processes performed in microfluidic systems [136], [137], [47]. Hierarchical multi-scale 

modelling involves the association of the mentioned macroscale methods with atom-based 

models (within which atoms and molecules are interacting points whose position and velocity is 

described by a vector, such as in the Molecular dynamics simulation model [136]) and particle-

based models (that assume clusters of interconnected particles to simulate molecules or fluid 

according to a distribution function governed in time by discrete Boltzmann equations, such as 

in the lattice Boltzmann method) [136], [137], [47].  

1.2.2 Other considerations 
One of the attractive features of polymeric materials for diagnostic platforms used in 

biomedical and clinical applications is their disposability due to their low fabrication cost [74]. 

These attributes decrease the risk of user contamination when handling potentially dangerous 

samples or of substances being analysed erroneously due to sample carry-over. However, for 

most applications in other fields, where contamination issues can be easily solved or are less 

critical, the use of disposable devices will lead to the generation of unnecessary and possibly 

difficult to handle waste (most materials used in microfluidic platforms and microsensors are 

not biodegradable [138]). Furthermore, most microfluidic platforms consist of a variety of 

materials (including e.g. heavy metals and other compounds potentially toxic to the 

environment) assembled in an irreversible way or that is difficult to separate, thus increasing 

the difficulty in disposing of such devices in an environmentally sustainable way. The academic 

and industrial community should seek to develop multiple use platforms in such situations, as 

well as invest in biodegradable or transformable/reusable materials, especially when many 

microfluidic platforms may be used (e.g. screening of enzymes or process parameters). Zein (a 

prolamin protein from corn), poly (lactic acid) (PLA) [139], silk fibroin and gelatin are examples 

of biodegradable materials that can be used to fabricate microfluidic devices [138]. Zein has 

great potential as a plastic substitute [138], [140], [141], [142] since it is biodegradable and can 

be produced from the excess in the corn industry, adding value to a traditional bioethanol 

production process and also reducing waste in industry [143]. PMMA is another promising 

material to obtain “green microchips” since it can be reused after decomposition to methyl 

methacrylate (MMA) at high temperatures [144]. 

To conclude, besides the effort to use alternative, more environmentally friendly and/or 

reusable materials, the microfluidic community should strive to build easily disassembled 

devices. This would facilitate the reuse or disposal of the different parts of microdevices towards 
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decreasing the possible environmental impact that an intense use of this technology might 

bring. 

1.3 A guide to the development of stand-alone platforms 
In order to develop a stand-alone multi-unit operations microfluidic platform, compatible 

with a wide range of applications, several considerations should be made. To illustrate the 

complexity of such endeavor, a guide for the development of a single unit operation microfluidic 

system is presented here.  

In this work, the chosen unit operation is sensing, focusing on biomolecules and/or 

biological components, due to its relevance and variety of detection techniques. If microfluidic 

platforms are to be used widely, the integration of sensors and their validation as quantitative 

detection systems is of major importance. There are three main detection methods used in 

microfluidics: optical methods, electrochemical methods and mass spectrometry methods, of 

which optical and electrochemical methods are the most applied due to their selectivity and 

sensitivity. Other methods involve techniques such as nuclear magnetic resonance (NMR) 

spectroscopy and mechanical detection (e.g. quartz crystal microbalance (QCM) sensors or 

microcantilevers) [74]. Within each detection method there are several techniques, whose 

usefulness or applicability is highly dependent on the desired function of the device and where 

it will be integrated. Table 3 presents a summary of the main characteristics to consider when 

selecting a detection method for integration in a microfluidic platform. 

Recently, even though new sensing technologies are discovered every year, there has been 

a shift in sensing research towards more efficient and hybrid integration of the sensing 

approaches by further developing already existing and validated sensors [145]. The combination 

of different sensing technologies on the same device can widen its application, by increasing the 

number of targets it is able to monitor and/or quantify simultaneously. 
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Table 3 – Summary of the leading detection systems available for microfluidic applications. 

Integration capability is here assumed as the ease of miniaturization of the sensing system itself in order 

to be integrated inside any or most microfluidic structures. Portability relates to the miniaturization of 

required auxiliary equipment to perform the measurement (e.g. potentiometer, microscope, etc.). 
Detection 

method 
Advantages Challenges 

Integration 

capability 
Portability 

Optical 

Fast response; High sensitivity; 

Compact; Usually contactless; can 

allow for real-time monitoring and 

spatially resolved imaging; 

Usually dependent on microscopy 

equipment; May require labelling; 
High 

Usually low, but can be 

high if CCD cameras or 

mobile phones are used 

Electrochemical 

Can allow for real-time monitoring; 

can be applied to most biological 

and chemical samples; potentially 

low costs in terms of fabrication; 

Requires the presence or 

generation of an electroactive 

species; difficult miniaturization of 

measurement equipment; short 

shelf life of most biosensors; 

requires control of ionic 

concentrations pre-experiment; 

High 

Medium, if 

measurement systems 

are miniaturized 

Mass 

Spectrometry 

High sensitivity and selectivity; 

very low detection limits; can be 

label-free; requires low electrical 

operation power; 

Long analysis time; bulky 

detection equipment; extensive 

sample preparation; 

Low Very low 

Magnetic 

Highly specific (reduced sources of 

magnetic behaviour in nature, for 

magneto-resistive sensors); allows 

for studying behaviour of atoms and 

molecules (in the case of NMR); No 

need for optical accessibility (in the 

case of NMR);  

Requires labelling of the target 

samples and/or very strong 

magnets; requires expensive 

fabrication methods; limited 

reaction time scale (for NMR); 

High 

High, if measurement 

systems are 

miniaturized [146] 

Mechanical 

Usually label-free detection; sensor 

integration performed during 

fabrication (monolithic); 

Sensitive to damping effects in the 

presence of liquid; long detection 

times; Complex fabrication 

High 

Medium to high, if 

measurement systems 

are miniaturized 

 

The scheme in Figure 4 illustrates the major steps to be considered during the 

development of a new system for sensor integration. This scheme is divided in 3 steps:  

• Step I - development of the system’s concept: It is addressing a current need (of a potential 

client, a clinically relevant analytical device or a research project) and involves the 

preliminary design, literature research for current technology, and preliminary concept 

tests in the laboratory. The concept of the device should be concurrent with existing 

regulations in the field of application, especially when food or health related applications 

are planned (e.g. highly regulated by the Food and Drug Administration [FDA] and 

European Medicines Agency [EMA]). Further regulatory issues will not be considered here 

due to the complexity and variety of the subject. It should also take into consideration the 

end-users and their requirements for the device [147], [148]. The more general the “need” 

identified, the more challenging the design of the system, but a wider use microfluidic chip 

might be achieved. In Figure 4 we use two specific hypothetical examples (monitoring of 

blood glucose levels in real-time and inline monitoring of glucose concentration in a 

reactor), but a more generic need could be the development of a system that is adaptable 

for the online monitoring of several components;  

• Step II – Sensor choice and fabrication: It includes an iterative choice and test of the sensor 

approach (and design) that is best matching the need defined in Step I, as well as the 

selection of chip material and fabrication method. These choices are often limited by the 

available technology and materials, as well as their cost of operation and use. 

• Step III – Sensor integration: It involves the assembly of the final system for integration 

of the chosen sensors, based on the desired final application and type of device operation. 
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The type of integration strategy should be defined from the concept step (step I), since it 

can limit the used materials or fabrication methods. At this point, further improvement 

or alterations of the components (developed during step II) of the prototype might be 

required. Since the final goal is the commercialization or wide use of the device, scaling of 

fabrication towards mass production should also be considered during development of the 

prototype. 

 

  
Figure 4 – Decision analysis cycle scheme for developing microfluidic systems for sensor integration, and its 

application to two hypothetical case studies: (i) a hypothetical portable glucose electrochemical sensing device and 

(ii) a hypothetical inline glucose monitoring device.  

It is important to highlight the need to take a holistic approach to device design, as well 

as the relevance of thinking about connectivity to other systems during the design phase. When 

developing a multi-unit operation platform or a system compatible with other multi-unit 
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operation platforms, these steps should be followed first for each unit operation, and then for 

their consecutive integration with each other, until the whole-platform integration is achieved. 

All the time, one should keep all the considerations presented in Figure 4 (e.g. final user, type 

of sample, location, etc.) in mind. 

1.3.1 Guide application to several case-studies: 
To illustrate the developed guide, the different steps described in Figure 4 were applied in 

two hypothetical case studies: (i) a portable glucose electrochemical sensing device; and, (ii) an 

inline glucose monitoring device. The case studies were included for bringing further 

clarification of the considerations and decisions involved during the development process of a 

microfluidic device, and that the decision analysis cycle scheme in Figure 4 intends to facilitate. 

For each case study, the conclusion of the considerations presented at each step is shown in the 

figure. 

For case study (i), in Step I, the key concept to address is the need for monitoring glucose 

in blood. This is achieved by defining a device capable of performing measurements in real-time 

that should be portable and able to draw samples subcutaneously. This concept is achieved by 

considering the patient as the end user, the importance of constant monitoring of glucose levels 

in diabetic patients, and therewith of portability, and the best sample format as the blood. In 

Step II, the development of such a device begins by choosing the best sensing approach, and the 

appropriate materials and fabrication methods. In the chosen example, an electrochemical 

sensor is selected due to its ease of miniaturization and the extensive available knowledge on 

applications of electrochemical sensors for glucose monitoring. Then, considering that the device 

will be in close and continuous contact with the patient’s skin, a biocompatible material was 

chosen (PDMS). Furthermore, when using some biomolecules, such as the enzyme glucose 

oxidase, if certain mediators are used, oxygen is required for the reaction and can also be used 

as a target analyte. Therefore, the use of PDMS is further highlighted due to its permeability 

to oxygen. The choice of material and the dimensions of the device (also defined in Step I) would 

then limit the choice of fabrication methods, together with the available methods for the device 

developer. Finally, in Step III, the combination of the different already described parts (through 

the use of a casing for easier re-use or substitution of sensors or channels) and the test of the 

prototype occur.  

For case study (ii), the key notion guiding the concept development is the continuous 

monitoring of glucose in an outlet stream of a lab scale fermenter. Thus, in Step I, the device 

needs to be robust, withstand relatively high pressures/flowrates, and be easily used by an 

operator. Furthermore, since the samples contain a complex matrix (media) with organisms, the 

system needs to be able to withstand sterilization and be connected to a sample pre-treatment 

device, where biomass is removed to minimize fouling of the sensors. In Step II, an 

electrochemical sensor is selected due to its price (in case substitution is required due to fouling) 

and straightforward connectivity and monitoring with electrical interfaces. Then, due to the 

required robustness of the device and compatibility with cleaning-in-place procedures, stainless 

steel is chosen as the platform’s material. This limits the available fabrication techniques, of 

which milling offers a relatively lower cost and device completion time. In Step III, the 

combination of the different components is achieved, with the test on the device’s robustness, 
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the influence of biofouling on sensor performance, as well as the capability of sample pre-

treatment to reduce this effect. 

1.3.2 Further deliberations 
The discussed case studies allow for a clear presentation of the suggested guidelines. 

However, they are a simplification of real applications of the described devices.  

In reality, the extremely strict regulations involving health applications would further 

limit the types of structures, materials and fabrication methods in the case of case-study (i). A 

close collaboration between microfluidic developers, physicians and health regulation agencies 

could be established (such as ISO 13485:2016 for Medical Devices) in order to satisfy demands 

related to both health safety and patients’ quality of life. Regarding case-study (ii), the 

integration of such a device might be easy to implement into a laboratory scale reactor, as 

presented, but the final goal would always be its use in pilot or industrial scale reactors. For 

such larger scale reactors, once again, tighter regulations exist, mainly related with the existing 

inlets for the reactors and the costs associated with the potentially necessary modifications. 

These more rigid regulations would very likely add additional iteration steps in the development 

of the platforms. 

Furthermore, simply fabricating more easily connected devices might not be enough to 

increase their use in the market. As previously mentioned, their validation with currently used 

analytical methods, which can vary greatly across fields, is of upmost importance to gain trust 

from the stakeholders (the final customers and/or investors). A wide or multi-use device would 

have to be validated by all analytical methods commonly used in each specific field, which due 

to its characteristics, namely dimensions, might be challenging to achieve, and should therefore 

also be considered as a main objective from Step I. Once validated, such device could in turn 

become a reference analytical tool of the field, with a simpler application and a lower price. 

Microfluidics can become an interesting analytical tool, more accessible to the general public, 

both in terms of cost, portability, and footprint, but also in terms of simplicity of use. 

Additionally, it is relevant to highlight that the end-user plays an important role in the 

development of microfluidic platforms. When the final user of the platform is a patient or 

someone with little to no-training in the technology or field in question, the device needs to be 

not only easy to assemble, but “fail-proof”. This means it should have a robust operation in order 

to withstand possible operation errors, such as wrong types of samples, labels or reagent 

concentrations, and present higher number of redundancies and security protocols, being at a 

high level of developmental maturity. Such a device should provide limited options in terms of 

operation and minimize required external input (so to minimize errors from the operator), and 

provide sufficient and detailed protocols and operation guides. Moreover, if samples from the 

patient are needed (e.g. in the case of diagnostic devices), the sampling procedure should 

preferably be non-invasive or at least reduce invasive sample as much as possible, and avoid 

sample cross-contamination (if measurements of multiple samples are required for monitoring 

of a disease status for example). Such a platform should also provide already treated data, and 

if possible guidelines of steps to proceed or suggestions of what the data might signify [149]. On 

the other hand, if the end-user belongs to a research or medical laboratory, or an industry 

environment, although the same requirements in terms of validation and safety are expected, 
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the flexibility in terms of operation modes and assembly structures is higher. Also, additional 

analytical components and a lower or no data processing effort are expected. 

1.4 Motivation and project goals 
Synthetic chemistry has had a big impact from microfluidics, in particular modular 

microfluidics, both at laboratorial and industrial scale. Biotechnology, especially biocatalysis, 

uses similar approaches to synthetic chemistry in reaction and process development, and can 

thus have a lot to gain from the adoption of modular microfluidic technology as a standard tool. 

As mentioned earlier, there is a great need in bioprocess development for high-throughput, low 

cost and automated screening platforms. Microfluidic systems, with their smaller dimensions, 

high fluidic and mass/heat transfer control, small footprint and high variety of sensor 

approaches can offer a solution to this need. Furthermore, the presented concept of modular 

microfluidics can provide an increased flexibility and applicability to the screening microfluidic 

systems. A microfluidic system that is compatible with different substrates, reactions and 

operation conditions, as well as capable of association with other microfluidic systems, can 

greatly extend its usefulness and field of application. The different existing microfluidic unit 

operations suitable for a “plug-and-play” platform that were reviewed, along with the presented 

strategies for their integration and novel connectivity approaches illustrate the potential of 

modular microfluidics as screening platforms, capable of integrating all the required unit 

operations (e.g. sample treatment, concentration, detection, purification, etc.). 

1.4.1 Project goals 

The main goal of this project was thus to develop a microfluidic modular platform for 

enzyme screening with online reaction monitoring and quantification. The platform was 

designed considering some of the issues identified in microfluidics, such as the lack of reusability 

of the materials composing most developed microfluidic platforms, and the difficulty in 

integration between different developed microfluidic systems due to lack of standardization of 

channel dimensions and connections. 

Following the presented step-wise guide (Figure 4) for the development of stand-alone 

microfluidic platforms, the modular platform was envisioned for application in an intermediary 

state of screening, when reaction parameters and kinetic mechanisms of a promising biocatalyst 

are characterized and/or optimized. This platform is intended for laboratory use by non-

microfluidic experts, so each of its modules was designed or chosen to allow easy connection to 

each other or to benchtop laboratory equipment, and be simple to use. Furthermore, each 

module enables flexible application, meaning it is compatible with different types of reaction 

and biocatalyst. The developed modules were also, within available material and fabrication 

technology limitations, designed to allow easy disassembly of the different components, both to 

facilitate cleaning and substitution of parts, but also recycling or re-use of the different 

materials and components. The selected materials were additionally both biocompatible and 

suitable for most functionalization approaches, to increase compatibility with a wide variety of 
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biocatalysts. The fabrication methods used were limited to the equipment available in the 

laboratory (laser ablation and micromilling).  

The basic modules identified as useful for such a platform are presented in Figure 5. 

 
Figure 5 – Schematics of modular platform for enzyme screening. 

The final goal was to achieve online monitoring coupled with data analysis for fast 

comparison between variants or screened reactions, based on data gathered both in the reactor 

and in the quantification module. Considering the identified basic modules, in such a modular 

platform, the reactor module should provide insight on the reaction behavior at different 

residence times (spatial points) in the reactor, while the quantification module was intended for 

quantification of the target compound and for providing insight on conversion yield and 

productivity.  

A commercial microfluidic system with integrated oxygen sensors was chosen as the 

reactor module, while the quantification module was developed in-house to allow integration of 

different types of sensors and sensor geometries and thus be applicable to a wide range of 

reactions. Between these two modules, a platform for continuous enzyme inactivation, based on 

temperature, was also developed. This module was designed to guarantee an appropriate 

quantification and good control of the reaction residence time in between modules, by employing 

a non-specific method to stop biocatalytic reactions. Additionally, a commercial microfluidic 

valve was used as a module to enable dynamic measurements or introduction of controlled 

volumes of compounds. Standardized connectors (HPLC-type connectors and tubing) were used 

as world-to-chip and chip-to-chip connectivity, hence widening the applicability of the developed 

modules and the assembled platform. The envisioned platform with the different described 

modules is shown in Figure 6. Finally, as a step towards online data analysis, all the developed 

microfluidic platforms and the reactor module were characterized using computational fluid 

dynamics.   

 

 

Figure 6 – Schematics of the different microfluidic modules developed for the enzyme screening platform. 
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1.4.2 Thesis outline 

The thesis consists of six chapters, where Chapter 1 includes an overview of microfluidics 

and the main motivations for the work and Chapter 6 brings the main conclusions of the work 

achieved and future perspectives for the developed microfluidic modules. Each of the 

microfluidic modules have a corresponding chapter, each with an introduction more focused on 

its specific application and state-of-the-art. In each chapter, a materials section is included, and 

the main obtained results and challenges observed with each module are specified and the main 

conclusions drawn. 

 

The thesis is thus structured as follows: 

 

• Chapter 1: Introduction to microfluidics, with a particular focus on modular microfluidics. 

A brief review on physics at microscale, and the main materials and fabrication methods 

used. A step-wise guide to develop stand-alone microfluidic platforms, which highlights 

the main considerations to take into account when conceptualizing such a platform, as 

well as the precautions to take during fabrication.  

• Chapter 2: Characterization of the microfluidic reactor module with integrated oxygen 

sensors using an oxidation reaction with enzymes in solution. The reaction inside the 

microchannel was also simulated using CFD, which presented a reasonable match with 

the experimental data.  

• Chapter 3: Application of the microfluidic reaction module with integrated oxygen sensors 

to the screening of dioxygenase variants in whole cell catalysts, as a novel screening tool 

for an oxidation reaction in whole cell biocatalysts.  

• Chapter 4: Development of a microfluidic platform for sensor integration and application 

with electrochemical sensors to the in-flow quantification and dilution of glucose samples. 

The dilution channel was optimized based on CFD modelling of different mixing 

geometries. 

• Chapter 5: Development of a microfluidic platform for continuous enzyme thermal 

inactivation and application to the inactivation of glucose oxidase and catalase solutions. 

The microfluidic platform’s thermal characteristics were simulated using CFD. 

• Chapter 6: Summary of the main results obtained from the development and/or 

characterization of the different microfluidic modules presented. Future perspectives for 

the further development and potential applications of the developed modules as a 

screening platform. 
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Chapter 2 
System for monitoring biocatalytic reactions 

Biocatalysis is a highly relevant field in biotechnology, with an annual revenue that is 

expected to reach 400 billion USD by the end of 2017 [49]. Within this field, the enzyme market 

has grown exponentially from the 1960s and has revolutionized a significant number of products 

and processes, such as detergents, drug discovery, bioanalytics, organic synthesis and biofuels 

[150], [22]. To keep up with current market demands new enzymes with higher stability, higher 

solvent resistance, suitable activity and substrate specificity, and the ability to act on new 

substrates with high turnover rates are required. Discovery and tailoring of such enzymes 

involves environmental sampling and generation of variants [49] that results in thousands of 

enzymes whose industrial or clinical relevance needs to be evaluated. High-throughput 

techniques are thus highly demanded both for the initial screening of (engineered) variants, as 

well as for the reaction and process characterization of the most promising biocatalysts. 

Microfluidics, due to its dimensions and available unit operations, is an increasingly used and 

valuable screening tool that allows high-throughput and fast screening of the small volume of 

each generated variant. However, considering the current state of sensor integration and 

automation in microfluidic-based systems, they are mostly considered for an intermediate stage 

of biocatalyst screening, when the characterization of more specific parameters is required [46]. 

In this chapter, a microfluidic system capable, of continuously monitoring oxygen levels, 

is evaluated as a potential microreactor for application in screening activity and studying 

reaction kinetics of biocatalysts in solution. Oxidation of glucose by glucose oxidase was 

performed and allowed to highlight the operational limitations of the system in terms of oxygen 

depletion at certain enzyme and substrate concentrations. Strategies for in situ oxygen 

generation involving addition of catalase and hydrogen peroxide were likewise applied. 

Additionally, a calibration curve relating measured oxygen with product concentration at the 

outlet of the microchannel was performed. The reactions carried out in the microfluidic system 

were also modelled using computational fluid dynamics, with a good fit between the 

experimental and simulated data, and the results provided extra insight into the reaction 

dynamics and limitations.  

2.1 Introduction 
Enzymes are ubiquitous in daily life, from the use in the food (e.g. as food additives) and 

textile industry (e.g. for bleaching), to the production of bulk chemicals and application in 

clinical assays [22]. They enable greener and safer production processes (operation at mild 

conditions of pressure and temperature and with low energy demands), simpler reaction 

pathways for certain compounds and even production of new molecules, with high turnover 

rates and substrate selectivity [22]. There is, therefore, a great demand towards finding new 

biocatalysts. Biocatalysts (and new compounds) can be discovered for instance by terrestrial and 
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marine microbial sampling, requiring extra steps of isolation, optimization of growth conditions 

in the laboratory, metagenomics (searching for homology with known enzymes) and activity 

tests [49], to name a few strategies. New biocatalysts can also be attained through genetic 

manipulation, constructing functional metagenomic libraries or performing directed evolution, 

thus generating recombinant biocatalysts that need also to be selected in terms of activity and 

selectivity towards a target process and/or product [49]. To achieve this, thousands of enzymes 

and/or cells (in the case of whole cell biocatalysis) need to be screened and new, automated and 

faster screening procedures are in demand.  

2.1.1 Miniaturized systems for biocatalysis and enzyme screening 
A strategy to improve the screening efficiency involves miniaturization of the involved 

technology [22]. Miniaturization has been achieved mainly through two strategies: multi-well 

plates and microfluidic systems. 

2.1.1.1 Multi-well plates 
Multi-well plates are polymeric (polypropylene or polystyrene) plates containing usually 6 

to 1536 wells with 16 mL down to 10 µL volume, respectively, which are arranged in a 8 cm by 

12 cm matrix. They enable screening of up to 106 variants on liquid or solid (e.g. agar) media by 

detection of a chromo- or fluorogenic compound that is produced or consumed in the presence of 

the target enzyme [22]. 

 It has also been applied to determine kinetic parameters, where substrate concentration, 

type of substrate, amount of enzyme, etc., can be varied between wells within the same assay 

[151], [152], [153]. Association with robotic equipment facilitates accurate definition of the 

concentration range or other varied parameters in each assay [154], [155]. Some adapted trays 

have been developed that enable single well temperature control and inline monitoring of some 

parameters through sensor integration in the wells. Individual temperature control, however, 

is cost-intensive so integrated incubation chambers are usually preferred [58]. The sensors (pH, 

dissolved oxygen and carbon dioxide concentration [58]) are usually sensor spots based on 

fluorescent or luminescent detection which are embedded at the bottom of each well [22]. The 

sensors are evaluated in a matrix by a probe (e.g. optical fiber), and so time-related data 

obtained depends on the number of samples (wells) being measured and the speed of the 

scanning probe [156]. Individual well sensor addressing has also been achieved, requiring 

however more complicated setups [157]. Furthermore, modified microtiter plates, that 

incorporate a microfluidic network have been developed that enable controlled addition of liquid 

solutions (e.g. for pH control) through a pneumatic microvalve [157]. 

In microwell plates, oxygenation and mixing are promoted mostly through shaking, which 

can lead to mass transfer limitations of oxygen to the reaction taking place. Performed studies 

have shown that the amplitude and intensity of shaking, the surface (in contact with air) vs. 

volume ratio and the wells’ shape influence the oxygen transfer [22]. Different aeration 

strategies, such as sparging with air, using square or flower-shaped wells or magnetic micro-

stir bars have thus been used [158], [22]. Evaporation is usually minimized in these systems by 

covering the wells and/or flushing the microwell plate environment with humidified air [159], 

[157]. 
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Despite the possibility for automation with robotic handling and the variety of strategies 

employed in microwell plates for improving monitoring and parameter control, the number of 

parameters that can be monitored continuously is still limited to pH, oxygen, carbon dioxide 

and optical density. This can limit the scalability of the obtained data due to the lack of proper 

process overview. The application of mechanistic models can help increasing the level of 

confidence and applicability of the gathered data [151]. Furthermore, the limitations regarding 

oxygen mass transfer and evaporation, despite being mitigated with the strategies developed, 

can limit the application of these systems to certain processes (e.g. using solvents with high 

evaporation rate, or fast oxidation reactions). 

2.1.1.2 Microfluidic systems 
Microfluidic systems present a set of characteristics that makes them valuable for high-

throughput applications, such as screening of biocatalysts. The reduced dimensions decrease 

the amount of required reagents and samples, but also increase the surface to volume ratio 

[160]. This results in increased surface interactions, which are required in many assays (e.g. 

immunoassays, enzyme immobilization), but also increases contact area between the different 

solutions, which is highly relevant for example in liquid-liquid extraction and mixing. It also 

opens the possibility to new assay or reaction geometries and catalyst or reactants positioning 

inside the channels. Moreover, the small dimensions increase portability of these systems, as 

well as the ability for parallel operation with a small footprint. Microfluidic systems enable a 

higher degree of integration (of different components and unit operations on the same chip or of 

different chips together), which facilitates the development of automated processes [22], [10]. 

As discussed already in Chapter 1, depending on the material and fabrication method, they can 

enable a significant cost reduction of the unit operations and the screening platform. 

Furthermore, the types of available sensors, their integration within the microfluidic system 

and the type of interactions occurring at this scale can result in a significantly increased 

sensitivity and a limit of detection hard to rival in macro-devices and microwell plates. 

Microfluidics also enables studying reactions and/or physical phenomena otherwise impossible, 

either by allowing a higher control of the environmental conditions (fast mass and heat 

transport) or by allowing a better control on the phenomena occurring or even eliminating 

certain effects (e.g. inertial effects) [8]. Another advantage of microfluidics is the freedom and 

variety of geometries available, which enables taking advantage of the phenomena more 

relevant at this scale. The main advantages of microfluidics relative to microwell plates are 

however the possibility for continuous operation [22] and the availability of incorporating a 

wider range of biosensors. 

Microfluidic systems have mostly been applied to enzymes or cell lysates [22]. The simplest 

approach involves two-inlet microchannels where aqueous solutions of the substrate(s) and 

enzyme(s) are introduced separately and the reaction occurs along the microchannel [22]. This 

allows a good control of the reaction residence time (through flowrate selection and length of the 

channel) and diffusion/mixing of the two solutions (by introducing bends or obstacles in the 

channel), which can easily be calculated from the equations presented in Chapter 1. In reactions 

where one of the components has a low solubility in water, two-liquid phase systems can be used 

by introducing an aqueous and an organic phase or ionic liquid through separate inlets. This 

approach has also been applied for the enzymatic resolution of chiral compounds [22], or as an 



Micro scale reactor system development with integrated advanced sensor technology  

32 
 

in situ product removal/substrate feeding approach [161]. It is important to consider in this 

approach how the solvent might affect enzyme activity and stability during operation [60]. 

Enzymes can also be immobilized (through covalent cross-linking [59], cross-linked enzyme 

aggregates, (non-)specific adsorption [162], polymer brushes [163]) in the microchannels either 

by binding to the walls or by immobilization on carriers (e.g. agarose or glass beads), membranes 

(e.g. nylon, poly(vinylidene)) [59] or monoliths (porous matrices of polymers or silica for 

example) inside the reactors [22], [150]. Enzyme immobilization improves in general the 

stability and durability of the biocatalyst [150], but may result in some cases in a loss of activity 

[60]. Micro-packed-bed reactors have also been developed where the enzymes are immobilized 

on microparticles and introduced inside a microchamber or a capillary tube, serving as packed-

bed reactors [22]. This approach may however lead to increase of backpressure, requiring higher 

pumping efficiencies.  

Multi-enzyme cascade reactions can also be achieved with microsystems by physically 

separating the reactions in reactors connected in series [60]. This allows a better control of the 

reaction, especially if the product acts as an inhibitor on the following reaction or promotes 

undesired side reactions [60]. This spatial separation of the reactions also permits their 

operation at the optimum conditions for each (temperature, pH, solvent, etc.), thus improving 

the reaction yield [60]. However, it may be difficult to match the enzyme reaction rates to each 

other, in order to operate the cascade reaction with the maximum productivity [150]. An enzyme 

can also be kept in a single reactor, thus avoiding possible side-reactions in the following reactor, 

either through one of the mentioned immobilization strategies, or by using in-line filtration 

steps coupled with re-circulation [60]. Enzyme immobilization or retention in a reactor module 

also facilitates downstream product purification steps, besides enabling a higher degree of 

control on the reaction space [150]. Furthermore, a simple reversible enzyme immobilization 

technique would also grant the re-use of the microfluidic reactor and its easy application in a 

new process [46]. Connection of the reactor modules with chiral columns, solvent extraction 

modules, filtration and separation systems, allows the exchange of solvents or buffers between 

reactor modules, as well as removing enzymes and/or products that might affect the next 

reaction in the sequence, and thus greatly improve the overall yield and productivity [59], [60]. 

The integration of sensors in microfluidic platforms would facilitate the monitoring and 

characterization of biocatalytic reactions as well as the optimization of the parameters that fit 

each and all of the reactions in a cascade system [46]. Of the wide variety of sensing strategies 

available for microfluidic devices (optical [164], [165], electrochemical [166], mass spectrometry 

[167], magnetic [168], Raman spectrometry [169], among others [74]), very few have been 

applied for monitoring and characterization of biocatalytic reactions due to the wide spectrum 

of generated substrate(s) and product(s) and the need to identify chiral compounds. 

Quantification is thus usually performed at- or offline with analytical equipment such as high-

performance chromatography (HPLC), gas chromatography (GC), mass spectrometry (MS), UV-

VIS spectrophotometry and nuclear magnetic resonance (NMR). Even though, miniaturization 

of some of these techniques (e.g. NMR [146], UV-VIS spectrometry [170], Absorption [171]) or 

improved world-to-chip connectivity to others (e.g. MS [167], Infrared and UV-VIS spectrometry 

[170]) have been developed, a simpler approach involves the production of a compound that can 

easily be detected with existing technology (e.g. optical detection of colorimetric or fluorescent 

compounds [170]). Another approach, is to monitor the reaction by the change of an operation 
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parameter which can be directly related to the reaction [46], such as temperature (e.g. 

exothermic reaction), pH [172], [173] or oxygen [174], [173]. 

2.1.2 Optical sensing 
As highlighted in Chapter 1, and mentioned in the previous section, there are several 

detection methods that can be applied in microfluidics. Optical detection is one of the most 

extensively used, especially towards biological applications. Optical-based sensors present 

several attractive characteristics, such as fast response, compactness, high sensitivity and the 

possibility of contactless measurement [74]. However, for more complex and dense matrices 

found in biotechnological or medical applications, and auto-fluorescent or light responsive 

materials, their application can become difficult or strictly limited. Optical methods can be 

separated into methods that comprise direct detection by monitoring the light properties, and 

the detection of modulation of such properties.  

Direct detection can be achieved through: 

• Fluorescence emission of fluorophores or fluorescent dyes that label the target analyte 

when excited by a given wavelength is a type of direct detection method. It is a highly 

sensitive and selective detection method that requires target sample labelling and is the 

most common method used for biological samples. Fluorescent detection is sensitive to 

interferences from the sample matrix, thus usually requiring sample pre-treatment [170]. 

It can also present sensitivity to certain materials (namely polymers) used in microfluidic 

systems, which present auto-fluorescence; 

• Absorbance measurements occur by monitoring the attenuation of a specific wavelength 

of incident light by absorption by certain functional groups when crossing the sample 

[170]. It is usually achieved through the use of optical fibers connected to a benchtop 

absorbance spectroscopic equipment and integrated microlens and slits to extend the 

optical path. The simplicity of absorbance measurement instrumentation overcomes its 

lower sensitivity relative to other optical methods (e.g. fluorescence) for application in 

point-of-care [175]; 

• Luminescence-based methods are characterized by the entrapment of a luminescent probe 

in a matrix. The analyte permeates through the matrix affecting the emission signal of 

the probe, which is monitored [176]. A more extensive description of luminescent detection 

is provided in section 2.1.2.1. 

Detection due to modulation of light properties includes: 

• Surface plasmon resonance (SPR) detection is based on resonant oscillations of conduction 

of metallic electrons (e.g. gold or silver) when coupled with photons from polarised light 

exposed at a particular angle or wavelength. This produces an evanescent wave effect on 

the metallic sensing surface.  Detection occurs through the difference of refractive index 

between the target sample bound on the surface of the sensor and the dielectric 

environment [177], [178], [179]; 

• Evanescent waves are based on a mono-mode optical waveguide, where the field of the 

guided light decays exponentially with the distance to the core region of the waveguide. 

When the analyte interacts specifically with the label immobilized on the waveguide, its 

guiding properties change, consequently changing the evanescent field. Evanescent-based 
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sensing requires a reduced or no sample pre-treatment since only surface phenomena are 

detected [180]. 

• Optical waveguides are based on the formation of a standing wave when an incident light 

beam fulfils the condition of total reflection. They allow the propagation of light over an 

increased region that presents a higher refractive index than the surrounding medium. 

The coupled light intensity used for quantification will vary with the thickness of the 

adsorbed biomolecules layer (the higher the thickness, the higher the amount of molecules 

adsorbed at the surface) [177], [181]. These sensors consist of dielectric metal oxides, 

which can be coated with an indium doped tin oxide (ITO) layer to integrate them with 

electrochemical sensors [182], [183]. 

• Interferometry is based on the interference that a light wave that passed through the 

sample has on another light wave that followed a reference path, considering that both 

have the same source. When the two light waves are recombined, they produce 

interference fringes that represent the phase difference between the two light waves. 

Analyte information is contained in the shifts of the phase and position of the interference 

fringes [184]. The reference path allows removing the effect of non-specific adsorption and 

temperature and intensity changes [175]. This type of sensors when combined with 

waveguides possess a high sensitivity and a broad dynamic range [180].  

• Raman spectrometry is based on the detection of Stokes and anti-Stokes shifts of non-zero 

polarizability molecules. It allows identification of materials through “fingerprinting” with 

a sub-micron spatial resolution in low concentration samples [185],[169]; 

• Optical microfibers are micro or nano waveguides with high-contrast index relative to the 

surrounding material, that enable optical detection with a very low percentage of energy 

loss of evanescent waves [186]; 

Optical methods can be coupled with each other to enhance detection or to stimulate a 

certain specific phenomenon, an example of which is the use of optical fibres and waveguides to 

increase sensitivity  [74]. Table 4 presents a summary of the main characteristics of some of the 

presented optical detection methods. 

 



Micro scale reactor system development with integrated advanced sensor technology  

35 
 

 

 

Table 4 - Main characteristics of optical detection methods to consider when choosing a sensing approach [74]. In this table disposability refers to the devices 

ability to be discarded as general waste (once decontaminated). 

Detection method 
Type of 

sample 

Analyte 

concentration 

Sample pre-

treatment 

Limit of 

detection 

(LOD) 

Compatible 

materials/ 

fabrication 

methods 

Reusability Cost Disposability Issues Examples 

O
p

ti
c
a

l 

Fluorescence 

Mainly 

liquid, but 

also solid; 

usually 

biological 

Low to high Yes, labelling  

Down to µM  

and single 

biomolecule  

[74] 

Optically clear 

materials 

Medium (risk of 

cross-contamination 

or traces of 

fluorophore) 

High 

High, but depends 

on toxicity of 

device material 

and fluorophores 

used 

Requires mathematical tools 

for signal corrections; 

Depends on available 

appropriate fluorophores 

[74]; Usually requires 

external readout systems 

(e.g. microscopes) 

Temperature and flow 

velocity 

determination; cell 

function monitoring; 

interaction of 

biomolecules and 

protein binding [187]; 

polymer dynamics [74] 

Absorbance Gas, liquid Low to high 

Little to none 

(except 

maybe 

dilution) 

Down to µM 

Optically clear 

materials, coupled 

with integrated 

mirrors and 

microlenses [175] 

High Medium High 

Requires mathematical tools 

for signal corrections 

specially for biological 

samples due to the presence 

of water; sensitivity 

decreases with decreasing 

path length due to reduced 

sample volume 

Quantitative 

immunoassays, 

quantification of 

biomarkers [188] 

Luminescence 

Mainly 

liquid and 

gas, 

especially 

small 

molecules, 

 

 

 

Low to high 

 

 

 

Little to none, 

but depends 

on probe 

sensitivity 

and matrix 

chosen 

Down to µM 

Optically clear 

materials; mild 

temperatures or 

sensor integration 

post chip 

fabrication 

High (risk of cross-

contamination or 

traces of 

fluorophore) 

Medium to 

low 

(depending 

on probe 

material 

and 

readout 

system 

used) 

Low, but depends 

on toxicity of 

device material 

and luminophores 

used? 

Requires mathematical tools 

for signal analysis; Care 

must be taken during 

fabrication in order not to 

affect probe; measurement 

may depend on matrix/probe 

homogeneity; photobleaching 

Determination of 

process parameters 

(oxygen and pH), 

measurement of small 

molecules (e.g. oxygen, 

glucose, ethanol) 

[176];  

SPR 

High 

molecular 

weight 

analytes (> 

100 Da) 

Low to high 
Little to none 

[180] 

Down to 

nanomolar 

(pM if gold 

nanoparticles 

are used 

[188]) and 

single 

biomolecule 

[74] 

Optically clear 

materials, coupled 

with nano 

structures 

Medium to low (due 

to surface 

functionalization) 

Medium to 

low 

Low, but depends 

on toxicity of 

device material 

Requires a large sensing 

area, having a low 

throughput and a small 

penetration depth; Hard to 

differentiate specific from 

non-specific interactions[74], 

highly dependent on 

temperature [175] 

Material’s refractive 

index, molecular and 

chemical reactions, 

binding of 

biomolecules, polymer 

dynamics[74], 

biomolecules and cells 

[175] detection 

Raman 

Spectrometry 
Liquid 

Very low (highly 

diluted samples) 

Yes, but 

label-free 

Down to sub-

picomolar and 

single 

molecule[74] 

Optically clear 

materials, coupled 

with nano 

structures 

Medium (risk of 

cross-contamination 

or traces of 

fluorophore) 

High High 

May have overlapping peaks; 

Has a small penetration 

depth; denaturation of 

biomolecules may occur due 

to laser used [74] 

Detection of single 

molecules, study of 

large biomolecules, 

analysis of chemical 

processes [74] 
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2.1.2.1 Luminescent sensors 
Luminescent-based sensing elements can be easily integrated by immobilization of the 

matrix used for entrapment. The selected matrix should allow diffusion of the target sample 

through so recognition occurs, but simultaneously prevent leaching of the entrapped sensing 

element [176]. Luminescent sensors are thus mostly used to monitor small molecules (such as 

ions and gases) and process parameters (such as temperature and pH) [173]. The choice of 

matrix, usually polymeric, depends on the sensing probe to be entrapped and target sample, but 

also on the immobilization surface and/or method.  The fabrication method also affects the 

sensor performance and sensitivity, especially for intensity-based detection approaches where 

uniformity and homogeneity of the sensing layer impacts accuracy and spatial resolution [176], 

[164].  

A highly relevant factor to consider when integrating this type of sensors is compatibility 

of the sensor material with the microfluidic chip fabrication steps, especially bonding, when it 

occurs at high pressure and/or temperature, and plasma treatments [164]. A sensor layer can 

be integrated in a microdevice through different methods. The most common are spin or blade 

(or knife) coating, that create films with thicknesses down to hundreds of nanometers, but 

require patterning after layer deposition with (wet) etching and photolithography techniques 

[176], [165]. Another commonly used technique is spray-coating, which allows homogenous 

sensor deposition on different types of surfaces, and where patterning depends on the use of 

stencils [165]. In situ polymerization, for example using sol-gel or photopolymerization of PEG 

acrylates [176], is also often used, especially for glass or quartz substrates. Photopolymerization 

results in sensors with highly accurate and small dimensions, through the use of photomasks 

or moulds [165]. Another approach, involves covalent binding of the probes to the surface 

(usually glass or modified glass) [189]. Some research groups have opted to use PDMS as the 

matrix material, thus allowing a simple and direct integration of the sensing probe in the 

microchannel (also of PDMS or glass) [165]. Another technique, that allows precise definition 

and positioning of the sensor spots, is inkjet printing [176], [165]. Other research groups have 

used less standard approaches such as magnetic trapping (embedding magnetic nanoparticles 

together with the luminescent dye [190]) and optical tweezers (achieving entrapment of 

functionalized luminescent particles along the channel [191]).  

In terms of measurement, sensing can be intensity-based, lifetime-based or based on 

ratiometric methods [176]. The intensity of the probe’s signal can be directly related to the 

analyte concentration, however it is affected by background fluorescence, inhomogeneities in 

the dye distribution, excitation intensity, ambient light and photobleaching (especially when 

long-term and constant excitation of the luminophores is performed) [176], [164]. Both lifetime 

and ratiometric detection methods are referenced, thus overcoming the influence of external 

factors in the measurement [164]. Luminescent lifetime methods can be performed based on the 

frequency-domain, where the excitation light is sinusoidally modulated, resulting in a signal 

with the same waveform,  where the delay (phase shift) of the emission wavelength relative to 

the excitation is related to the lifetime of the used fluorophore [176]. Lifetime determination in 

the time domain, on the other hand, can be performed either through single photon counting, 

where the time between excitation and photon detection is recorded in a decay curve and fitted 

by an exponential function, or by recording the emission phase in (usually two) time-gates whose 



Micro scale reactor system development with integrated advanced sensor technology  

37 
 

intensity ratio is used for quantification [165]. Fluorescent lifetime imaging microscopy (FLIM), 

used in cell applications, uses a modulated excitation source and detects the decay in intensity 

either in the time or frequency domain [192]. In the ratiometric measurements, two compounds 

(one analyte sensitive and the other a reference dye) which emit at distinct wavelengths are 

used. The ratio between the two emitted wavelengths is then used for analyte quantification 

[176], [164].  

Readout of luminescent-based systems can be performed with optical fibers, when sensor 

spots are integrated [174] or if single point measurements are required, resulting in a simple 

measurement setup. These sensors can also be integrated on the tips of optical fibers, allowing 

the reuse of the sensors and their application in more cell culturing or biocatalytic reaction 

formats and scales. However, if a sensing layer is immobilized over the entire surface of the 

device, spatial imaging of the target analyte can be achieved, enabling the imaging of gradients 

of the target compound [176]. Furthermore, if multiple fluorophores are immobilized, they can 

be measured simultaneously allowing measurement of the same analyte or measurement of 

different analytes in parallel channels [193], [194]. 

2.1.2.2 Chemical oxygen sensors 
Oxygen sensors are among the most well-developed and widely applied sensors, especially 

within biotechnological and cell applications [176], [164]. There are several types of sensors used 

for probing oxygen. 

The classical oxygen sensor is the Clark electrode, which is composed of a platinum working 

electrode and a silver chloride reference electrode with potassium chloride as the electrolyte, 

being all the components covered with a PTFE gas-permeable layer to protect the electrodes 

from fouling. At a potential of 0.8 V, oxygen is reduced at the working electrode, and an electrical 

current proportional to the amount of oxygen is produced. These sensors present several 

disadvantages, such as a low temporal and spatial resolution, the relative size (which 

complicates their integration in microfluidic systems) and the fact that oxygen consumption is 

required for its quantification, thus requiring stirring, while producing hydroxide ions which 

are potentially harmful to cells and biological samples. They are furthermore sensitive to 

temperature and unreliable for long-term measurements due to depletion of the electrolyte, 

adsorption of biomolecules to the PTFE layer (which loses permeability) and anode coating with 

AgCl [192]. 

On the other hand, optical (chemical) oxygen sensors are usually highly sensitive and fast, 

inexpensive to produce and easy to integrate in microdevices, even enabling non-invasive 

monitoring [164]. Furthermore, they do not consume oxygen, thus enabling their application in 

static environments, and also do not suffer fouling thus being capable of being used for long-

term measurements. Optical oxygen sensors are often based on luminophores whose 

phosphorescent emission is quenched (by collisional quenching [164]) in the presence of oxygen. 

The decrease in intensity results from an energy transfer from the excited luminophore to the 

oxygen molecule, generating a singlet (state) oxygen [165]. Singlet oxygen has been observed to 

interfere with oxygen measurements in microchannels [190]. The quenching mechanism is 

usually reversible and the degree of quenching depends on the oxygen partial pressure in 

solution. 
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The relationship between intensity measured and oxygen partial pressure is described by 

the Stern-Volmer equation (Equation 15), where 𝐼0  and 𝐼  correspond to the luminescent 

intensities without and with the quencher, 𝜏0 and 𝜏 are the corresponding lifetimes, 𝐾𝑆𝑉 is the 

Stern-Volmer quenching efficiency constant and 𝑝𝑂2 is the oxygen partial value [164], which is 

directly related to oxygen concentration by Henry’s Law [165]. According to Henry’s law, when 

a liquid and a gas mixture are at equilibrium, the concentrations of the gases in the liquid are 

proportional to their partial pressures/molar concentrations in the gas mixture. 

Equation 15 

 

Most dyes are either based on ruthenium or metalloporphyrins (e.g. Pt(II) or Pd(II) 

complexes), usually trapped in a polymeric layer for easier integration in microfluidic channels 

or other features [192]. Platinum(II) octaethylporphyrine ketone (PtOEPK), which has a high 

quantum yield, is one of the most used dyes as sensing element for oxygen studies in cellular 

applications due to its long lifetime, high photostability, and low photobleaching rate relative to 

other fluorescent dyes [195]. Furthermore, the excitation (570 nm) and emission (760 nm) 

wavelengths of this dye induce a large Stokes shift which allows reducing the signal-to-

background ratio [196], while reducing influence of background fluorescence or scattering from 

the polymeric material [164]. 

Oxygen sensors for microtechnological applications exist in a variety of formats. Soluble, 

usually water soluble, indicators (oxygen sensitive dyes) are free or entrapped in a polymer that 

can be mixed with the solution and introduced in the system (a microchannel, for example) [165]. 

However, they require a high luminophore concentration (turning them sensitive to 

interferences from the sample) and display a low sensitivity and selectivity, as well as an 

aggregation tendency, among other disadvantages [164]. An important issue to consider is the 

need to separate the indicator dye at the outlet, if further analysis are required [165]. The most 

common sensor format is the sensor layer, a mix of luminescent dye, polymeric matrix and 

additives dissolved in a solvent which can be deposited through one of the several methods 

explained in section 2.3.1. and then dried, polymerized or cured on a surface. This format allows 

for higher signal-to-noise ratios and decreasing signal interference by the sample, however they 

present longer response times (time for sample diffusion through the matrix) and are usually 

restricted to point measurement or 2D imaging [164]. Another sensor format are sensor 

particles, obtained either by adsorption of the sensitive dye to the surface of micro or 

nanoparticles, polymerization or precipitation of the sensor cocktail or by grinding the matrix 

with embedded dye.  This format is the most flexible in terms of integration and application 

since it can be used either as a dissolved indicator or as a layer. Due to their dimensions, they 

also present significantly faster response times, a higher dye loading, selectivity and sensitivity, 

while also featuring three-dimensional imaging [164]. Two- or three-dimensional oxygen 

imaging provides a better understanding on oxygen distribution and fluidic dynamics in the 

microfluidic system, as well as on the generation of gradients and other interactions involved in 

the studied biological systems [164]. 
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2.1.3 Model reaction/ Enzyme models used 
Most of the microfluidic platforms presented in this work were characterized with the 

same model reaction, the oxidation of glucose by glucose oxidase coupled with the decomposition 

of hydrogen peroxide by catalase, (Chapter 2 and Chapter 4), or using these two enzymes 

(Chapter 5). Thus, a brief description of these enzymes and their reaction kinetics is presented 

below. These enzymes were selected as models for the study of the presented platforms due to 

their commercial availability and extensive accessible literature. 

2.1.3.1 Glucose oxidase 
Glucose oxidase (GOx, β-D-Glucose, oxygen 1-oxidoreductase, EC 1.1.3.4) is an 8 nm 

globular flavo-containing glycoprotein, composed of two identical 80 kDa subunits, that contains 

two tightly (but not covalently) bound  molecules of flavin adenine dinucleotide (FAD), acting as 

redox carriers [197], [198]. It was first identified in 1928 by Muller in Aspergillus niger, but it 

has since been isolated from a variety of sources over the years (e.g. red algae, citrus fruits, 

bacteria) [197]. GOx has been widely applied in biosensors and the clinical analytical field for 

the selective quantification of glucose in biological samples (especially for glucose quantification 

in the blood of type I diabetes patients), but also in other areas such as food industry (e.g. as a 

preservative, to improve color and shelf-life of food) and biochemistry (e.g. as a label in 

immunoassays) [135], [197], [199]. GOx from Aspergillus niger is capable of oxidizing glucose, 

with a preference for β-glucose, to glucono-δ-lactone, using a variety of oxidizing substrates, 

such as oxygen, quinones, certain diamines, ferricyanide (widely used in glucose electrochemical 

sensors) and indophenols [197]. It has been observed that in the absence of an oxidizing 

substrate (e.g. in anoxic conditions), GOx can become fully reduced, which disturbs the reaction 

mechanism. In this form, the enzyme is in turn 100 times more sensitive (than the oxidized form 

of the enzyme) to one of the reaction products from oxidation with oxygen, hydrogen peroxide 

(at concentrations above 5 mM) [200]. However, the reduced form is also the more stable of the 

two states [197]. The initial product of glucose oxidation, glucono-δ-lactone is a mild competitive 

inhibitor of GOx. Glucono-δ-lactone however can hydrolyse spontaneously to gluconic acid, and 

the higher the pH the more the equilibrium tends to the gluconic acid side [197]. Inhibitors of 

GOx include micromolar amounts of heavy metals (e.g. mercury and silver), aldohexoses (act as 

competitors), halide ions at low pH and hydrazines [197]. 

In terms of reaction kinetics, GOx reacts according with the Ping Pong Bi Bi mechanism 

(Figure 7,Equation 16) [198]. When β-D-glucose and oxygen are the substrates, the reaction is 

nearly irreversible (𝑘2 ≈ 𝑘4 ≈ 𝑘6 ≈ 𝑘8 ≈ 0), and can be simplified to a two-substrate substituted-

enzyme Michaelis-Menten kinetics (Equation 17) [201], [202] with 𝐾𝑚 𝑜𝑥𝑦𝑔𝑒𝑛 0.25 mM [197] – 

0.82 mM [202] and 𝐾𝑚 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 around 33 mM [203] – 110 mM [202] for GOx from Aspergillus 

niger. In Equation 17, kcat is the catalytic constant or turnover number (number of molecules of 

substrate that one molecule of enzyme can convert into product(s) in one unit of time), [E0] is 

the total concentration of enzyme at the start of the experiment, and Km oxygen and Km glucose are 

the Michaelis constants (concentration at which the reaction rate is half of the limiting rate, 

where the enzyme is saturated by the substrate) of oxygen and glucose, respectively [204]. The 

reaction mechanism initiates with the rapid formation of an enzyme-substrate complex, 

followed by the reduction of FAD. After release of the formed product (glucono-δ-lactone), the 
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active reduced form of the enzyme (FADH2) is then oxidized by oxygen, generating hydrogen 

peroxide (and FAD) [197], [198]. 

 
Figure 7 – Scheme (according to the Cleland notation) of the Ping Pong Bi Bi mechanism for GOx, where E is the 

oxidized form of GOx, F is the reduced form of GOx, A is the β-D-glucose, P is the glucono-δ-lactone, B is the oxidizing 

substrate (e.g. oxygen) and Q is the reduced oxidizing substrate (e.g. hydrogen peroxide) (from [198]). 

 

Equation 16 

  

Equation 17 

  

The reaction of GOx using oxygen as the oxidizing agent generates hydrogen peroxide, 

which is harmful and toxic to most organisms, Thus, in nature, these enzymes are often coupled 

with peroxidases (enzymes capable of reducing hydrogen peroxide) [205], and especially, 

catalase. 

2.1.3.2 Catalase 
Catalase (EC 1.11.1.6), which was identified as a new enzyme and named by Loew in 1902 

[206], is mostly an intracellular enzyme found in cells (from plants and bacteria to mammals) 

that contain a cytochrome system. It is presumed to protect cells exposed to ionizing radiation 

by decomposing the hydrogen peroxide produced in the process, but other functions are also 

possible (e.g. oxygen regeneration for re-use by aerobic dehydrogenases) [207]. Catalase is 

currently used in different applications from assessing the state of wastewater, to fabrication of 

biofuel cells and cosmetic materials [208].  

Catalase is a peroxidase capable of decomposing hydrogen peroxide to oxygen and water, 

but also of oxidizing H-donors (e.g. ethanol, phenols) [209]. It has four subunits with a hematin 

(porphyrin heme) prosthetic group each, and an overall molecular weight of 150 kDa [207]. It 

presents a low stability at low enzyme concentrations, due to a mass action effect that leads to 

subunit dissociation [208], [210]. At very high concentrations, thermally induced denaturation 

and aggregation is promoted [208]. It is inhibited by anions such as, acetate, fluoride or cyanide, 

but also compounds like cyanogen bromide, cyanide, azide, hydroxylamine, mercaptoethanol 

and aminotriazole [207]. 

The reaction occurs by formation of an enzyme-H2O2 complex through the iron of the 

prosthetic group (oxidixing the heme to an oxylferryl species), followed by H2O2 decomposition 

where a second H2O2 molecule acts as H-donor (and regenerates the resting state of the enzyme) 

[211]. This reaction is favoured relative to using other H-donors when the substrate 
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concentration is above 0.1 mM [207]. The decomposition of H2O2 does not follow a Michaelis-

Menten kinetics, but for hydrogen peroxide concentrations below 200 mM, apparent Michaelis-

Menten values can be retrieved [211]. However, it is usually considered to follow a first order 

reaction (Equation 18), which is proportional to the concentration of H2O2 (at least up to 50 mM 

of hydrogen peroxide) [209]. Turnover numbers of 5.4x104 s-1 [211] to 3.5x106 s-1 [207] have been 

reported for catalase. 

Equation 18 

 

The reaction of catalase with hydrogen peroxide is exothermic, like the glucose oxidation 

reaction by GOx [197]. Hydrogen peroxide seems to have a significant harmful effect on catalase 

at concentrations above 100 mM [212]. However, addition of hydrogen peroxide and catalase 

solutions has been applied in bioreactors [213], [208] as an alternative to bubbling the 

fermentation broth with air. 

2.2 Goal 

In this chapter, it is intended to provide strategies for the application of a commercially 

available microfluidic system in the study of enzymatic reactions and biocatalyst screening. This 

involved the characterization of the system with a specific enzymatic cascade reaction, the 

oxidation of glucose with glucose oxidase coupled to the decomposition of hydrogen peroxide by 

catalase. The performed reaction was monitored using integrated luminescent oxygen sensors, 

coupled with analytical quantification of the main product (gluconic acid) at the outlet by high-

performance liquid chromatography (HPLC).  

Strategies for in situ oxygen generation and validation of the integrated oxygen sensors 

with external analytical measurements were developed and are also presented. Furthermore, a 

computational fluid dynamic model including the enzymatic reaction mechanism was developed 

to gain a more comprehensive understanding of both the chosen reaction and the performance 

of the used microfluidic system. The model was used to investigate underlying phenomena, such 

as oxygen limitation, reaction dynamics and the influence of chosen materials, to achieve a 

better understanding of the obtained experimental data. 

2.3 Materials & Methods 

2.3.1 Reagents and Materials 
Glucose oxidase (EC 1.1.3.4, type VII, from Aspergillus niger, ≥100,000 U/g solid), 

Catalase (EC 232-577-1, from bovine liver, lyophilized powder, 2000-5000 units/mg protein) and 

Horseradish peroxidase (EC 1.11.1.7, lyophilized, 150 U/mg) were obtained from Sigma (St. 

Louis, MO, USA). Gluzyme® Mono 10 000 BG (Glucose oxidase from Aspergillus niger (23%) 

with 10000 U/g, wheat solids (39%), Sodium Chloride 32%) and water (6%)) was acquired from 

Novozymes (Bagsvaerd, Denmark). D- Glucose (anhydrous) was provided by Fluka 
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(Loughborough, UK). Mono – and di-potassium hydrogen phosphate (anhydrous) were obtained 

from Merck (Darmstadt, Germany). Poly(ethylene glycol) (PEG) MW 6000 was acquired from 

Acrōs Organics (Geel, Belgium). Hydrogen peroxide (PerdrogenTM, 30% (w/w)), Sodium sulphite, 

Sodium hydroxide (reagent grade, 98%, pellets (anhydrous)), Phosphoric acid (85 wt. % in H2O, 

99.99% trace metals basis), Sodium 3,5-dichloro-2-hydroxy-benzenesulfonate (DCHBS) and 4 

Aminoantipyrine (4-AAP, reagent grade) were obtained from Sigma (St. Louis, MO, USA). All 

the solutions for sensor preparation were prepared with 50 mM phosphate buffer pH 7.5. All 

solutions were prepared in buffer. 

The two 10 mm acryl plates that form the custom-made holder were acquired from Rias 

A/S (Roskilde, Denmark). The holder was completed with one 5 mm thick SS304 stainless steel 

plate from Sanistål (Aalborg, Denmark), placed in-between the acryl plates for integration of 

the microfluidic chip. Flangeless polypropylene (PP) fingertight 1.5875 mm (ID) fittings (XP-

201) and flangeless ferrules (P200X) from Upchurch Scientific® (Washington, USA) were used 

to connect polytetrafluoroethylene (PTFE) 1.5875 mm (OD) x 1 mm (ID) tubing (S 1810-12) or 

1.5875 mm (OD) x 0.5 mm (ID) tubing (S 1810-08) from Bohlender (Grünsfeld, Germany). The 

extrusion poly (methyl methacrylate) (PMMA) sheet with thickness of 2 mm of the second 

meander channel was acquired from Nordisk Plast (Assentoft, Denmark). The PMMA plate was 

patterned using laser ablation with a CMA-4030 Laser Engraving machine from GD Han’s 

Yueming Laser Technology co., Ltd (Guangdong, China) and bonded to a 2-mm thick SS304 

stainless steel plate from Sanistål (Aalborg, Denmark) with a 142 µm thick double-sided 

adhesive tape mcs-foil 008 from microfluidic ChipShop (Jena, Germany) also defined with laser 

abrasion.  

2.3.2 Meander microfluidic channel 
The used microfluidic channel to perform the oxidation reactions presented in this chapter 

is a glass and silicon chip developed and batch-produced by iX-factory (now part of Micronit, 

Enschede, Netherlands) in Dortmund, Germany. The microchannel has two main inlets and one 

outlet, with 6 side inlets/outlets. It has a serpentine shape with 18.5 turns, 0.504 m length and 

a total volume of 10.08 µL, while the main inlet branched-channels have a volume of 0.44 µL. 

The 200 µm deep and 100 µm wide microchannel, as well as the seven chambers with the same 

geometry of the sensing areas (3.5 mm length and 1 mm width) were defined in a 675 µm silicon 

wafer by photolithography and deep reactive ion etch. The 1.5-mm inlets for fluidic access were 

fabricated on a glass wafer through powder blasting. The sensor layer was airbrush spray-dried 

onto the glass wafer to a thickness of ~2.2 µm using a silicon stencil and then cured for 24h at 

60 ⁰C. The glass and silicon wafers were irreversibly bonded using an anodic bonding process at 

180 ⁰C, 1000 V and 5 kN pressure for 4 h. After bonding, the wafers were diced into chips the 

size of microscopic slides (75.5 mm x 25.5 mm) [174]. The final meander microchannel with 

integrated oxygen sensors is presented in Figure 8. 
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Figure 8 – Schematics of the meander microfluidic channel with the main inlets and outlet emphasized. In orange, 

the five side inlets are highlighted, and in blue one of the seven oxygen sensors is indicated. 

2.3.2.1 Oxygen sensors 
The integrated oxygen sensors were developed and fabricated by the group of Ingo Klimant 

from the Working Group Sensor Materials of the Institute of Analytical Chemistry and Food 

Chemistry at the Technical University of Graz in Graz, Austria [174]. The sensors are based on 

the frequency-domain lifetime luminescence measurement of a luminescent platinum(II) meso-

tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF) sensor dye entrapped in a silicone 

rubber and polystyrene composite matrix [174]. The PtTPTBPF dye is excitable with red light 

(620 nm), and emits in the near-infrared (NIR) range (760 nm), which decreases background 

fluorescence or scattering due to the presence of biological matter. Moreover, the red light used 

for sensor excitation does not damage biological samples such as cells, enabling its use in a wide 

variety of biological applications [174]. The sinusoidally modulated red light excites the 

luminescent dye at a known frequency, which has a phase shift relative to the intensity 

modulated emitted luminescence [214]. Detection is performed by the measurement of the depth 

of modulation and phase angle shift of the emitted luminescence as a function of frequency in 

the presence of oxygen, which quenches the luminescence of the sensor’s dye [215]. The 

quenching behaviour is usually described by a modified Stern-Volmer equation, called the two-

site model, where it is considered that the dye can exist in two different environments that are 

quenchable, but at different rates (Equation 19) [216]. In the equation, 𝐼  and 𝐼0  are the 

luminescence intensity of the sensor in the presence and absence of the quencher (oxygen), 𝜏 

and 𝜏0 the corresponding luminescence lifetime, 𝑓 describes the distribution coefficient between 

the two media, 𝐾𝑆𝑉 is the quenching efficiency for the first environment, while 𝑚 is the factor 

defining the Stern–Volmer constant for the second environment [164], [189]. 

 

Equation 19 

 

These oxygen sensors are capable of measuring oxygen concentrations in solution and gas 

through the measurement of the decrease in luminescent intensity and lifetime as a function of 

the sensor’s oxygen tension [216]. The sensors can be calibrated through a two-point calibration 

using the two-site model to fit the calibration data and the constants from Table 5. These sensors 

have a resolution of 0.2-0.6 hPa (2.46x10-4 to 7.40x10-4 mM of oxygen) at oxygen concentrations 

below 50 hPa (0.06 mM of oxygen) and 1-2 hPa (0.001 – 0.002 mM of oxygen) at ambient air 

oxygen concentrations (8.6 mM of oxygen), with a limit of detection of 0.08 hPa (9.85x10-5 mM 

of oxygen) [174].  
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Table 5 - Constants of two-site model for the sensors used at 25 ⁰C. 

Fixed f  0.83858 

KSV 0.01923 

m 0.09793 

2.3.2.2 Polymeric valve chip 
The used valve microfluidic chip (product code: 19-1850-0155-03) was developed and 

manufactured by injection molding at Microfluidic ChipShop in Jena, Germany. The chip was 

made of polycarbonate and contains two different channels, one with 21 µL volume (and 6 

possible connections to channels) and another with 7 µL volume (and 4 possible connections to 

channels), each with their respective manually turned rotary valve. The microfluidic channels 

defined in the valve chip are 400 x 400 µm [217]. The chip is compatible with 1 mm inner 

diameter male mini Luer fluid connectors. In order to connect this chip to the meander 

microreactor, a strategy was devised involving small portions of PTFE tubing with a wider 

diameter that were used to connect the mini Luer connectors and the 1/16’’ outer diameter PTFE 

tubing compatible with the fingertight connectors used in the microreactor and the modular 

syringe pump system. 

 

 
Figure 9 – Schematics of the turning valve system from Microfluidic ChipShop. In orange, the valve corresponding 

to the 21 µL volume outlet channel and in green the valve corresponding to the 7 µL one. 

2.3.2.2 Permeable meander reactor 
The used PMMA microchannel was also a meandering microchannel with approximately 

100 µm width x 400 µm height and 44 µL volume. The microreactor was defined with one inlet 

and one outlet, that had the same dimensions as the tube used, i.e. 1.6 mm outer diameter. The 

channel was fabricated using laser abrasion and bonded to a stainless steel plate with a 142 µm 

thick double-sided adhesive tape. Plastic o-rings and a small PMMA plate with a hole with 1.6 

mm diameter were used as a simple connector to join the outlet of the silicon and glass 

microreactor to the PMMA microchannel. The o-rings and PMMA plate were kept in place with 

small office binder clips that provided sufficient pressure to avoid leakage in the inlet during 

flow conditions. 

 

 
Figure 10 – Photograph of PMMA meander channel. 
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2.3.3 Enzyme activity measurements 
Activity measurements of Glucose oxidase (GOx) and Catalase (Cat) were performed in a 

UV-1800 UV-Vis spectrophotometer with a CPS 240A cell positioner from Shimadzu (Kyoto, 

Japan). GOx activity was measured using a protocol adapted from Heuts et al. (2007) [218], 

where the hydrogen peroxide formed in the presence of glucose, is used by horseradish 

peroxidase (HRP,  4 U/mL) to oxidize 4-AAP (0.1 mM) and DCHBS (1 mM), forming a 

colorimetric (pink) compound. The formation of this compound can be followed at 515 nm (ε515= 

26 mM-1 cm -1) and its absorbance can be directly related to the amount of glucose consumed. To 

measure GOx activity 10 µL of 1:30 diluted GOx solution (~30 U/mL) were added to 990 µL of 

the reaction mixture. The activity of Cat (~400 U/mL, 0.00241 mM) was measured based on the 

protocols by Beers and Sizer (1952) [219] and Lück (1965) [220], by following the decrease of 

hydrogen peroxide concentration at 240 nm (ε240= 43.6 M-1 cm -1). To measure Cat activity 30 µL 

of 1:10 diluted catalase solution was added to 2970 µL of 10 mM hydrogen peroxide. Each 

spectrophotometric measurement was performed in triplicate for 2 min. 

The average kinetic parameters obtained for the two enzymes from the UV 

spectrophotometer-based assays are presented in Table 6. Table 7 presents the average activity 

of the GOx solutions used during this work and the corresponding nomenclature used 

throughout the text. 

 

Table 6 – Kinetic parameters obtained for GOx and catalase from the UV-based activity assays. 

Kinetic parameters Value 

KM, Glucose 26 - 33 mM 

Vmax 1 - 2x10-4 mM s-1 

kcat, Glucose 300 -500 s-1 

kcatalase 1.1– 2.6 x10-3 s-1 
 

Table 7 – Summary of glucose oxidase enzyme solutions and the corresponding nomenclature used here. 

Name Activity range (U mL-1) Concentration (mol m-3) 

10xGOx 110 – 170 0.006406 

5xGOx 55 – 85 (1:1 dilution of 10xGOx) 0.003023 

1xGOx 15 – 30 0.0006406 

0.5xGOx 7.5 – 15 (1:1 dilution of GOx) 0.0003023 

2.3.4 High-Performance Liquid Chromatography (HPLC) method  

All the reaction samples were analysed in an HPLC for quantification of consumed glucose 

and produced gluconic acid. The measurement was performed with a reversed-phase 

chromatography on an Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA) equipped with a 

Phenomenex column with 5-µm sized amine particles (Luna 5µm NH2 100Å), operated at 40 ⁰C 

and 140 bar. The mobile phase consisted of a 20 mM phosphoric acid (H3PO4) solution, flowing 

at 1 mL/min. The eluted gluconic acid was quantified in the ultraviolet (UV) multiple 

wavelength detector at 205 nm, while the glucose concentration was determined in the Refract 

Max 520 refractive index (RI) detector. The amount of each component was obtained by 

integration of the areas under the corresponding peaks using the HPLC commercial analytical 

software (Chromeleon 6.8), based on a calibration curve performed for each component. Samples 
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were measured mixed with 0.5 M sodium hydroxide (NaOH) solution in a proportion 1:2 of 

solution relative to the sample. 

2.3.5 Oxygen concentration measurements 
 The oxygen measurements inside the silicon meander microchannel were performed using 

four optical fibres ((Plastic fibre cable, simplex fibre 1 mm, PE-jacket 2.2 mm from Ratioplast-

Optoelectronics GmbH, Lübbecke, Germany) connected to a four-channel optical oxygen meter 

(FireStingO2 from PyroScience, Aachen, Germany). The lifetime luminescent measurement was 

performed through Pyro Oxygen Logger software provided by PyroScience with the parameters 

presented in Table 8. 

 

Table 8 – Parameters used for oxygen measurement in the microreactor with FireStingO2 and Pyro Oxygen Logger. 

LED intensity 30% 

Amplification of signal 400x 

Modulation frequency 4000 Hz 

Temperature 25 ⁰C 

Sample rate  1 sample per second 

 

Before each set of experiments, the sensors of the microfluidic chip being used were 

calibrated. Calibration was performed by measuring the dphi values (phase shift of luminescent 

emission relative to modulated excitation light) for 0 % and 100 % oxygen conditions. In this 

case, 100 % oxygen condition corresponded to an oxygen saturated buffer solution, which was 

achieved by shaking the flask containing the solution for several minutes before introducing the 

solution inside the channel. The 0 % oxygen condition was achieved either by adding an excess 

of Gluzyme to a glucose solution or using a solution with a sufficient amount of sodium sulphite. 

In the initial microchannel characterization experiments, this calibration was performed once 

per day, before initiating the experiments. For most of the data presented in this chapter, 

however, a simplified calibration was applied. The 2-point calibration was performed before the 

start of each set of experiments or when some deviation in sensor signal was observed, but not 

every day. Instead, the same dphi values recorded in the calibration were used and a manual 

background calibration (to adjust for the light conditions) was performed daily before initiating 

the experiments. 

Monitoring of oxygen during the experiments was performed by measuring partial 

pressure of oxygen inside the channel with the Pyro Oxygen Logger software. Afterwards, the 

data was extracted in an Excel file and converted to oxygen concentration using the Henry’s law 

(Equation 20), where 𝑝 is the partial pressure of the solute in the solution, 𝑐 is the concentration 

of the solute in the solution, and 𝑘𝐻 is the Henry constant.  

Equation 20 

 

For the calculations, a Henry constant of 811.899 L bar mol-1 was considered, which was 

obtained from an average of Henry constant values presented by Sander (1999) [221]. The 

oxygen concentration values presented in this work were calculated from an average of three 

intervals of oxygen partial pressure values measured during each experiment. Each interval 
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corresponded to the average sampling time at the outlet of one of the three samples measured 

in the HPLC per initial glucose concentration per experiment.  

2.3.6 Oxidation of glucose in the meander microfluidic channel 
The performance of the microfluidic channel in terms of quantification was evaluated 

through the use of an enzymatic cascade reaction, the oxidation of glucose with glucose oxidase 

coupled with the decomposition of hydrogen peroxide by catalase (Figure 11).  

 
Figure 11 – Glucose oxidation reaction with glucose oxidase (a) and hydrogen peroxide decomposition with catalase 

(b). 

Both enzymes were introduced through inlet 1 (the ratio between the enzymes varied 

between the different experiments) and the substrates (glucose and oxygen) were introduced 

through inlet 2, as shown in Figure 12. The glucose solution introduced was always shaken for 

several minutes before introduction inside the channel, so it would be oxygen saturated. It is 

thus assumed that the solution in inlet 2 is oxygen saturated, while the concentration of oxygen 

in the enzyme solution is unknown but lower than in inlet 2. To facilitate the retrieval of the 

samples a 5-cm long PTFE tube (with 0.5 mm inner diameter) was placed at the outlet. This 

corresponded to an added 9.82 µL of reaction volume relative to the volume of the meander 

microchannel. Sampling was performed by submerging the tip of the outlet tube in 100 µL of 

0.5 M NaOH solution, used to stop the reaction and move the product towards gluconic acid 

[222]. The outlet used in the experiments was not the outlet of the reactor due to a limitation of 

the casing built in-house, so the last side inlet was used as the outlet. The syringe pump system 

used to introduce the solutions inside the microreactor was a stepper motor-driven modular 

digital pump Cavro® XP 3000 with two glass syringes with a stroke volume of 250 µL and one 

glass syringe with 500 µL stroke volume from Cavro Scientific Instruments, Inc. (San Jose, 

California, USA). The flowrates were defined using LabViewTM 2010 (v10.0) from National 

Instruments (Austin, Texas, USA). The sensors were positioned in accordance with Figure 12 

to concede a good overview of the progression of the reaction inside the microreactor. 
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Figure 12 – Schematics of the experimental setup used for monitoring the glucose oxidation reaction coupled with 

hydrogen peroxide decomposition, calibration curve determination and increase of oxygen concentration inside the 

channel, with the sampling procedure represented and the position of the four sensors used for measurement 

highlighted. 

2.3.6.1 Characterization of the meander microfluidic channel 
The residence time until detection in the different sensors used for monitoring was 

obtained by introducing water in the channel at a known flowrate (1 µL s-1) and observing when 

a change in sensor signal was observed for the different sensors. The values used for the 

calculations, presented in Table 9, are average values of five experiments. Since the values were 

taken by observation of the raw data, one by one, with an approximate value for the start of 

flow, they have a wide margin of error associated with them, as can be observed in the table 

below. 

 

Table 9 – Average values of residence time obtained for the sensors used for reaction monitoring. 

Sensor position Residence time (s) 

1 3.55±1.4 

2 5.05±1.5 

4 7.55±1.6 

5 9.25±1.5 

 

For the determination of reaction volume, the whole channel was considered, including a 

portion between the fifth side inlet and the main outlet, actually not used. The reaction volume 

considered corresponded to the sum of the volume of the meander microchannel (10.08 µL) and 

the 5-cm tubing connected to the outlet, thus resulting in a total volume of 19.9 µL for the 0.5 

mm ID tubing.  

The microfluidic system was also evaluated in terms of enzyme adsorption by comparing 

a reaction performed with and without polyethylene glycol (PEG). PEG is a hydrophilic molecule 

that preferably adsorbs to the surface, passivating it and decreasing adsorption by the 

biomolecules [223]. A solution of Gluzyme (0.2 g L-1) and a solution of glucose (50 mM), both 

either with or without PEG 6000 (1% w/w) were introduced inside the channel at a flowrate of 

0.4 µL s-1 and monitored for 4 h. A decrease in oxygen partial pressure would indicate the 

occurrence of enzyme adsorption in the channel and thus adsorption and accumulation of GOx 

in the channel. Since no significant decrease of signal was observed during the experiment 

without PEG (Figure 13), enzyme adsorption was not considered to be a major issue in this 

system if proper cleaning procedures were implemented. However, the observed variability in 
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sensor performance between experiments at the same conditions (Figure 13) was thought to 

derive from inaccurate calibration. Thus, to improve sensor performance and decrease 

variability between experiments, the final calibration procedure described in section 2.5 was 

adopted. 

 
Figure 13 – Oxygen partial pressure measurement of experiments with solution with and without PEG 6000, 

performed at the same conditions. 

Characterization of the meander microfluidic channel was initially performed using 

Gluzyme®. However, since the amount and activity of catalase in this enzyme preparation is 

unknown [224], pure GOx and catalase (commercially available) were used for the 

quantification experiments. 

2.3.6.2 Oxygen quantification calibration curve 
In order to achieve a quantitative output of glucose and gluconic acid concentrations from 

the oxygen sensors, reactions with different residence times were executed. These experiments 

were performed at different flowrates and structured to be able to match the residence time in 

oxygen sensor 5, to the residence time at the outlet of the tube, as presented in Table 10. This 

was performed for only one sensor, since it would be extremely time-consuming to perform the 

necessary experiments to match the residence time of each sensor with an equivalent residence 

time at the outlet. Sensor 5 was chosen because it was the last of the monitored oxygen sensors, 

but not the last of the available oxygen sensors thus allowing a reference point before the 

reaction was thought to run to an end. This sensor also resulted in a closer match between the 

flowrate at the outlet and at the sensor between the selected consecutive flowrates. Two 

different concentrations of GOx were used (6.046x10-4 mol m-3 and 3.023x10-4 mol m-3) with a 
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high amount of catalase (830 U mL-1), to achieve a higher range of oxygen vs. glucose and 

gluconic acid concentrations. To achieve the residence times presented in Table 10, experiments 

were performed at 2, 1, 0.5 and 0.25 µL s-1. 

 

Table 10 – Flowrates and corresponding residence times at sensor 5 and outlet used to achieve the sensors calibration 

curve (indicated by the green arrows). 

 

2.3.6.3 Increase of oxygen availability in the meander microfluidic 

channel 

Two strategies were applied to increase oxygen availability inside the microfluidic 

channel: addition of catalase and addition of hydrogen peroxide. Both strategies used catalase’s 

ability to decompose hydrogen peroxide in oxygen and water as in Equation 19 (b). Solutions 

with different amounts of catalase (460 U mL-1, 830 U mL-1 and 2950 U mL-1) or various 

hydrogen peroxide concentrations (0.1 mM, 0.25 mM and 0.5 mM) were introduced at the same 

flowrate (0.34 µL s-1) through the third side inlet of the microchannel, as presented with a purple 

arrow in Figure 12. To account for oxygen present in the buffer, water was also introduced in 

the side inlet, as a third strategy to increase the oxygen concentration in the microchannel. Inlet 

solutions introduced in the main inlets, also at a flowrate of 0.34 µL s-1, contained 5xGOx with 

either 94 U mL-1 or 830 U mL-1 of catalase. The flowrate of 0.34 µL s-1 was chosen in order to 

achieve a total flowrate at the outlet close to 1 µL s-1 and allow a better comparison with the 

experiments performed with only two inlets, with a flowrate of 0.5 µL s-1 at each inlet. 

 

2.3.7 CFD simulations of the oxidation of glucose in the meander 

microfluidic channel 
The same glucose oxidase and catalase cascade reactions performed inside the 

microreactor were simulated using a computational fluid dynamic simulation software, ANSYS-

CFX Version 16.2 (Canonsburg, Pennsylvania, USA). The three-dimensional designs of the 

microchannel and tube geometries were designed using a meshing software, ANSYS ICEM 

CFD® 16.0 (Canonsburg, Pennsylvania, USA), and discretization of the geometry into smaller 

elements (where the equations for momentum, energy and mass balance are solved by ANSYS-

CFX software) was performed (Figure 14). The microchannel geometry contained 478744 

elements (61264 elements/ µL). The geometry of the tube used was divided in the fluid region 

and in the tube region, both defined with o-grids so as to allow a structured circular mesh. The 

0.5 mm ID tubing geometry with both the fluid and tube region has 386561 elements (3852 

elements/ µL). All designs were simulated with a structured hexahedron mesh.  
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Figure 14 – 3D designs of the silicon and glass meander microchannel (a) and 0.5 mm ID tubing and fluid regions 

integrated (b) obtained using the meshing software, ANSYS ICEM CFD® 16.0.  

The simulations were performed with the same flowrates and substrate concentrations as 

used in the corresponding experiments, considering laminar flow (as described in Chapter 1) 

and fluid velocity as the input parameter at the inlets. The outlet was defined as an opening. 

More details regarding the boundary conditions defined in the simulations can be found in 

Appendix III. The velocities used in the simulations and corresponding Reynolds numbers are 

presented in Table 11.  

 

Table 11 – Flowrates used in the experiments and the simulations with the corresponding velocities and Reynolds 

numbers. 

Flowrate 

(µL s-1) 

Velocitychannel 

(m s-1) 
Rechannel 

Velocitytube 

(m s-1) 
Retube 0.5 mm 

2 0.05 7.45 0.01 1.49 

1 0.025 3.72 0.005 0.74 

0.5 0.0125 1.86 0.0025 0.37 

0.25 0.0625 0.93 0.00127 0.19 

 

Oxygen concentration was assumed to be at saturation values (0.258 mM is the solubility 

of oxygen in water at room temperature [225]) in the inlet where glucose was introduced, but at 

a lower concentration (0.19 mM) in the other(s). The lower value of oxygen was chosen by testing 

values between 0.15 mM and 0.2 mM of oxygen for one of the simulations. The kinetic 

parameters were based on the ones obtained in the activity measurements (Table 12), but the 

catalase reaction rate and the kcat of GOx were altered in order to match the experimental values 

of oxygen concentration measured by sensor 5 (reference sensor for the calibration curve).  

 

Table 12 – Kinetic parameters used in the CFD simulation of the enzymatic cascade reaction. 

Kinetic parameters Value 

KM, Glucose 33 mM 

KM, Oxygen 0.3 mM 

kcat, Glucose 250 - 1200 s-1 

kcatalase 2.586 x10-3 – 25.86s-1 

 

The enzymatic cascade reaction was simulated considering the substituted-enzyme 

mechanism of the Michaelis-Menten equation (Equation 17) [201], while hydrogen peroxide 

decomposition was assumed to be a first order-reaction (Equation 21) [209] for the experimental 

conditions tested. The rate constant for catalase was obtained spectrophotometrically for a 

different catalase concentration, so the ratio between the catalase concentration used in the 
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experiment and the one used to obtain 𝒌𝒄𝒂𝒕𝒂𝒍𝒂𝒔𝒆 was added to the rate expression. The turnover 

number (𝒌𝒄𝒂𝒕) was chosen instead of Vmax so that the amount of GOx added in each experiment 

(and which was changed between experiments) could be taken into account in the model.  

 

Equation 21 

 

In the simulation, it was further assumed that the amount of oxygen obtained from the 

reaction should be -𝑣𝑀𝑀 + 0.5 𝑣𝑐𝑎𝑡𝑎𝑙𝑎𝑠𝑒 , according to the reaction stoichiometry (Figure 11), 

meaning that the amount of oxygen corresponds to the amount consumed by GOx (equal to the 

amount of glucose consumed and the hydrogen peroxide and gluconic acid produced) plus the 

amount produced by catalase (which is half of the amount of hydrogen peroxide consumed). 

 

A diffusivity of 4.95x10-11 m2s-1 was assumed for the enzymes [197], 6.7x10-10 m2 s-1 was 

assumed for glucose and gluconic acid, and a value of 2.1x10-9 m2 s-1 assumed for oxygen and 

hydrogen peroxide [226], [227]. The compound concentrations obtained at the outlet of the 

microreactor simulation were used as inputs for the corresponding simulation in the tube. The 

tube material was set to polystyrene with diffusivity for oxygen (the only compound diffusing 

through the tube material towards the fluid) of 2.8x10-7 cm2 s-1 (2.8x10-11 m2 s-1, considered the 

theoretical value) [228]. This value is close to one hundred times slower than oxygen diffusivity 

in water. PTFE oxygen diffusivity values of 2.8x10-6 cm2 s-1 (10 times slower than in water) and 

2.8x10-5 cm2 s-1 (the same order of magnitude as oxygen diffusivity in water) were also considered 

in the simulations. Concentration of oxygen on the outside of the tube was assumed to be the 

atmospheric oxygen concentration, 8.6 mM at 25 ⁰C, calculated from the ideal gas law and 

assuming a molar fraction of oxygen of 0.21. Further simulations were performed, where oxygen 

at the interface between the tube and the fluid was fixed at 0.258 mM (oxygen solubility in 

water), meaning the tube is completely permeable to oxygen. Inside the tube, the same 

diffusivities and kinetic parameters used in the microreactor simulation were also used for the 

fluid simulation. All the materials were simulated considering the materials’ properties 

provided by ANSYS-CFX, and the liquid was defined as water. 

2.3.7.1 CFD simulation strategy 
The objective of the CFD model was to achieve an accurate description of the enzymatic 

reaction performed in the meander microreactor. To assess the similarity of the simulations to 

the executed experiments, two parameters were used for comparison: oxygen concentration in 

sensor 5 (for evaluation of the simulations performed in the microreactor geometry) and 

measured gluconic acid concentration at the outlet (evaluation of meander and tube simulations 

by comparison with the HPLC measurements).  

In order to mimic the enzymatic reaction in the silicon meander channel, different 

parameters defined as input in the simulation (kinetic parameters and inlet oxygen 

concentration) were evaluated. For this purpose, one experiment (5xGOx + 94 U/mL catalase at 

1 µL s-1) was chosen as the reference for model parameter optimization, since it was the 

reference to assess the effect of added catalase and hydrogen peroxide in the increase of oxygen 

availability experiment. For the reference simulation, at the experimentally used enzyme and 
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substrate amounts, the concentration of oxygen in inlet 2 and GOx turnover number (𝑘𝑐𝑎𝑡) were 

varied between 0.15 and 0.20 mM and between 50 s-1 and 4000 s-1, respectively. The different 

values were simulated only for the meander channel geometry, until an oxygen concentration 

in sensor 5 was reached that matched the value obtained experimentally was reached.  

Then, the oxygen concentration in inlet 2 (0.19 mM) and turnover number (300 s-1) that 

resulted in the best match with the experimental data were used to simulate all the performed 

experiments in the meander channel geometry. In addition to the mentioned input parameters, 

each simulation was defined with the enzyme, glucose and hydrogen peroxide concentrations, 

as well as the flow velocities used experimentally. In the cases where the oxygen concentration 

in sensor 5 did not match the experimental values, new values for the kinetic parameters were 

used. The kinetic parameters (GOx turnover number and catalase reaction rate) were varied 

within the range presented in Table 12. In the experiments with added hydrogen peroxide and 

catalase, since catalase should have a prominent role, the reaction rate for catalase (kcatalase) was 

varied between 0.002586 s-1 and 25.86 s-1. In the experiments for the different residence times, 

since GOx should have the highest influence, the turnover number was again varied, between 

300 s-1 and 1200 s-1. Unexpectedly, for some simulations corresponding to experiments 

performed at similar conditions, different kinetic parameters resulted in the best fit of oxygen 

values at sensor 5, indicating possible variations in the experimental conditions that were not 

previously observed. However, in order to allow the comparison of the different simulations, the 

simulations within a given set of experiments (e.g. calibration curve or amount of GOx) were 

simulated using the same kinetic parameters, as can be seen in Table 13. The selected 

parameters corresponded to the values that resulted in the best match with oxygen sensor 

values for the majority of the simulations within a set of experiments.  

The values obtained from the simulations in the meander geometry were afterwards used 

as inputs in the corresponding simulations in the tube geometry. The same set of parameters 

was used, and the concentration values of glucose, oxygen, gluconic acid and hydrogen peroxide 

at the outlet of the meander, were used as inlet concentrations of these compounds in the tube 

simulations. The effect of oxygen diffusivity in the PTFE outlet tube, as well as catalase’s 

reaction rate in the final gluconic acid production was also assessed in the tube geometry 

simulations. The value of the catalase reaction rate was varied between 0.002586 and 25.86 s-1 

only in the tube, to see whether catalase kinetics could change with increased concentration of 

hydrogen peroxide (in a case were no extra hydrogen peroxide was added). Also, the 

concentration of oxygen at the interface between the tube and the fluid was either fixed at 0.258 

mM (maximum concentration of soluble oxygen) or varied between 2.8x10-7 and 2.8x10-5 cm2 s-

1, to check how much the amount of oxygen diffusing through the tube can affect the final 

product concentration obtained.  

Table 13 presents a summary of the simulation parameters varied in each simulation, as 

well as the final value used to obtain the data presented in this chapter.  The simulations were 

performed at different glucose concentrations since not all experiments were performed at the 

full glucose concentration range (5 to 200 mM). Thus, the simulations corresponding to sets of 

experiments where lower glucose concentrations were used in some of the experiments, were 

performed at a lower glucose concentration, as for the experiment set “Amount of GOx” and 

“Calibration curve”.
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Table 13 – Summary of the simulations performed and corresponding varied and selected parameters. 

Simulation name 
Experiment 

set 

[Glucose] 

(mM) 

kcat (s-1) 

used 

kcat (s-1) 

range 

kcatalase (s-1) 

used 

kcatalase (s-1) 

range 

Oxygen 

diffusivity in the 

tube (cm2 s-1) 

used 

Oxygen 

diffusivity in the 

tube (cm2 s-1) 

range 

10xGOx 

Amount of GOx 

5 300 250-1000 - - 2.8x10-6 - 

5xGOx 5 300 250-1000 - - 2.8x10-6 - 

1xGOx 5 300 250-1000 - - 2.8x10-6 - 

5xGOx+94 U/mL 

In
cr

e
a

se
 o

f 
o
x
y
g
e
n

 

a
v
a

il
a
b

il
it

y
 

50 300 50-4000 2.586x10-3 - 2.8x10-6 - 

5xGOx+830 U/mL 50 300 - 2.586x10-3 - 2.8x10-6 - 

5xGOx+94 U/mL+0.25 mM H2O2 50 300 - 2.586 
2.586x10-3-

25.86 
2.8x10-6 

- 

5xGOx+830 U/mL+0.25 mM H2O2 50 300 - 2.586 
2.586x10-3-

25.86 
2.8x10-6 

- 

5xGOx+94 U/mL+830 U/mL 50 300 - 0.2586 
2.586x10-3-

25.86 
2.8x10-6 

- 

5xGOx+830 U/mL+830 U/mL 50 300 - 0.2586 
2.586x10-3-

25.86 
2.8x10-6 

- 

5xGOx+94 U/mL+H2O 50 300 - 2.586x10-3 - 2.8x10-6 - 

5xGOx+830 U/mL+H2O 50 300 - 2.586x10-3 - 2.8x10-6 - 

1xGOx+830 U/mL 

C
a
li

b
ra

ti
o
n

 c
u

rv
e
/ 

R
e
si

d
e
n

ce
 t

im
e
 

50 1000 800-1000 2.586x10-3 - 2.8x10-6 - 

0.5xGOx+830 U/mL 50 1000 800-1200 2.586x10-3 - 2.8x10-6 - 

1xGOx+830U/mL (4.625 s) 10 1000 800-1000 2.586x10-3 - 2.8x10-6 2.8x10-6-0.258 mM 

1xGOx+830U/mL (9.25 s) 10 1000 800-1000 2.586x10-3 

2.586x10-3-

25.86 (in the 

tube) 

2.8x10-6  

(but 2.8x10-7 in the 

different kcatalase in 

the tube 

simulations) 

- 

1xGOx+830U/mL (18.5 s) 
10 1000 800-1000 2.586x10-3 - 2.8x10-6 - 

200 1000 800-3000 2.586x10-3 - 2.8x10-6 - 

1xGOx+830U/mL (37 s) 10 1000 800-1000 2.586x10-3 - 2.8x10-6 2.8x10-6-0.258 mM 

0.5xGOx+830U/mL (4.625 s) 10 1000 800-1200 2.586x10-3 - 2.8x10-6 2.8x10-6-0.258 mM 

0.5xGOx+830U/mL (9.25 s) 10 1000 800-1200 2.586x10-3 - 2.8x10-6 - 

0.5xGOx+830U/mL (18.5 s) 
10 1000 800-1200 2.586x10-3 - 2.8x10-6 - 

200 1000 800-3000 2.586x10-3 - 2.8x10-6 - 

0.5xGOx+830U/mL (37 s) 10 1000 800-1200 2.586x10-3 - 2.8x10-6 2.8x10-6-0.258 mM 
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2.4 Results and Discussion  
In this chapter, an enzymatic cascade reaction was used to test the applicability of a 

commercially available meander microchannel with integrated oxygen sensors to the study of 

enzymatic reactions. The goal was to obtain quantitative data on the reaction progress, as well 

as to assess the limitations of the channel regarding its intended application. The silicon 

meander microchannel was thus tested using commercially available purified enzymes, to allow 

a good degree of control on the proportion of enzymes used in the experiments. This information 

was then applied, together with the kinetic parameters obtained from the activity 

measurements performed, as input in the built CFD simulation.  

 

The CFD simulations were executed as a complement of the experimental work, in order 

to aid in the analysis of the obtained data and provide a higher degree of understanding of the 

reaction occurring inside the microfluidic channel. This was deemed necessary due to the low 

concentrations of product measured (<1 mM) and significant degree of variability of the data 

measured in the HPLC (an average of ±0.35 mM for glucose measurements and ±0.04 mM for 

gluconic acid measurements). This variability can be caused by the manual sampling method, 

where the depth of the tubing in the sodium hydroxide (NaOH) solution and the time at which 

the sampling vial is removed from the outlet may add to the observed variability despite the 

care taken to avoid its influence on the data measured. Another concern that led to the 

development of the CFD model was the difference in the mass balance of the HPLC measured 

samples. An average difference of 1.2 mM±1.6 mM was obtained between the glucose and 

gluconic acid samples, which is higher than the amount of gluconic acid produced. At first, such 

difference was thought to occur due to glucose or gluconic acid decomposition in the presence of 

sodium hydroxide. Both the concentration and amount of added solution to the reaction samples 

was decreased, and despite some decrease in mass balance difference, the difference was 

maintained to a large extent. Therefore, part of the observed mass balance difference probably 

corresponds to the amount of hydrogen peroxide produced that is not converted to oxygen by 

catalase, and which was not quantified in the experiments. 

2.4.1 Experimental results 

A well-studied reaction (oxidation of glucose by glucose oxidase (GOx)), resulting in a 1:1 

stoichiometric consumption of oxygen and formation of product, was chosen to achieve a 

quantitative understanding of an enzymatic reaction based on the integrated oxygen sensors.  

Knowing the amount of oxygen present, the amount of oxygen consumed would correspond to 

the amount of product (gluconic acid) formed. The position of the oxygen sensors along the 

channel can further enable the knowledge of the concentration of product at different residence 

times, corresponding to the sensor positions, thus providing additional information on the 

reaction. However, in a closed system such as the silicon and glass channel, the amount of 

oxygen available is limited by the amount of oxygen provided, which is the oxygen solubility. 

Hence, at certain glucose concentrations and GOx amounts, oxygen limitation may be reached.  
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2.4.1.1 Range of enzyme concentration 

Figure 15 presents HPLC results of the amount of gluconic acid measured at the outlet for 

different initial glucose concentrations and GOx activities. If the outlet tube was impermeable 

to oxygen, the maximum gluconic concentration obtainable would be limited to the oxygen 

amount inside the channel, the oxygen solubility (0.258 mM). Since for most of the experiments 

performed the value obtained was above 0.258 mM, it implies that the PTFE tube used at the 

outlet is permeable to oxygen and therefore the diffused oxygen was involved in the reaction as 

well. 

As can be observed, a higher concentration of product is obtained with the increase of 

enzyme activity. However, for the highest activity used (150 U/mL), a very low concentration 

was measured and results for only two glucose concentrations were possible to obtain. The 

amount of gluconic acid produced was very similar to the values measured for the lowest GOx 

activity tested. This could indicate that a very low activity of GOx had actually been used in the 

experiments. However, in Figure 16 the oxygen measurements for the different GOx activities 

are shown, and it can be observed that the profile for the highest and lowest GOx activity 

measurements are quite distinct. At the highest GOx activity, oxygen was consumed very fast 

inside the channel (Figure 16), since for the first sensor a very small concentration of oxygen 

was obtained for the lowest glucose concentration. Oxygen limitation was thus probably reached 

in the first portion of the channel and as a consequence the reaction was unable to proceed. As 

the value obtained at the outlet was close to the amount of oxygen present inside the channel 

(0.258 mM), it suggests that the reaction was also not performed in the outlet tube when oxygen 

was again available, indicating a possible enzyme inactivation.  

For the remaining tested GOx amounts a higher concentration of gluconic acid was 

measured with increasing GOx activity.  

 
Figure 15 - HPLC measurements at the outlet of the tube for the experiments performed with different amounts of 

GOx without the presence of catalase. 
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Figure 16 – Oxygen concentration, calculated from oxygen partial pressure values, at the four oxygen sensors for 

the experiments performed with different amounts of GOx without the presence of catalase. 

2.4.1.2 Oxygen sensor calibration curve 

Characterization of a new enzyme or comparison of different enzymes, involves the 

measurement of product formation and/or substrate consumption, so kinetic parameters, 

substrate specificity, reaction time, etc. can be ascertained. To perform enzyme studies with 

unknown enzymes in the presented meander channel, a correlation between the oxygen values 

measured in the sensors and the product concentration measured in the HPLC at a given 

residence time is necessary. Thus, a calibration curve was established where a reference sensor 

was chosen and its oxygen concentration matched to a gluconic acid concentration measured at 

the outlet at an equivalent residence time, as presented in Table 10.  

To achieve the calibration curve, experiments were performed at four residence times and 

two enzyme concentrations for six glucose inlet concentrations (Figure 17). The enzyme amounts 

were selected based on the previous range of enzyme concentration experiments (section 

2.4.1.1). The amount of enzyme that allowed performing experiments at longer residence times 

without achieving oxygen limitation (1xGOx) was chosen. Experiments with half that amount 

(0.5xGOx) were also performed in order to have a higher number of experimental points.  

As expected, an increase in gluconic acid concentration was obtained with increasing 

residence time (except for 79.6s, 1xGOx, 10 mM), and at a higher enzyme concentration. It is 

also possible to observe a product concentration plateau for the higher glucose concentrations 

used (50 mM, 100 mM and 200 mM), especially with the increase in residence time. Considering 

a Michaelis-Menten kinetics, these concentrations could correspond to the substrate saturation 

of the reaction, meaning that the maximum reaction rate (Vmax) had been reached. Hence, in 

this case, with the increase of residence time, a constant increase of product concentration would 

be expected. However, as can be observed below, gluconic acid concentration at the longest 

residence time (79.6 s) is the same (for 1xGOx) or only slightly higher (for 0.5xGOx) than the 

product concentration at half that residence time (39.48 s). This again points towards the 

occurrence of oxygen limitation in the meander channel under the reaction conditions in the 

meandering channel. 
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Figure 17 – Gluconic acid concentration for the GOx and catalase reaction performed at different residence times. 

The data of the reaction performed at different residence times was used to obtain a 

calibration curve for oxygen sensor 5, by plotting the gluconic acid values measured in the outlet 

of the tube against the oxygen concentration values measured at the sensor (Figure 18), as 

presented in Table 10. The calibration curves for the two tested GOx amounts present similar 

slopes (1.5 – 1.9 mM of gluconic acid produced per mM of oxygen available). This is in agreement 

with the assumed enzymatic cascade reaction stoichiometry, since if all the hydrogen peroxide 

is converted to oxygen, then for each 1 mole of consumed oxygen, half of the produced hydrogen 

peroxide can be reconverted to oxygen, and 1.5 mM of gluconic acid is produced. However, the 

previous presented data indicates the occurrence of oxygen limitation, which means that no 

significant conversion of hydrogen peroxide to oxygen occurs. Thus, the obtained slope should 

be smaller (between 1 and 1.5 mMproduct mMoxygen
-1). The correlation factor of the obtained slopes 

was improved when data acquired for the higher glucose concentrations (under oxygen 

limitation) was disregarded. Simultaneously, the slope of the calibration curves increased to 

values above the ones expected from the reaction stoichiometry.  

The trends obtained for the calibration curves in Figure 18 can thus be an artifact with no 

real biological meaning, resulting from the high variability of the experimental data and the 

low oxygen concentration at the reference sensor. 
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Figure 18 – Calibration curves obtained from experimental data considering experiments up to 25 mM initial glucose 

concentration (a) or all experiments (b). 

2.4.1.3 Increase of oxygen availability inside the channel 

As observed in the previous section, oxygen limitation may be easily achieved in this 

microfluidic system, which can be an issue when performing enzyme screening and reaction 

characterization. Hence, as a possible solution, different strategies capable of increasing the 

oxygen concentration inside the system were tested. These strategies involved the introduction 

of a solution through one of the side inlets (between sensors 2 and 4) available in the silicon 

meander channel. This side inlet was selected due to its position close to the middle of the 

microreactor, where a significant decrease of oxygen concentration was expected to occur, and 

between two of the monitoring points thus allowing a good evaluation of the success of the 

different applied strategies.  

The strategies tested were: 

• Increase amount of provided catalase; 

• Introduction of oxygen saturated water (through the side inlet); 

• Introduction of extra solution of catalase (in different amounts through the side inlet); 

• Introduction of hydrogen peroxide (at different concentrations through the side inlet). 

 

Figure 19 presents the summary of the experimental data. As can be observed, a small 

increase of product concentration was obtained when catalase was added relative to the 

situation where only GOx is present, but addition of water or extra catalase solutions did not 
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yield a significant increase of the gluconic acid concentration. If the amount of hydrogen 

peroxide produced is very small, then addition of increasing amounts of catalase would yield no 

effect. However, hydrogen peroxide production should be close to the amount of produced 

gluconic acid, according to the reaction stoichiometry and so sufficient to generate at least 0.10 

mM of oxygen. Another explanation is that since the amount of gluconic acid present is 

approximately the same for the experiments with extra catalase, the catalase reaction rate 

should be similar between the different experiments, thus resulting in a similar oxygen 

production from the hydrogen peroxide formed. 

The addition of hydrogen peroxide, on the contrary, resulted in an up to 3-fold increase of 

the amount of gluconic acid produced. Product concentration increased both with concentration 

of hydrogen peroxide and amount of catalase present. During the experiments with the highest 

concentration of hydrogen peroxide (0.5 mM), and the highest amount of catalase (830 U/mL), 

production of oxygen bubbles in the outlet tube was observed, meaning oxygen was being 

produced in a concentration above the water saturation level (0.258 mM). Since oxygen bubbles 

can get trapped in the sensors’ chambers, this was considered to be the maximum dose of 

hydrogen peroxide and catalase that could be added in this system for the GOx concentration 

used. Also, since hydrogen peroxide can lead to enzyme inactivation, higher concentrations or 

at higher residence times were not considered.  

 

Figure 19 – HPLC measurements at the outlet of the tube for the experiments performed towards increasing oxygen 

availability in the silicon meander channel. 

Even though the oxygen concentration inside the channel can be increased with the 

presented strategies, when using the silicon meander channel for studying an unknown reaction 

or cascade reaction, these strategies may not be applicable. There are, however, other strategies 

for in situ oxygen generation, mostly applied in cell culture applications. These strategies can 

involve: 

• a constant flow of air or oxygen gas in the channels or in parallel chambers, which 

requires the use of bulky pressurized gas cylinders and complex fluidic connections 
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[229]. This strategy would not be compatible with the presented system, since 

addition of a flow of oxygen would perturb the oxygen measurements; 

• Spatially confined chemical reactions capable of creating (or scavenging) oxygen, 

such as pyrogallol and sodium hydroxide for scavenging and hydrogen peroxide 

and sodium hypochlorite for generation. The reactions occur in channels parallel 

to the cell culture one, taking advantage of the high permeability to oxygen of 

PDMS. Furthermore, by controlling both reaction rates, different oxygen gradients 

can be created inside the cell culture chambers [229]. This strategy would also not 

be compatible with the presented system, since integration of membranes or 

permeable parallel channels would require a considerable change in design; 

• Titanium/ Platinum microelectrodes positioned in channels below the culture 

chamber, where the amount of oxygen generated is directly proportional to the 

amount of current running between the anode and the cathode. A special care must 

be taken in order to quantify and control the amount of reactive oxygen species 

generated during water electrolysis, which are damaging for biological samples 

[230]. These electrodes could be integrated in the channel in a similar approach as 

the oxygen sensors, requiring a membrane to avoid formation of bubbles inside the 

channel; 

• Photocatalytic cells, that mimic a part of the photosynthesis (Photo System II) to 

generate oxygen from water, are based on the indirect interaction of ultraviolet 

UV light with a semiconducting titanium dioxide (TiO2) thin film [231], [232], 

[233]. TiO2, however, is also used for disinfection of water due to its anti-microbial 

properties when illuminated and so its application to most cell-based biocatalytic 

applications can only occur if there is no direct contact between the thin film and 

the cells, and no accumulation of reactive oxygen and peroxide species [234]. This 

strategy would also require a change in channel design since silicon is not 

transparent to UV light and illumination should not be through the top of the 

channel since UV affects biological materials. 

 

Furthermore, by adding catalase and/or hydrogen peroxide, the values measured by the 

integrated oxygen sensor cannot be directly used. A well-characterized model of the reaction 

could be used instead to predict product formation and oxygen levels. 

This platform is thus more suitable for studying enzymes with a low activity or highly 

diluted samples. However, by greatly decreasing the amount of enzyme used, the concentration 

of product at the outlet would also be greatly reduced which could lead to issues in the validation 

of the oxygen measurements. The same issue could be met if a slower reaction would be studied. 

The balance between enzyme amount, reaction kinetics, residence time, substrate concentration 

and product concentration are part of the development and optimization of an enzymatic-based 

system, and the integration of oxygen sensors can facilitate a fast optimization of such 

parameters by allowing an overview of the (oxidation) reaction proceeding inside the reactor. 

Moreover, it can allow a fast observation of the effects of other substrates or compounds that 

can be introduced through one of the 6 side-inlets available. 
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2.4.2 Simulation data 

During the experimental work, as mentioned in the previous section, unexpected 

phenomena were observed. A very small product concentration was obtained for the highest 

GOx activity tested. Furthermore, even though the obtained calibration curve presented a slope 

concurring with the expected cascade reaction stoichiometry, the indication of oxygen limitation 

in the channel renders it questionable. Finally, when testing different strategies to increase 

oxygen concentration inside the channel, no significant variation in product at the outlet was 

observed with the increase of the amount of catalase. 

To achieve a better understanding of the observed phenomena and attain a better 

characterization of the microfluidic system, a computational fluid dynamic model, including the 

enzymatic cascade reaction, was developed, as explained in section 2.3.7. In the simulation, the 

experimental conditions and spectrophotometrically measured kinetic parameters were used as 

initial inputs. By comparing the simulations with the experimental data, an optimization of the 

input parameters, especially enzyme reaction rate and oxygen diffusivity in the tube, was 

performed. The final obtained input parameters provide an extra insight into the reaction 

occurring inside the meander microchannel, as well as a model that more accurately describes 

it. 

2.4.2.1 Mixing and diffusion effects in the CFD simulation 

To provide confidence in the developed CFD model, the physical characterization of flow 

in the microchannel was performed. Hence, some physical phenomena, known to occur in 

microchannels were evaluated for the developed CFD simulation.  

One such phenomena is the “butterfly effect”, whereby the components on the top and 

bottom of the channels have a longer diffusion length (and thus residence time) than in the 

middle, resulting in a “butterfly” image in the cross section. This effect results from the non-

uniform velocity profile in low Reynolds number systems under pressure-driven flows, which 

generates a difference in residence time of the components in different positions in the channel 

and consequently a wider diffusion region near the top and bottom of the channel [235]. Such 

effect was also observed in the simulations and can be observed in Figure 20.  

 
Figure 20 –Cross-section of the simulated silicon meander channel at 1µL s-1 1xGOx+830 U mL-1 at 10 mM, 

highlighting the “butterfly effect”. 
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Lateral diffusion of the different components and corresponding diffusion coefficients used 

in the CFD simulation were calculated, based on Fick’s law as presented in Nock et al. (2010) 

[227] (Equation 22), where D is the diffusion coefficient, x is the diffusion length perpendicular 

to the flow direction and t is the residence time in the channel. 

Equation 22 

 
As can be observed in Table 14, the diffused distance in a direction perpendicular to the 

flow by the substances is higher than the width of the channel (> 200 µm) for the diffusion 

constants considered in the simulation, and so complete diffusion of substrates and products is 

obtained at both channel locations considered in this work (sensor 5 and tube outlet). However, 

for the enzymes, these only diffuse between 30 and 125 µm (see Figure 21 for residence time in 

sensor 5 of 9.25 s corresponding to a diffusion distance of 43 µm). Access of the enzymes to the 

substrates is then only partial and may result in significant gradient generation across the 

channel cross-section.  

 

Table 14 – Lateral diffusion of the different components achieved at the position of the reference sensor and the 

outlet according with Fick’s law [227]. 

Components D (m2 s-1) tsensor 5 (s) xsensor 5 (m) toutlet (s) xoutlet (m) 

Oxygen and 

hydrogen peroxide 
2.1x10-9 

4.625 1.97x10-4 9.95 2.89x10-4 

9.25 2.78x10-4 19.9 4.10x10-4 

18.50 3.94x10-4 39.8 5.78x10-4 

37.00 5.57x10-4 79.6 8.18x10-4 

Glucose and gluconic 

acid 
6.7x10-10 

4.625 1.11x10-4 9.95 1.63x10-4 

9.25 1.57x10-4 19.9 2.31x10-4 

18.50 2.23x10-4 39.8 3.27x10-4 

37.00 3.15x10-4 79.6 4.62x10-4 

  4.625 3.03x10-5 9.95 4.44x10-5 

Enzymes 4.95x10-11 [197] 9.25 4.28x10-5 19.9 6.28x10-5 

  18.50 6.05x10-5 39.8 8.88x10-5 

  37.00 8.56x10-5 79.6 1.26x10-4 

 

 
Figure 21 – Simulated 1xGOx diffusion at 1 µL s-1 along the channel considering D=4.95x10-11 m2 s-1. 
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Simulations were also performed considering the enzyme diffusion as being the same as 

for the substrates (6.7x10-10 m2 s-1), meaning one order of magnitude faster than the theoretical 

value. Different experiments and corresponding simulations, at different conditions (e.g. 

presence or absence of catalase, different residence times, introduction of solutions through a 

side inlet) are presented in Figure 22. All were simulated considering the two diffusion values, 

and results are presented side by side (in blue) and compared with the corresponding 

experimental value (in red).  

The use of diffusion values with one order of magnitude difference resulted in a small 

variation in the oxygen concentration in the sensors, as well as in the concentration of gluconic 

acid at the outlet at the same kcat (250 s-1). The biggest difference between the compared 

simulations was observed for 0.5xGOx+830U/mL (9.25 s), which is highlighted in the figure 

below. However, as can be observed in the data presented in Appendix I, the observed 

differences at the different considered diffusion coefficients, were significant enough to consider 

a different optimal kcat
 for some of the simulations (300 s-1 instead of 250 s-1), while for others a 

kcat of 1000 s-1 was still the value selected. All the values for both simulations are presented in 

Appendix I.  

The small influence of the diffusion coefficient in the data output can be explained if we 

consider that when the enzymes diffuse completely across the channel width, a dilution of the 

enzyme occurs. In this case, half the enzyme amount has access to the entire substrate 

concentration (also half from the inlet concentration). On the other hand, when the enzymes do 

not diffuse completely across the channel width, the enzymes have access to half of the 

substrate. However, their faster consumption in half the channel may further promote the 

substrate diffusion to the portion of the channel containing the enzymes. The resulting 

substrate consumption and product formation are similar, even though a slightly different 

reaction rate was obtained for some of the experiments, and thus a similar overall effect is 

observed. 
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Figure 22 – Influence of the value of diffusivity chosen for the enzymes on the outcome of some of the simulations 

performed. 

Another common effect in microchannels is the development of a parabolic profile (already 

discussed in Chapter 1). This occurs due to a slower velocity of the flow next to the channel 

walls, causing an acceleration in the middle of the channel, as can be observed in Figure 23 (a). 

In Figure 23 (b) it is also possible to observe the effect of the bends of the meander channel and 

their contribution to mixing. The bends induce a centrifugal force on the fluid, causing an 

acceleration towards the outside of the channel, exemplified by the deviation from the center of 

the interface between the two fluids. This rotation is responsible for the asymmetry observed in 

the “butterfly effect”.  
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Figure 23 – Axial cross-sections of the simulated silicon meander channel at 1µL s-1 1xGOx+830 U mL-1 at 10 mM, 

highlighting the parabolic profile with velocity vectors (a) and the influence of the channel bends in diffusional mixing 

(b). 

Even though a parabolic profile is observed, no diffusion in the axial direction seems to 

occur. This is further confirmed, in accordance with the definition presented in Song et al. (2012) 

[235], by the calculation of the Péclet number, Pe (Equation 11), for the different velocities used. 

Axial diffusion can be neglected for Pe larger than 
1

𝑙
=

1
𝐿

𝑊

=
1

𝐿𝑒𝑛𝑔𝑡ℎ

𝑊𝑖𝑑𝑡ℎ

= 1.98𝑥10−4. Pe was calculated 

considering the oxygen diffusivity (2.1x10-9 m2 s-1). 

 

Table 15 – Péclet number values for the different velocities used in the silicon meander channel. 

Velocitychannel 

(m s-1) 

Pe 

0.05 2381 

0.025 1190 

0.0125 595 

0.00625 298 

 

According to Figure 24, especially for glucose, is possible to observe that from the fourth 

sensor spot onward, a relatively homogenous and well-mixed solution is observed. In terms of 

the oxygen concentration, and thus of how representative the oxygen measurements obtained 
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from the integrated sensor spots are, the figure shows a good homogeneity in all the sensor spots 

except for the first one (sensor 1). The performed measurements at the sensor counted as 

reference (sensor 5) can thus be considered as representative of the solution at the corresponding 

residence time.  

 
Figure 24 – Oxygen (top) and glucose (bottom) concentrations along the simulated silicon meander channel at 1µL 

s-1 1xGOx+830 U mL-1 at 10 mM. 

2.4.2.2 Range of enzyme concentration 

Simulations mimicking the reaction with only GOx (section 2.4.1.1) inside the silicon 

meander channel plus outlet tube system were performed with 𝑘𝑐𝑎𝑡 of 300 s-1, 800 s-1 and 1000 

s-1 (a range which includes the values measured spectrophotometrically (300 to 500 s-1) and is 

lower than the value found in literature, 1440 s-1 [236], [202]) (Figure 25). Similar values of 

product concentration (Figure 25 (b)) were obtained except for the 150 U/mL experiment, where 

a much higher concentration of gluconic acid was obtained in the simulation. This clearly 

indicates the occurrence of an issue in the corresponding experiment (e.g. different enzyme 

concentration, lower initial oxygen concentration, enzyme inhibition due to low oxygen 

concentration), while highlighting the usefulness of a reaction model, such as the one presented. 

Parameters such as enzyme concentration and  𝑘𝑐𝑎𝑡 or oxygen concentration could easily be 

varied in the model in order to explain which issue occurred experimentally. This was, however, 

not performed due to time constraints, since the parameters are changed manually in the model.  
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From Figure 25 (b), it is possible to assume that 300 s-1 is the turnover number associated 

with the glucose oxidase used in the experiments, which is similar to the values obtained 

experimentally (300 to 500 s-1). This value resulted in the smallest deviation from the 

experimental product at the outlet. However, if only the oxygen sensor data was available, 

another turnover number, 800 s-1, would be the selected value, which highlights the need of a 

comprehensive data set when validating such models. 

 
Figure 25 - Comparison between the CFD simulations and experiments performed with different amounts of GOx 

and 5 mM initial glucose concentration for (a) the oxygen measured in sensor 5 and (b) gluconic acid measured at the 

outlet of the tube. 

2.4.2.3 Oxygen sensor calibration curve 

Simulations were also performed for the different residence times and enzyme 

concentrations at 10 mM inlet glucose concentration (Figure 26). For this set of simulations, a 

higher kcat of 1000 s-1 allowed to better match the measured oxygen values at sensor 5. This 

value is close to 4-fold the one used in the previous simulations (300 s-1), which indicates that 

the GOx activity measured experimentally was not correct for this enzyme solutions, thus 

resulting in a change in the kinetic parameters that best fit the model. This is again a good 
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example of how models such as the one presented in this work can aid and complement 

laboratory work. 

As expected, from the experimental data presented in section 2.4.1.2 in Figure 17, an 

increase in gluconic acid concentration is obtained with increasing residence time, and a higher 

concentration is obtained for the higher enzyme concentration. However, in the simulations a 

much higher concentration of gluconic acid was obtained for 79.6 s residence time. This can 

indicate that either the experimental residence time was lower than the one considered in the 

simulation (and thus the considered flow velocity was higher), or that there is some factor 

limiting the enzyme performance. A relevant factor could be the concentration of hydrogen 

peroxide present, whose concentration (and hence inactivating effect) would increase with the 

residence time. In the presented simulations, inactivation of the enzymes due to the presence of 

hydrogen peroxide was not considered, since this was not initially assumed to influence the 

performed reactions for most of the experimental conditions tested. 

 
Figure 26 - Comparison between the CFD simulations and experiments performed for different residence times and 

amount of GOx with 830 U/mL catalase present at 10 mM initial glucose concentration for (a) the oxygen 

concentration measured in sensor 5; and, (b) the gluconic acid concentration measured at the outlet of the tube. 

Simulations were also performed at a higher glucose concentration (200 mM) for 

0.5xGOx+830 U/mL Cat and 1xGOx+830 U/mL Cat for the residence time at the outlet of 39.48 

s. As can be observed in Figure 27, the simulations were capable of predicting values of the 

obtained gluconic acid concentration that were similar to the ones achieved experimentally, 

indicating that the observed stabilization of product concentration is most likely due to the 

enzymatic system at the conditions in the tube. It is relevant to highlight that the 

experimentally observed gluconic acid, glucose and oxygen concentrations result from a 



Micro scale reactor system development with integrated advanced sensor technology  

70 
 

combination of the flow conditions applied, the channel geometry, the rate of the enzymatic 

reactions and the diffusion characteristics of the different components involved. In order to fully 

understand the influence of each of these parameters on the reaction dynamics, models that 

account for the influence of flow, geometry and diffusion on reaction dynamics, such as the one 

presented in this chapter, are required. 

From what can be observed in Figure 27, hydrogen peroxide does not seem to yield an 

inactivation effect in the performed experiments, which is expected since according to the 

simulations, concentrations of up to 1 mM (lower than the inactivating concentration) were 

obtained. The divergence between the simulation and the experimental data for the 79.6 s 

residence time is thus most likely due to oxygen limitation conditions, since experiments at 

glucose concentrations higher than 10 Mm could not be performed due to very fast oxygen 

consumption inside the channel. The model was however not capable of capturing this 

phenomenon, and hence further optimization of the kinetic parameters used or oxygen 

diffusivity is required.  

 
Figure 27 – Comparison between the CFD simulations and experiments performed for different glucose 

concentration and amount of GOx at 0.5 µL s-1 for the gluconic acid measured at the outlet of the tube. 

2.4.2.4 Increase of oxygen availability inside the channel 

To avoid reaching oxygen limitation inside the channel, a known amount of catalase was 

added to the GOx reaction. Catalase is capable of decomposing hydrogen peroxide (a side-

product of glucose oxidation) to oxygen and water, in a 1:2 stoichiometry of oxygen to hydrogen 

peroxide. So, for every 0.1 mM of hydrogen peroxide consumed, 0.05 mM of oxygen are expected 

to be produced, assuming that a sufficient amount of catalase is present, in order to maintain a 

minimum oxygen concentration inside the channel and a good control on the amount of oxygen 

provided [210].  

Figure 28 presents a comparison between experimental and simulation data for the 

addition of 830 U/mL of catalase to different concentrations of GOx. It is possible to observe in 

Figure 28 (b), that approximately the same amount of product was obtained for 5xGOx and 

1xGOx, while a concentration above half of 1xGOx was obtained for 0.5xGOx in the experimental 
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data. This again indicates that oxygen limitation was reached inside the channel for the highest 

concentration of GOx, which would explain a similar product concentration as for 1xGOx. On 

the other hand, a very small increase in gluconic acid with increase of GOx concentration was 

obtained for the simulation data, indicating that the influence of GOx concentration on the 

reaction, at the concentrations used is highly dependent on the amount of oxygen available in 

the reactor. Once more, it is possible to observe that the differences between experimental and 

simulated data observed in terms of oxygen values do not always translate into similar 

differences in the gluconic acid values. 

 
Figure 28 - Comparison between the CFD simulations and experiments performed with different amounts of GOx 

at the same catalase concentration and 50 mM initial glucose concentration for (a) the oxygen measured in sensor 5 

and (b) gluconic acid measured at the outlet of the tube. 

The tested strategies to increase oxygen concentration inside the channel (addition of 

water, extra catalase and extra hydrogen peroxide solutions through a side inlet presented in 

section 2.4.1.3, Figure 19) were also simulated. Simulations were performed for two catalase 

amounts at the inlet, and 1 type of side solution (water, catalase 830 U/mL and 0.25 mM). The 

corresponding simulated experiments (Figure 29) showed a similar trend as observed 

experimentally. Added water did not yield an increase in product concentration, but addition of 

extra catalase resulted in a small increase in gluconic acid concentration. In this set of 

simulations, both the extra catalase and extra hydrogen peroxide simulations were performed 
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with an increased kcatalase of 0.2586 s-1 and 2.586 s-1, respectively, compared with 2.586x10-3 s-1 

used for the other simulations. By altering the catalase reaction rate in order to match the 

measured oxygen values, the amount of obtained gluconic acid was slightly increased. Addition 

of hydrogen peroxide resulted in the highest increase, but still smaller (less than 2-fold) than 

the one observed experimentally. Since the difference in oxygen concentration at sensor 5 

(Figure 29 (a)) between experimental and simulated points is small, the difference in product 

concentrations at the outlet (Figure 29 (b)) can be due to a difference in oxygen availability in 

the outlet tube portion, relative to the one of the experiments. However, as the values are 

significantly lower than the experimental ones for the hydrogen peroxide simulation, the 

assumed kcatalase value is probably lower than the real one when hydrogen peroxide is present. 

In Appendix I, Table 2 it is possible to observe that even at the highest tested kcatalase (25.86 s-1), 

the experimental values were not achieved and the oxygen values presented a higher difference 

than with 0.2586 s-1. 

 

Figure 29 – Comparison between the CFD simulations and experiments performed towards increasing oxygen 

availability in the silicon meander channel, for (a) the oxygen measured in sensor 5 and (b) gluconic acid measured 

at the outlet of the tube at 50 mM initial glucose concentration. No experiment was performed corresponding to 
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5xGOx+830 U/mL Cat+830 U/mL. One of the simulations (5xGOx+830 U/mL Cat+830 U/mL Cat) does not have a 

corresponding experiment, because it was only deemed interesting to perform an experiment when performing the 

simulations. 

2.4.3 Observations from the CFD simulations 
Some parameters in the simulations were altered relative to the ones obtained through 

spectrophotometric activity measurements. The catalase reaction rate was one of such 

parameters. As can be seen in Figure 30 (a) it was necessary to significantly increase this 

parameter in order to more closely match the oxygen concentration values measured 

experimentally. This may indicate that the addition of hydrogen peroxide to the reaction, led to 

a change in the catalase reaction rate.  

On the other hand, the GOx kinetic parameters obtained from spectrophotometric 

measurements are apparent kinetic values for the reaction, since they were obtained for a single 

(and not well controlled) oxygen concentration. Furthermore, along with the catalase reaction 

rate, they were measured at different conditions (especially in terms of substrate availability) 

compared to the performed reactions, and thus introduce a deviation from the real case inside 

the microreactor, that the simulations allow to highlight.  

 

Figure 30 – Effect of the use of different rates of hydrogen peroxide decomposition in the CFD simulations and 

comparison with experimental data at 50 mM initial glucose concentration for (a) the oxygen concentration measured 

in sensor 5; and, (b) the gluconic acid concentration measured at the outlet of the tube. These simulations were 

performed considering diffusivity of oxygen in the tube as 2.8x10-6 cm2 s-1. 
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The amount of oxygen diffusing through the outlet tube to the enzymatic solution is also 

an important parameter to consider in the simulations. Thus, simulations were performed 

where either the oxygen concentration at the interface between the tube and the fluid was fixed 

at the maximum possible concentration of soluble oxygen (0.258 mM), or oxygen diffusivity was 

varied between 2.8x10-7 and 2.8x10-5 cm2 s-1. This variation in oxygen transferred through the 

tube was performed for two of the residence time experiments, 9.95 s and 79.6 s residence time 

at the outlet, respectively (Figure 31). When 0.258 mM was considered at the interface, a 

significant increase of gluconic acid concentration was obtained for the highest residence time 

(79.6 s). This increase was obtained even though at the fastest residence time the difference 

between simulated and experimental values is small. The value of gluconic acid concentration, 

however, was more than 2-fold the experimental one, indicating that the amount of oxygen being 

transferred is between the theoretical diffusivity value for PTFE and the maximum oxygen 

concentration (0.258 mM). However, also for the other values of diffusivity simulated (10-fold 

and 100-fold the theoretical value) the gluconic acid concentration at the outlet was higher than 

the experimental value for 79.6 s. When all the simulations were performed with both diffusivity 

values, the 10-fold diffusivity seemed to yield values closer to the experimental data and was 

thus chosen for data comparison in the previous graphs unless stated otherwise (check Appendix 

I). 

 

Figure 31 - Comparison between the CFD simulations and experiments performed at 10 mM initial glucose 

concentration but considering either oxygen diffusivity in the tube or a fixed concentration of oxygen at the interface 

between the tube and the fluid. 

Figure 32 shows the distribution of oxygen concentration inside the tube and inside the 

fluid for the longer residence time and smaller enzyme concentration. It is possible to observe 

that for the smaller oxygen diffusivity value (D theo in the figure corresponds to 2.8x10-7 cm2 s-

1) for the tube, no oxygen or a very low concentration seems to be transferred to the fluid (Figure 

32 (b)). On the other hand, when the oxygen concentration at the interface is fixed at the 

maximum oxygen solubility value, a three-fold increase in oxygen concentration is observed in 

the middle and outlet of the tube, thus explaining the considerably higher product concentration 
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values obtained for this simulation. On the contrary, for the shortest residence time and with a 

higher enzyme concentration, even though increasing the oxygen concentration at the interface 

increases the oxygen concentration in the bulk, the difference relative to the lowest diffusivity 

case is not as sharp, as observed in Figure 33. There is a higher oxygen availability at the inlet 

of the tube in this case, which in turn reduces the influence of oxygen diffusing from the tube. 

The oxygen concentration values obtained at the outlet and in the middle of the tube are very 

similar in this case.  

 

Figure 32 – Oxygen distribution in different regions of the tube and fluid for the longer residence time and 0.5xGOx, 

considering D=2.8x10-7 cm2 s-1 (a) and oxygen distribution in the fluid considering D=2.8x10-7 cm2 s-1 or oxygen 

concentration at the interface equal to 0.258 mM (b). 
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Figure 33 – Oxygen distribution in the fluid considering D=2.8x10-7 cm2 s-1 or oxygen concentration at the interface 

equal to 0.258 mM. 

Besides oxygen diffusivity, the influence of kcatalase for the reaction occurring only in the 

tube region was also tested. In this set of simulations, the possible influence of an increased 

concentration of hydrogen peroxide (relative to the reaction in the meander channel), which 

would result in a different reaction rate for catalase, was tested. Simulations of 1xGOx at 1 µL 

s-1 (19.9 s residence time at the outlet) were performed in the tube for kcatalase values between 

2.586x10-3 s-1 and 25.86 s-1 considering an oxygen diffusivity in the PTFE tube of 2.8x10-7 cm2 s-

1. The latter value of diffusivity was used, instead of 2.8x10-6 cm2 s-1 used in the other 

experiments, to discard the effect of increased oxygen diffusivity. As can be observed in Figure 

34, only kcatalase values above 2.586 s-1 seem to significantly affect the obtained gluconic acid 

concentration. However, even at the highest kcatalase value, the experimentally measured values 

were not achieved, and thus this should not be a significant factor in the reaction occurring in 

the tube.  

 
Figure 34 - Comparison between the CFD simulations and experiments performed at 10 mM initial glucose 

concentration and 1 GOx with 19.9 s residence time but considering different kcatalase values in the tube. 
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A well-characterized model of the reaction could be used to predict product formation and 

oxygen levels. However, as can be observed from the presented simulations, such model may be 

complicated and time-consuming to achieve, especially in terms of the selection of appropriate 

kinetic parameters. The different parameters tested in the simulations were manually changed 

and are thus most likely not realistic values. Coupling of the above CFD model with a 

mechanistic kinetic model, capable of performing parameter optimization, would yield a better 

fit to the data, while simultaneously providing more accurate kinetic parameters. The most 

relevant parameters requiring optimization in the developed model are GOx turnover number, 

catalase reaction rate, oxygen concentration at the inlets and oxygen diffusivity through the 

PTFE tube. Furthermore, even though several mechanistic models, already applied to the study 

of the coupled GOx and catalase reaction, are based on the two-substrate Michaelis-Menten 

kinetic mechanism [202], this is a simplification of the actual mechanism of the enzymatic 

cascade reaction, and may introduce a certain degree of error in the obtained simulation results. 

For example, one of the assumptions is that the amount of oxygen present is considerably higher 

than the concentration of GOx [202], which in the case presented is not always true. Thus, the 

connection to a mechanistic model, where different reaction mechanisms could be rapidly tested, 

would also greatly improve the applicability of this model to other enzymes and/or cascade 

reactions.  

Such a mechanistic model, validated with oxygen imaging experiments, and its usefulness 

has already been demonstrated by Ungerböck et al. (2013) for a similar microreactor and the 

glucose oxidation reaction with GOx [135]. They were capable of modeling the Ping Pong Bi-Bi 

reaction mechanism both for a batch and a microreactor, finding the reaction of the reduced 

form of the enzyme with oxygen as the rate limiting step. Furthermore, they observed that the 

Michaelis-Menten kinetics was able to appropriately describe the reaction in the microreactor. 

They also concluded that for most microfluidic systems, studies can be performed without 

considering diffusion through convection [135]. Tao et al. (2009) developed a mechanistic model 

for the coupled GOx and catalase reaction, which was also validated with experimental oxygen 

measurements with and without cell respiration [237]. They also assumed a Ping Pong Bi Bi 

type mechanism where all the reactions were irreversible for GOx and a first order reaction for 

catalase. However, they observed that at 25 ⁰C, the catalase reaction seemed to have a higher 

order (1.5) than the one assumed and observed at 37 ⁰C (1), apparently depending on 

temperature. They proposed another reaction mechanism for the catalase reaction that included 

the reverse of the first reaction (production of water after reaction with the first hydrogen 

peroxide molecule) [237]. 

 

The use of a mechanistic model coupled with CFD simulation of the reactor and connected 

online or offline with the oxygen sensors integrated in the silicon meander channel would 

significantly improve the amount of information collected from the silicon meander channel, 

since several kinetic mechanisms and parameter values could be compared with the data, both 

from the sensors and from the quantification of reaction components at the outlet. This would 

increase the characterization speed of the reaction and/or enzymes being tested, but also the 

quantification of reaction parameters that are usually difficult to measure experimentally (e.g. 

certain reaction rates, Km of the different substrates in a multi-substrate reaction). 
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2.4.4 Use in a modular platform 
Since the focus of this thesis is the development of a modular microfluidic platform for 

enzyme screening, the silicon meander channel was tested as part of a modular platform by 

connecting it to other simple microfluidic systems: a commercial polymeric valve chip and a 

PMMA meander channel fabricated in-house.  

2.4.4.2 Connection to a valve chip 
The silicon meander channel was connected to a valve microfluidc chip from Microfluidic 

ChipShop as explained in section 2.2.2.2 and the 21 µL volume outlet channel was used as 

presented in Figure 35. A solution of Gluzyme (0.2 g L-1) was continuously pumped through the 

silicon meander channel, while pulses of glucose at different concentrations were introduced 

using the valve system, and alternated with water. 

 
Figure 35 – Schematics of valve chip and silicon meander channel assembly. 

As can be observed in Figure 36, for the majority of the glucose concentrations tested a 

stable value for oxygen partial pressure was obtained when only Gluzyme was present. 

Introduction of glucose caused a rapid decrease in oxygen values, which tended to be faster the 

higher the glucose concentration. Also, a lower value of partial pressure was obtained for the 

slower flowrate used (0.4 µL s-1), since the residence time inside the reactor was increased. 
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Figure 36 – Variation of oxygen partial pressure in sensor 4 when pulses of glucose at different concentration are 

introduced in the silicon meander channel at two different flowrates. 

The two-chip assembly operated for a minimum of 60 minutes at a time without leakage, 

and a rapid effect of the introduced solution was observed with the integrated oxygen sensors. 

Before performing the experiment presented in Figure 36, a test with a food coloring dye (since 

the valve ship is transparent) was performed. This test intended to more precisely time how 

long after switching the valve position (for glucose introduction), it would take for the glucose 

pulse to reach the meander channel (time required to flow through the 21 µL outlet channel 

plus the outlet tube connecting to the silicon meander channel). This visual test, which main 

steps are presented in Appendix II, allowed a more detailed and accurate interpretation of the 

oxygen signal observed during the experiment with Gluzyme and glucose. 

2.4.4.3 Connection to a PMMA meander channel 
The silicon meander channel was also connected to an in-house developed PMMA meander 

channel, as presented in Figure 37. This meander channel was the first version of the thermal 

inactivation platform, whose final version will be discussed in Chapter 5. The enzymatic 

reaction performed in this reactor was used as reference to evaluate the efficiency of the applied 

enzyme inactivation strategy. Without the application of temperature, this channel allowed to 

greatly extend the reaction time to around 132 s (10.08 µL + 79.5 µL of connecting tube + 44 µL 

of PMMA channel), which resulted in a significantly larger concentration of gluconic acid 

(Figure 38). However, as observed before, a stabilization of product concentration occurred for 

the higher initial glucose concentrations. This is an indication that at these concentrations 

oxygen limitation was again achieved, and that the oxygen diffusing through the PMMA 

material can still not compensate the amount being consumed in the reaction. 
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Figure 37 – Schematics of assembly of the silicon meander channel with the PMMA meander channel. 

 
Figure 38 – Concentration of gluconic acid at the outlet of the silicon meander channel and at the outlet of the 

assembled silicon meander and PMMA meander channel, for the same enzyme concentrations. 

2.5 Conclusions 
In this chapter, a commercially available silicon and glass meander microchannel with 

integrated oxygen sensors was investigated as an online monitoring and reactor unit operation 

in a microfluidic modular platform for biocatalyst screening. The silicon meander channel was 

used to monitor the oxidation of glucose by glucose oxidase coupled to the decomposition of 

hydrogen peroxide by catalase. A CFD model of the enzymatic cascade reaction was also 

developed and its prediction compared with the experimental data.  

Oxygen availability was identified as a major issue in the system, since a rapid oxygen 

consumption occurred with increasing enzyme and substrate concentration, which was closely 

mimicked in the performed simulations. 

To increase the applicability of the meander channel, several strategies for increasing 

oxygen concentration inside the channel were tested. These involved either introduction of more 

oxygen, simply by introducing a fresh solution in the middle of the channel, or in situ oxygen 

generation by increasing the amount of catalase present and/or introducing hydrogen peroxide. 
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Hydrogen peroxide introduction allowed to significantly increase the amount of formed product 

at the outlet. However, in this case the obtained simulations under-estimated this value, which 

signifies the kinetic parameter used (kcatalase) was probably also below the real value. 

To validate the information provided by the oxygen sensors, a strategy was developed 

whereby the oxygen concentration in a reference sensor at a certain residence time was matched 

to the product concentration quantified in a standard analytical equipment (HPLC) for the same 

residence time. This strategy allowed a direct connection between the oxygen and product 

concentrations, if the reaction is not at oxygen limitation in the sensor used for reference. In the 

presented experiments, this was a significant issue, but calibration curves with similar slopes 

were obtained, which seems to indicate the feasibility of this strategy. Another approach, would 

be to integrate sensors for the quantification of the other compounds involved in the reaction 

(e.g. glucose sensors) in the same microfluidic platform or in a modular unit in sequence (see 

microfluidic module for sensor integration in Chapter 4). However, to achieve this the reaction 

would have to have stopped at the point of substrate(s)/product(s) quantification. A simple and 

unspecific way of attaining this is thermal inactivation, for which another microfluidic platform 

(presented in Chapter 5) was developed. An alternative to the developed thermal inactivation 

platform, could be in situ heating of the reaction mixture in the tube, immediately at the outlet 

of the silicon meander channel. This would have the added issues of isolating the silicon chip 

from the heat source, while complicating the heating setup required. Another alternative could 

be the introduction of an inactivating compound through one of the last side inlets or in a T-

junction place in the outlet tube. The sensors for quantification would, however, have to be 

immune to the chosen inactivating compound (e.g. sodium hydroxide). 

Several parameters in the CFD simulations were also varied for a single experiment to 

check its possible effect on the obtained simulation output. Even though kcatalase increase resulted 

in an increased gluconic acid concentration at the outlet, its effect is less significant than the 

amount of oxygen diffusing through the outlet PTFE tube, with which it was possible to match 

most of the experimental data. A difference of one order of magnitude was found for PTFE 

oxygen diffusivity relative to the value found in the literature.  

The accuracy of the developed model would be significantly increased if it was coupled 

with a mechanistic model. This would allow a more rapid optimization of the kinetic parameters, 

that could then be iteratively used in the fluidic model, until a close match to the experimental 

output would be obtained. A mechanistic model, developed for example in Matlab®, would also 

increase this fluidic model’s applicability, since different and more complex reaction 

mechanisms could be easily implemented and interfaced with the CFD model, widening its 

applicability to more reactions. 

The microfluidic meander channel was also successfully used as a modular unit with two 

other microfluidic systems, a commercially available polymeric valve and an in-house developed 

PMMA meander channel. The connection between the systems was performed through the use 

of either standardized connectors or in-house built connectors with standard sizes. The 

operation of the silicon meander channel with both these systems proves its compatibility with 

operation in a modular format, which together with the presented reaction characterization, 

makes it a highly useful tool in modular enzymatic screening platforms. 
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Chapter 3 
System for screening whole cell catalysts  

All the cell samples and the experiments presented in this chapter were produced in collaboration with 
Julia Halder and Prof. Bernhard Hauer during an external stay at the Biocatalysis Group, Institut für 
Technische Biochemie, Universität Stuttgart.  

Selective oxidative functionalization of molecules is a highly relevant and often 

demanding reaction in organic chemistry, requiring the use of complex group-protection 

schemes and toxic compounds. Certain enzymes, such as oxygenases, are capable of performing 

selective stereo- and regioselective introduction of oxygen molecules in organic compounds 

towards the biosynthesis of important precursors or chemicals in the pharmaceutical and 

chemical industries, and are also capable of bioremediation by degrading insecticides or 

polyaromatic compounds. Dioxygenases, in particular, are enzymes capable of converting a wide 

variety of interesting arene as well as alkene substrates, and a considerable effort has been put 

in their development towards enzymes with better activity and selectivity for certain 

compounds, This, however, greatly increases the need for screening strategies that allow the 

identification of the adequate properties for the target reaction and/or substrate.  

In this chapter, the meander microchannel with integrated oxygen sensors described in 

the previous chapter (Chapter 2), was applied to the screening of wild-type and variants of 

naphthalene dioxygenase (NDO) from Pseudomonas sp. NICB 9816-4. These variants were 

generated through site-directed mutagenesis to obtain enzymes capable of converting alkenes 

[238]. The oxygen sensors were used to measure the oxygen consumption rate of several variants 

during the conversion of styrene (substrate) to 1-Phenylethanediol (product). The oxygen 

consumption rate can be used to compare the different variants in terms of their ability to 

convert this substrate, and potentially in terms of substrate specificity and reaction rate. It was 

possible to distinguish endogenous respiration from oxygen consumed in the reaction for the E. 

coli cells tested. Furthermore, it was also possible to identify the higher activity and different 

reaction rate of two variants, relative to the wild-type NDO. The meander microchannel with 

integrated oxygen sensors can therefore be used as a simple and fast screening platform for 

selection of dioxygenase mutants. 

3.1 Introduction 

The use of biocatalysts has enabled the production of (new) compounds, with high stereo- 

and/or regioselectivity at milder conditions (lower temperatures, close to neutral pH and 

atmospheric pressure), in a simpler process (no need for protection of functional groups) and 

with less toxic substrates, than the equivalent (when existent) organic chemistry methods [239]. 

Furthermore, they usually present a several fold increase of reaction rate and may be capable 

of catalyzing the conversion of non-natural substrates. Also, biocatalysts: (i) require a lower 
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energy demand that lead to less waste of the catalyst (through recovery and/or immobilization); 

(ii) allow an increased product titer; and, (iii) demand the use of lower amounts of water [239]. 

They can, however, represent a significant fraction of the bioprocess operation cost, due to the 

cost of development, need of co-factors, loss of productivity (from loss of activity at the reaction 

conditions), or complex downstream processing emerging from a low enantioselectivity [240]. 

Nonetheless, by appropriate selection and/or tailoring of the biocatalyst to the desired reaction 

and/or process, this cost can be decreased and the process made lucrative [240]. In 2014, over 

500 industrial products were based on biocatalysis, 150 of which were in the chemical and/or 

pharmaceutical industry  [239].  

3.1.1 Whole cell biocatalysts 

Whole cell biocatalysis involves the use of a microbial cell (bacteria, fungi or yeast cell) 

inside which the conversion of (non-)native substrates into a target product occurs [241]. The 

enzymes involved in the reaction can be from the organism itself but in most cases they are from 

a heterologous source and are inserted in a microorganism (i.e. named genetically modified 

expression host); which is easier to grow, better characterized, considered safe and/or already 

used in industry (e.g. Escherichia coli, Pseudomonas sp., Pichia pastoris, Saccharomyces 

cerevisiae, Bacillus spp., Aspergillus spp., Trichoderma reesei) [239]. The use of whole cell 

biocatalysts has generally a lower cost than isolated or immobilized enzymes, since there is no 

need for enzyme purification, or addition of high amounts of co-factors, while simultaneously 

simplifying the downstream processing [242]. The use of whole cells can additionally increase 

the stability of the catalysts, by providing a protective casing from the reaction mixture [243]. 

The use of whole cells further allows a simpler application of enzymes which are membrane-

bound, part of a multiprotein complex or co-factor dependent. The encapsulation of an enzyme 

in a cell enables a faster reaction due to proximity of all the required components for the 

reaction, such as co-factors, co-substrates or metabolites, besides other enzymes involved in the 

bioconversion. Regarding co-factor (such as NAD(P)H)) regeneration, the use of whole cells 

grants the use of regeneration systems of the host organism or its integration into the host 

organism, hence enabling in situ co-factor regeneration without loss of the often expensive 

compound [240]. The co-factor is regenerated either by using a co-substrate or by enzyme-

coupled systems integrated in or part of the microbial host. The coupling of enzymes requires a 

proper balance between the reaction rates of the different enzymes involved and an efficient 

drive of the enzymatic route towards the target product. However, co-expression of multiple 

enzymes can lead to a high metabolic burden and to a lower catalytic performance. An 

alternative is the expression of each enzyme in a separate organism and combining the different 

organisms for the bioconversion [244]. Whole cell biocatalysts also shield the enzymes from the 

environment enabling reactions at harsher or non-natural conditions [244]. Examples of such 

non-natural conditions are: 

- Biphasic systems of water immiscible organic solvents; 

- Neat substrate systems (NSSs), where the substrates are usually used as solvents, 

allowing a monophasic system environment with minimum water addition and high-

substrate loads; 
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- Micro-aqueous solvent systems, where the advantages of NSSs are maintained but the 

substrates are diluted in another organic solvent; 

- Ionic liquids and deep eutectic solvents, which are less toxic and have a lower 

flammability and vapor pressure than organic solvents. 

The use of whole cell biocatalysts as resting cells, besides separating growth phase from 

catalysis, can moreover decrease the competition of cellular reactions like oxidative 

phosphorylation with co-factor regeneration. On the other hand, in resting cells, changes in gene 

regulation can result in protein or membrane instability or a decrease in intracellular enzyme 

levels, in turn leading to a lower biocatalytic activity [245].  

Whole cell biosystems may, furthermore, result in decreased reaction rate due to 

limitations in substrate mass transport through the cell wall, which can be improved by 

permeabilization of the wall with chemical (e.g. adding organic solvents, surfactants, chelating 

agents or altering the cell wall’s fatty acid content) or physical (e.g. temperature shock, 

electroporation) methods [246]. Other approaches involve the expression of membrane 

transporters, to increase influx of substrate to the cell, or the use of cell surface techniques to 

display the enzymes on the cell membrane, and even temperature-controlled pore-formation 

through the use of lytic phage proteins [244].  

Whole cell catalysts can also be immobilized during the bioconversion, however there are 

less immobilization strategies than for purified enzymes. Nevertheless, whole cell catalysts 

have been immobilized in lentil-like shaped porous polyvinyl alcohol (PVA) carriers from 

LentiKat’s (Prague, Czech Republic), storable for up to 15 months, in ion exchange resins by 

covering with silicon coating (allowing their application in NSSs), and in polyvinylidene 

difluoride membranes (with good recyclability in micro-aqueous conditions) in order to ease 

recovery, increase catalyst load and improve stability and recyclability of these catalysts [244]. 

In whole cell biotransformations the main parameters to be optimized for process 

implementation are the oxygen supply, substrate and product toxicity, product stability and co-

factor recycling [245]. All the above-mentioned parameters need to be fully characterized and 

optimized in order to achieve a cost-effective and productive bioprocess.  

Engineered enzymes in crude or semi purified form are currently considered more 

economically viable than whole cell biocatalysts. They present an increased tolerance to harsher 

conditions (organic solvents, lower or higher pH, high temperature, etc.), can perform the 

reaction at lower concentrations due to their higher activity and are easier to separate and 

remove from the reaction media due to immobilization strategies [247]. Nonetheless, around 

60% of the industrial biocatalysis is performed using whole cell catalysts [242]. 

3.1.1.1 E. coli as a recombinant whole cell catalyst 

E. coli was the first microorganism used as a recombinant host, and has since been used 

extensively. The preference for E. coli is related to its fast growth rates and ability to reach high 

cell densities (average doubling time is 40 minutes [248]) in simple and low cost media. Also, 

the ease in genome modification or integration of new DNA through plasmids, as well as the 

capability of accumulating heterologous proteins up to 50% of its dry cell weight are relevant 

factors for its wide use. However, it cannot be applied to the production of more complex proteins 

(e.g. human protein requiring post-translational modifications). It may also form inclusion 
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bodies where the target heterologous protein might be aggregated and inactive [239]. Recent 

research has shown that it is possible to retrieve some proteins by solubilizing the inclusion 

bodies [249], [250], but it is still preferable to avoid their formation during expression of the 

target protein.  

3.1.2 Dioxygenases 

Oxidative biocatalysts can solve some of the issues in conventional chemical oxidative 

reactions, such as lack of predictability of product structures and cost of oxidizing agents, when 

trying to obtain relevant hydroxy- and oxo- compounds for the pharmaceutical, agrochemical 

and food industries. Oxidative enzymes can also be used in other industries, namely for 

bioremediation, oxidizing insecticides, haloaromatics and polyaromatic hydrocarbons [251].  

Oxidases, peroxidases and oxygenases are oxidizing enzymes, which use oxygen as the 

electron acceptor during the reaction. While oxy- and peroxidases often result in reactive oxygen 

intermediates, which can react non-specifically, oxygenases are quite stereoselective [251]. 

Oxygenases can be involved either in the biodegradation/detoxification of carbon sources and 

toxic compounds, or in the biosynthesis of secondary metabolites (e.g. hormones) [252]. They are 

usually NAD(P)H dependent and can be further divided into monooxygenases and dioxygenases. 

Monooxygenases (e.g. cytochrome P450 BM-3) catalyze the introduction of one oxygen atom in 

the substrate using NAD(P)H as the reducing electron acceptor and are usually dependent on a 

metal, heme group of a flavin. Dioxygenases (e.g. catechol dioxygenase) are multimeric non-

heme iron proteins that can introduce stereo- and regioselectively two oxygen atoms from 

molecular oxygen in the substrate (e.g. aromatic compounds) [253]. A very important group of 

dioxygenases are the Rieske non-heme iron-sulfur oxygenases, which have a Rieske group [2Fe-

2S] coordinated to the protein by two cysteine and two histidine residues [254].  Rieske non-

heme iron-dependent oxygenases (ROs) are best known for the regio- and stereospecific cis-

hydroxylation of aromatic compounds to produce dihydrodiols, but are also involved in several 

catabolic and biosynthetic pathways [255]. These enzymes show a great potential for the 

asymmetric dihydroxylation of alkenes, allowing for a more environmental-friendly process. 

This reaction in organic synthesis (e.g. Sharpless dihydroxylation) uses toxic metallic 

compounds (e.g. osmium(VIII) oxide) and often leads to overoxidation and byproduct formation. 

Furthermore, ROs are capable of catalyzing various oxidation reactions (e.g. 

monohydroxylations, desaturations, oxidative cyclizations) in a variety of substrates, and the 

range of substrates can be increased by changes in the topology of the active site, as 

demonstrated by Gally et al. (2015) [256]. The first ROs identified, Naphthalene and Toluene 

dioxygenases, were discovered in the 1970s and are responsible for the degradation of aromatic 

compounds by Pseudomonas putida. ROs consist of a two- or three-component system that 

includes (i)  a reductase (an electron-transfer protein to obtain the reduction equivalents from 

NAD(P)H), (ii) a ferredoxin (the protein that shuttles the electrons to the active site (in the three 

component systems)), and (iii) an oxygenase (the enzyme that performs the conversion) [254]. 

Naphthalene dioxygenase (NDO), the most studied enzyme in this class, catalyzes the cis-1,2-

dihydroxylation of naphthalene using both oxygen atoms from molecular oxygen. The dioxygen 

reduction occurs by first transferring electrons from the co-substrate (NADH) to a Rieske [2Fe-

2S] cluster within the NDO via a flavin-dependent ferredoxin reductase and a separate 
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ferredoxin. The electrons are then donated to the non-heme iron center in the active site and 

used in the final reduction of dioxygen. A full account of possible catalytic mechanisms for NDO 

is presented in Barry and Challis (2013) [255], a good characterization of the three-component 

system can be found in Kauppi et al. (1998) [257], and the structural influence on enzyme 

substrate plasticity of ROs is presented in Ferraro et al. (2005) [254]. This enzyme has 

demonstrated a great degree of customization, allowing to widen the range of obtainable 

products beyond the ones of the wild-type NDO by site-directed mutagenesis [253].  

In terms of application to biotransformations at industrial scale, oxygenases present some 

limitations due to low stability and dependency on expensive co-factors, as well as the 

membrane-bound nature of some components of the enzyme system. These factors lead to the 

application of oxygenases in whole cell systems in order to stabilize the enzyme and achieve in 

situ co-factor regeneration using the metabolism of the host cells [251]. Furthermore, due to the 

poor water solubility of most oxygenase substrates and products, biotransformations are mostly 

performed in two-liquid phase systems. Additionally, oxygenases usually present relatively low 

turnover rates, which coupled with diffusion limitations in the cell membrane, require high 

expression levels of these enzymes to reach significant whole cell oxygenase activities. 

Uncoupling effects where reduction of molecular oxygen (and thus oxygen consumption) occurs 

without substrate oxidation, result in the production of hydrogen peroxide (two-electron 

reduction) or water (four-electron reduction). This effect can occur in the absence of substrate, 

when the substrate cannot be oxidized or in the presence of compounds that do not properly fit 

the active site. Uncoupling effects can in turn lead to an increase in oxygen demand, as well as 

the production of toxic hydrogen peroxide and a lowered specific activity in the final 

bioconversion [252]. Overoxidation of the substrate, beyond the desired product, can occur under 

non-physiological conditions or when the electron transfer components are fused to the 

oxygenase and may also be an issue with these enzymes [252]. In whole cell systems, the diols 

produced by dioxygenases are usually further metabolized and so blocked variants are 

developed for their production [251]. Moreover, insertion of the oxygenase and auxiliary proteins 

genes in the host’s chromosome might decrease instability of the host cell. Another factor to 

consider in bioconversions with oxygenases is the hydrophobicity of the substrates, which tend 

to diffuse easily through the cell membrane, and can result in cell wall degradation and cell 

death. Some of the toxic substrates require counter mechanisms to be implemented in the host 

cell, the control of substrate concentration (e.g. by substrate addition strategies, using small 

concentrations), or use of solvent tolerant strains [245].  

3.1.2.1  Oxygen influence in cell behavior 

Cellular function, especially in tissues, is dependent not only on the oxygen partial 

pressure but also on the balance between available oxygen and oxygen consumption in the cell 

microenvironment [192].  For human cells, for example, normoxia (normal level of oxygen) is 

usually between 2 and 9% and up to 13% in the lungs, which is significantly lower than the level 

in ambient air (21%). Consumption of oxygen by a static cell culture media is enough to generate 

hypoxic environments, and the rate of consumption is dependent on cell density and metabolic 

rates [192]. Oxygen is used as electron acceptor or oxidizing agent in aerobic metabolic activities, 

but high concentrations of oxygen can be harmful due to the generation of oxygen radicals [258]. 
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Escherichia coli (E. coli) is a facultative anaerobe and can switch between aerobic and anaerobic 

metabolism depending on the nutrients and oxygen concentrations available in the 

environment. According to Polinkovsky et al. (2009) oxygen consumption by E. coli increases 

linearly with the division rate of the cells, being between 20 mmol/h per gram of dry mass at 1 

division/h and 6 mmol/h/g at 0.2 divisions/h [259].  

Strains that express oxygenases require oxygen not only for the bioconversion but also for 

endogenous respiration, and so during the biotransformation the oxygen pressure needs to be 

maintained in order to allow the oxidation reaction to compete with respiration. Maximum 

whole cell oxygenase activities over 10h to 15h are usually lower than 50 U/gcdw, which can be 

improved, by focusing on optimizing some of the aspects mentioned  in section 1.2 above [252].  

Microfluidic systems can enable a good control of diffusion and gradient generation, as 

mentioned in the previous chapters, thus providing the perfect environment for studying the 

influence of oxygen levels on cells. 

3.1.3 Screening of biocatalysts 

Biocatalyst screening, especially for new processes or products or when involving non-

natural substrates, is a complex task, involving different levels of screening. A general strategy, 

presented by Ogawa and Shimizu (1999) [260] can be divided in:  

(1) A process step, during which the final industrial (potential) process is designed, and 

the desired type of enzymatic activity defined; 

(2) A microorganism step, where a selection of microorganisms to be screened for the 

enzymatic activity and/or process conditions is performed; 

(3) A screening step, where the choice or development of a sensitive assay for screening of 

the desired biocatalyst’s characteristics is achieved. 

Step (1) is extremely dependent on the target reaction or product, on the type of product 

(whether it is an intermediate compound, a precursor or the final compound), on the industry 

(inorganic chemistry, agrochemical, pharmaceutical, food), on the required degree of purity or 

enantioselectivity desired, and type of application (for profit or for bioremediation, for example).  

Step (2) can be further divided into three factors [261]:  

(a) If a similar reaction to the target reaction has been reported with a similar substrate, 

the same catalyst or one with the same function should be tested;  

(b) If a new reaction is the target, screening of existing libraries is advised, as well as 

testing of biocatalysts with a broader substrate range; 

(c) If library screening has not yielded a good match for the target reaction, wide 

biocatalyst screening should be performed. 

Although, step (2) can be divided in the latter considerations, it usually involves classical 

techniques such as enrichment-culture (for natural strains), where selection is based on the 

ability to assimilate the target substrate, and isolation strategy [260]. Homology search and 

sequence alignment has enabled the identification of novel biocatalysts and the reconstruction 

of ancestral biocatalysts with a wider substrate range, as well as the establishment of libraries 

of biocatalysts with enhanced characteristics by identifying common amino acids, or their 

substitutions, that yield a certain desired characteristic [247]. This has been especially relevant 

for identifying enzymes from non-culturable microorganisms, by extracting DNA of samples 
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collected from the environment and comparing with DNA-cosmid libraries. However, the use of 

gene-libraries disassociates the enzyme from its microbial function [260], which is important to 

fully understand the potential of the enzyme and the challenges in terms of its applicability. 

Rapid and high-throughput genome sequencing, as well as high-throughput analysis of mRNA 

(e.g. hybridizations on microarrays, providing an overview of gene expression and active genes), 

proteins (e.g. 2D-PAGE) and metabolites (e.g. chromatographic methods coupled with mass 

spectrometry or nuclear magnetic resonance to provide an overview of active metabolic networks 

and response to environmental stress) can provide a lot of information regarding enzymes and 

their possible function in the metabolism of the microorganism [245], [247]. High-throughput 

genome sequencing provides an overview of the genetic background of both culturable and non-

cultivable organisms using platforms such as 454 from Roche, Solexa from Illumina or SoLiD 

from ABI [239]. 

Step (3) is often the most difficult of the three steps. The development and 

characterization of new biocatalysts is frequently hampered by the available screening 

technologies, often limited to the screening of a single substrate or function for the multiple 

variants generated.  

3.1.3.1  Screening strategies 

Methods for biocatalyst screening and variant selection require proper design in order to 

maintain the association between the phenotype observed and the genotype measured [262]. To 

perform screening of biocatalysts from wide enzyme or whole cell catalyst collections, not only 

high-throughput growth systems need to be developed (such as the one developed by Doig et al. 

(2002) using a robotic liquid handling system [154]) but also online quantification and/or 

monitoring of the reaction is necessary.  

The majority of traditional approaches used for screening are performed in vitro, thus 

requiring extraction of the sample from the reaction mixture, or to stop the reaction to perform 

the quantification of the reaction components. However, in vivo screening (when the 

biotransformation/bioconversion is monitored in the microorganisms) broadens the number of 

parameters that can be screened and accelerates biocatalyst development and selection. In vivo 

screening strategies present some limitations associated with the host’s transformation 

efficiency and growth rate, but also the expression of the target enzyme, limitations in substrate 

uptake and intracellular background [263]. Furthermore, the choice of catalyst can be made 

following a selection or a screening approach. A biocatalyst selection approach excludes the 

clones without the characteristics of interest (negative clones), while in a screening approach 

all clones are analyzed and then selected, thus increasing the amount of variants to analyze but 

also the precision of the activity measurements and screened parameters [263]. Screening of 105 

to 108 variants, where the complement of a key step in the metabolic network is required, has 

been achieved with selection methods [264]. In selection approaches, the enzyme activity is 

usually linked to cell survival and growth in a way that only enzymes with the target activity 

are able to survive and/or grow under the chosen selective pressure (e.g. enzymes that 

complement auxotrophy or neutralize lethal conditions). However, this leads to a higher number 

of false positives than with screening approaches. A selection approach also does not always 

enable quantification and hence comparison of, for example, conversion rates [263].  
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Most assays tend to be specific to adequately screen for the intended characteristic, 

involving standard analytical equipment such as mass spectrometry (MS), gas chromatography 

(GC), high-performance liquid chromatography (HPLC) or nuclear magnetic resonance (NMR), 

thus being also quite time-consuming if hundreds or more samples need to be analyzed. 

Enantioselectivity (measured by enantiomeric excess, ee), for example, has been screened using 

electrospray ionization mass spectrometry (ESI-MS), using isotopical labels, capable of 

measuring both kinetic resolution of racemates and asymmetric transformation of substrates in 

up to 1000 samples per day [265]. Derivatization with mass-tagged chiral agents that differ in 

a substituent remote to the chiral center has also been used for screening enantioselectivity by 

ESI-MS. This approach does not require chromatographic separation and is tolerant to reactive 

achiral impurities [266]. MS, GC and HPLC based techniques require however extra steps in 

sample preparation such as extraction of the compounds, removal of organic phase and 

separation in a chromatographic separation, which increases the overall analysis time per 

sample [267]. 

Faster screening methods often involve the formation or consumption of a colorimetric, 

luminescent or fluorescent compound and its intensity is related with the substrate’s affinity or 

turnover rate. For example, NADH and NADPH can be measured spectrophotometrically at 340 

nm or 260 nm. Consumption of hydrogen peroxide can be followed by measuring samples at 240 

nm (usually to measure catalase activity). Horseradish peroxidase catalyzes several reactions 

(using as substrates, e.g. 2,2’-Azino-bis(3-Ethylbenzthiazoline-6-Sulfonic Acid), 4-

aminoantipyrine) that produce colorimetric compounds and can thus be followed 

spectrophotometrically. The last method involving formation of a colorimetric compound by 

horseradish peroxidase has also been applied for screening 960 variants from cultures grown on 

a nylon membrane on top of agar plates. The more intense the color the colony produced, the 

higher the amount of target product, thus enabling the selection of the higher producing 

variants for further characterization [268].  

Screening in agar plates usually occurs by formation or disappearance of color on the agar 

surrounding the incubated colonies or by color appearance on the colonies themselves due to 

bioconversion, providing a straightforward identification of positive colonies. Differences 

between activity or catalytic rates are, however, not easily achieved with this type of screening 

and usually only up to 105 variants can be analyzed [263]. Coupling of this method with 

analytical equipment such as HPLC, GC or MS can also be performed. For example, Yan et al. 

(2017) coupled ambient MS with desorption electrospray ionization (DESI) to achieve a label-

free platform for real-time screening of biotransformations in bacterial cultures. The DESI 

system enables sampling from the reaction mixture (ionizing the substrates and products 

directly from the agar plate) at room temperature in real-time. This is followed by an ion 

mobility (IM) component that performs the separation of the different ions generated to decrease 

background noise, and finally by an imaging MS capable of relating the detected chemical 

compounds on the surface of the agar plate with their spatial distribution. The measurement of 

the extracellular product can be performed simultaneously for several substrate libraries, 

followed by analysis of the DNA of the biocatalysts for genotype/phenotype association [267]. 

Metagenomic screening allows the selection of genes with the desired function, by direct 

phenotypical detection, heterologous complementation and induced gene expression, usually 

through isolation in agar plates supplemented with different substrates (e.g. target substrate, 
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certain antibiotics, co-substrates). In this technique, target activity can be further associated 

with the expression of a reporter gene (e.g. green fluorescent protein or β-galactosidase) for 

easier screening [239]. 

Microtiter plates are the most frequently used screening devices, due to high-throughput 

(depending on the number of wells per plate) and compatibility with a wide range of analytical 

techniques, from colorimetric approaches to GC, NMR or MS. Microtiter plates are, however, 

usually limited to libraries of up to 104 variants [263]. UV-Vis and fluorescent microplate 

readers and fluorescent digital imaging (in which mutants are passed on to a nitrocellulose 

membrane from the agar plate where they were cultured) [269] can be used to increase 

throughput during biocatalyst selection. Schwaneberg et al. (1999) developed a high-throughput 

assay using a robotic workstation and spectral analyzer compatible with 96-well microtiter 

plates for the analysis of substrate specificity and the activity of mutants of a fatty acid 

hydroxylating enzyme. This assay was based on detecting the conversion by the mutants of p-

Nitrophenoxyhexanoic acid (pNCA)-containing substrates, and showed results for both pure 

enzymes and cell extracts [270]. This method was then further developed to allow 

measurements directly from the whole cell biocatalysts, eliminating the cell lysis, resuspensions 

and centrifugation preparation steps, by permeabilizing the outer cell membrane of E. coli. This 

method used also a replicator tool (developed by Duetz et al. (2000) [271]) to transfer cells from 

agar plates to the 96-wells plate. Despite the increase in number of samples analyzed in parallel 

(~3000 clones per day) as well as directly from the cell bioconversion, issues of reproducibility 

between screens and differences in activity relative to the one measured in shake flasks (due to 

evaporation, a well-known problem in open microtiter plates) were observed [272]. Samorski et 

al. (2005) developed a system for evaluating induction time and growth differences of whole cell 

catalysts cultured in 96-well microtiter plates. The system used light scattering, NADH 

fluorescence and yellow fluorescent protein to monitor the cell culture in all 96 wells through a 

x-y-stage with an integrated optical fibre bundle. Measurements of optical density (with light 

scattering and NADH measurements) and amount of expression of an induced fluorescent 

protein were performed, allowing the optimization of the initial cell density and the time of 

induction, and the online monitoring of product formation in a microtiter plate  [156].  Codexis, 

a company specialized in enzyme engineering, and other enzyme developing companies (e.g. 

Ingenza, Nzomics, InnoSyn, Almac), provide systems for enzyme screening based on 96-well 

microtiter plates for ketoreductases, acylases, ene-reductases, transaminases, lyases, 

dehydrogenases and halohydrin dehalogenases [261].  

Fluorescent microscopy can help locate proteins and measure their activity, as well as 

protein-protein interactions and protein diffusion coefficients [273]. Infrared multiphoton laser 

scanning microscopy (NIR-LSM) allows the detection of biomolecules within the cells [273]. 

Bioluminescence assays can be used to determine coenzymes and to perform detection of 

reporter genes. However, these methods are not compatible with the long-term measurements 

required for metabolic activity assays due to photobleaching of fluorescent compounds or 

decomposition [273]. Mid-infrared spectroscopy can be used to identify and quantify species 

present in a bioprocess [273]. Scanning electrochemical microscopy (SECM) can provide 

information on cell respiratory activity and other redox processes [273]. 

Spectrophotometric tests are quite desirable due to the possibility of parallelization using 

microtiter plates, and due to the fact that they are usually quite fast and relatively sensitive 
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(signal amplification methods can also be applied). However, most target compounds are neither 

colorimetric nor fluorescent and developing an indirect colorimetric detection method can be 

difficult and time-consuming. The development of surrogate substrates, which are compounds 

that are added to the culture and generate an optical signal proportional to the target activity, 

is a good example of the complexity involved in the development of new detection methods [262]. 

Moreover, these methods, especially colorimetric methods, usually have a high incidence of false 

positive or negative results which lead to lower precision in the quantification of the target 

compound [267]. 

Fluorescence-activated cell sorting (FACS) and Micro Fluorescence-activated cell sorting 

(µFACS) devices have been used to screen for growth in a new substrate, and to select variants 

based on enantioselectivity, by linking cell survival with capacity for catalysis of only one 

enantiomer (selection approach) [274], [264], [247]. Cell survival can also be linked to antibiotic 

resistance [262]. Flow cytometry also allows assessing whole cell biocatalysts viability and 

electron transport, besides enzyme activity, achieving a very high throughput (108 screened 

variants per day [262]). FACS on a chip provides a better control on number of cells per droplet 

(down to single cell), as well as on number of fluorescent reporters per droplet thus presenting 

highly quantitative results [262].  

Recently, some microfluidic approaches to screening of biocatalysts have emerged. 

Microfluidics can enable a faster measurement and/or monitoring of a higher number of 

parameters, due to the ease of flow manipulation but also sensor integration. Furthermore, they 

provide continuous production at lower cost, reagent quantities, higher safety and less waste, 

while also allowing a better spatial and temporal control of the reactions, and operation at 

unusual process conditions and catalyst configurations, thus expanding the operation conditions 

and types of reactions possible  [47]. Abate et al. (2010) used droplet microfluidics to screen 

mutants of horseradish peroxidase generated by directed evolution, at rates of thousands per 

second, being 1000-fold faster than microtiter plate based robotic screening. A stream of yeast 

cells with mutated enzymes on the surface is co-flown with a fluorogenic substrate and aqueous 

pL droplets containing a single yeast cell are formed by dispersion in an oil solution.  The 

reaction is initiated by the mix of the two aqueous solutions in each droplet and continues in 

the incubation section of the first microfluidic device. In the second device, the droplets are 

dielectrophoretically sorted based on fluorescent intensity using a laser connected to a 

photomultiplier tube. The microfluidic device was designed in order to allow reinjection of 

droplets in the systems in order to allow incubation of low activity mutants for later analysis. 

The detection limit in this case was of ~3500 molecules in 6 pL or <1 turnover per enzyme [117]. 

Kintses et al. (2012) has applied a similar strategy, but performing fluorescent detection of 

enzyme reactions in lysates of single cells of E. coli. Directed evolution of arylsulfatase from P. 

aeruginosa expressed in E. coli was performed to explore this enzyme’s substrate promiscuity 

in order to extend its activity towards phosphonate. In the developed microfluidic setup, cell 

lysis and reaction are performed simultaneously by fast mixing of substrate and cell lysis agents 

with the cell solution upon droplet formation. The best variants were selected with laser-induced 

fluorescence in a second device with a dielectrophoretic sorter, and broken in order to isolate 

their plasmid content and use it for the next evolution cycle.  Droplets generated this way, where 

the target compound can be optically read, can also be screened using FACS, requiring that the 

water-in-oil droplets are previously enveloped in water. The second emulsification step however, 
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if performed in bulk, can cause a variation in droplet diameter and hence a lower measurement 

precision. The whole cycle of variants’ screening developed by Kintses et al. (2012) was 

performed in two days with the analysis of 107 droplets every 3 hours [61]. Besides water-in-oil 

droplets, shell-like compartments made with polyelectrolytes can be used to encapsulate cells, 

which are more stable with detergents used for lysis [262]. This technique also enables the 

detection of very small improvements of enzymatic activity [263].  

In another approach, the cells themselves can be used as femtoliter screening vessels, by 

only performing the target reactions inside the cells and detecting the resulting fluorescent 

product also inside the cells by, for example, FACS. In this way, libraries of up to 109 variants 

can be screened [263]. The enzymes can, on the other hand, be displayed on the surface of the 

cells during the assay by fusion with anchor motifs, being thus more accessible to the substrate 

(cell surface display technique). In this approach, the product is also displayed on the cell surface 

and again up to 109 variants can be screened. The required fusion however limits the 

applicability of this approach to libraries of enzyme variants, and needs to be resistant to 

proteases, have a stable structure and be compatible with the target enzyme. This technique 

can also be associated with FACS, but the displayed enzymes may lose activity and fluorescent 

substrate or products need to remain bound to the cell surface during measurement [263].  

Droplet-based directed evolution of whole cell catalysts is a very powerful tool to increase 

screening throughput of engineered biocatalysts, but the use of different sensor technologies 

(such as NIR [275] or Stroboscopic Epifluorescence Imaging [133], for example) is required to 

expand its application. Further coupling of such a system with standard analytical equipment 

such as HPLC, GC or MS would increase its usefulness for biotechnologists and also the range 

of detected compounds. Packer and Liu (2015) provide a good overview of available screening 

methods for protein selection, as well as a short guide on how to select which screening method 

to apply [262]. 

Another approach to screening allows for an indirect measure of the characteristic 

targeted, not by the product or substrate of the bioconversion, but by the genetic reporter that 

encodes that phenotype. This approach is regarded as reaction independent, and the reporter 

may be colorimetric, fluorescent, bioluminescent or result in conditional survival, cell motility, 

acidification or cell display. The activity of the reporter measured is connected to the activity of 

the target enzyme by interference at either the transcription (e.g. activation of a natural or 

synthetic transcriptional regulator by binding of the product or substrate), translation (e.g. by 

binding of the product to a ribozyme or reporter inactivation by the enzyme) or post-

translational modification level (e.g. direct modification of the reporter by the enzyme), or even 

enzyme degradation or solubility (e.g. by fusing GFP to the enzyme variant, and thus only 

soluble GFP variants are positively selected). Reporter-based screening using natural 

transcriptional regulators are usually extremely selective for the target product, having no false 

positives. This may increase the applicability as a screening strategy to more types of enzyme 

and reactions, but still each case requires the proper choice of reporter and approach [263]. 

Genetic circuit design, which involves the capacity to design DNA in order to modulate the 

expression of certain genes or metabolic networks to occur at defined environmental conditions, 

has also been used to measure the activity of enzyme variants from the expression levels of 

reporter genes [276], [277]. 
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A change in pH due to product formation or substrate consumption has also been used as 

an enzymatic screening test (e.g. pantoic acid production by lactonases [260]). 

A summary of the commonly used screening approaches is presented in Figure 39. 

 
Figure 39 – Summary of some of the advantages and disadvantages of the commonly used screening approaches for 

whole cell biocatalysts. 

3.1.3.2  Screening of oxygenases 

Screening of oxygenase variants or mutants is specially complicated since the generated 

products do not cause a change in pH, color or fluorescence, and distinction between 

regioisomers is often the main objective of the screening program. Screening of these enzymes 

is thus usually achieved with more time-consuming and sensitive analytical methods, some of 

them mentioned above, such as GC or liquid-chromatography (LS) often coupled with MS, or 

even nuclear magnetic resonance (NMR) [252]. These analytical methods can provide a high 

degree of throughput. However, this throughput is achieved with a lengthy time period between 

variant development, reaction performance and analysis of product concentration and range of 

compounds. High-throughput screening with robotic microtiter-based devices, as mentioned 

before, enables the analysis of 100 to 1000 samples of cells per day, but tends to provide hits 

with low activities and regiospecificity, especially in Gram-positive cells and fungi. Screening 
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can also be performed through enrichment cultures, where the organisms grown on the starting 

material, might be able to degrade the desired substrate. However, oxidation of the substrate 

might not occur on the target position [252]. 

Measurement of the initial oxygen consumption rate in the presence of substrate excess 

has been used for characterization of dioxygenases [278], [279], [280]. A study performed by 

Parales et al. (1999) used oxygen measurements with Clark-type oxygen electrodes to confirm 

the importance of an aspartate residue for the catalytic activity in NDO enzymes, namely in the 

electron transfer route. When this residue was modified, no oxygen consumption was observed. 

Furthermore in this study a stoichiometric consumption of naphthalene and oxygen for wild-

type enzymes was observed [281]. Rachinskiy et al. (2014) have used monitoring of oxygen levels 

to detect enzyme deactivation as a parameter in a long-term stability enzyme characterization 

model. The model integrates the mathematical description of temperature-dependent enzyme 

(de)activation (considering the enzyme kinetic characteristics) to predict the process properties 

of an enzyme in order to aid enzyme screening for industrial applications [282]. Despite the 

availability of oxygen sensor spots, as well as other formats of oxygen sensors, for integration 

in microtiter plates and shake flasks, the oxygen measurement seems to be used mainly as a 

monitoring or initial characterization parameter, and not as a screening parameter. As hinted 

by the use of purified enzyme solutions in the studies where oxygen assays were performed, this 

could be due to the interference of cell respiration in whole cell solutions (where most of the 

current screening approaches for this type of enzymes are performed). Moreover, the limited 

application of oxygen measurement as a screening parameter so far might be related to the 

lower sensitivity of the traditionally used sensors (Clark-type) or the need of working in closed 

vessels, when working with highly volatile compounds (and so sensors such as syringe or Clark-

type cannot be applied). However, the more recently developed, highly sensitive and fast 

sensors, with which measurement is performed with optical fibers can contribute to the increase 

in their usage in this field.  

In this work, a microfluidic system with such type of sensors is proposed, where the rate 

of consumption of oxygen could be used to distinguish variants with high activity from variants 

with the same activity as the wild-type or even no activity in a fast and parallel way.  

3.1.3.3  Biocatalyst tailoring 

Biocatalyst selection occurs not only by searching or screening available catalysts that fit 

or can operate at the desired process conditions, but also through optimization and tailoring of 

these biocatalysts to perform better at the conditions of the target process [240]. Characteristics 

that allow the catalyst to better fit the process are, for example, higher pH or temperature range, 

higher substrate affinity or turnover rate, higher robustness and stability, altered  

enantioselectivity, conversion of new and/or unnatural substrates, among other characteristics 

[240]. Biocatalyst development can also prevent the synthesis of unwanted compounds or even 

toxic compounds through parallel reactions or other metabolic pathways present [283].  

Enzyme tailoring or development of new enzymes can be achieved by natural evolution 

(enrichment cultures of microorganisms with the target activity, of which metagenomic libraries 

are made and then from which biocatalysts can be selected), by laboratory evolution (generation 

of libraries of randomly mutated organisms from which biocatalysts with the target activity can 
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be selected) or by computational design of new catalysts (using computational models or based 

on existing libraries followed by experimental testing) [263]. 

This tailoring can be achieved through several techniques, from random or site-directed 

mutagenesis and directed evolution which act on zones close to the native target sequence, to 

DNA shuffling and domain swapping which act on areas amid the original sequences [240]. 

Directed evolution is a highly relevant technique for biocatalyst development, being especially 

powerful when there is little knowledge regarding the relationship between structure motifs 

and function [253]. Initially, random mutagenesis and/or recombination of the targeted gene 

(through error-prone polymerase chain reaction (PCR), repeated oligonucleotide directed 

mutagenesis, chemical agents, etc.) are performed and mutants selected for the desired property 

[239]. The genes responsible for the improved enzymes are then targeted in a second round, and 

so forth, until a library of enzymes with the final improved characteristics is obtained [284]. 

This approach can result in an increased stability of the enzyme but often a loss of activity is 

observed. A successful directed evolution requires the occurrence of mutagenesis on the target 

gene through a practical evolution strategy, as well as the existence of a suitable microbial host 

for enzyme expression and a suitable screening strategy [246]. Directed evolution can also be 

performed continuously and in vivo using alternating culturing vessels [285]. DNA shuffling 

can be performed using a computational method (SCHEMA) that estimates the disruption in 

the enzyme’s original structure after DNA recombination is performed. Combinatorial active-

site saturation testing (CASTing), which enables the design and screening of the binding to the 

active site of an enzyme and ProSAR, a program that analyzes the sequence-activity 

relationship of proteins to perform reagent selection, have both contributed to the generation of 

enzymes with enhanced catalytic activity and enantioselectivity [277]. Gene synthesis, new 

bioinformatics tools and protein and mathematical modeling further contribute to the 

possibilities of tailoring biocatalysts to achieve new functionalities, from higher stability and 

activity in organic solvents to catalyzing non-natural reactions.  

Gene synthesis enables the optimization of certain codons, and introduction of promotors, 

restriction sites, etc. at more convenient locations in the gene, even having been used to generate 

complete genomes for metabolic pathway engineering. Another approach employed to achieve 

non-natural catalytic activities (e.g. involving a different type of chemical bond) is based on an 

initially promiscuous reaction, meaning an enzyme capable of catalyzing more than one type of 

reaction, usually with common catalytic steps [247]. Different computational approaches have 

also been applied to rational design, such as free energy perturbation, substrate docking 

simulation, molecular, hydrogen bond energy calculation and the Rosetta method [277]. 

Mechanistic models based on free-energy changes connected to protein unfolding and reaction 

mechanism can lead to the development of better strategies towards achieving the improved 

target characteristic [247]. Molecular dynamic techniques are able to predict flexibility of some 

residues and their association to enzyme function, in order to change enzyme activity or stability 

with temperature. The Rosetta method involves quantum mechanics and computational design 

of enzymes based on existing scaffolds. Currently, most tailoring approaches are a combination 

of structure-based rational design with computational tools and directed evolution [277]. 

Cherny et al. (2013) coupled predictions from a computational model with results from a 

screening test of directed evolution variants to improve the catalytic rate of enzymes capable of 

hydrolyzing nerve agents, as detoxifying enzymes. The initial libraries used for mutant 
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generation were designed using Rosetta, and the obtained data was fed into a transition state 

model with which new mutants were designed and experimented, until iteratively high activity 

variants were obtained [286]. Röthlisberger et al. (2008) present the combination of enzyme 

design, modeling and directed evolution to obtain an enzyme capable of performing a reaction 

that no naturally occurring enzyme catalyzes. Quantum mechanical transition state 

calculations were performed to design an active site which maximized the stabilization of the 

transition state of the enzyme for the target catalytic mechanism [287]. Packer and Liu (2015) 

present a good overview of methods for generation of mutants and screening approaches [262]. 

The quantification of all or a comprehensive number of the molecules involved in a certain 

synthetic pathway or reaction can not only accelerate development of biocatalysts, by increasing 

the available knowledge on that specific reaction, but also provide enough data to develop 

mathematical models to predict behavior and/or outcome of genetic or process manipulation 

[245].  

3.2 Goal 

In Chapter 2, the meander channel with integrated oxygen sensors was used to monitor 

an oxygen dependent reaction and observe differences in oxygen consumption for different 

reaction times, enzyme activity and in situ oxygen production. This chapter covers an alternate 

application of such device, extended beyond enzymes in solution to other biocatalyst formats, 

such as whole cell catalysts. In this case, a system capable of monitoring and measuring oxygen 

levels and consumption may provide extra input in screening mutants involved in oxygen 

dependent reactions. Rate of consumption, oxygen availability in the reaction mixture, oxygen 

and/ or other substrates diffusion limitation, uncoupling effects and cell density effects are some 

of the possible data that can be obtained with the meander channel with integrated oxygen 

sensors. 

The meander microchannel with integrated oxygen sensors was here used to monitor and 

quantify oxygen consumption rate during the bioconversion of styrene to 1-phenylethanediol by 

naphthalene dioxygenase (NDO) variants in E. coli. This reaction was chosen as the reference 

reaction since styrene has a similar molecular structure to both the native substrate of the 

chosen enzymes (naphthalene) and the target substrates of the modified enzymes (different 

alkenes). Hence, styrene was used to compare the different variants in terms of ability to convert 

this family of substrates. The chosen case study involved the screening of two dioxygenase 

variants and their comparison with the wild-type NDO. The variants were developed by Julia 

Halder and Prof. Bernhard Hauer at the Biocatalysis Group, Institut für Technische Biochemie 

(ITB), Universität Stuttgart [238]. The work presented in this chapter was developed in 

collaboration with the latter researchers, as part of an external stay at ITB.  

The main goal for the collaboration with ITB was to test whether such a microfluidic 

system could be used to accelerate the screening of dioxygenase variants, by identifying the 

earliest reaction time point where a difference in reaction rate could be observed. These 

reactions are usually performed for 20 h and the mutants evaluated by quantifying product 

concentration at the end of the reaction. Thus, the identification of an earlier reaction time 

where reaction rates are distinct enough to identify a better variant, is highly valuable and 
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would allow a better understanding of the kinetics of the different variants with a potential 

increase in screening throughput.  

3.3 Materials and Methods 

The methods for plasmid development, cell culture and induction, as well as, the reaction 

conditions were developed and optimized by Julia Halder from the Biocatalysis Group, Institut 

für Technische Biochemie (ITB), Universität Stuttgart. The oxygen measurement setup and 

approaches presented in this chapter were developed based on previous experience with the 

meander microchannel with integrated oxygen sensors (presented in Chapter 2). 

3.3.1 Materials  

All solvents, buffer components and chemicals were obtained from Sigma-Aldrich and 

Fluka (Steinheim, Germany), Carl Roth GmbH (Karlsruhe, Germany) and Alfa Aesar 

(Karlsruhe, Germany).  E. coli JM109 /DE3)_pDTG141 was obtained by Julia Halder and Prof. 

Bernhard Hauer (Biocatalysis Group, Institut für Technische Biochemie (ITB), Universität 

Stuttgart) from Prof. Dr. Rebecca Parales (Department of Microbiology and Molecular Genetics, 

College of Biological Sciences, UC Davis, University of California, California, USA) [288]. 

3.3.2 Heterologous expression of naphthalene dioxygenase (in E.coli) 

The general protocol followed to obtain the variants/ mutants was described in Gally et al. 

(2015) [256] and further optimized towards a better reproducibility [238]. For the production of 

induced biomass E. coli JM109 (DE3), cells previously made competent using rubidium chloride 

were thawed on ice for 5 minutes. Then, 1 µL of plasmid DNA for naphthalene dioxygenase 

(NDO, Pseudomonas sp. NCIB 9816-4, pDTG141) or one of the tested mutants was added to the 

cells and mixed gently by flicking the base of the eppendorf tube and shortly centrifuging. Cell 

transformation was performed by heat shock by placing the cells in a waterbath at 42 ⁰C for 90 

s, followed by 2 minutes on ice. The heat shock treatment was followed by addition of 500 µL of 

LB medium to the cells and incubation for 1h at 37 ⁰C and 600 rpm. The competent cells were 

then plated on selective agar plates containing ampicillin (100 µg/mL) and incubated overnight 

at 37 ⁰C. In order to generate the induced cells, one colony from the agar plates was used to 

inoculate a 2 L shaking flask with 500 mL of TB medium and 500 µL of ampicillin. The flask 

was incubated at 37 ⁰C and 180 rpm until an optical density (OD600nm) of 0.8 -1 was obtained. 

The cells were then induced with 0.1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) 

dissolved in water and incubated at 25 ⁰C for 16 to 18 h. Indole (Figure 40 (c)) was added to the 

induced cells as a simple screening test in the solid phase in order to check if induction was 

achieved, since cells successfully induced with NDO or variants produce indigo, turning the 

media blue [289], [283], [290]. A representation of the molecular structure of the different 

substrates used and/ or mentioned in the text is presented in Figure 40. Influence of indigo (blue 

color of the cells) was considered negligible since indigo has a wavelength of 420-440 nm while 

the laser for excitation emits at 620 nm and the detected excitation light from the sensor dye is 
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760 nm. After induction, the cells were harvested by centrifuging for 20 min at 6000 g and 4 ⁰C 

in an Avanti J-26XP centrifuge (from Beckman Coulter, California, USA) and resuspended in 

0.1 M potassium phosphate buffer (pH 7.2) containing 20 mM glucose. 

 
Figure 40 – Substrate (left) and corresponding dihydroxylation product (right) for the biotransformation performed 

(a), the natural NDO substrate (b) and the substrate for induction screening, indole (c).  

3.3.3 Preparation of freeze-dried cells 

To obtain freeze-dried cells, the harvested cells were resuspended in 0.9 % sodium chloride 

(NaCl) solution and centrifuged for 15 min at 4000 g and 4 ⁰C. The cells were then spread 

uniformly in a petri dish and placed inside a freezer at -80 ⁰C for up to 2 h. After freezing the 

cells were placed inside a freeze drier and freeze-dried overnight under vacuum conditions. 

3.3.4 Biotransformation 

The cells for the reaction for gas chromatography (GC) validation were prepared by 

dissolving 0.1 gcww/mL and 0.05 gcww/mL (cell wet weight) for the freshly prepared resting cells, 

or 66 mgcdw/mL and 33 mgcdw/mL (cell dry weight) for the freeze-dried resting cells, in 1 mL of 

0.1 M phosphate buffer (pH 7.2) with 20 mM glucose. The cells for the oxygen measurements 

were also dissolved in 1 mL of 0.1 M phosphate buffer (pH 7.2) with 20 mM glucose, but at lower 

concentrations (0.005 gcww/mL to 0.05 gcww/mL). Glucose was added for in situ co-factor 

regeneration. Immediately, before starting the reaction, styrene (from a stock solution of 100 

mM styrene in pure ethanol) was added to the solution in order to have 1, 1.5 or 2 mM styrene 

present for the reaction. The reaction was performed in 4 mL vials with a plastic cap (GC and 

oxygen measurements) or with a plastic cap with a rubber seal (oxygen measurements) in a 

tabletop orbital MRH11 Heating ThermoMixer (from HCL BioTech, Bovenden, Germany) at 30 

⁰C and 400 rpm (with 3 mm shaking diameter). The rotation chosen to perform the bioconversion 

was optimized by previously measuring oxygen concentration with reaction time using an 

oxygen sensor integrated in a syringe tip (Fixed Oxygen Minisensor OXF500PT from Pyro 

Science, Aachen, Germany) connected to an Optical Oxygen Meter - FireStingO2 (from Pyro 

Science, Aachen, Germany). The rotation which allowed the reaction to be performed with a 



Micro scale reactor system development with integrated advanced sensor technology  

100 
 

constant supply of oxygen was the selected one. Two reaction vials were used per residence time, 

one for GC validation and one for oxygen measurement. 

3.3.5 GC analytical measurement 

The samples for GC analysis were prepared by centrifuging the cells and extracting the 

supernatant two times with 500 µL of MTBE. The reaction mixture was analyzed at different 

reaction times by measuring substrate (styrene) and product (1-phenylethanediol) (Figure 40 

(a)) concentration in the GC/FID-2010 (from Shimadzu, Kyōto, Japan). A Zebron ZB-1 column 

(30 m x 0.25 mm x 0.25 µm, from Phenomenex, California, USA) was used, with hydrogen as 

carrier gas (constant pressure of 50.2 kPa) and the injector and detector at 250 ⁰C and 330 ⁰C, 

respectively. For the detection, the column oven was set at 70 ⁰C for 2 min, then raised to 120 

⁰C at a rate of 15 ⁰C/min and then raised to 320 ⁰C at a rate of 50 ⁰C/min. The GC-FID was 

operated in split mode, using 1mM of 1-octanol in methyl tert-butyl ether (MTBE) as standard. 

The retention times of all the substances measured are: 4.016 min for styrene, 6.084 min for 1-

octanol and 7.729 min for 1-phenylethanediol.  

3.3.6 Oxygen measurement setup 

The two setups used for measurement of the oxygen consumption rate in the cell samples 

are presented in Figure 41. The oxygen measurement was performed using the oxygen 

platinum(II) meso-tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF) sensors integrated 

in the glass/silicon meander microchannel (from iX-factory, Dortmund, Germany now part of 

Micronit Microtechnologies B.V., Enschede, Netherlands), previously described in Chapter 2 

and in Ehgartner et al. (2016) [174]. Both setups include two Cavro® XLP 6000 syringe pumps 

(from Tecan, Männedorf, Switzerland) with 250 µL syringes controlled with LabVIEW (from 

National Instruments, Texas, USA). The two syringes were connected to the meander 

microchannel by polytetrafluoroethylene (PTFE) 1.5875 mm (OD) x 1mm (ID) tubing (S 1810-

12) (from Bohlender, Grünsfeld, Germany), using Flangeless polypropylene (PP) fingertight 

1.5875 mm (ID) fittings (XP-201) and flangeless ferrules (P200X) (from Upchurch Scientific®, 

Washington, USA). 

In the setup of Figure 41 (a), the sample being measured was first introduced in the 

syringe and then pushed inside the channel. It required two steps between the sampling and 

the measurement of the sample, thus also requiring more sample volume than the second 

approach, which is presented in Figure 41 (b). Furthermore, this approach was used in two 

formats: multiple sampling from the same reaction mixture at different residence times and 

single-sampling of the reaction mixture where the reaction for each of the residence times was 

performed in a different vial. The latter was the one used in the second approach, where the 

sample is pulled directly inside the microchannel from the reaction vial, allowing a faster 

measurement of the oxygen consumption in the sample. Cleaning of the microchannel was 

performed in between samples with ethanol 5% (v/v) in deionized water and then deionized 

water. In the first approach, the cleaning solutions were pushed through the channel’s second 

inlet, while in the second approach deionized water was first pulled through the outlet and then 

the same cleaning procedure as for the first approach was followed.  
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Figure 41 – Oxygen measurement setups used for screening variants for styrene biotransformation: (a) sample 

pushed through inlet; (b) sample pulled through outlet. 

3.4 Results and discussion 

The application of the meander channel with integrated oxygen sensors to the 

measurement of reactions involving whole cells encompassed several challenges. One of the 

main concerns was the possible clogging of the microchannels due to formation of cell clusters 

and its effect on fluid flow. E. coli cells have dimensions (< 2 µm in length) smaller than the 

microchannels in the meander chip used, and so no significant obstruction of the channels was 

expected for relatively diluted solutions used in the experimental work. Another concern 

involved the cell endogenous respiration rate, which in case of high respiration rates could 

rapidly consume the oxygen inside the reactor thus preventing measurement of oxygen 

consumed due to the bioconversion.  

In order to address both issues, several dilutions of the wild-type (wt) NDO containing 

resting cells (E. coli JM109 (DE3) cells which were transformed with a pDTG141 plasmid for 

NDO) without substrate present, were introduced at 1.7 µL s-1 (0.085 m s-1, Re 12.7) inside the 

reactor and the oxygen consumption was measured (Table 16). The flowrate was chosen based 

on previous experiments with the empty-vector (empty) cells (cells without the enzyme of 

interest), where the flowrates were varied between 0.21 µL s-1 (0.0105 m s-1, Re 1.56) and 4.17 

µL s-1 (0.2085 m s-1, Re 31.1). At higher flowrates, the cells tended to accumulate faster both at 

the outlet and inside the channel resulting in a rapid oxygen consumption and leakage issues. 

Thus, lower flowrates were more appropriate to perform the reaction. However, at very low 

flowrates, the oxygen inside the microchannel was completely consumed, leading to the selection 

of an average flowrate (1.7 µL s-1) as the optimal flowrate for the experiments. 

As shown in Table 16, a considerable dilution of the initial sample (1:10) was required in 

order to achieve a rate of oxygen consumption appropriate for sample comparison. The initial 

cell concentration was 0.05 gcww/mL, which was half of the cell density usually used for the 

reaction at lab scale. Since variants with a higher affinity for the substrate or higher reaction 
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rates could result in a faster oxygen consumption, the target oxygen consumption rate of the wt 

cells (without substrate) had to allow the distinction between faster and slower rates. The value 

considered as “good” for the purpose of these experiments was 0.02 mM/min, as highlighted in 

the table below.  

 

Table 16 – Average oxygen consumption rates for different wt cell concentrations calculated for a flowrate of 1.7 

µL/s. The cell concentrations used for the experiments are highlighted in red (initially chosen concentration) and 

orange (concentration used in the final experiments). 

Cell concentration 

(gcww/mL) 

Dilution of initial 

sample 

Oxygen consumption rate 

(mM/min) 

0.05 1 -0.061 

0.025 1:2 -0.051 

0.01 1:5 -0.017 

0.005 1:10 -0.019 

During the sample dilution/ oxygen consumption rate tuning experiment, a leakage was 

observed at the outlet after a short period. This occurrence of a leak was more frequent for cell 

samples that were not properly mixed, and therefore containing previously formed clusters 

before introduction in the channels. The leakage was probably due to accumulation of cells at 

the outlet forming a blockage. The following experiments were then performed by placing the 

meander channel in a vertical position (as in Figure 42) and placing the collection vial below the 

outlet. This approach was expected to ease the movement of the cells out of the channel, 

preventing the formation of big clusters of cells that could obstruct the outlet.  

The concentration of styrene used for the reaction also required consideration. Since the 

integrated oxygen sensors are made of polystyrene (polymer chains of styrene monomers), high 

concentrations of styrene could dissolve the polymeric layer and release the trapped dye, thus 

causing bleaching of the sensors and loss of sensing ability. Furthermore, a high styrene 

concentration could also lead to a faster reaction rate and thus faster oxygen consumption, 

impacting the previously determined optimal flowrate to perform the reaction. In order to test 

the effect of styrene, droplets of 100 mM styrene solution (50 to 100 times more concentrated 

than in the experiments), were placed on sensor spots, with no significant changes observed in 

signal detection. However, since the sensor spots were placed in an open environment, a rapid 

evaporation of styrene was observed and so the true effect of styrene might not have been 

measured. The lack of alternative testing devices, besides the meander microchannels used for 

the experiments, impeded further tests of the styrene effect on the oxygen sensors. The 

concentrations of styrene chosen to perform the reactions were thus based on the ones used for 

the lab scale bioconversions, 1 and 2 mM of substrate. 
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Figure 42 – Picture of the pulling sample setup with the meander microchannel in the vertical position. 

Ideally, the meander microchannel with integrated oxygen sensors would function as an 

online monitoring system. Hence, the experimental setup was assembled in order to allow 

sampling from the reaction mixture at given reaction times. For this purpose, the reaction vial 

was closed using a lid with a rubber seal where an orifice allowed access to the reaction volume 

for the sampling tube connected to the syringe pump. Using the empty cells as the reference 

sample for quantifying endogenous respiration, the oxygen consumption of wt cells was 

measured in the presence of styrene. Initially, however, these experiments did not yield the 

expected difference in oxygen consumption rate between the two cell types measured.  

Several factors were considered to identify the reason for the similarity between the two 

reaction rates: 

• The high volatility of the substrate (styrene) could lead to a decrease in concentration 

over time, since in order to sample the reaction mixture, the vial was not completely sealed 

and the tubing used might be permeable to styrene. 

• The reaction could be faster than expected and have finished at the chosen reaction 

times monitored.  

• The oxygen consumed by the reaction could be meager, resulting in such a slow 

consumption rate that distinction from cell respiration would be imperceptible or within 

sensor signal variability. 

To avoid some of the possible identified issues, a different sampling strategy was tested. 

The validation of the oxygen measurements was performed by implementing parallel reactions, 

instead of quantification of product formation in the outlet of the meander channel, due to the 

small volumes in the microchannel and in order to keep the standard procedures for product 

quantification. The reaction was thus performed in two identical vials per residence time placed 

at the same conditions in the tabletop thermomixer. One of the vials (for oxygen measurement) 

had a cell concentration with a dilution of 1:10 relative to the other vial. At the different chosen 

residence times, the vial with the higher cell dilution was opened and then measured in the 

microreactor, while the other vial was simultaneously prepared for quantification in the GC. By 

performing the reaction this way, loss of substrate due to evaporation was minimized since the 

vial was opened immediately before measurement. Furthermore, measurements were 
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performed at shorter residence times (starting at 5 min instead of 30 min) allowing to detect if 

the reaction was faster than expected. Additionally, since the cell preparation procedure is 

considerably longer than the time required for the oxygen measurement, the comparison 

between freshly prepared cells and freeze-dried cells was also performed. The use of freeze-dried 

cells would enable to perform tests on the same cells for more than one day while guaranteeing 

their stability and comparative behavior, as well as analyze older cell samples or samples from 

different sources (e.g. other laboratory facilities) if required.  

Figure 43 presents the results of the experiments described above for freshly prepared and 

freeze-dried cells at 2 mM styrene concentrations and the corresponding values of product 

formation measured in the GC. As can be observed, the oxygen consumption rate for wt and 

empty cells is still very similar for both cell preparations and with quite low rate values. From 

the parallel GC measurements, it is possible to observe that the bioconversion was much faster 

than expected, since after 5 min around 50% of the substrate had already been converted. At 

the end of 30 min 80% of the substrate had been converted, after which the concentration of 

substrate remained roughly unchanged until the end of the experiment (residence time of 90 

min). These concentrations were equivalent to previous lab-scale assays where the reaction had 

run for 20 h with only end-point GC quantification. The reaction was therefore significantly 

faster than expected, and could be monitored with sampling points until 30 min of reaction time 

was reached. This enables a significant increase in the number of variants and reactions that 

can be screened per day with the standard method. It is also a good example of the valuable 

input that microfluidic systems can provide in terms of reaction kinetics in this field. 

In Figure 43 it is also possible to observe that freshly prepared and freeze-dried cells 

present a similar behavior in terms of oxygen consumption and reaction output, and so 

measurements with freeze-dried cells can not only be performed but also compared with the 

ones made on freshly prepared cells. 



Micro scale reactor system development with integrated advanced sensor technology  

105 
 

 
Figure 43 – Summary of oxygen consumption rate and GC measurements of 1-phenylethanediol concentration 

produced during the reaction for empty-vector (empty) cells and wild-type enzyme containing (wt) cells in (a) fresh 

and (b) freeze-dried preparations at 2 mM styrene. 

Since the oxygen values obtained in these experiments were still equivalent for both cell 

types, the reaction was performed again but at the same dilution as the one monitored in the 

meander channel (0.005 gcww/mL), and measured in the GC. No product concentration was 

detected in these samples, which clarified the similarity in signal for both cell types measured 

for the 1:10 dilution. Moreover, the time required for the uptake of the sample from the reaction 

vial to the syringe, followed by introduction of the sample from the syringe into the reactor was 

higher than 1 min, meaning that the start of the reaction and the probable period for the highest 

substrate conversion was lost during the sampling step.  
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To overcome both issues a different approach was implemented. Such approach required 

the uptake/withdrawal of the sample from the outlet of the meander channel, thereby pulling 

the sample through the outlet, instead of pushing the sample through the inlet (see Figure 42). 

Through this process, by having a short tube at the outlet the sampling time was reduced to 

just a few seconds. This new strategy was further coupled with a lower cell dilution (1:5, in 

orange in Table 16). Shorter residence times (1 and 3 min) were also implemented in order to 

check when the start of the reaction occurred. The new sampling strategy associated with a 

lower cell dilution enabled to measure a difference in oxygen consumption rate between empty 

and wt cells, as can be observed in Figure 44. Cells containing the wt NDO presented almost 2-

fold the oxygen consumption rate of the empty-vector cells. This reaction was also performed at 

lower styrene concentration (1mM), which resulted in a higher substrate conversion than 

previously obtained (74 % at 1 min of reaction time). A lower concentration of styrene was used 

to minimize the impact of substrate concentration on cell behavior, since a decrease in oxygen 

respiration values, possibly related to substrate concentration, had been observed with longer 

reaction times. After 15 min of bioconversion the oxygen consumption rate decreased and a 

stabilization of product concentration is observed, which seems to fit the oxygen consumption 

rate profile. 

 
Figure 44 – Oxygen measurements of the reaction of empty and wt cells in the presence of 1 mM styrene 

concentration, and corresponding GC results for the wt cells of 1-phenylethanediol concentration produced during 

the reaction and percentage of substrate conversion obtained at 1 and 30 minutes of residence time. 

The oxygen consumption rate of two NDO-variant containing cells (V260A and H295A) 

was also measured in the meander microchannel. As can be observed in Figure 45 (a), a 

difference between the two variants as well as compared with the wt and the background (empty 

cells) could be observed. One of the variants (V260A) presented a higher oxygen consumption 

rate, especially in the first 3 minutes of the reaction, which could indicate a slower initial 

reaction rate. This would translate in the fact that it should be possible to observe the initial 

substrate conversion rate, contrary to what was observed with the wt cells. It might also mean 
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that this variant has a higher reaction rate, leading to a faster oxygen consumption rate. As can 

be observed in Figure 45 (b), the latter was verified, since a 90% conversion of the substrate was 

measured in the first minute of the reaction. The other variant presented an oxygen 

consumption rate closer to the one of the wt cells, where the rate during the bioconversion is 

very similar to the endogenous respiration of this variant (value of oxygen consumption rate at 

0 min in Figure 45). The observed oxygen consumption rate is also maintained longer above the 

value for empty cells than for the wt cells. As can be seen in the figure below, this is also the 

variant (H295A) that presents the lower initial conversion with a steady increase during the 30 

min of reaction monitored, while the other two cell types maintain approximately the same 

value after 3 min. Although H295A has a smaller reaction rate than the other measured 

enzymes, the increased cell respiration might indicate an interference of the heterologous 

enzyme with the metabolism of the host organism, which might be interesting to investigate 

further. 

From the presented experiments for empty-vector cells, wt, V260A and H295A, it is 

possible to conclude that higher consumption rates indicate higher substrate conversion. 

Moreover, the duration of the oxygen consumption rate above empty-vector cell endogenous 

respiration levels represents a continuation of substrate conversion, while the decrease in 

oxygen levels translates in a conservation of product concentration without significant reaction 

rate. 

 
Figure 45 – Oxygen consumption rate values for all the cell types tested with the pulling sample approach and 

higher cell concentration (a) and GC results for the two variant containing cells (at 2mM styrene) and wt cells (at 

1mM) of 1-phenylethanediol concentration produced during the reaction and percentage of substrate conversion 

obtained at 1 and 30 minutes of residence time (b). 

To understand the applicability of the meander channel as a screening platform, and 

whether it was possible to distinguish oxygen consumption rates due to different substrate 
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concentrations, further experiments were performed. The bioconversion with wt cells was 

performed at two different concentrations of styrene. As demonstrated in Figure 46 (a), a 

slightly higher oxygen consumption rate was observed for the higher styrene concentration, but 

only in the first minute of reaction. The results of substrate conversion obtained from the GC 

indicate that higher substrate concentration results in a lower initial substrate conversion. This 

can imply some effect of the substrate on the reaction rate. On the other hand, since the 

measured product concentrations for the two reactions are quite similar, this might indicate 

that the reaction rate is limited by substrate diffusion through the cell wall at the concentrations 

tested.  

 
Figure 46 – Oxygen (a) and GC (b) measurements of the reaction wt cells in the presence of two styrene 

concentrations (1 and 1.5 mM). 

It is relevant to mention that the bioconversion at the reaction conditions and cell densities 

used has a relatively high conversion rate (50 to 70% depending on initial substrate 

concentration), which greatly contributed to the measurable oxygen consumption difference 

between the biotransformation and cell respiration. Since higher cell densities might lead to 

obstruction issues, there is a limitation on the use of this platform in terms of reaction rate to 

fast reactions only, which generate oxygen consumption rates higher than the host’s respiration 

rate. This limitation can be observed in Figure 45 for the H295A variant. Reactions with slower 

kinetics, which is usually the case for initial dioxygenase variants, might hence be more difficult 

to detect with this microfluidic platform. Faster reaction rates, on the other hand, can be more 

easily screened, by increasing the flowrate used during the detection and/ or by decreasing the 

cell density used for the biotransformation or for the measurement. 

In the extensive literature review, no values of oxygen consumption rate for dioxygenases 

in whole cells were found. Hence, the attained values during the experiments presented here 

were compared with values for pure dioxygenases measured with the polarographic method 

[278]. The comparison between the values is presented below in Table 17. The values from the 

literature (in blue in Table 17) cited in the table were calculated from the values presented in 



Micro scale reactor system development with integrated advanced sensor technology  

109 
 

the articles, considering the enzyme concentration used in the respective assays, so as to have 

comparable values. The values presented in the table for the NDO and variants tested in this 

study (in green in Table 17), are an average of the rates obtained in the first three minutes of 

the reaction (when the highest rates are measured) in sensor 1 (where the more defined oxygen 

behavior seems to be observed), calculated without the background value of cell respiration.  

 

Table 17 – Comparison of oxygen consumption rate/ oxygen uptake of the whole cell catalyst (in green) with values 

for pure dioxygenases found in literature (in blue).  

Biocatalyst Substrate 
Measurement 

setup 

Oxygen 

uptake (mM 

min-1) 

NDO from Sphingomonas CHY-1 

[280] 

Naphthalene (0.1 

mM) Clark-type oxygen 

electrode 

14.95 

NDO from Pseudomonas sp. 

Strain NCIB 9816-4 [279] 
Styrene (0.1 mM) 

0.0700 

 

NDO (pDTG141) wild-type in E. 

coli JM109 /DE3) 
Styrene (1 mM) 

Luminescent oxygen 

sensors 

0.3202 

NDO variant V260A in E. coli 

JM109 /DE3) 
Styrene (2 mM) 0.6553 

NDO variant H295A in E. coli 

JM109 /DE3) 
Styrene (2 mM) 0.4560 

 

A direct comparison between the values retrieved from the literature (in blue in Table 17) 

and the ones measured (in green in Table 17) is difficult since different enzymes, substrates, 

substrate concentrations and oxygen measurement techniques were used. There are one or two 

orders of magnitude of difference in oxygen uptake between the different catalysts, but it is 

interesting to notice that the highest uptake rate was obtained for the natural substrate of the 

enzyme (naphthalene). When comparing biocatalyst performance for the same substrate 

(styrene), it should be noted that the measurement with whole cells was performed at a 

substrate concentration that is 10-fold higher relative to the corresponding substrate literature 

value. If a linear relationship between oxygen concentration rate and substrate concentration 

is considered, then the rate values obtained for the NDO from E. coli JM109/DE3 are half or 

lower than the one obtained for NDO from Pseudomonas sp. NCIB 9816-4. The lower oxygen 

consumption rate could be related to the already discussed diffusion limitations due to the cell 

membrane. It should, however, be taken into consideration that the data presented in this 

chapter indicates that the oxygen consumption rates measured for the NDO from E. coli 

JM109/DE3 are diffusion limited and so a linear relationship between oxygen concentration rate 

and substrate concentration does not occur. 

It is also worth mentioning the degree of variability in the data presented in this chapter, 

especially in oxygen consumption rate results which was not possible to quantify appropriately 

throughout the duration of the experiments. This variability can be related to the used sensors, 

as previously discussed in Chapter 2, especially since there was some degradation of the sensor 

signal during this study due to the use of styrene as substrate and ethanol as part of the cleaning 

procedure. However, variations in the cell concentration used or in the uptake flowrate (in the 

pulling through outlet strategy) can also have influenced the obtained results. When pulling 

instead of pushing a liquid solution with pistons pumps there is less control on the actual 

flowrate being applied, since the resistance to flow is increased by the resistance of the 
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microchannel. If the pressure difference is too high, vapor may be pushed to substitute the space 

created by the uptake of fluid and bubbles will be observed. Also, if there is no possibility for 

entrance of air, cavitation may occur, where vapor fills the void left by the uptake of fluid. This 

is due to vapor formation when the local pressure drops below the liquid vapor pressure, 

establishing a bubble which collapses when higher pressures are applied. Cavitation is more 

likely to be observed when low pressures are applied at the outlet or high pump flowrates are 

used [291], [292]. At the flowrates used to perform the experiments no bubble formation was 

observed. Furthermore, no sensor signal change was measured that could indicate a sudden 

change of pressure (e.g. a sudden pressure decrease that could indicate formation of a vapor 

cavity). Thus, no significant differences were observed during the experiments that could 

indicate such an effect. Data variability is most likely related to differences in the preparations 

of the cell solutions due to small variations in the amount of cells weighed, and thus the amount 

of cells present. The variability in oxygen data obtained can also be inherent to the 

measurement itself, as also described by Jouanneau et al. (2006) with the observed 

discrepancies in the enzyme activities obtained when the oxygen assay was applied 

(polarographic assay using Clark-type oxygen sensors)  they applied [280]. 

 

In conclusion, the microfluidic system presented here cannot compete in terms of 

throughput with most of the screening systems discussed in section 1.3.1 of the Introduction. 

However, it can provide a different type of input (oxygen consumption rate and maybe other 

oxidative properties) than the discussed screening platforms. In terms of throughput, the 

system presented here can perform a single measurement every 10 min (including sample 

uptake and channel cleaning). This means that in a continuous operation, it would be capable 

of performing 47 single measurements in an 8h working day and 129 single measurements in a 

22h working day (with 2h for thorough cleaning of the microreactor, tubing and system 

components). Considering the same reactions performed for this work (around 50 min for each 

to complete), per day we could perform 9 entire reactions in an 8 h working day or 26 entire 

reactions in a 22h working day. Since each single measurement takes around 10 min, in order 

to perform measurements every minute of a certain reaction vial, 10 microreactors of this type 

would have to work in parallel, and such a system is easily achieved with microfluidic units.  

Furthermore, by working in solution and not in droplet such a system can enable a direct 

measurement (e.g. side-loop with recirculation) from the reaction vial using a simpler 

microfluidic arrangement, if a more air-tight setup is assembled. This setup could be achieved 

by using steel or a less permeable polymer as the tubing material, as well as more appropriate 

sealed reaction vial caps. The system can also be connected to one of the droplet-based systems 

discussed in the Introduction so as to achieve a more comprehensive characterization of the 

mutants during screening.  

3.5 Conclusions  

The presented results demonstrate the potential of the meander microchannel with 

integrated oxygen sensors to function as a biocatalyst screening platform for oxygen-dependent 

whole cell biocatalysts. It was possible to measure the endogenous respiration rate of the E. coli 
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cells used, and distinguish respiration rate from oxygen consumption due to styrene oxidation 

by wild-type NDO. Additionally, the two tested NDO variants showed different oxygen 

consumption rates from the ones obtained with the wild-type. Variant V260A presented a higher 

oxygen consumption rate in the first 3 minutes of the reaction, corresponding to a faster styrene 

conversion (90% after 1 min). On the other hand, variant H295A showed a similar oxygen 

consumption rate compared to the wild-type NDO, which was equally maintained throughout 

the monitoring time (30 min), unlike the wild-type NDO, whose consumption rate decreased 

close to endogenous respiration levels after 15 min. This variant, generated however a smaller 

conversion rate with a steady increase during the reaction time, indicating a slower reaction 

rate than the other variants tested. Furthermore, this variant (H295A) allowed to highlight a 

potential limitation in terms of reaction rates measurable by the microfluidic platform, 

identifying the reaction rate below which the microfluidic platform is unable to distinguish 

oxygen consumption due to the biotransformation from the endogenous respiration. The oxygen 

consumption rates measured with the meander channel with integrated oxygen sensors appear 

to be concordant with the values found in the literature. 

The presented platform shows a great potential as a screening platform for mutants 

involved in oxidative reactions, especially enzymes with high reaction rates and fast 

bioconversions. The platform can achieve a relatively high throughput (129 single 

measurements or 26 reactions per day) which can be further improved by adding more 

microfluidic systems in parallel and automating sampling. The current throughput of the 

platform is similar to the one obtained with the GC, where 129 reactions could be measured 

within 21.5h, without time required for reaction preparation (which would imply a further 6h). 

In order to obtain a full characterization of this microfluidic system as a screening 

platform, it would be interesting to perform experiments with additional variants in order to 

detect relevant patterns or tendencies observable by using only the oxygen sensors. It would 

also be interesting to check whether phenomena such as product overoxidation, substrate 

inhibition or toxicity, or uncoupling effects can be observed or detected through oxygen 

consumption rate measurements.  

Moreover, two different screening approaches can be achieved with this platform: variant 

comparison or substrate comparison. The first approach, which was the one demonstrated in 

this chapter, compares the oxygen consumption of different variants relative to the same 

substrate. A higher rate indicates either higher variant activity or higher substrate specificity 

for the target substrate. In the second approach, the same cell type can be tested with different 

substrates. Again, different rates would correlate with differences in specificity and activity. 

Furthermore, in this case, endogenous cell respiration of the cell without the target enzyme, or 

of the mutant at different substrate concentrations could further indicate possible toxicity issues 

from the substrates being screened. 
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Chapter 4 
Multi-purpose platform for sensor integration 

The microfluidic platform presented in this chapter was developed in collaboration with Daria Semenova 
from the PROSYS research group at DTU, Lyngby, Denmark, Peter Panjan and Adama M. Sesay from the 
Measurement Technology Unit (MITY) at Oulu University, Kajaani, Finland 

 

The limited availability of metabolite-specific sensors for continuous sampling and 

monitoring is one of the main bottlenecks contributing to failures in bioprocess development. 

Furthermore, only a limited number of approaches exist to connect currently available 

measurement systems with high throughput reactor units. This is especially relevant in the 

biocatalyst screening and characterization stage of process development.  

In this chapter, a strategy for sensor integration in microfluidic platforms is demonstrated, 

to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. The 

developed platform is compatible with different sensor formats by allowing an easy sensor 

replacement and was built in order to be highly flexible and therefore suitable for a wide range 

of applications (e.g. enzyme screening, glucose monitoring in fermentations, monitoring 

biomarkers in biological samples). Moreover, this re-usable platform can be easily connected to 

analytical equipment, such as HPLC, lab scale reactors or other microfluidic chips through the 

use of standardized fittings. Also, the developed platform includes a two-sensor system 

separated with a mixing channel, which allows the detection of samples that might be outside 

the first sensor’s range of detection, by offering the possibility to achieve up to 10 times dilution 

of the sample solution. 

In order to highlight the features of the proposed platform, inline monitoring of glucose 

levels is presented and discussed as illustrative example. Glucose was chosen due to its 

importance in biotechnology as a relevant substrate. The platform demonstrated continuous 

measurement of substrate solutions for up to 12h.  

4.1 Introduction 

In- or online quantification of reaction products or target compounds in a bioprocess is 

essential to achieve a high degree of knowledge, and consequently control, regarding reaction 

(or side-reaction) kinetics, production yield, by-product formation, biomass concentration, 

process efficiency, etc. [50], [51], [52], [47], [60]. 

Microfluidic systems show a considerable potential in screening applications and online 

monitoring. The variety of achievable geometries, high surface to volume ratio and diversity of 

sensing technologies available at small scale, make them a highly attractive tool for bioprocess 

development [293]. Moreover, a better control of operating conditions, especially flow, permits 

a good definition of gradients of substrate or other components involved, which can be further 
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improved with a higher degree of automation. However, due to the challenges involved in sensor 

development and integration, microfluidic systems are still application-specific, as they are 

typically too rigid to address the needs of different bioprocesses [294]. Therefore, a change in 

the target sample (e.g. type of sample), the used sensor technology or flow conditions, or need 

for integration with other systems, requires a re-design and the fabrication of a new platform. 

This greatly reduces the microfluidics range of applications, and therefore also stands in the 

way for the wide-spread use of microfluidic systems.  

One of the main contributors to this microfluidic challenge is sensor integration. 

Biosensors translate  a biological response (from an enzyme or cell) into a quantifiable signal, 

by connecting the biological element to a transducer, that in turn transforms this signal into an 

electronic signal that can be amplified and further processed [295]. The use of a biological 

component allows to greatly increase the specificity of the sensors to a target analyte or a range 

of target compounds. However, the (bio)sensors in a given microfluidic platform need to be stable 

under normal operating conditions [295] and are thus optimized for a given set of temperature, 

sample or flow conditions, consequently being often limited in application. Thus, the applied 

strategy for sensor integration in a microfluidic platform depends on the detected sample, the 

type of sensor and the materials that form the sensor and the platform. Furthermore, the main 

limitation to sensor integration is usually related to the miniaturization of the transducer 

element [295].  

 

Electrochemical (EC) sensors show great promise in integrated analytical systems due to 

their robustness, the ease of miniaturization and inexpensive instrumentation [296], [295], 

[166]. Miniaturization of the instrumentation has been harder to achieve, but relatively portable 

electrical measurement systems (e.g. potentiostats) have already been developed [297], [298]. 

4.1.1 Electrochemical sensing 

Electrochemistry detects the presence of electroactive species, which can be the target 

analyte or a product of a redox reaction involving the analyte. Electrochemical (EC) sensors, 

unlike optical sensors, do not require transparent materials and can therefore be used in a wider 

range of substrates, from silicon to paper fibers. Additionally, they can be applied to turbid 

solutions and do not show sensitivity to auto-fluorescence effects from biological samples like 

optical sensors. On the other hand, EC sensors are affected by differences in pH and ionic 

strength, and in some situations flow conditions. Also, the sensing area and architecture 

influence the obtained sensitivity and signal-to-noise ratio [295]. The electrode or required 

functionalized area to achieve a good sensor performance also limits the miniaturization 

attainable with electrochemical sensors in order to keep a high sensitivity [299]. 

EC sensors always involve the interaction between the electrode surface (that can be 

covered by a layer of the biorecognition element) and the target analyte, yet the electrochemical 

reaction may occur on (contact EC) or before/outside (contactless EC) the sensor. 

Electrochemical sensors used for contact detection of biomolecules require functionalization of 

their surface with molecules (usually enzymes) specific to the target, either by immobilization 

of the molecules directly on the sensor’s surface, immobilization in a membrane placed over the 

sensor surface, or a combination of both methods. For contactless detection, the electrochemical 
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reaction might occur either in solution or upstream of the sensor by immobilization of enzymes 

in monoliths, for example [300].  

EC sensors usually present a reference electrode (most often made from Ag/AgCl, that 

allows maintaining a stable potential during measurement and is placed at a certain distance 

from the redox reaction), a counter electrode (in contact with the electrolytic solution and 

providing the connection through which a current is applied to the working electrode) and a 

working electrode (the sensing or transduction element, made of the same material as the 

counter electrode, e.g. platinum or graphite), as can be seen in Figure 47 [295], [166].  

 
Figure 47 – Highlighted working, reference and counter electrodes in a commercial DS 110 screen-printed carbon 

electrode from DropSens (Llanera, Spain). 

 

The target analyte can reach the electrode surface through diffusion (due to a 

concentration gradient between the bulk solution and the inner layer), migration (due to a 

potential gradient between the bulk solution and the inner layer) or through convection (due to 

forced movement of the solution) [166]. The inner layer is a charged layer formed over the 

electrode surface when this has an excess of charge, having the opposite charge of the surface. 

Above this layer a second layer is also usually formed, called the diffusive layer, that has a 

gradient of oppositely charged ions relative to the inner layer. Hence, an electric potential is 

found between these two layers [166]. 

Detection with EC sensors can be performed through several methods, with conductivity, 

amperometry and potentiometry being the most common. A visual representation of the main 

electrochemical methods is presented in Figure 48.  

 
Figure 48 - Schematics of electrochemical detection methods: a) Amperometry (current measured is proportional to 

the flux of sample to the electrode surface, which depends on the concentration gradient in the bulk solution and thus 

decreases with time until it stabilizes); b) Voltammetry (e.g. cyclic voltammetry where oxidation/reduction peaks of 

the target substance or a mediator are measured. The magnitude of the peak corresponding to the monitored reaction 

(ip) can be qualitatively related to sample concentration); c) Conductometry (measurement of the change in 

conductivity of the electrode due the presence of charged species); d) Potentiometry (measurement of the change in 

potential (electromotive force (Emf)) at the ion selective electrode due to accumulation of selective ions at the electrode 

surface); e) Impedance (measurement of the change in resistance/capacitance of the electrode or the solution in 

contact with the sensor). Figure adapted from [166]. 

In amperometric detection (Figure 48 (a) and (b)) an electrical current generated by the 

oxidation or reduction of the analyte at an applied constant voltammetric potential between the 
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reference and working electrodes is detected. As can be seen in Figure 48 (a), first a high current 

is measured, which corresponds to the analyte concentration being depleted in the double-layer 

formed above the electrode’s surface. As the analyte depletion starts occurring in the bulk 

solution a decrease in current is observed with the decrease of concentration gradient [166]. The 

potential applied to the working electrode relative to the reference electrode is usually defined 

at the (mass) diffusion limited current region of the analyte, which results in a linear response 

with variation of the analyte concentration [102]. Sensitivity of amperometric sensors can be 

hard to maintain if the sensor surface area is decreased [102]. The most common amperometric 

measurements are performed either by voltammetry or chronoamperometry. Voltammetry 

indicates the reversibility of the system by changing the potential in a controlled fashion, but 

the rate at which the potential is changed affects the obtained results [166]. In 

chronoamperometry current versus time plots are obtained, where the current is measured at 

a constant square-wave potential [295]. In chronoamperometry the observed current changes 

depend on the diffusion layer between the electrode surface and the bulk solution, which 

controls the transfer of the target analyte to be measured at the electrode’s surface [295]. 

Chronoamperometry can be described by the Cottrell equation (Equation 23), where I is the 

current, F is the Faraday’s constant, n is the number of electrons transferred per detected 

molecule, A is the electrode surface area, 𝑐0 is the concentration of target analyte, D is the 

analyte diffusion coefficient and t is time [295]. 

Equation 23 

 
In contact amperometry, care must be taken since many biomolecules such as proteins are 

not electroactive, thus requiring a label [177]. In the case of detection through enzymatic 

reactions, a mediator may be required to transport the electrons to the sensor surface. 

Amperometric sensors can be fabricated together with microchannels by photolithographic 

processes [75], providing an easy integration with the channel but low target flexibility. Paper 

or ceramic based amperometric sensors allow high target flexibility by permiting a change of 

the sensors being used through the use of disposable sensors.  

Conductometry (Figure 48 (c)) detects the conductivity responses that differently charged 

analytes and different analyte concentrations generate between electrodes at a series of 

frequencies [295], [75]. Hence, they can be applied only to charged species or species that can be 

charged, lacking however specificity. The low specificity of the technique in turn allows its 

application to more types of samples with a higher variety of strategies, resulting in an easy 

miniaturization for application in cell studies (e.g. shape, changes in cell membrane) [102]. In 

contact conductivity, the electrodes are placed inside the microchannel in direct contact with 

the sample, while in contactless mode the electrodes are isolated from the sample (for example, 

by covering them with a photoresist layer), which avoids electrode fouling and bubble formation 

[75]. Conductometry devices are usually associated with enzymes, used to study enzymatic 

reactions that create variations in the concentration of charged species [295]. These electrodes 

can be patterned in silicon wafers or glass through semiconductor technology or on printed 

circuit boards (PCBs) which are then covered and integrated with a channel. Conductometry 
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methods are conventional contacted conductivity detection and capacitively coupled contactless 

conductivity detection (C4D) methods such as potential gradient detection [75], [301].   

In potentiometry (Figure 48 (d)), the measurement is performed through the detection of 

a generated potential between a reference and an ion-selective working electrode when no 

current is flown between the two electrodes. This potential is generated due to a built-up of 

charge separation when ions pass through the selective membrane of the working electrode and 

a local equilibrium is established at the sensing interface [295]. Potentiometry measures the 

concentration of ions in a redox reaction up to 10-11 M and is mathematically based on the Nernst 

equation (Equation 24), where 𝐸𝑐𝑒𝑙𝑙 and 𝐸𝑐𝑒𝑙𝑙
0  are the observed potential at zero current and the 

constant potential contribution to the electrochemical cell, respectively, R is the universal gas 

constant, T is the absolute temperature in Kelvin, and Q is the ratio of ion concentration 

between the anode and the cathode [295]. The fabrication strategies of potentiometric sensors 

are similar to the ones presented for conductivity and amperometric detection [75], but 

miniaturization issues are usually involved with the strategy for miniaturization of the 

reference electrode [102].  

Equation 24 

 
Impedance sensors (Figure 48 (e)) measure the change in electrical impedance at a fixed 

or variable frequency between an electrode and the solution when adsorption of the target 

molecule to the electrode occurs. Impedance allows studying intrinsic material properties (e.g. 

polymer degradation, electrolyte degradation, status of car engine oil, cell adherence on sensor 

structures) that result in a resistivity or capacitivity change [299], [295]. It has also been applied 

to monitor biorecognition events (e.g. in immunoassays) occurring at the surface of the electrode 

[295], and presents sensitivity to nonspecific adsorption [166].  

Another type of electrochemical sensors is the field effect transistor (FET). FET measures 

a current resulting from a potentiometric effect at the gate (an electrode where potential is 

varied relative to two other electrodes, the source and the drain) [295]. An EnFET (enzyme FET) 

consists of a transistor where the metal gate is replaced with surface functionalization, while 

an ISFET is an ion-sensitive FET. Target molecule adsorption results therefore in a change in 

potential at the gate causing a measurable signal between source and drain [295]. These sensors 

present however some cross-sensitivity and issues with pH change, as well as difficulties in 

incorporating an appropriate and low-cost reference electrode. The encapsulation of FET greatly 

influences their stability and reproducibility [299]. Nanowires (e.g. carbon nanotubes (CNTs), 

conducting polymer nanowires (CPNWs), nanorods, nanosprings) can be used to connect the 

gates in FET resulting in an increased sensitivity, except for solutions with high ion 

concentrations [177]. Carbon nanotubes, and other nano-objects (e.g. gold nanowires and 

nanoparticles) can also be integrated in membranes of amperometric and other types of sensors 

in order to increase sensitivity and lower the limit of detection [295], [302]. 

The presented electrochemical methods are often coupled with electrophoresis operations 

(such as capillary electrophoresis separation) or in electrophoresis systems.  

  

Miniaturization of the electrode area to the micrometer scale, required for integration in 

microfluidic systems, allows (i) decreasing the measurable currents (down to nanoamperes), (ii) 
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decreasing required sample volume, (iii) increasing the response time to alterations in the 

applied potential, (iv) increasing the efficiency of diffusional transport of the target analyte to 

the electrode’s surface, and (v) decreasing the contact resistance [166].  

Combination of electrochemical and optical detection can also be performed on the same 

chip [102], [303]. EC sensors can be combined with other label-free detection methods (e.g. 

surface plasmon resonance (SPR) [304], quartz crystal microbalance (QCM) [305], optical 

waveguide lightmode spectroscopy (OWLS) [183]) with the integration of a conductive electrode 

on the chip [295]. The electrochemical sensors’ sensitivity, specificity, precision and operation 

stability are highly dependent on (i) the used fabrication techniques, (ii) how the 

miniaturization is performed, (iii) which material deposition methods are used, and (iv) which 

coatings and immobilization methods of biomaterials and biomolecules are used [306], but also 

on (v) electrode size, (vi) geometry, (vii) position in the measuring chamber, and (viii) surface 

structure [166]. So, in other words, the development of EC sensors is a significant and time-

consuming optimization problem. 

4.1.1.1 Glucose electrochemical sensors 

The most successful commercially available and used biosensor is the electrochemical 

glucose sensor [307], with a worldwide market that is estimated to be close to 10 billion dollars 

[166]. Its development revolutionized the management of diabetes mellitus in patients, allowing 

a more accurate and frequent measurement of glucose levels in blood in hospitals, but especially 

in the patient’s home [308]. But the history of glucose and electrochemistry started long before, 

in 1909 with the electrooxidation of glucose to gluconic acid by Walther Loeb in a sulfuric acid 

solution using a lead anode [308].  

The electrooxidation (non-enzymatic detection) of glucose, performed with different metals 

(e.g. Pt, Au, Cu, Ni, TiO2) at alkaline pH shows a high electrocatalytic ability, sensitivity and 

selectivity towards glucose. Polycrystalline or nanoporous metals or metal nanoparticles 

supported in carbon nanotubes developed so far show high stability, but with some degradation 

of the surface due to the alkaline environment which affects the electrode’s lifetime [307]. Also, 

selectivity of electrooxidation of glucose is generally lower than the one obtained with enzymes 

[307]. Au-nanoparticles prepared by citrate reduction can be an exception, functioning as 

artificial enzymes capable of oxidizing glucose without requiring electricity [307]. Furthermore, 

for most of the materials used in glucose electrooxidation, the irreversible adsorption of partial 

oxidation products or of active species in solution causes the poisoning of the electrocatalysts 

used for glucose oxidation [307]. This in turn lead to the wide application of enzymes to perform 

the substrate oxidation [308].  

The most used enzymes are glucose oxidases (GOx) and glucose dehydrogenases (GDH). 

GOx, as mentioned in Chapter 1, has a high selectivity for glucose and oxidation involves the 

reduction of FAD, followed by its re-oxidation in the presence of molecular oxygen. GOx presents 

an apparent formal redox potential of -0.048 V vs. SHE (standard hydrogen electrode) at pH 7.2 

[308]. GDH has a broader substrate spectrum (e.g. glucose, galactose, xylose), and can have 

several co-factors depending on the dehydrogenase (NAD, β-nicotinamide adenine dinucleotide, 

and PQQ, pyrroloquinoline quinone). NAD-GDH require a source of the co-factor (NAD+) and a 

redox mediator to lower the voltage required to oxidize NADH [309]. PQQ, unlike FAD, is not 
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oxidized during the reaction, however presents a lower stability than FAD or NADH-dependent 

GDH [308], [309]. Glucose oxidation by GDH occurs at a lower potential, 10.5±4 mV at pH 7 and 

in the presence of an excess of calcium ions [308]. Another relevant enzyme in glucose 

monitoring is the isoenzyme 2 of hexokinase, that presents a very high specificity. However, its 

higher price over GOx, dependency on ATP and lower stability prevents its wider application in 

glucose sensors [307].  

Enzyme immobilization on the electrode’s surface can be achieved by physical adsorption, 

however in this case enzyme stability is easily affected by the experimental conditions, such as 

pH, ionic strength, temperature, charges, etc. Addition of bovine serum albumin (BSA) can 

improve stability in physically adsorbed enzymes. Covalent attachment is the most effective 

method for enzyme immobilization, and can be performed with hydroxyl groups of chitosan and 

1,4-carbonyldiimidazole, thiolated gold nanoparticles or using the enzyme’s amino acid residues. 

Other immobilization approaches are the physical entrapment or encapsulation of enzyme 

inside a solid matrix that can be formed of polymers, redox gels, sol-gel or carbon pastes [307]. 

The first enzymatic glucose sensor was fabricated by Clark and Lyons in 1962, and 

involved a thin layer of GOx embedded in a semipermeable dialysis membrane placed over a Pt 

electrode for measuring oxygen depletion (the Clark oxygen sensor mentioned in Chapters 2 and 

3) [309]. Oxygen-based glucose measurement can also be achieved with an indium tin oxide 

(ITO) electrode covered with an oxygen and proton permeable membrane [308]. The first 

amperometric-based glucose sensor was described in 1973 by Guilbault and Lubrano and was 

based on monitoring the produced hydrogen peroxide [309].  

Glucose sensors that rely on the detection of hydrogen peroxide by GOx oxidation with 

molecular oxygen (the physiological mediator), are called first generation glucose biosensors 

(Figure 49) [309].  

 
Figure 49 – Schematics of the sequence of redox steps involved in glucose detection with the different generations 

of glucose biosensors. 

 

In these sensors, amperometric detection of hydrogen peroxide can be performed with (i) 

anodic oxidation (enables regeneration of oxygen for use in the enzymatic reaction) at +0.3-0.8 

V vs. SCE (standard calomel electrode) using Pt on graphite, carbon pastes, carbon nanotubes 

and conducting polymers; with (ii) cathodic reduction at 0.6 V vs. SCE, using palladium, Pt 

nanowires and Au nanoparticles in a porous silicate; or by (iii) cathodic detection by co-

immobilization of a peroxidase (e.g. horseradish peroxidase), which is oxidized in the process, 

followed by its mediated or direct electroreduction [308], [307].  Selectivity of first generation 

biosensors can be increased through tuning of the operating potential to a region where only the 
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target analyte is oxidized or reduced. The use of metal-hexacyanoferrate-based mediators, such 

as Prussian blue (ferric-ferrocyanide) or Rhodium and Ruthenium on carbon, allows reducing 

the overvoltage involved in hydrogen peroxide redox reaction to around -0.1 V vs. Ag/AgCl [309]. 

In this case, the hydrogen peroxide reduces the metal oxide film on the surface of the electrode 

to the metal, which can be electrochemically re-oxidized, thus generating the detected anodic 

current signal [309]. Prussian blue (PB), one of the most used mediators in glucose sensors, acts 

as a peroxidase [307], and can be co-deposited together with the enzyme or be applied together 

with carbon ink in screen-printed glucose sensors [309]. More on the specific application of PB 

in glucose sensors can be found in Karyakin et al. (1999) [310], Karyakin et al. (2001) [311] and 

Ricci et al. (2003) [312]. Several nanomaterials, such as carbon-nanotube modified electrodes or 

metallized carbons, have also resulted in a lower anodic potential with a high selectivity in 

hydrogen peroxide measurement [309], [307]. First generation glucose biosensors are extremely 

dependent on the oxygen tension and the need for oxygen concentration to be at least one order 

of magnitude lower than the glucose oxygen concentration (stoichiometric limitation of oxygen), 

which leads to a reduced upper limit of linearity [309]. Possible solutions to this limitation 

involve the use of polymer films that enable increasing the oxygen/glucose concentration ratio 

by tailoring the flux of the substrates to the electrode, or oxygen-rich carbon paste. Using GDH 

instead of GOx also eliminates the dependence on oxygen [309]. Covering the electrode or 

enzyme-covered electrode surface with a permselective membrane, also reduces the amount of 

electroactive species present in the electrode surface that can interfere with the measurement 

at the used potential in amperometric sensors [309]. This increases significantly the selectivity 

and sensitivity of a sensor. The membrane can be fabricated with a single polymer, or with 

mixed layers of different polymers in order to tune its properties in terms of charge, pore size 

and polarity [309]. Examples of commonly used coatings are cellulose acetate films, negatively 

charged (sulfonated) Nafion and other ionomers, and electropolymerized films such as 

polyphenol and polypyrrole [309]. Glucose monitoring in first generation electrochemical 

sensors depends, not only on glucose and oxygen concentration and pH, as expected, but also on 

the concentration of redox mediator, the enzyme loading and the current applied to the 

electrodes [308]. 

Glucose has also been monitored, although less frequently, through measuring the pH 

change associated with the production of gluconic acid from glucono-δ-lactone hydrolysis. This 

is performed by potentiometry using FET, and is more sensitive to other parameters that might 

affect pH, requiring a well-defined glucose influx and proton out-flux for accurate quantification 

of glucose [308]. 

 

Second generation glucose biosensors (Figure 49) perform the detection through the use of 

a mediator (Medox) capable of transporting electrons directly from the FAD redox center of Gox 

to the electrode’s surface [309]. The reduced form of the mediator, obtained during the re-

oxidation of the enzyme, is re-oxidized in the electrode, generating a current signal proportional 

to the concentration of glucose [309]. The need for redox mediators in glucose oxidase based 

sensors arose from the extremely slow rate at which electron transfer from the reduced FAD 

(FADH2) to the electrode occurred. This low rate of direct electron tunneling derives from the 

depth at which FAD is placed inside the GOx conformation, about 13 to 15 Å below the enzyme 

surface in contact with the electrode [308]. Second generation glucose biosensors can use 
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diffusional electron mediators (soluble mediating species) such as ferrocene derivatives, 

conducting salts, quinone compounds (e.g. Methylene blue), transition-metal complexes, and 

phenothiazine and phenoxazine compounds [309]. These compounds free the reaction from 

oxygen dependency and lower the potentials used in the measurement thus minimizing 

interfering reactions on the electrode [309]. Mediators in second generation glucose biosensors 

must have a low solubility in water, be non-toxic and chemically stable, but most importantly, 

present a higher rate of electron transfer than the rate of the reaction of the enzyme with oxygen 

[309]. Another alternative is to use the enzyme embedded in conducting polymers. The polymer 

provides the connection between the enzyme and the electrode through flexible polymeric chains 

(e.g. poly(vinylpyridine with tethered complexes of Os2+/3+ [308]) and folding around GOx [309]. 

The use of these polymers results in a fast response with high current density and added 

stabilization of the enzyme, allowing the fabrication of ultra-small electrodes [309]. The 

connection of electron relays (e.g. nanocarbon tubes or gold nanoparticles) directly to the enzyme 

or the FAD center can enable a simpler electrical wiring of the enzyme to the electrode and 

result in a significantly higher electron transfer rate which can be controlled by e.g. the length 

of the carbon nanotube used [309]. 

 

Since mediated systems tend to lose stability over time under continuous operation, third 

generation glucose sensors (Figure 49) are currently under development, whereby the enzyme 

is in direct contact with an electrode capable of operating a low potential (close to the one of the 

enzyme -0.5 V vs. Ag/AgCl) [309], [307]. To achieve this, the distance between the FAD redox 

center and the electrode needs to be reduced [309]. A possible solution is the use of conducting 

organic electrodes based on charge-transfer complexes (e.g. tetrathiafulvalene-

tetracyanoquinodimethane (TTF-TCNQ)) [309]. Other approaches involve complex strategies 

for the reconstitution of the apo-enzyme on co-factor-modified electrodes and the reconstitution 

on co-factor functionalized nanoparticles that enable the alignment of the enzyme on the 

electrodes. However, the biggest hope relies on novel nanomaterials such as graphene, 

polyaniline nanotubes, and ionic liquid functionalized carbon nanotubes with gold nanoparticles 

[307]. 

4.1.2 Sensor integration 

The degree of complexity of a microfluidic device tends to increase with the number of unit 

operations and/or mechanical parts that are integrated. However, as stated in Sassa et al. (2008) 

[102], the structure and function of individual components should be simplified to allow the 

operation of sophisticated microsystems.  

When considering a unit of detection, as mentioned previously, the sensor performance 

depends, among other factors, on its position in the microdevice and of the flow rate applied to 

the solution measured. Hence, the manner of integration is highly relevant. Furthermore, the 

integration in microchannels of EC sensors can improve sensitivity due to the closer proximity 

of the electroactive species to the electrode. It can also improve throughput by integrating 

different sensors or sensors for different analytes in parallel channels, all the while decreasing 

analysis time, due to faster diffusion to the electrode’s surface and/or by modifying the flowrate 

used for detection [166]. 
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The simplest strategy for integration of electrochemical sensors involves the fabrication of 

patterns of electrodes directly on the microchannel substrates and/or using thin- and thick-film 

methods [299], [102]. The first approach is generally applied on hard and flat substrates (e.g. 

glass or silicon) [313], [314], [177], [166], where the sensors are deposited onto the channel 

surface using technologies similar or compatible with the ones used for the microstructures 

fabrication (semiconductor industry), such that the fabrication of both structures can be 

performed simultaneously or sequentially [315]. These techniques can also be used in polymeric 

substrates, however differences between the thermal expansion coefficients of the metals and 

the polymer where deposition occurs may lead to metal layer stress and sensor cracking. In the 

thick-film method, a paste containing metal particles or conducting ink (e.g. carbon or graphite 

ink) is spread on a screen with the geometrical pattern of the contact (electrode). This technique 

can be used to print sensors onto paper strips, forming screen-printed electrodes (SPEs). The 

conducting ink or carbon paste can be mixed with biomolecules for direct biosensor printing [86], 

[80]. Using techniques from the semiconductor industry enables batch fabrication of sensors 

and/or integrated structures which in turn greatly decreases its cost, however thick-film based 

sensors allow for overall cheaper fabrication and easier disposability of the sensors [299], [102]. 

Both individual sensors and sensor arrays (for different target analytes) can easily be obtained 

with these fabrication methods [299]. The working electrodes are usually made of Pt, Au, C or 

Ir, while the reference electrode is usually Ag/AgCl [102]. Sensors can be directly integrated in 

the fluidic channel by patterning on the bottom wall, and exist in a three-electrode configuration 

or as arrays of working electrodes, each functionalized for a given analyte and with the same 

working and counter electrodes [102]. The reference and counter electrodes may also be 

fabricated separately and introduced through the channel inlets. Reference electrodes can also 

be accomplished using a salt bridge [166]. Sensors fabricated with other technologies (spray-

coating [174], coating coupled with embossing [183]) can also be irreversibly encapsulated into 

a microfluidic channel. Irreversible encapsulation guarantees a leakage and contamination-free 

operation of the device (after sterilization or when assembled in a clean-room environment), and 

it is the most frequently used approach.  

Another strategy, presented by Frey et al. (2010), involves a permanent integration of a 

thin-film electrode in a flow channel, but the functionalization of the surface can be performed 

after electrode integration and channel bonding through a capillary-driven deposition channel 

connected with each electrode [293]. This extends the life-time of the sensing layer since it was 

not subjected to harsh conditions during channel bonding (e.g. high temperature and/or 

pressure). A further interesting approach to the integration of electrochemical biosensors in 

microchannels requires the immobilization of the biorecognition element of the sensor, 

separately from the electrode, in an area upstream of the electrode position or in the top of the 

channel directly opposite to the electrode position [316]. This has been shown to increase the 

sensing performance in some situations [316], by freeing the electrode’s surface area for more 

efficient electron transfer [166]. Embedding of sensors during the 3D printing process is also a 

possibility, as has already been demonstrated for optical fibers, glass slides and membranes by 

Yuen (2016) [317]. The advantage of embedding structures during printing is the reduction of 

post-processing steps, while integration of glass in 3D printing structures increases visual 

access to the fabricated channels without requiring extra steps of sand blasting and polishing 



Micro scale reactor system development with integrated advanced sensor technology  

123 
 

[317]. Electrodes can also be fabricated separately through conventional techniques and 

integrated by gluing or bonding in a glass and polymeric channel [318].  

Traditional sensor integration thus occurs through fabrication of the sensors with the 

microstructures and/or irreversible integration/bonding in the channels. However, diverse 

integration strategies based on either channel or sensor re-usability have recently been 

developed. A platform design that enables the substitution of the sensors in use and the 

integration of different types of sensors widens the sensor and platform applicability. 

Furthermore, devices that require a (re)alignment of the electrodes in the fluidic structure may 

result in increased variability between experiments, depending on the alignment precision 

[319], so the use of ports for sensor introduction decreases such variability by allowing a 

straightforward positioning of the sensors in the platform. This can be achieved using platforms 

where the channel is not irreversibly bonded and can then be easily and frequently opened [320], 

[321], [322]. Electrodes, especially disposable or reusable ones, can thus be integrated in the 

channel through receiving ports [323], [324], [166]. This enables, in the case of re-usable sensors 

to clean or polish the electrode surface from biofouling [166], but it may also allow the 

application of a different functionalization for application towards another target analyte. It 

also permits a re-use of the microfluidic system for different target molecules by allowing the 

introduction of different sensors. 

Erkal et al. (2014) developed 3D printed microfluidic structures for integration of 

electrochemical sensors, where the electrodes were epoxy-embedded on commercial flangeless 

fitting nuts and integrated through threaded ports [319]. In this case, the ports for electrode 

integration in the channel had standard dimensions (same outer diameter), allowing electrode 

interchange, while the inner diameter of the of the tips of the fitting nuts with embedded 

electrodes depended on the electrode used [319]. The design files of the 3D printed structures 

can be easily shared between research laboratories for increased standardization and reliability 

of tests performed [319]. Screen- or inkjet-printed sensors in paper or polymeric substrates can 

be used for detection in paper microfluidics or be integrated through ports in microchannels. 

Reversible encasing of the sensors can be performed through the use of a chip holder (e.g. with 

mechanical clamping [325], [322]) which applies enough pressure for leakage-free flows. A 

reversible encapsulation can facilitate sensor or channel surface functionalization and cleaning 

due to easy access to these surfaces. If the sensor is not irreversibly bonded or encased in the 

device, it can be further re-used in other microfluidic platforms. The cost of such devices can be 

consequently reduced, since the sensors can be the most expensive component of a microfluidic 

platform. 

 Nevertheless, in all approaches, one of the significant challenges is the integration 

between the sensor and the channel, which must be performed in order to avoid leakage at the 

interface [86].  

For increased sensitivity along with a longer sensor life-time (especially in cell 

applications where biofouling can be a significant issue), sensors are usually either covered with 

a polymeric layer or a membrane is placed between the sensor surface and the biological 

elements [299]. 

 

As mentioned in Chapter 1, chip standardization can also facilitate sensor integration and 

use by simplifying the connectivity between microsystems. Detection can then be achieved in 
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different applications with the strategies described above by connecting the microdevice with 

the sensor to the system where the reaction or fermentation is occurring. 

4.1.3 Mixing 

Mixing at microscale occurs mainly through diffusion (which depends on the concentration 

gradient of the species considered) due to the channel and structure dimensions and the 

consequent laminar characteristic of the flows achieved [11]. However, diffusion is a slow 

process and so designs capable of rapidly achieving efficient mixing and/or in a short channel, 

are essential for the development of high-throughput microfluidic systems [160]. Mixing can be 

increased by raising the chaotic advection effect in order to increase the contact area (and time 

of contact) between the flows being mixed, occurring mainly in the direction of flow.  There are 

two main types of strategies to achieve mixing in microchannels: active mixing and passive 

mixing [160]. 

Active mixing involves the application of an external force on the flown fluid. Fluid 

perturbation can be caused by acoustic waves (mixing through generation of microstreams with 

e.g. piezoelectric disks or radio-frequency), dielectrophoresis (mixing induced through particle 

polarization which drives them towards or away from the electrode), magnetohydrodynamic 

flow (mixing occurs by generation of Lorentz forces or actuating magnetic particles), 

electrokinetic pulse (mixing achieved through periodic perturbations of an applied electrokinetic 

force), perturbation of pressure (mixing achieved by flow velocity pulses or alternate 

introduction of sample flows) [11], [105].  

Passive mixing relies on the modification of the channel shape to induce splitting, folding, 

stretching or breaking of the flow, usually using only a pressure head to induce a controlled flow 

[160]. It can be achieved either through lamination-based or advection-based designs. 

Lamination-based mixing involves splitting and recombination of the flow in order to generate 

a higher number of interfacial contacts between the flows. This can be performed with T-

junctions, split T-junctions, hydrodynamic focusing, channel multi-split followed by 

recombination, among others [11], [160]. Advection-based mixing, on the other hand, uses 

structures capable of generating Dean vortices. This can also include intersecting channels (as 

for lamination-based approaches) or convergent-divergent channels, but with geometries that 

increase collision and not just recombination of the flows. Furthermore, mixing can be obtained 

with three-dimensional serpentine channels, where different flows rotate in bends defined in 

the three dimensions, but can also be split and recombined in the vertical direction. Channels 

that possess out-of-channel protrusions in diverse angles are also an alternative design. Tesla 

structures are another advection-based geometry, which involves a combination of thinner 

channels connected to wider sharp curves, with an increased vulnerability to clogging in a mixed 

matrix. Advection-based mixing can also occur through introduction of obstacles, called static 

mixing elements (e.g. staggered herringbone grooves, side-wall protrusions) in one (or more) of 

the surfaces of the channels. This, together with a serpentine structure (introduction of bends 

that induce rotation of the flow) is the simplest strategy to increase mixing efficiency. [11], [160]. 

Mixing in droplets or with slug-flow, is another strategy, resulting in a better control of the 

residence time (no formation of parabolic velocity profile) with the possibility of generation of 
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inner flows by using serpentine channels or other strategies that have already been mentioned. 

Furthermore, the droplets can also be split and coalesced to improved mixing [11]. 

4.2 Goal 

The developed work summarized in this chapter focuses on addressing the current need 

for adaptable screening platforms with integrated sensors. A flexible multi-function platform is 

proposed, with disposable and changeable sensors, easily integrated with other microfluidic 

platforms through a “plug-and-play” approach by using standardized finger tight fittings. The 

platform can be easily connected to external equipment (e.g. syringe pumps, HPLC), while 

offering the advantage of in-line use, thus not interfering with the reaction vessel. The choice of 

material, the thermopolymeric Poly (methyl methacrylate) (or PMMA), and fabrication 

technology (laser ablation) considered both design flexibility and costs. PMMA and laser 

ablation allow a fast optimization cycle from design, to fabrication and testing with fluids. 

Furthermore, since PMMA is a widely available biocompatible and cheap material, it enables a 

low-cost device fabrication with good reproducibility. Two encapsulation strategies were also 

tested: chemical bonding and lamination with pressure sensitive adhesive tape. 

The classical example of the catalyzed oxidation reaction of glucose by glucose oxidase was 

chosen as the model reaction to highlight the monitoring capabilities of the developed 

microfluidic platform. In order to track the changes in inline analyte concentration, first 

generation amperometric glucose biosensors were chosen for further integration into the 

developed microfluidic device. Amperometric electrodes were employed due to their wide 

applicability [326], [327], [328], [329,330], compactness, stability and low price. The selection of 

first generation EC sensors was guided by its ready availability and knowledge about their 

fabrication and working principle. 

4.3 Materials & Methods 

4.3.1 Reagents and materials 

Glucose oxidase (EC 1.1.3.4, type VII, from Aspergillus niger, ≥100,000 U/g solid) and 

bovine serum albumin (BSA) were obtained from Sigma (St. Louis, MO, USA). Nafion®117 

solution (~5% (v/v) in a mixture of lower aliphatic alcohols and water) and iron (III) chloride 

(anhydrous, 99.99%) were obtained from Aldrich (Steinheim, Germany). Potassium 

hexacyanoferrate (III) (ACS reagent, ≥99.0%) and glutaraldehyde solution (25% (v/v)) were 

obtained from Sigma – Aldrich (St. Louis, MO, USA). D- Glucose (anhydrous) was provided by 

Fluka (Loughborough, UK). Mono – and di-potassium hydrogen phosphate (anhydrous) were 

obtained from Merck (Darmstadt, Germany). Isopropanol (2-propanol, anhydrous, 99.5%) used 

for cleaning was obtained from Sigma (St. Louis, MO, USA). 

All the solutions for sensor preparation were prepared with 0.1 M phosphate buffer + 0.1 

M KCl, pH 6. Standard solutions were prepared daily in the same buffer. All other solutions 

were prepared in 0.1 M phosphate. 
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Customized SPEs on polymeric substrate (DRP-PW-110DGPHOX) were produced by 

DropSens (Llanera, Spain), while the SPEs on polyester substrate (ItalSens IS-C) were acquired 

from PalmSens (Utrecht, The Netherlands). The DRP-PW-110DGPHOX SPEs are made of a 

thicker polymer than the IS-C SPEs. Each sensor is composed of three screen-printed electrodes: 

(i) the carbon working electrode (with graphene oxide layer in the case of the DRP-PW-

110DGPHOX electrodes); (ii) the carbon counter electrode; and, (iii) the silver reference 

electrode. The diameter of the working electrode in the DRP-PW-110DGPHOX SPE is 0.4 cm, 

which results in an apparent geometric area of 0.126 cm2, while in the IS-C SPE the diameter 

is 0.3 cm with an apparent geometric area of 0.07 cm2. 

The extrusion PMMA sheets with a thickness of 2 mm were acquired from Nordisk Plast 

(Assentoft, Denmark). The PMMA plates were patterned using laser ablation with a CMA-4030 

Laser Engraving machine from GD Han’s Yueming Laser Technology co., Ltd (Guangdong, 

China). Chemical bonding of the PMMA plates was achieved using an anhydrous chloroform 

solution, ≥99%, 288306 from Sigma-Aldrich (St. Louis, MO, USA). Adhesive assembly and 

integration of the sensors on the platform were performed with a 142 µm thick mcs-foil 008 from 

microfluidic ChipShop (Jena, Germany). The PDMS thin sheets used as gaskets were fabricated 

using the elastomer and curing agent kit of Sylgard® 184 from Dow Corning (Auburn, 

Michigan). The two 10-mm thick acryl plates that form the custom-made holder were from Rias 

A/S (Roskilde, Denmark). The holder was completed with two outer 5 mm thick SS304 stainless 

steel plates from Sanistål (Aalborg, Denmark). Flangeless polypropylene (PP) fingertight 1.5875 

mm (ID) fittings (XP-201) and flangeless ferrules (P200X) from Upchurch Scientific® 

(Washington, USA) were used to connect polytetrafluoroethylene (PTFE) 1.5875 mm (OD) x 

1mm (ID) tubing (S 1810-12) from Bohlender (Grünsfeld, Germany). 

4.3.2 High-Performance Liquid Chromatography (HPLC) method  

All the reaction samples were analysed in HPLC for quantification of consumed glucose 

and produced gluconic acid. The measurement was performed with reversed-phase 

chromatography on an Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA) equipped with a 

Phenomenex column with 5-µm sized amine particles (Luna 5u NH2 100A), operated at 40 ⁰C 

and 140 bar. The mobile phase consisted of a 20 mM phosphoric acid (H3PO4) solution, flowing 

at 1 mL/min. The eluted gluconic acid was quantified in the ultraviolet (UV) multiple 

wavelength detector at 205 nm, while the glucose concentration was determined in the Refract 

Max 520 refractive index (RI) detector. The amount of each component was obtained by 

integration of the areas under the corresponding peaks using the HPLC commercial analytical 

software (Chromeleon 6.8), based on a calibration curve performed for each component. Samples 

were measured mixed with 0.5 M sodium hydroxide (NaOH) solution in a proportion 1:2 of 

solution relative to the sample. 

4.3.3 Microfluidic Platform Fabrication and Sensor Integration 

A microfluidic system containing two inlets, two sensing/ measurement chambers, for 

sensor integration, and one mixing unit was developed and is presented in Figure 50. Figure 

50(a) shows a schematic of the microfluidic platform. As illustrated, one of the inlets of the 
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system is connected to the first chamber, where the reference sensor is located. The second inlet 

is connected to the mixing chamber, which serves here as a dilution unit but can also be used 

as a reactor or target labelling unit. The second chamber is positioned after the mixing unit. 

The sensor integrated in this chamber is the one used for sample quantification and is thus 

designated detection sensor. Figure 50 (b) and (c) display one more feature of this system. It 

involves the use of generic rectangular pockets at the bottom plate of the device with direct 

access to the sensing chambers. The sensor can thus be directly placed in the chamber and 

covered with a thin polymeric gasket. The system is then closed by placing PMMA inserts in the 

pockets and sealing the whole platform with help of an outside mechanical holder system. An 

expanded view of the assembled platform is presented in Figure 51. 

 

 
Figure 50 - Schematics of the developed platform, highlighting the different elements and the sensor positions (a) 

and SolidWorks 3D representation of the assembled microfluidic platform with one integrated IS-C SPE (b), and (c) 

DRP-PW-110DGPHOX SPE. 

 
Figure 51 – Schematics of the assembly of the different plates for the three-dimensional mixing geometry and the 

sensor pockets for the graphene oxide-based sensors. 

 

The design of the device was performed in SolidWorks 2015 (Dassault Systèmes 

SolidWorks Corporation, Waltham, Massachusetts, USA). This microfluidic platform consists of 

four PMMA plates ablated by laser ablation, as can be observed in Figure 51. 

After ablation, the plates were thoroughly washed with deionized water, dried and then 

placed in an oven at 80 ⁰C for 1 hour to release thermal stress before proceeding with the 

assembling. Two different approaches were used to assemble the PMMA plates: (i) lamination 

with double sided pressure sensitive adhesive tape (DAT); and, (ii) chloroform bonding. In the 
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first approach, the cooled plates were glued together and then pressurized with clamps and 

placed in an oven at 80 ⁰C for at least 1 hour to remove possible air bubbles disturbing the 

adhesion. In the chloroform bonding, a procedure adapted from Ogilvie et al. (2010) was followed 

[331]. The dried plates were thoroughly washed with a 99.5% isopropanol solution, dried and 

then the surfaces to be bound were exposed to chloroform vapours for 2 min before being glued 

together. The plates were placed at a height of approximately 2 mm from a layer of liquid 

chloroform inside a closed glass Petri dish. In both approaches, after bonding was completed, 

the sensors were put in place using thin PDMS gasket sheets, sealing the sensor around the 

sensing chamber. The PDMS gaskets were fabricated by mixing in a SpeedMixerTM DAC 150.1 

FVZ-K from Synergy Devices Limited (High Wycombe, UK). A 1:10 proportion mixture of the 

curing agent and the Sylgard® elastomer, was poured into a 1 mm PMMA mold with the shape 

of the sensor pockets followed by curing it in the oven for 1h at 70 ⁰C.  

 

Once the chip was assembled, the sensors were placed on the sensor pockets, the PDMS 

gaskets were placed on top and followed by a piece of PMMA. The microfluidic platform with 

integrated sensors was then positioned in an ‘in-house’ fabricated casing, which provided the 

necessary pressure to achieve leakage-free flow. The holder was built by two acrylic plates of 

100x100 mm2 that were micromilled in order to have a cavity with the chip’s size and two outer 

SS304 stainless steel plates with a thickness of 5 mm, to avoid bending of the acryl plates when 

screwing the assembled holder together. This holder provides enough uniform pressure to avoid 

leakage of the microfluidic platform.  

4.3.4 Mixing unit CFD optimization and characterization 

Several passive mixing geometries were designed in SolidWorks 2015 (Dassault Systèmes 

SolidWorks Corporation, Waltham, Massachusetts, USA). The drawings of these geometries are 

presented in Figure 52. Each geometry’s mixing characteristics were studied with the help of a 

computational fluid dynamic (CFD) simulation software, ANSYS-CFX Version 16.2 

(Canonsburg, Pennsylvania, USA). To this purpose, the three-dimensional designs were 

imported into a meshing software, ANSYS ICEM CFD® 16.0 (Canonsburg, Pennsylvania, USA), 

where discretization of the geometries was performed. Discretization divides the geometry in 

smaller elements, in which the required momentum, energy and mass balance equations were 

solved by ANSYS-CFX. The number of elements of the 5 simulated structures varied between 

845 and 1185 elements/µL, except for design (e) which had 9925 elements/µL. A structured mesh 

provides a more reliable and accurate output with respect to the results and reduces for many 

types of problems the simulation time. However, it is more complicated to define and requires 

longer preparation time. So, as a first approach, all geometries were simulated with 

unstructured mesh elements using tetrahedral features for the mesh. The best designs (designs 

(a) and (e)) were then simulated with a structured hexahedron mesh.  

At microscale, the flow is laminar and therefore predictable, simply requiring the solution 

of the Navier-Stokes equation without the use of turbulent models. All geometries were 

simulated at the target flow conditions (steady state with laminar flow, outlet as an opening 

and no slip wall conditions) in the integrated microfluidic platform considering a fluid with the 

same properties as water (at 25 ⁰C) where a liquid tracer with diffusivity of 1x10-10 m2 s-1 was 
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introduced. The average inlet velocity, at the reference sensor, was 1x10-3 m s-1, while the 

velocity of the other inlet was varied depending on the simulated degree of dilution. The 

geometries were evaluated by monitoring the average tracer amount at the outlet, as well as 

the gradient of its concentration. The best performing geometries were then built using the same 

procedure as described above for the microfluidic platform. Subsequently they were 

qualitatively tested using food colouring dies at the simulated flowrates. The geometry that 

achieved the desired 1:9 dilution with no gradient of tracer at the outlet (design (e)) was then 

used in the final microfluidic platform design. More details regarding the CFD simulations are 

presented in Appendix IV. 

 

 
Figure 52 - Mixing chamber designs based on passive mixing structures: slanted grooves (a), squared baffles (b), 

staggered herringbone (c) combination of herringbone and obstacles (d) and three-dimensional serpentine (e). 

4.3.5 Sensor 

The sensors presented in this chapter were fabricated at the PROSYS research group 

together with PhD student Daria Semenova. The presented procedure was based on the 

methods used at the Measurement Technology Unit (MITY) at Oulu University, which were 

acquired during a 3-month external stay, of both PhD students at Oulu University. No work 

related to sensor optimization is presented here, since it is an extensive procedure which has 

been refined by Daria Semenova. 

4.3.5.1 Sensor Preparation  

The used biosensors consist of a SPE with immobilized layers of the hydrogen peroxide 

sensitive catalyst, Prussian Blue (PB) and the biological recognition element, the enzyme 

glucose oxidase (GOx). The PB modification of SPEs and deposition procedures were adopted 

from the procedures developed by Ricci et al (2003) [312] and Mahosenaho et al. (2010) [332]. 

Freshly prepared precursor solutions of 0.1 M potassium ferricyanide (K3Fe(CN)6) in 10 mM 

HCl and 0.1 M ferric chloride in 10 mM HCl were mixed in different proportions. A 1:1 

proportion was used in the DRP-PW-110DGPHOX SPEs, while in the IS-C SPEs a 2:1 

proportion was used for the detection sensor and a 1:2 proportion for the reference sensor. A 

drop of PB (10 µl of total volume) was accurately placed onto the working electrode area, to avoid 
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contact with the counter and reference electrodes. The electrodes were left for 10 min at room 

temperature and then rinsed with a 10 mM HCl solution and deionized water. The modified 

electrodes were then left to dry for 1 h in the oven at 100°C for stabilization of the PB layer, and 

afterwards stored in the dark at room temperature. 

Glucose oxidase (GOx) immobilization was performed in a Nafion matrix via a cross-

linking method previously described by Ricci et al (2003) [312] and Mahosenaho et al. (2010) 

[332]. A drop of 2.5 µl of glutaraldehyde (1 % (v/v) diluted in water) was placed on top of the 

working electrode area of the PB-modified electrodes and left to dry for 30 min at room 

temperature. A drop of 3 µl of the enzymatic-Nafion membrane was then applied on the modified 

working electrode and placed to dry overnight in a climate chamber at 8°C with 40 % of 

humidity. The enzymatic mixture had the following composition per sensor: GOx (0.074 U in 

phosphate buffer), BSA (5 vol. % diluted in water) and Nafion (5 vol. % diluted in water). All the 

components of the enzymatic layer were mixed in a 1:1:1 proportion.  The complete glucose 

biosensors were stored dry at 4°C until use. 

4.3.5.2 Sensor Characterization 

Cyclic voltammetry (CV) and amperometric measurements (AM) were carried out using a 

MultiEmStat with a DRP-CAST1X8 interface (DropSens, Llanera, Spain) for 8 independent 

electrodes under MultiTrace Software 3.4 control (PalmSens, Utrecht, The Netherlands). Fluid 

flow was maintained by Cavro® XL 3000 syringe pumps from Tecan (Männedorf, Switzerland). 

The behaviour of the PB layer was studied by cycling in a potential range between - 0.5 and + 

1.2 V with a scan rate of 50 mV/s as presented in Figure 53. CV measurements were performed 

in droplets using phosphate buffer solution (0.1 M phosphate + 0.1 M KCl, pH 6).  

 
Figure 53 – Cyclic voltammograms of the sensors used for the microfluidic platforms test: (a) for the graphite-based 

sensors and (b) for the graphene oxide-based sensors. The sensor used in the first chamber is presented in blue, while 

the sensor used in the second chamber corresponds to the red curve. 

The chronoamperometric measurements were performed in a droplet (static condition) at 

an applied potential of -0.16 V (graphene oxide-based sensors) or -0.04 V (graphite-based 

sensors) versus a screen printed internal silver reference electrode, as observed for the CVs 

presented in Figure 53. Static measurements were performed by placing a droplet of 50 µl of 

different glucose solutions (0.1mM – 8mM) on the electrodes. In-flow (dynamic) measurements 

were carried out at the flowrates used for the mixing/dilution chamber characterization. The 

flowrates during characterization varied between 0.25 and 10 µL/s. When a stable baseline 

current was reached (30 s and 60 s, for graphene oxide and graphite sensors, respectively) with 
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phosphate buffer solution (0.1 M phosphate + 0.1 M KCl, pH 6), different substrate 

concentrations were tested and the measurements were recorded. In the static characterization 

of the glucose biosensors, the drop of 50 µl of known glucose concentration (0.1mM – 8mM) was 

placed on top of all the electrodes and the current was recorded until it reached a stable value. 

When the sensors were characterized in flow, a volume corresponding to 3 times the internal 

volume of the microfluidic platform was first pumped to guarantee that only the target 

concentration was inside the system. Data was retrieved after stabilization of the signal.   

4.3.6 Continuous monitoring of diluted glucose solutions 

To perform the dilution inside the microfluidic platform, a 3 mM glucose solution was 

introduced through the inlet connected to the first sensing chamber (working in this case as a 

reference sensor – see Figure 50 (a)). A buffer solution (the same as the one used during 

measurements of the zero point during sensor characterization) was introduced in the second 

inlet (connected to the mixing/dilution chamber). The flowrate for substrate introduction was 

kept the same (1 µL/s) while the flowrate of the buffer solution was increased in order to achieve 

the correct dilution as presented in Table 18. The diluted solution was collected at the outlet of 

the microfluidic platform and measured in an HPLC for validation of the mixing unit and 

compared with the data retrieved from the integrated sensors. 

Table 18 – Flowrates used to test the mixing/ dilution chamber inside the developed microfluidic platform. 

Dilution 
Flowrate second 

inlet (µL/s) 

Flowrate in second 

sensing chamber (µL/s) 

Flowrate used for data 

interpretation (µL/s) 

1:1 1 2 2 

1:2 2 3 4 

1:5 5 6 6 

1:9 9 10 10 

4.4 Results and Discussion 

The microfluidic platform presented in this chapter was built to be suitable in a wide range 

of applications. To this end, the final design required flexibility in terms of the used sensors and 

its easy replacement through the use of sensor ports. In this case, the ports were designed as 

rectangular pockets that allow access of the sensors to a chamber where the sensor can be 

placed. This approach allows for a wide variety of sensor shapes and widths to be integrated 

without requiring the modification of the whole platform. Furthermore, it is important to note 

that the sensor and platform fabrication are independent from each other. In this way, any 

sensor technology compatible with the platform material can be used, which considerably 

broadens the future opportunities for the platform’s use. 

As proof-of-concept, screen-printed electrochemical sensors were chosen due to the cheap 

fabrication and wide use in microfluidic and health related applications. The possibility of 

applying these sensors as single-use detection elements is also an appealing concept due to the 

impending challenges of biofouling that bio-applications can generate during long-term 

measurements.  
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Two different types of electrodes were selected for integration in the microfluidic platform, 

each presenting the same detection principle and target analyte but made of different materials 

and having different thicknesses. The choice of electrochemical sensors influenced the design of 

the platform, presented in Figure 50 (b) and (c), due to the required sensing chamber shape. 

With access to a bigger variety of sensor formats, a more generally applied chamber geometry 

could be efficiently developed, improving the applicability of the platform. For now, sensors with 

functional areas within the area of the fabricated chambers can easily be integrated and used. 

The distance between the measurement chambers (37.2 mm center to center) was defined based 

on the gap between the inlets of the interface connecting the sensors to the potentiostat used 

for measurement. In principle, due to the fast fabrication and assembly cycle of the platform (< 

2 h), adaptation of the platform to most types of sensors (by adjusting the sensing chamber) can 

easily be performed. Moreover, sensors that can fit within the fabricated sensing chambers 

would not require a chamber design, since the PDMS o-rings would provide sufficient coverage 

to avoid leakages during operation.  

The two integrated sensors were subjected to different flowrates during measurement, 

since one was positioned before the mixing/dilution chamber (first sensing chamber), while the 

other was positioned after the mixing/dilution unit (second sensing chamber). So, the first 

sensing chamber was only affected by the flow of one of the inlets (sample inlet). The second 

sensing chamber, on the other hand, experienced a higher flowrate which was the sum of the 

flowrate from the two inlets (sample plus buffer for dilution). The overall internal volume of 

both designs was approximately 500 µl. 

4.4.1 Strategy for PMMA assembly 

Both bonding strategies allowed for a fast assembly of the different plates that form the 

platform (less than 15 minutes required), while also achieving a leakage-free flow and enabling 

the re-use of the platform.  

The chemical bonding procedure, however, was not as reproducible as the lamination one, 

mainly due to the manual control of the exposure time to chloroform vapours. Added variability, 

which sometimes resulted in deformations of the channel structures, was the manual control of 

distance between the PMMA plates and the layer of liquid chloroform, as well as the amount of 

chloroform added to the bonding procedure. Thus, the preferred material for the platform 

assembly was DAT due to easier and more reproducible alignment of the stack of plates and the 

avoided use of toxic chemicals. 

4.4.2 Mixing and dilution unit 

An issue with existing electrochemical sensors is their linear range of measurement, which 

is often shifted or more reduced than desired [293]. The most used approach to solving this issue 

involves optimizing the polymeric/diffusing membrane covering the sensor, thus better 

controlling the analyte diffusion to the electrode’s surface. However, tailoring the sample 

concentration in flow to meet the sensors detection range is also an interesting approach to 

overcoming this limitation [293]. The presented platform enables the application of the latter 

method, as a strategy to widen the applicability of the integrated sensors, by integrating a 
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dilution unit on-chip. The use of the platform can this way be less limited by the available 

sensors and/or their corresponding detection limit. This is especially relevant in biological and 

biotechnological applications, where variable substrate (or other components) concentration can 

occur, often within a wide range (glucose concentrations above 1 mM are usually obtained e.g. 

in glucose monitoring of diabetes patients [308]).  By diluting the fluid matrix that reaches the 

detection chamber, to the linear range of the sensor, the range of detectable concentrations of 

the integrated sensor is thus broadened.  

 

The developed dilution platform was based on passive mixing in order to allow dependency 

on a single piece of external equipment (syringe pump), thus simplifying the equipment required 

for operation [333]. Several mixing designs (presented in Figure 52) were first simulated using 

a CFD software (ANSYS-CFX 16.2), before the best design was integrated in the platform and 

validated. The first designs were based on chaotic mixing generated by obstacles in the channel, 

since this approach provides fast mixing due to an increased interfacial contact between the 

mixing phases [333], [105]. The design of obstacles [11] within a chamber was preferred to a 

zigzag configuration (as presented by Jeon and Shin (2009)  [333]) to avoid a high pressure drop 

[334] due to sharp corners and extended length of the channel. This is relevant when developing 

a system for use in a series of chips, such as in the case of modular platforms. Also, to reach a 

design less prone to clogging,  more complex mixing structures, such as Tesla structures, were 

avoided [335].  

It is also important to consider when operating a passive mixer, that the mixing capability 

is highly dependent on the flow velocity. Therefore, the design must be optimized to achieve 

appropriate mixing at high flowrates. In Figure 54, all designs that include obstacles ((a) to (d)) 

are presented. It can be observed that the slanted grooves design (Figure 54 (a)) has the best 

performance, especially at higher flowrates. However, even the structure showing the best 

performance was not capable of achieving the desired 1:9 dilution. Finally, a 3D serpentine 

channel was designed and simulated for the same flow conditions as shown in Figure 54 (e), 

resulting in the best mixing design to achieve a 1:9 dilution at high flowrates.  

 

It is highly relevant to mention that by performing the study of the mixing efficiency of 

the different geometries presented through CFD, an optimized geometry for the intended 

purpose was quickly obtained (less than 3 days). This allowed to significantly reduce the 

development time of the quantification platform. Furthermore, the comparison of different 

geometries without fabrication and fluidic tests, made it possible that the overall platform 

development cost was significantly decreased.  
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Figure 54 - Comparison of mixing capability between different mixing chamber geometries using CFD simulation 

for 1:1 dilution at 10-3 m/s, and of a 10 times difference between inlet velocities for two geometries (straight diagonal 

barriers channel and the 3D serpentine channel). In the figure, the different geometries tested for mixing are 

presented: (a) slanted groves, (b) squared baffles, (c) staggered herringbone, (d) combination of herringbone and 

obstacles and (e) three-dimensional serpentine channel. For the three-dimensional serpentine channel (e), a view of 

the entire fluid with volume rendering is presented on the top, while the bottom images present two planes defined 

at the top and bottom of the three-dimensional channel. 

4.4.3 Sensor characterization 

The pairs of EC biosensors integrated in the developed microfluidic platform were 

characterized both in a static (droplet characterization) and in a dynamic environment (in-flow 

characterization). Both types of measurements were performed with chronoamperometry for 

the same substrate concentrations. The magnitude of the measured current, obtained by 

applying a constant potential between the working and the reference electrodes, is usually 

proportional to the bulk concentration of the present electroactive species, hence enabling a 

quantitative output. The static calibration allowed checking performance and sensitivity of each 

sensor before integration in the developed microfluidic platform. The dynamic measurements 

were performed at flowrates 0.25 to 10 µL/s. These flowrates were identical to the ones applied 

during the mixing/dilution experiment, thus enabling to study the influence of flow velocity on 

the sensor output.  

Figure 55 (a) and (b) present the measured calibration curves from the static 

chronoamperometry measurements. It can be observed that the graphite-based sensors (Figure 

55 (a)) show a decreased linear range (only until 1.7 mM of glucose) with a slightly higher 

apparent sensitivity than the graphene oxide-based sensors (Figure 55 (b)). The latter sensors 

display a wider range of detection (up to 5 mM of glucose) with a sensitivity lower than 0.2 

µA/mM. This difference in the sensor output can potentially be explained by the presence of the 
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graphene oxide layer, which tends to present high chemical stability and improved 

electrochemical properties. Furthermore, graphene oxide is known to increase the effective 

surface area of a sensor, thus improving its signal-to-noise ratio, as well as facilitating the 

functionalization of the surface [336], [337]. Even though more reliable data was thus expected 

from the graphene oxide-based sensors, both sensor types were tested inside the platform and 

their dynamic response compared with the static approach.  

In Figure 55 (c) and (d) the measured calibration curves for the dynamic method using the 

microfluidic platform are presented for the different flowrates tested. This characterization was 

performed by inducing the same flowrate at the two inlets, and as a result the first sensing 

chamber was subjected to half the flowrate as the second sensing chamber. As illustrated in the 

figure below, the graphite-based sensors (Figure 55 (c)) present a reduced linear behaviour than 

previously obtained in the droplet chronoamperometry, while the graphene oxide-based sensors 

(Figure 55 (d)) show a decrease in the linear range (up to ~4 mM of glucose). Moreover, both 

sensor types display a variation of the calibration curve with flow. A decrease in the sensitivity 

(slope), as well as of the detection range, is observed when the applied flowrate increases. The 

higher difference in static vs. dynamic behaviour observed for the graphite-based sensors can 

be related to the difference in electrode substrate (graphite is less chemically stable than 

graphene oxide). Furthermore, the higher surface area of the graphene oxide sensors permits 

the immobilization of higher amounts of both mediator and glucose oxidase, which along with 

its intrinsic improved electrochemical properties possibly contributes to the different output 

observed. 
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Figure 55 – Droplet amperometric characterization of the biosensors before integration in the microfluidic platform, 

(a) graphite-based sensors and (b) graphene oxide-based sensors, and in-flow amperometric characterization of the 

sensors used to test the microfluidic platform, (c) graphite-based sensors and (d) graphene-based sensors.  

4.4.4 Influence of flow  

The distribution of the measured current relative to the flowrates applied for the 

integrated graphite and graphene oxide-based sensors was also assessed. A similar trend can 

be observed for both sensors (Figure 56), being however more pronounced in the graphene oxide-

based sensors (Figure 56 (b)). At low substrate concentrations, a slight decrease of the measured 

current (more negative) is observed with increasing flowrates. For concentrations higher than 

1 mM, the opposite trend is observed, where the measured current becomes less negative with 

increasing flowrates. Both trends are however less prominent for flowrates higher than 5 µL/s.  

As mentioned by Sassa et al. (2008) [102], the current generated in amperometric sensors 

depends on the applied flow velocity since the analyte used for detection (that permeates the 

membrane layer above the sensor) is a small fraction of the bulk concentration. The thickness 
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of the diffusion barrier formed above the membrane due to flow, together with the concentration 

gradient formed between the bulk and the diffusion barrier, determine the amount of analyte 

that reaches the sensor membrane. The amount of analyte that permeates is then defined by 

the characteristics of the membrane and by the concentration gradient between the diffusion 

barrier and the electrode’s surface (gradient inside the membrane). 

 
Figure 56 - Influence of flow on the current measured for the range of glucose concentrations tested for both types 

of sensors used: (a) graphite-based sensors and (b) graphene oxide-based sensors. 

In a direct measurement of the analyte, at low flowrates, the analyte measurement process 

is limited by its mass-diffusion through the stagnant layer of liquid above the membrane, whose 

thickness decreases with increasing flow rate. Thus, at increased flow velocities, a higher 

amount of analyte is capable of diffusing and a higher current is obtained. This current increase 

will reach a plateau when the stagnant layer reaches its minimum thickness and the process is 

only limited by the analyte diffusion rate through the membrane [318]. However, as it is also 

verified in this work, the opposite trend is observed with indirect measurement of the analyte, 

meaning a decrease in current is observed with the increase of the flowrate. In this work, since 

a higher substrate concentration corresponds to a more negative current, this decrease is 

translated in a more positive current.  

Several papers have reported a decrease of current with the increase of flow velocity in 

amperometric measurements of sensors where the compound resulting in electric signal is not 

the analyte (indirect measurement) [316], [318]. Lamberti et al. (2012) associated this decrease 

with a leakage of the generated hydrogen peroxide and consequent wash out from the membrane 

layer due to the increasing flowrate. This was also confirmed by mathematical and fluidic 

simulations [318]. This is one of the possible causes for the observed current decrease (in 
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absolute values) with increasing flowrate. On the other hand, in Figure 56, a slight increase in 

current was observed with the flowrate in all the used sensors, for a glucose concentration below 

1.2 mM, which was not observed by Lamberti et al. (2012) where the minimum glucose 

concentration used in the experimental studies was 1 mM [318]. This effect is however much 

smaller than the current decrease of flow and might not be significant.  

Lamberti et al. (2012) also observed that the response time of the electrochemical sensors 

decreased with increasing flowrate [318]. This was not possible to determine for the 

electrochemical sensors used, since measurements were performed when the solution was 

considered at steady state, and thus diffusion of analyte through the membrane had already 

occurred. 

Hashimoto et al. (2006) observed that the influence of flow rate on sensor performance 

decreased with increasing channel heights, which is expected since for the same flowrates, 

higher velocities are achieved for smaller cross sections [316]. This indicates that the use of 

deeper channels or, as performed here, wider chambers for sensor integration might aid in 

decreasing the influence of flow.  

 

Since the applied flowrate and the substrate concentration affect the measured current, a 

study on the influence of flow on the sensor performance is required and data can only be 

analyzed by using the calibration curves for each of the applied flowrates.  

Lamberti et al. (2012) solved the issue of signal dependency on flowrate by decoupling the 

sampling unit from the quantification unit in two different modules [318]. The same strategy 

could be applied here, by decoupling the dilution unit (with the first sensor) from the 

quantification unit (second sensor) through the introduction of a metering channel and a valve. 

However, if sufficiently sensitive sensors are integrated, no significant decrease in 

quantification accuracy should be observed. Furthermore, by coupling the sensors with a 

software capable of estimating the decrease in current with flowrate from a one- or two-point 

calibration at a given flowrate, the obtained data can be correctly analyzed. 

4.4.5 Continuous monitoring of diluted glucose solutions 

The successful integration of these sensors and the continuous monitoring of glucose 

samples in a microfluidic platform were achieved. Figure 57 presents the results of the 

mixing/dilution chamber test where the integrated sensors were used for continuous monitoring 

of diluted glucose solutions. The data is plotted relative to an expected glucose concentration, 

calculated by applying the used dilution to the inlet glucose concentration (3mM). Substrate 

quantification results of the outlet solutions from the HPLC measurements are also presented 

in Figure 57. The current measured at the sensors was converted into glucose concentration 

through the in-flow calibration curve (Figure 55 (c) and (d)) corresponding to the flowrate 

applied to the sensor (Table 18). As presented, the graphite and graphene oxide-based sensors 

have a different sensitivity to the substrate, visible by their different response. However, both 

display a deviation from the HPLC data. The graphite-based sensor under-estimates the glucose 

concentration and the graphene oxide-based sensor over-estimates it, which can be caused by 

the influence of the flowrates on the thickness of the diffusion layer above the sensor and thus 

on the glucose diffusion to the electrode’s surface. Additionally, the previously mentioned 
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leakage of produced hydrogen peroxide might explain the lower substrate concentration 

measured by the graphite-based sensor. Considering that it presents a lower chemical stability 

than graphene oxide, a higher amount of hydrogen peroxide could leak without reacting with 

PB and thus the current measured be lower than expected. The difference between the HPLC 

and electrochemically measured glucose concentration in the case of the graphene oxide sensor 

could be due to variability from the HPLC measurement, since only the point at 1.5 mM expected 

glucose seems to deviate from the overall trend. However, tests at more dilutions and with 

different initial glucose concentrations should be performed in order to ascertain the cause for 

the deviations found.  

 

 
Figure 57 – Comparison of diluted glucose concentration values measured online with the sensors and at the outlet 

using HPLC, for both types of SPEs used: (a) graphite-based sensors and (b) graphene oxide-based sensors. 

In terms of extending the range of application of the electrochemical sensors, other 

approaches have been more successfully applied. Frey et al. (2010) used controlled diffusion of 

the sample with a buffer solution (flown between the sample (top of channel) and the electrodes 

(bottom of channel)) to define the thickness of the diffusion layer above the sensor (defined by 

the thickness of the buffer stream) [293]. With this approach Frey et al. (2010) [293] achieved 

online control of the diffusion layer thickness by controlling the flow rate of the buffer solution. 

However, since the integration strategy presented in this work is intended for application of 

different types of sensors (e.g. optical), the focus was on sample dilution to meet the integrated 

sensors linear range. 

Furthermore, it is relevant to highlight that all experiments presented for each set of 

sensors, were performed continuously for around 12 h. The platform’s ability for continuous 

fluidic operation in a wide range of flowrates and for different sensor substrates and geometries 

has thus been demonstrated. 

4.5 Conclusions  

In this work, a microfluidic platform for continuous monitoring of glucose samples for 

biotechnological applications was developed. This platform involved the successful integration 

of two electrochemical sensors with different electrode materials and sensor areas, and their 

validation in continuous monitoring. The comparison between sensor output during static and 

dynamic measurements allowed the observation of a decrease of detection range for both 
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sensors, during in-flow measurements relative to the droplet characterization. This change in 

the sensors’ sensitivity derives from the fluid dynamic influence on the diffusion of target 

analyte to the electrode surface, along with possible leakage of produced hydrogen peroxide. 

Furthermore, a significant difference in current output was also obtained at low (less than 5 

µL/s) and high (above 5 µL/s) flowrates, indicating that effect of flow velocity is relevant at this 

scale for the used chamber geometries. Finally, the platform displays the capability of 

performing sample dilutions of up to 10 times, even at high flowrates, through the use of an 

integrated mixing unit. This unit allowed tuning the sample concentration according to the 

sensor’s detection limit.  

The presented mixing unit can be improved by increasing the number of bends in the 

meandering channel or by introducing some obstacles within the channel, which is large enough 

to implement such structures. Thus, higher dilutions of the initial sample could be achieved. 

Furthermore, since the used sensors present a stabilization in current output at high flowrates, 

the increase of dilution ratio with increasing flowrates should not affect the performed 

measurements. 

Even though fluidic and analytical simulations of glucose sensors at steady state have 

been performed [316], [318], the study of the presented platform through fluid dynamic 

simulation tools (CFD), would significantly increase the understanding on the influence of the 

observed diffusion effects. Moreover, an optimized chamber geometry, a flowrate range or 

operation and/or a mathematical relation between static and in-flow calibration curves could be 

obtained with such a model and thus provide solutions on how to circumvent diffusion effects 

during data acquisition.  

This platform may be further applied to different sensing technologies (e.g. optical, 

magnetic), due to the presented flexibility in terms of sensor format, as well as ease of assembly 

and possibility for re-use of both platform and the integrated sensors. Furthermore, a 

combination of electrochemical and other sensor technologies (especially optical sensing) could 

be achieved on this platform, by using the predefined pockets for sensor integration. Likewise, 

the integrated mixing chamber can display a high variety of functions besides the demonstrated 

dilution ability. It may be further used as a reaction chamber for the screening of biocatalysts, 

as an inactivation or reaction quenching unit, or even as a labeling unit, by mixing the sample 

stream with a fluorescent or magnetic marker, depending on the chosen sensing approach.  

The described sensor integration method could be further improved if the sensors could be 

slid into the sensor pockets instead of mounted by disassembling the outer casing. This approach 

could be achieved by placing a piece of PDMS or other compressible material only in the area 

directly below the sensing chamber, while having a slit in between the plate with the PDMS 

and the chamber plate. By introducing the electrode through the slit, the compressible material 

would apply pressure on the sensor so it closed the sensing chamber to allow leakage free flow. 

An alternative to this compressible material would be to use a spring or even a threaded nut 

that could be screwed, depending on the sensor, to push the sensor towards the chamber and 

thus enable closing the fluidic path. 

 

The developed platform exhibits a multi-function capability using a simple design, 

standard connectors and low-cost materials. Such platform can contribute to increasing the 

number of bioprocess parameters measured online during monitoring, by allowing the 
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integration of different sensor approaches, as well as their replacement, without the need of 

changing the platform itself. The overall cost of such platform makes it accessible both to 

research laboratories and industries. Additionally, the simple design allows for mass 

production, by changing the fabrication method to e.g. injection moulding, and being 

consequently feasible for parallelization at a bigger scale.   
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Chapter 5 
Thermal Inactivation Platform 

The need for fast and comprehensive characterization of biocatalysts has pushed the 

development of new screening platforms, based on microfluidics, which are capable of 

monitoring several parameters simultaneously with new configurations of liquid handling, 

sample treatment and sensing. Modular microfluidics allows integrating these newly developed 

approaches in a more flexible way towards increased applicability of the microfluidic chips to 

different types of biocatalysts and reactions. A highly relevant operation in such a system is the 

inactivation of biocatalysts. Such an inactivation module enables the precise control of reaction 

time at the time of measurement when sensing is performed in another module. This is achieved 

by avoiding the continuation of the reaction in the following sensing module or connecting tubes. 

Such control is important when different modules of reactors and/ or sensing units are used and 

frequently changed. It can furthermore help to regulate the state of the biocatalyst, since 

dependent on the temperature used and exposure time, reversible or irreversible denaturation 

can be achieved. In this work, the development, characterization and application of such a 

module is described for the fast inactivation of two well-known and widely used enzymes, 

glucose oxidase and catalase. The developed thermal inactivation platform is compared with a 

standard benchtop orbital shaker with temperature control (ThermoMixer) in terms of 

inactivation efficiency. Both enzymes were inactivated under flow conditions with 120 s 

residence time at 338 K (65 ⁰C) and 20 s residence time at 353 K (80 ⁰C) in the thermal 

inactivation module. The performance of the flow system was compared with the ThermoMixer 

system at 60 s residence time at 353 K (80 ⁰C). Moreover, partial deactivation of the enzymes 

was observed for the continuous thermal inactivation module when activity measurements were 

performed respectively after one and two days after the thermal inactivation. All the inactivated 

glucose oxidase samples in the microfluidic system presented a significantly decreased activity. 

Some of the inactivated catalase samples recovered the initial activity, but for the longer 

exposure time and higher temperatures reduced or no activity was measured and aggregate 

formation was observed. Final enzyme activity obtained for the samples after inactivation 

conditions with flow in the developed platform was lower than in the ThermoMixer but protein 

aggregation was observed in both cases. The higher observed loss of activity for the enzymes 

inactivated under flow conditions may indicate an effective heat transfer to the fluid under 

dynamic conditions. The presented thermal inactivation unit can easily be integrated in 

modular microfluidic platforms and be a useful addition for enzyme characterization and 

screening. 
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5.1 Introduction 

The effect of temperature on biological systems, from enzyme behaviour to cell growth rate 

and food quality, is an extensively studied effect. Temperature has thus been established as a 

relevant process parameter and the study of its effect is part of the standard optimization 

procedure in current processes.  

The influence of temperature, like other operation parameters, is studied in order to obtain 

the threshold value at which a certain enzyme or organism operates at the maximum rate. This 

value depends on the type of enzyme and its stability, but can be further constrained when other 

operation variables (e.g. pH, ionic strength, solvent used) are considered. An enzyme 

temperature range (thermophilic, mesophilic or psychrophilic) is usually a good indication of its 

structural robustness and how well it will perform under industrial process conditions. Enzyme 

temperature persistence or resistance to denaturation, for example, has provided good insight 

into the structural factors leading to increased enzymatic stability. Stable enzymes display a 

reduced surface area to volume ratio, less cavities, a reduced number of labile amino acids, a 

more rigid secondary structure, an increased hydrophobic interaction and changes in the 

solvent-exposed surfaces [338]. Genetic and evolutionary engineering of organisms and enzymes 

has led to high temperature resistant strains and proteins able to operate at high rates in a 

wider range of conditions or at previously unfavourable conditions.  

Temperature has also extensively been used to inactivate or deactivate enzymes and 

organisms, either to stop a certain reaction (e.g. avoid enzymatic degradation in cells or tissue 

samples [339]), perform protein conformational studies, inactivate pathogens in infectious 

samples (through protein denaturation [339]), or to ensure absence of microbial growth [340] or 

degradation of food [341]. 

5.1.1 Mechanisms for enzymatic inactivation 

The study of enzyme inactivation is the analysis of enzyme stability at different operation 

or reaction conditions. Enzyme stability depends, among other factors, on enzyme mobility and 

folding mechanisms which can vary widely, from natively unfolded proteins that fold upon 

binding of a ligand, to the existence of several stable and active native conformations for the 

same enzyme depending on the environment [342]. Enzymes tend to fold in conformations which 

are the most thermodynamically stable at the environmental conditions. The folding process 

and the lowest-energy conformation depend on the amino-acid sequence, which in turn encodes 

for an energy “landscape” where few interactions between residues allow the low energy 

structure, so folding can be performed rapidly [343]. However, for most enzymes, the native 

active state is only -5 to -10 kcal/mol more stable than the denatured state, due to the latter 

higher conformational entropy (conformational freedom) [344]. The denaturing process can 

occur through the formation of transient intermediate conformations, between the native and 

the denatured state [344]. In this work, the term enzymatic inactivation is used to refer to the 

reversible or irreversible loss of functional activity of proteins. The term enzymatic denaturation 

will be applied when there is inactivation of an enzyme due to an alteration of its conformation, 

as stated in Mozhaev and Martinek (1982) [345]. When there is irreversible loss of enzymatic 

functional activity (meaning irreversible enzyme inactivation), the term enzymatic deactivation 
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will be used. Enzymatic denaturation, or its tendency to reversibly unfold is related to its 

thermodynamic stability, while deactivation depends on the enzyme’s kinetic or long-term 

stability [346]. 

Enzyme inactivation can occur through several mechanisms (e.g. protein aggregation, 

formation/rupture of disulfide bonds, deamidation of asparagine and glutamine residues, 

disruption of the polypeptide chain, dissociation of a prosthetic group from the active site or 

subunit dissociation [344], [345]) that result in loss of conformational structure (denaturation) 

and functional activity (inactivation) [345]. Inactivation due to aggregate formation tends to 

occur in two steps, where first conformational changes occur that lead to protein denaturation, 

and then the denatured proteins aggregate through non-covalent interactions, such as hydrogen 

bonds and hydrophobic interactions. Aggregation decreases with the decrease of available 

denatured enzyme. Aggregation of enzymes in the native state may also occur, without loss of 

activity upon dissolution [345]. Aggregation or misfolding upon renaturation (process of 

regaining enzyme activity following denaturation), generate a high degree of deactivated 

enzymes and is a common process of denaturation since these conformations are kinetically 

favoured. Enzymes can also lose activity when intermolecular disulfide bonds are formed (from 

exposed thiol groups) or destroyed (due to β-elimination of cysteine residues), phenomena which 

increase with increasing enzyme concentrations and also result in aggregate formation. Loss of 

activity through disulfide bond formation or rupture usually occurs in three steps, where thiol-

disulfide exchange (formation of intra-molecular bonds) occurs after non-covalent aggregates 

are formed. Exchange of disulfide bonds is more likely to occur at higher pH, and can also occur, 

especially the destruction of disulfide bonds, without aggregate formation. Among other 

covalent processes that contribute to irreversible denaturation are the chemical modification of 

functional groups (e.g. oxidation of cysteine or methionine residues), deamidation of asparagine 

and glutamine residues (loss of activity due to extra negative charges in the inner zone of the 

enzyme) or disruption of the polypeptide chain (which tends to occur on the denatured enzyme 

only at very harsh conditions or in the presence of proteolytic enzymes) [344], [345].  

The denaturing processes described above can be caused or initiated through a variety of 

process conditions or solvents. Thermal inactivation occurs due to the increase of entropy with 

temperature (which favours the denatured state) more than the increase of enthalpy (which 

favours the native state) according to the Gibbs free energy equation [344]. The rate of enzyme 

inactivation and denaturation is usually higher at higher temperatures, since collision between 

molecules, as well as surface exposure to interactions, is increased [345]. Guanidinium chloride 

and urea cause denaturation by increasing the solubility of the hydrophobic lateral chains, 

increasing the exposition of the hydrophobic groups to the solvent used [344]. These compounds 

are used in the quantification of the thermodynamic parameters of the denaturing process, since 

their effect is reversible. Denaturation with pH occurs by titration of the ionizable amino-acids, 

which might break stabilizing or create destabilizing electrostatic interactions, and so the pH 

value at which an enzyme denatures is greatly dependent on the enzymatic polypeptide chain. 

Studies on enzymatic denaturation by pH are usual performed at low pH values (where e.g. 

carboxylic groups lose their negative charge), since denaturation at higher pH can lead to 

deactivation (due to the exchange of thiol-sulfide groups described above) [344]. Other 

denaturing agents, less commonly used in the laboratory, are pressure, surface tension, 

ultrasound and water removal [344]. 
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Denaturing conditions and/or agents, such as temperature, extreme pH, guanidine 

hydrochloride (GdnHCl) or urea, can also be used to renature an enzyme by acting on the 

structure of the non-native conformation. Reactivation of enzymes from aggregates can 

sometimes be achieved by exposing the enzymes to denaturing agents, since these can break the 

non-covalent bonds formed during aggregation [345]. Renaturation after exposure to denaturing 

agents such as guanidine hydrochloride (GdnHCl) or urea can be achieved, even in the presence 

of high concentrations of these compounds, also due to the persistence of interactions of long-

range order in denatured conformations [347], [348]. In case of subunit dissociation, reactivation 

can also be achieved but is less straightforward [345].  

Denaturation is considered irreversible (deactivation) when the protein cannot regain its 

original functional activity when a sufficiently long period of time has passed since the 

denaturing effect was removed [345]. In the case of thermal inactivation, deactivation occurs if 

upon cooling the enzyme does not recover its functional activity [344].  

5.1.1.1 Study of enzymatic inactivation 

The evaluation and study of enzymatic stability, performed through the analysis of 

enzymatic denaturing mechanisms, can be achieved with a variety of methods. The most 

commonly used are UV spectroscopy, fluorescent emission and circular dichroism. 

In UV spectroscopy, the absorption of aromatic amino acids such as tyrosine and 

tryptophan (which are usually placed in an inner zone of the native enzyme) allows following 

enzyme denaturation. As the aromatic amino acids are more exposed to the water in solution 

due to denaturation, their polarity changes, causing a decrease in the absorption wavelength 

[349]. The difference in the absorption spectra of the native and the denatured enzyme presents 

peaks at 285-288 nm (tyrosine) and/or at 291-294 nm (tryptophan). The low sensitivity of this 

method can be improved by performing the denaturation above pH 9, where the exposed tyrosine 

residues are ionized thus causing an increase in absorption at 250 nm that allows the  

calculation of the degree of residue exposition [344]. UV-VIS spectroscopy can also be used for 

accurate determination of protein concentration in solution (Mach et al., Chapter 4, pp. 91 to 

114 [350]). 

Fluorescence spectroscopy presents a high sensitivity for the study of conformational 

changes of the three-dimensional structure of the enzyme, by following the photo-induced 

fluorescence emission of aromatic residues such as tryptophan (350 nm) at an excitation 

wavelength above 295 nm. Again, the denaturation process is followed by a shift in the emission 

wavelengths to longer wavelengths as the tryptophan residues become exposed to water and 

change their polarity [344]. This technique can also be applied to the study of enzyme dynamics 

and function [351], by employing labelled compounds and/ or techniques such as Förster 

resonance energy transfer (FRET) and single-molecule electron transfer [342]. 

Circular dichroism (CD) is a highly relevant and widely applied technique in the study of 

enzyme stability [349], [352], [353], [354]. This technique is based on the differential absorption 

of left and right circularly polarized radiation in a plane, by optically active chromophores (e.g. 

disulfide bonds and tryptophan) with chiral center, linked to a chiral center or in an asymmetric 

environment. CD allows to follow the denaturation of the tertiary enzymatic structure in the 

near UV (320-260 nm), as well as the enzyme’s secondary structure (e.g. α helices and β sheets) 
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in the far UV (240 -180 nm), where its intensity is proportional to the content in the secondary 

structure [344], [355]. CD can also provide information regarding co-factors (e.g. FAD) or metal-

centers (e.g. heme moiety), ligand binding and folding intermediate structure, being also used 

for screening of genetically altered enzymes [355]. CD can also be coupled with stopped-flow 

[349]  to enable studies of the kinetic processes during folding, or with an external magnetic 

field [354] to achieve more sensitive measurements. 

Other techniques used to study enzymatic inactivation are nuclear magnetic resonance 

(NMR), light scattering, hydrodynamic methods and calorimetric methods. Among the latter, 

especially differential scanning calorimetry (DSC) measures the apparent molar heat capacity 

of protein as function of temperature, thus detecting the heat exchange developed during the 

denaturing process [344], ([350]). It allows the direct calculation of the enthalpy variation 

occurring during denaturation, as well as the thermodynamic parameters involved in the 

temperature-dependent conformation change. Such analysis can only be performed to reversible 

denaturation or molecular transitions [344], ([350]). Estimations of transfer free energy 

contribution of different bonds (e.g. hydrogen and peptide bonds) can also be obtained from 

solubility measurements [356]. Infrared spectroscopy (IR) enables conformation analysis of 

enzymes in water solutions and is based on the characteristic hydrogen bond patterns of 

carbonyl and amide bonds in the polypeptide chain. It is able of distinguishing α-helixes from β-

sheets and other conformations [349], and chemical entities with covalent bonds can in principle 

be analysed through the corresponding vibrational absorption bands with IR spectroscopy 

(Middaugh et al., Chapter 6, pp. 137 to 156 [350]). Classical methods of protein folding and 

structure characterization are extensively described in Shirley et al. (1995) [350]. 

In order to study enzyme deactivation or quantify the amount of irreversibly denatured 

enzyme, a good approach is to measure its activity, since it is inversely proportional to the 

number of irreversibly denatured enzymes [344]. Enzyme activity can be measured 

spectroscopically [353] or with other analytical techniques such as MS or HPLC, by following 

consumption or production of a compound involved in the reaction, or through a secondary 

reaction involving a reaction product where a colorimetric or fluorescent compound is generated 

or consumed [218]. 

5.1.1.2 Thermal inactivation and deactivation 

Traditionally, thermal deactivation is represented as a two-state model, where 

deactivation occurs when an enzyme denatures irreversibly upon heating. In this classical 

model an enzyme’s temperature-dependent behaviour is determined based on the activation 

energy of the reaction and the thermal stability of the enzyme [357]. Thus, initially a 

temperature increase is translated into an increase in enzyme activity until above a certain 

temperature (enzyme melting temperature), after which further temperature increase results 

in enzyme denaturation and possible deactivation. However, several researchers have suggested 

the existence of an inactive intermediate state in rapid equilibrium with the native state, which 

can simultaneously deactivate through irreversible denaturation at a slower rate than the 

equilibrium [358], [347], [359], [360], [346].  

Mozhaev and Martinek (1982) [345] describe the mechanism for irreversible denaturation 

of enzymes at high temperatures as occurring by enzyme acquisition of non-native non-covalent 
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bonds that lead to a new conformation. The new state, although thermodynamically unstable, 

is kept when the temperature is reduced (e.g. to room temperature) due to conformation kinetics 

and a decreased molecular mobility of the polypeptide chains, thus preventing native state 

recovery by the enzyme. Deactivation is often represented as a first-order exponential decay but 

due to the diversity of mechanisms that can lead to deactivation [361], its mathematical 

representation can be more complex [359], [346]. Ahern and Klibanov (1988) [362] have 

described denaturation as the loss of secondary and tertiary structural order towards increased 

entropy due to random and fast cooperative intramolecular movements that occur above a 

certain temperature (which depends on the environmental conditions). Denaturation is usually 

mathematically represented as a reversible equilibrium reaction, since if no chemical 

modifications of the chain occur after unfolding, renaturation and regain of enzyme activity 

should occur once the temperature is lowered. 

Daniel et al. (2010) [357] proposed a model (Equilibrium model) describing this new 

mechanism, which was developed based on enzyme activity measurements. In this model, it 

appears that differences in the active site generate the differences between active and inactive 

states, and that the thermodynamic equilibrium model parameters do not depend on enzyme 

stability. The shift between active and reversible inactive state, seemed to involve little 

unfolding of the enzyme conformation. This is compatible to previous observations that loss of 

activity preceded loss of native conformation in thermal and chemical inactivation [347]. The 

unfolding in the active site, at higher temperatures than the equilibrium and depending on 

enzyme stability, could eventually lead to the unfolding of the overall enzyme structure and 

thus to enzymatic denaturation or even deactivation at a much slower rate. Furthermore, it 

seems that the thermodynamic parameters (equilibrium temperature and enthalpy change) 

considered in the model vary with the substrate and co-factor used for the same enzyme. [363]. 

Chen et al. (2011) have shortly afterwards suggested a transient model, where the enzyme under 

thermal inactivation can exist in three states: an active state in rapid equilibrium with a 

reversible inactive state and another reversible inactive state reached through the other 

inactive state and with a lower enthalpy [364]. 

5.1.2 Thermal inactivation strategies 

Thermal inactivation with the intent of denaturing or even deactivating proteins is widely 

used. Even though the food industry is the main user of temperature as sample stabilizer and 

inactivating technique, other fields, where the use of chemicals leads to changes in the sample 

further complicating its processing, are starting to apply it as well [365], [339]. Elevated 

temperature results in a fast and unspecific inactivation of different types of samples, and can 

be useful in view of safe handling of bio-samples, food and beverages quality control, proper 

sample analysis, treatment of waste, etc.  

Several technologies, besides conventional heating (e.g. water bath, convection oven), can 

be applied depending on type (e.g. food or waste), state (e.g. liquid or solid) or thickness of 

sample, but also operational conditions (continuous or batch).  

Conductive heating (CH) includes heating strategies, such as temperature applied 

through heat plates or the use of thermocyclers. CH is the standard method applied in 

laboratories for the study of enzyme conformation and kinetics, but it can also be accurately 
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applied to excised tissue samples with up to 7 mm thickness [366], [339]. Other strategies 

usually involve heat transfer through absorption of irradiated electromagnetic wavelengths, 

which is in general more energy efficient and faster than conventional heating. These strategies 

usually require less than 1 minute of irradiation at the same temperature used in conventional 

heating to reach an equal or higher inactivation.  

Microwave (MW) irradiation or dieletric heating enables non-contact heating of a sample 

through conversion of microwave energy (1 mm-1 wavelengths at frequencies between 300 MHz 

and 3000 GHz) absorbed by water and/or polarizable organic molecules (whose dipoles 

continuously (re)align with the applied electromagnetic field) [365]. It presents a rapid 

volumetric heating and better on/off control than conventional heating, with a characteristic 

increased temperature in the bulk relative to the sample surface. MW also presents non-thermal 

effects due to molecule polarization which might result in added breakage of hydrogen bonds 

and/or changes in the secondary and tertiary structures of proteins [365]. MW irradiation has 

been applied for inactivation of tissue samples in situ (e.g. in brain tissue) [339], sludge 

treatment [365], and sterilization (e.g. virus [367], spores [368]). Coupling of MW with other 

processing techniques has also increased its application in the food industry, thus overcoming 

some of its issues like non-uniform temperature and moisture distribution [369].  

Radio frequency-heating (RF) or capacitative dielectric heating generates heat by 

increasing molecular friction and space charge displacement when an alternating electric field 

of frequency between 1 and 300 MHz is applied [340]. RF has been investigated as a substitute 

of conventional heating strategies for solid or powdered foods for blanching and sterilization. 

The sterilization ability of RF-heating depends on several factors, such as moisture and salt 

content of the samples, as well as material density and dielectric properties [340], [370]. RF 

permits a faster heating than conductive approaches and MW of the samples with a more 

uniform temperature distribution and a higher temperature in the bulk [340]. It may also 

present similar non-thermal effects as MW heating [370]. RF is also applied in the polymer 

industry [371]. Since both MW and RF frequencies are within the communication frequency 

range, only certain frequencies for both techniques are allowed to be used [370].  

In Infrared-heating (IR), temperature is increased by changing the vibrational state of 

specific molecules or functional groups by absorption of 0.78 to 1000 µm wavelengths (range 

between visible and microwave radiation). The required radiation time to achieve inactivation 

can span from a few seconds up to 10 min. IR inactivation efficiency depends on the radiation 

spectrum that can be divided in near-infrared (NIR), mid-infrared (MIR) and far-infrared (FIR). 

The used radiation spectrum depends on the type and thickness of the target sample so 

sterilization can be achieved without alteration of sample quality. FIR is more used as a surface 

heating method, while NIR can achieve a better sample penetration [372]. Hybrid IR 

inactivation techniques have also been applied [373].  

Ohmic-heating (OH) converts alternating electrical current to internal heat through the 

resistivity of the samples, and is applied mostly in the food industry, especially to high viscosity 

samples and solid-liquid mixtures [374], [341]. OH has a high penetration depth limit (up to 25 

mm), heating the samples uniformly, unlike the previously explained strategies, but requires 

contact of the samples with the heating electrodes [341], [371]. The generated heat is thus 

dependent on the thermal conductivity of the samples and on the applied current [375]. It is 
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cheap and also compatible with a wide variety of processing formats [374], and possesses a 

better energy efficiency than other methods [371].  

Induction heating (IH) produces heat through generation of eddy currents inside a 

conductor metal, where resistance to so called Foucault currents creates joule heating (heating 

due to the passage of electric current that depends on resistance of the material). IH allows 

targeted heating in a defined area directly opposite to the coil where the current is induced 

[370]. However when the material is placed inside an electricity conducting container damage 

due to surface burning may occur [371].  

5.1.2.1 Temperature control at the microscale and available strategies 

for enzyme inactivation  

Most research laboratories use conventional convective heating, such as water bath, oil 

bath or hot plates, for applying heat or as inactivating strategies. However, these methods have 

several issues, for instance with non-uniform temperature distribution between the heating 

surface and the bulk of the sample and the time required to reach the target inactivation 

temperature. Microfluidics can solve these issues simply by decreasing the distance between 

the bulk of the sample and the heating surface. Thus, at microscale, conductive or contact 

heating is an attractive method to perform fast inactivation.  

Conductive heating at microscale can be achieved with a variety of strategies either by 

integrating heating elements directly in the platform or using external heating elements. 

Integrated heating has been achieved through the use of exothermic reactions in parallel 

microchannels in contact with the main channel [376], but also by on-channel microfabrication 

of resistors and thin-film  resistors [377], [378], [379], [380] or metal wires [376]. External 

heating elements can be hot plates, readily available in most laboratories, but lately 

thermoelectric modules (TEM) or Peltier elements have gained relevance since they enable a 

good control of the applied temperatures and are easily integrated with already existing 

electronic components. In computers and some electronic equipments, Peltier elements are 

customarily used as cooling elements to avoid overheating of the electronic parts as alternative 

or complements to fans. Peltier elements are now relatively ubiquitous in benchtop analytical 

equipment for temperature control [353] (both heating and cooling functions), but are also 

increasingly used in microfluidic applications [376], [381]. TEM systems are employed in 

applications that require a high degree of temperature control with fast switching between 

temperatures, such as on-chip polymerase chain reaction (PCR) [382], [381]. Fast switching 

between defined temperatures or creation of temperature gradients can be achieved through 

pre-heating or cooling of the fluids used in the microfluidic system [383], by placing the 

microchannel between two different Peltier elements, or using two Peltier elements at different 

temperatures separated by a defined gap [376].  

Other (non-contact) heating strategies have also been applied at the microscale, some of 

them already mentioned for industrial application. MW dielectric heating allowed higher 

thermocycling rates in PCR applications [376] as well as accelerated reactions [384] compared 

to integrated heating. This occurs due to the MW’s ability to heat the liquid bulk directly [385], 

[376], but also of heating only specific regions of the microchannel or even single droplets [386]. 

IR heating is another example of an industrially-used heating strategy that has also been 
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applied at microscale [387], [376], with greater emphasis on PCR systems [388]. RF heating for 

example, which is commonly used at industrial scale in the food industry, has been used at 

microscale to perform magnetic fluid hyperthermia (MFH) on cells [389]. MFH is a technique 

that enables cell inactivation (e.g. tumour cells) by targeted delivery of heat to cells. The cells 

are labelled with magnetic nanoparticles, which increase in temperature when subjected to an 

alternating current magnetic field (e.g. generated in copper coils  integrated in a microchip 

[389]), thus causing temperature denaturation of the target cells. The generated temperature 

increase occurs due to thermal losses while the particles align to the alternating magnetic field 

[390]. MFH has also been applied for inactivation of bacteria [391]. Heat inactivation of enzymes 

coupled to nanoparticles can also be achieved through the use of gold nanoparticles. These 

particles can create heat when hit by a laser with a wavelength similar to the particles surface 

Plasmon resonance frequency. The generated heat is localized and can be used to inactivate a 

specific enzyme in a mixture of different biomolecules, using gold nanoparticles with different 

shapes and thus different Plasmon frequency [392]. A summary of the main thermal 

characteristics of these systems are presented in Table 19. 

 

Table 19 – Summary of main thermal properties and applications of several heating strategies at the microscale. 

Heating strategy 

Heating/ 

Cooling rate 

(⁰C/s) 

Temperature 

range (⁰C) 

Response 

time 
Application 

(Thin-film) resistors 5 - 20 25 - 110 

1 s - 3 min 

PCR [393], [378], [379], lab-on-a-

disc [380], protein synthesis [377] 

Thermoelectric 

modules (TEM) 
20 - 100 -3 - 120 

PCR [393], [382], [381], thermal 

management [394] 

Microwave (MW) 

heating 
5 - 30000 25 - 95 ms - s 

PCR [376], Hydrogel 

polymerization [386], Flow 

chemistry/drug discovery [384] 

Infrared (IR) heating 10 - 65 25 - 95 ms - s 
PCR [387], [393], [388], Enzyme 

inactivation [392] 

Radio-frequency (RF) 

heating 
- 25 - 100 - 

MHF [389], inactivation of 

bacteria [391] 

5.1.3 Goal 

The microfluidic system presented in this work was developed as an intermediary step in 

a modular microfluidic platform. This type of platforms, based on the “plug-and-play” approach, 

enable the connection of independently developed microfluidic units, which can be combined or 

arranged differently depending on the application, type of sample or reaction [40], [41], [42], 

[43], [44], [45]. 

To obtain a reliable result from enzymatic reactions, it is necessary for the samples to be 

quantified immediately or at a well-defined reaction time point (residence time). The 

quantification of reaction components under flow conditions (as part of a continuous operation 

platform) requires a comprehensive characterization of the microreactor so that samples can be 

compared at different reaction times. However, in a modular platform, where the reactor and 

operation units can be changed, it is essential that the samples reach the quantitative system 

or sensor in the same conditions. Enzymatic reactions can be stopped through addition of 

reagents that inactivate the enzyme or through compounds that block the active site, but this 
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may interfere with the operation of the sensor used for the quantification (e.g. addition of NaOH, 

as in Chapter 2, or HCl for pH change and enzyme denaturation can destroy the biosensing 

layer of electrochemical-based sensors, such as the ones presented in Chapter 4). 

The presented microfluidic platform intends to address the latter issue by providing an 

alternate inactivation strategy: temperature-based inactivation of enzymes. The control of the 

temperature, as stated above, allows an unspecific inactivation of both enzymes and cells, thus 

simplifying the inactivation procedure while allowing flexibility in terms of application, as 

required in modular microfluidic platforms. It also enables achieving reversible or irreversible 

inactivation of the involved proteins depending on the chosen operation conditions, offering a 

further degree of control on the enzyme state during operation. The use of temperature further 

avoids the application of solvents or other inactivating agents, simplifying the procedure. 

Temperature is also used in different research fields, and so its integration in a modular 

platform increases the platform’s applicability in different technical applications. The developed 

platform’s inactivation ability was compared with the standard laboratory method in order to 

prove its usefulness as part of an enzymatic screening platform. 

This platform was specifically developed to allow enzyme inactivation (hence stopping the 

reaction) in the reaction mixture coming from the silicon meander channel (presented in 

Chapter 2), so glucose quantification could be performed in the chip for electrochemical sensor 

integration (presented in Chapter 4). Due to time constrains, however, the final integration of 

all the platforms presented was not possible. 

5.2 Materials & Methods 

In this work, a new microfluidic platform for thermal inactivation of enzymes was 

fabricated and its inactivation ability compared with the standard laboratory procedure, a table 

top orbital heating device. The required time to achieve the desired inactivation temperature 

was also simulated using computational fluid dynamics as a complement in the study of the 

inactivation ability of the two used strategies. In this section, a description of the different 

performed studies and materials used during this work is presented. 

5.2.1 Reagents and Materials 

Glucose oxidase (EC 1.1.3.4, type VII, from Aspergillus niger, ≥100,000 U/g solid), catalase 

(EC 232-577-1, from bovine liver, lyophilized powder, 2000-5000 units/mg protein) and 

horseradish peroxidase (EC 1.11.1.7, lyophilized, 150 U/mg) were obtained from Sigma (St. 

Louis, MO, USA). D- Glucose (anhydrous) was provided by Fluka (Loughborough, UK). Mono – 

and di-potassium hydrogen phosphate (anhydrous) were obtained from Merck (Darmstadt, 

Germany). Hydrogen peroxide (PerdrogenTM, 30% (w/w)), Sodium 3,5-dichloro-2-hydroxy-

benzenesulfonate (DCHBS) and 4 Aminoantipyrine (4-AAP, reagent grade) were obtained from 

Sigma (St. Louis, MO, USA). All the solutions for sensor preparation were prepared with 50 mM 

phosphate buffer pH 7.5. All solutions were prepared in buffer. 

The 10-mm marlon polycarbonate plate that forms the channel was from Brett Martin 

(Newtownabbey, UK). The 2-mm thick SS304 stainless steel bottom plate of the channel, as well 
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as the structural components of the platform were from Sanistål (Aalborg, Denmark). The 

polycarbonate and steel parts were milled using an ecoMill 50 from DMG mori (Bielefeld, 

Germany). The adhesive assembly of the platform was performed with a 142 µm thick double-

sided adhesive tape mcs-foil 008 from microfluidic ChipShop (Jena, Germany), previously 

patterned using laser ablation with a CMA-4030 Laser Engraving machine from GD Han’s 

Yueming Laser Technology co., Ltd (Guangdong, China). Flangeless polypropylene (PP) 

fingertight 1.5875 mm (ID) fittings (XP-201) and flangeless ferrules (P200X) from Upchurch 

Scientific® (Washington, USA) were used to connect polytetrafluoroethylene (PTFE) 1.5875 mm 

(OD) x 1mm (ID) tubing (S 1810-12) from Bohlender (Grünsfeld, Germany). 

5.2.2 Enzyme activity measurements 

Activity measurements of Glucose oxidase (GOx) and Catalase (Cat) were performed in a 

UV-1800 UV-Vis spectrophotometer with a CPS 240A cell positioner from Shimadzu (Kyoto, 

Japan). GOx activity was measured using a protocol adapted from Heuts et al. (2007) [218], 

where the hydrogen peroxide formed in the presence of glucose, is used by horseradish 

peroxidase (HRP,  4 U/mL) to oxidize 4-AAP (0.1 mM) and DCHBS (1 mM), forming a 

colorimetric (pink) compound. The formation of this compound can be followed at 515 nm (ε515= 

26 mM-1 cm -1) and its absorbance can be directly related to the amount of glucose consumed. To 

measure GOx activity 10 µL of 1:30 diluted GOx solution (~30 U/mL) were added to 990 µL of 

the reaction mixture. For the inactivation study, the initial rates of glucose consumption/ 

colorimetric compound formation were compared for a glucose concentration (400 mM) equal to 

around 10 times the measured KM (~30 mM). The influence of temperature on HRP was also 

attained by performing the previous assay with addition of 20 µL of HRP to 980 µL of a constant 

concentration of hydrogen peroxide (2 mM), 4-AAP (0.1 mM) and DCHBS (1 mM) at different 

temperatures (298 K (25 ⁰C), 310 K (37 ⁰C), 318 K (45 ⁰C), 328 K (55 ⁰C) and 333K (60⁰C)). An 

increase in activity of around 8-fold was observed, between the lowest and the highest 

temperature. Concentration of hydrogen peroxide was chosen based on data presented in 

BRENDA [395] for HRP from Armoracia rusticana. The activity of Cat (~400 U/mL) was 

measured based on the protocols by Beers and Sizer (1952) [219] and Lück (1965) [220], by 

following the decrease of hydrogen peroxide concentration at 240 nm (ε240= 43.6 M-1 cm -1). To 

measure Cat activity 30 µL of 1:10 diluted catalase solution was added to 2970 µL of 10 mM 

hydrogen peroxide. Each spectrophotometric measurement was performed in triplicate for 2 

min. 

5.2.3 High-Performance Liquid Chromatography (HPLC) method  
All the reaction samples were analysed in an HPLC for quantification of glucose consumed 

and gluconic acid produced. The measurement was performed with a reversed-phase 

chromatography on an Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA) equipped with a 

Phenomenex column with 5-µm sized amine particles (Luna 5u NH2 100A), operated at 40 ⁰C 

and 140 bar. The mobile phase consisted of a 20 mM H3PO4 solution, flowing at 1 mL/min. The 

eluted gluconic acid was quantified in a ultraviolet (UV) multiple wavelength detector at 205 

nm, while the glucose concentration was determined in the Refract Max 520 refractive index 

(RI) detector. The amount of each component was obtained by integration of the areas under the 
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corresponding peaks using the HPLC commercial analytical software (Chromeleon 6.8), based 

on a calibration curve performed for each component.  

5.2.4 Thermal inactivation platform 

 The microfluidic thermal inactivation platform has several components, as shown in 

Figure 58. The microfluidic channel was micromillled in a polycarbonate plate with a meander 

shape with 150 µm deep and 790 µm wide, as well as a pocket for a temperature sensor (Figure 

59 (a)). The microchannel has two main inlets and two side inlets, which provide a wider range 

of residence times. The channel formed by the main inlets will be referred as main channel (with 

a length of 325 mm), while the channel formed by the side inlets will be referred to as secondary 

channel (with a length of 87 mm). The polycarbonate plate was glued onto a thin stainless-steel 

plate with a patterned 142 µm thick double sided adhesive type, giving the channel an overall 

height of 292 µm. A PT 1000 temperature sensor (Platinum Thin Film PTFM102A1A0 from 

Measurement Specialties (Europe) Ltd., Dortmund, Germany) was placed in contact with the 

steel plate and connected to a controller (Laird PR-59 Advanced Temperature Controller from 

Supercool AB, Stromstad, Sweden) which was operated from a personal computer (PC). The 

controller had a EOS LFWLP350-1005 power supply (from EOS, Andheri, Mumbai, India). The 

steel plate was fabricated with a bended shape on the sides and a metal separation in the middle 

in order to allow a good positioning of the thermoelectric modules (Peltier elements from 

Multicomp by Newark element14, Chicago, Illinois, USA), as can be seen in Figure 58. The 

Peltier elements have a dimension of 40 mm x 40 mm x 3.45 mm and a maximum of temperature 

differential of 70 K/ ⁰C during cooling, and can be controlled with the software (SC_Interface) 

provided with the controller. Before assembly the Peltier elements were covered with a thin 

layer of a heat transfer paste (HTS Silicone Heat Transfer compound from Electrolube, 

Leicestershire, UK). To facilitate the cooling of the cool side of the Peltier elements during 

operation, a heat-sink and a fan were connected to the microchannel assembly. The assembled 

Peltier elements were placed on the heat sink structure, which was milled in order to have the 

shape of the Peltier elements and enable a good fit of the microchannel assembly onto the heat-

sink (60mmx40mmx10mm, 153AB from ABL Aluminum Components, Birmingham, UK). The 

fan (614 NGL DC axial fan from Ebm-papst Inc., Farmington, Connecticut, USA) was assembled 

underneath the heat-sink and connected to the controller. Four metal pillars attached to the 

heat-sink provided stability to the assembled platform, while enabling some space between the 

fan and the support of the platform. The connection of the different electronic components was 

performed in-house, and installed inside a 30 cmx 30 cm x 10 mm plastic box. 
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Figure 58 – Schematics and photograph of the assembled microfluidic platform for thermal inactivation of enzymes, 

with the different components highlighted. In the photograph emphasized with blue dots the inlet and outlet of the 

main channel, while in green the inlet and outlet of the secondary channel are indicated. 

 

 

Figure 59 – Schematics of the polycarbonate plate with engraved microfluidic channel (a) where the primary (in 

blue) and secondary (in green) inlets are highlighted, and schematics of the microfluidic channel used in the CFD 

simulations (b), where flow direction, position of the microchannel and heating are highlighted. 

5.2.4.1 Characterization of thermal performance of the inactivation 

platform 

To understand how the thermal inactivation platform behaved at the different 

temperatures, the performance of the controller and the temperature sensor were tested.  

Different controller parameters were tested in order to minimize temperature overshoot 

when the heating function was started (with platform at 298 K (25 ⁰C) to reach the different 

inactivation temperatures), as well as temperature variability during operation. The best 

performance was obtained with a proportional-integral (PI) type of control, set with the 

parameters shown in Table 20. A temperature overshoot of 6 to 16 K/⁰C was obtained when 

heating was initiated. The temperature varied between +/- 0.05 K/⁰C and +/- 2.5 K/⁰C around 

the set point temperature during operation. The highest variability was observed for 

temperatures between 318 K (45 ⁰C) and 338 K (65 ⁰C), while the lowest variability and 

overshoot was observed for 298 K (25 ⁰C), 310 K (37 ⁰C) and 353 K (80 ⁰C). The action of the fan 



Micro scale reactor system development with integrated advanced sensor technology  

156 
 

did not seem to yield a significant effect during operation, so the presented experiments were 

performed with the fan turned off. 

Table 20 – Optimized controller parameters used during the experiments. 

Controller parameters Value 

Max power out 30% 

Dead-band 3% 

Heating Gain 1 

Cooling gain 0 

Decay when stopped 0.1 

KP (proportional constant value) 5 

KI (integral constant value) 0.5 

Integral value limit 100% 

KTr (lowpass filter to limit speed of change of a set point) 2 

KTe (lowpass filter of the difference between the temperature 

sensor and the set point) 
3 

5.2.5 Thermal inactivation measurements 

 The study of the enzymatic inactivation ability of the assembled microfluidic platform was 

performed for each enzyme separately, by pumping the enzyme solution inside the channel at 

different flowrates to achieve the desired residence times and temperatures, as presented in 

Figure 60. The used residence times and temperatures are shown in Table 21. Before 

introduction of the enzyme solution, the channel was heated to the desired inactivation 

temperature, and flushed with enzyme solution (Reynolds number of 2.05) for a minimum of 6 

times the channel volume before sampling was performed. The enzyme solution was then 

retrieved at the outlet, appropriately diluted (1:30 in the case of GOx and 1:10 in the case of 

Cat) and measured in the spectrophotometer with the previously described protocol (section 

2.2). GOx solutions were also added to a vial with 200 mM glucose solution in a 1:1 proportion, 

and glucose concentration was measured after 1 day and 2 days respectively in a high-

performance liquid chromatograph (HPLC) Dionex UltiMate 3000 UHPLC system with diode 

array and refractive index detector (from Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). HPLC data was used to check whether inactivation or denaturation occurred in the 

platform. In the case of Cat, the same solutions at the outlet of the microchannel were measured 

after 1 day in the UV/VIS spectrophotometer and hydrogen peroxide consumption compared to 

the one of freshly inactivated enzyme. The samples of both enzymes were kept at room 

temperature following inactivation. 

 

Figure 60 – Schematics of sampling in the microfluidic thermal inactivation platform. 
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Table 21 – Residence times and temperatures used for the characterization of the microfluidic thermal inactivation 

platform and comparison with the ThermoMixer. 

Channel Residence time 

(s) 

Flow rate 

(µL s-1) 

Flow velocity 

(m s-1) 

Temperature 

(K/⁰C) 

Secondary channel 

(~87 mm) 

10 2 0.0087 298/25 

20 1 0.0043 310/37 

30 0.66 0.0029 318/45 

Main channel 

(~325 mm) 

60 1.25 0.0054 328/55 

120 0.625 0.0027 338/65 

180 0.417 0.0018 353/80 

The same study of the enzymatic inactivation was performed in a table top orbital MRH11 

Heating ThermoMixer (from HCL BioTech, Bovenden, Germany), using similar enzyme 

solutions and the same temperatures and residence times as for the experiments in the 

microfluidic system. In this case, 500 µL of the enzyme solution were added to a 4-mL vial 

already at the target inactivation temperature. The consumption of glucose by the enzyme 

solutions inactivated in the ThermoMixer was also measured in the HPLC after 2 days. In both 

sets of experiments GOx solutions were freshly prepared, while Cat solutions were diluted from 

a stock solution (~1000 U/mL) every day. The activity of Cat in the stock solution was measured 

daily. The enzymes were kept in ice (around 277 K (4 ⁰C)) during the experiments and added to 

the ThermoMixer and to the channel only when these were already heated at the inactivation 

temperature being tested.  

5.2.6 Characterization of thermal inactivation platforms with CFD 

Microchannel and 4-mL vial geometries were designed in SolidWorks 2015 (Dassault 

Systèmes SolidWorks Corporation, Waltham, Massachusetts, USA). The time required to 

achieve the final inactivation temperature (353 K (80 ⁰C)) from room temperature (298 K (25 

⁰C)) was simulated using a computational fluid dynamic simulation software, ANSYS-CFX 

Version 16.2 (Canonsburg, Pennsylvania, USA). The three-dimensional designs of the 

microchannel (Figure 59 (a)) and 4-mL vial (Figure 61 (a)) were imported into a meshing 

software, ANSYS ICEM CFD® 16.0 (Canonsburg, Pennsylvania, USA), and discretization of the 

geometry into smaller elements (where the equations for momentum, energy and mass balance 

[396], [397] are solved by ANSYS-CFX software) was performed. The geometry of the 4-mL vial 

was simplified to a slice of 1.24% of the entire volume, defined based on an axial geometry where 

the slice corresponds to the volume of 5⁰ of the cylinder vial perimeter (Figure 61 (b)). The slice 

defined contained 11284 elements (107.5 elements/ µL). The microchannel geometry was 

simplified to a straight rectangular 30 cm long channel with 1/4 of channel width with steel 

underneath and a 5-mm polycarbonate plate on top (Figure 59 (b)) containing 72144 elements 

(2312.3 elements/ µL). Both designs were simulated with a structured hexahedron mesh, 

assuming that the structures and the environment were at 298 K (25 ⁰C). In order to simulate 

the whole structure, symmetry was assumed on both sides of both the slice (axial symmetry) 

and microchannel design. When symmetry is used, the conditions on the areas beyond the 

simulated volume are a reflection of the simulated conditions. The use of symmetry reduces the 

computational time required for the simulation [397]. The fluids were simulated according to 

the Navier-Stokes equation for Newtonian fluids [398] under laminar flow conditions, which 
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was solved coupled with the energy balance [399] using the Thermal Energy model integrated 

in ANSYS-CFX.  

 

Figure 61 – Schematics of 4-mL vial designed in SolidWorks with the slice used for CFD simulations shown (a) and 

simulated slice of 4-mL vial with different parts and heating highlighted (b). 

 

The vial was considered to be made of glass flint, with a height of 9 mm corresponding to 

the liquid (defined as water) and the rest was filled with air. The three phases, solid (glass), 

liquid (fluid) and gas (air), were defined as separate parts in the geometry with a conservative 

interface flux condition, where only temperature is conducted into between the solid and the 

liquid phase. In both the liquid and the air phase, two fluids were defined: water with a density 

of 997 Kg m-3 and air with a density of 1225 Kg m-3. In the air phase, air had an initial volume 

fraction of 1 and water of 0, while in the liquid phase, the opposite was set. Both fluids were 

defined as buoyant with 9.81 m s-2 as the gravitational acceleration towards the bottom of the 

vial. The heat was defined as coming only from the glass outer walls (bottom and side of the 

vial) as presented in Figure 61 (b). The portion of liquid on the bottom was at 277 K (4 ⁰C) at 

the start of the simulation, while the air above it was at room temperature (298 K (25 ⁰C)). A 

homogeneous Thermal energy model was used to perform the glass vial simulations, in which 

the volume fractions of the fluids were defined as coupled. 

The microchannel (Figure 59 (b)) was filled with liquid under laminar flow with a velocity 

of 0.025 m s-1 (Re 5.60), 0.0025 m s-1 (Re 0.56) or 0.0018 m s-1 (Re 0.40), and the heat was defined 

as coming from the bottom of the channel as in Figure 59 (b). All the materials were simulated 

considering the materials’ properties provided by ANSYS-CFX at 298 K (25 ⁰C), and the liquid 

was defined as water. The polycarbonate plate was simulated as polystyrene with a specific heat 

capacity of 1426 J Kg-1 K-1. The walls (top and bottom of channel) were defined as having no-slip 

wall boundary conditions, and the outlet was defined as an opening. The simulations were 

performed transient in order to obtain the time required for both the liquid and the entire 

system to reach the target inactivation temperatures.  
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5.3 Results and Discussion 

The thermal inactivation platform was characterized using two well-known and relatively 

robust commercially available enzymes, Glucose oxidase (GOx) and catalase (Cat), which have 

been extensively studied and improved. A brief look in BRENDA [400] shows the immense 

diversity of these enzymes, especially GOx, in terms of origin (from bacteria and fungi to human 

and other mammals), substrate and catalytic properties. Both enzymes are relatively stable and 

present enzymatic activity in a wide range of temperatures (293 K (20 ⁰C) to 333 K (60 ⁰C) for 

GOx and 303 K (30 ⁰C) to 333 K (60 ⁰C) for Cat), thus providing a good case study to test the 

efficiency and applicability of the developed inactivation platform.  

The platform’s performance was compared with the standard laboratory procedure used 

to achieve thermal enzyme denaturation, a benchtop ThermoMixer. The temperatures and 

residence times presented in Table 21 were used in both platforms. 

5.3.1 Characterization of heating performance with CFD 

A simplified geometry of both systems used to achieve enzymatic thermal denaturation of 

GOx and Cat was characterized in terms of time required to reach the target temperature using 

computational fluid dynamics. Three of the target inactivation temperatures, 298 K (25 ⁰C), 318 

K (45 ⁰C) and 353 K (80 ⁰C), were chosen for comparison of heating performance in the two 

simulated inactivation systems. 

 

Figure 62 shows the results for the simulated slice of the 4-mL vial, when the glass is pre-

heated at 353 K (80 ⁰C) (Figure 62 (a)) or at room temperature (Figure 62 (b)) at the start of the 

simulation. As can be observed, the liquid inside the vial reaches 353 K (80 ⁰C) at a similar time 

in the simulation at around 160 s for both cases. The liquid reaches the desired temperature at 

similar times since the temperature gradient driving the heat transfer is the same. After 300 s 

both the liquid and the air are heated at the desired inactivation temperature, except near the 

top of the vial where there is heat loss to the environment.  

 
Figure 62 – Results from the CFD simulation of part of the 4-mL vial considering the glass was pre-heated at 353 K 

(80 ⁰C) (a) or at 298 K (25 ⁰C) (b). 

For both simulations, uniform heating of the liquid to 353 K (80 ⁰C) is achieved around 

160 s, which is shorter than the longest residence time used for enzyme inactivation in this 
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study, but longer than most of the inactivation times tested. This indicates that the enzyme 

solutions inactivated in the ThermoMixer were not uniformly exposed to the same temperature 

for the shorter inactivation times and so a higher variability might be expected from these 

samples, since no mixing was used. This is also demonstrated in Figure 63 where the 

temperature contour plots of the liquid, air and glass at the same residence times used in the 

experiments is shown. Only part of the liquid is first heated at the target temperature after 120 

s of exposure to 353 K (80 ⁰C) in Figure 63 (a). 

 
Figure 63 - Results from the CFD simulation of part of the 4-mL vial considering the glass was pre-heated at 353 K 

(80 ⁰C) (a), at 318 K (45 ⁰C) (b) and at 298 K (25 ⁰C) (c) for the different residence times used. 
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According to Figure 63 (b) and (c), for 318 K (45 ⁰C) and 298 K (25 ⁰C) respectively, the 

liquid achieves the target temperature earlier than for 353 K (80 ⁰C). The target temperatures 

are achieved between 60 s and 120 s after sample heating is initiated and thus variability for 

the corresponding samples at residence times above 120 s should be very small. Comparing 

heating times for Figure 63 (a), (b) and (c), the lower the target temperature, the shorter the 

time required to reach the desired temperature.  

Figure 64 and Figure 65 present the temperature distribution for the different inactivation 

times across an axial and a vertical line, respectively, drawn in the simulated vial geometry. In 

the figures, the target temperature is reached for all the inactivation temperatures at 180 s. 

This seems to contradict the previous conclusions that a lower target temperature results in a 

lower heating time. However, the presented graphs show a one-dimensional representation of 

the temperature gradient at a defined position in the vial and thus cannot represent the amount 

of fluid volume at the target temperature, which is better observed in Figure 63.  

 
Figure 64 - Results from the temperature distribution along an axial line for the CFD simulation of part of the 4-

mL vial considering the glass was pre-heated at 353 K (80 ⁰C) (a), at 318 K (45 ⁰C) (b) and at 298 K (25 ⁰C) (c) for the 

different residence times used. 
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In Figure 65 it is also possible to observe that the air close to the fluid reaches the target 

temperature slower than the air above it, due to the lower temperature of the liquid. 

Furthermore, the air on the top of the vial, in contact with the environment, presents a constant 

temperature gradient, resultant from heat loss to the environment, which increases with the 

inactivation temperature. 

 
Figure 65 - Results from the temperature distribution along a vertical line for the CFD simulation of part of the 4-

mL vial considering the glass was pre-heated at 353 K (80 ⁰C) (a), at 318 K (45 ⁰C) (b) and at 298 K (25 ⁰C) (c) for the 

different residence times used. 

Finally, in all the presented figures, the wider the temperature difference between initial 

conditions (sample at 277 K (4 ⁰C) and air at 298 K (25 ⁰C)) and inactivation temperature (298 

K (25 ⁰C), 318 K (45 ⁰C) and 353 K (80 ⁰C)), the faster the heating rate.  This is evident in Figure 

63 (a), Figure 64 (a) and Figure 65 (a) where a temperature of 318 K (45 ⁰C) is obtained between 

30 s and 60 s, which is consistent with the higher temperature gradient and therewith a higher 

driving force for the heat transfer to occur in this case (353 K (80 ⁰C)).  
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The results from the CFD simulation for the simplified geometry of the microchannel are 

presented in Figure 66. In this geometry, we considered that the bottom of the microchannel 

(which corresponds to the steel plate) is at an initial temperature of 353 K (80 ⁰C), 318 K (45 

⁰C) or 298 K (25 ⁰C), respectively, when the enzyme solution at 277 K (4 ⁰C) is introduced in the 

microchannel with a linear velocity of 0.0018 m s-1 resulting in a Re number of 0.40.  

As can be observed for the inactivation temperature of 353 K (80 ⁰C) (Figure 66 (a)), the 

liquid flowing inside the channel reaches the desired temperature after 0.6 s. This significantly 

faster heating of the enzyme solution relative to the 4-mL vial (Figure 63) is expected, 

considering the microchannel’ s small height (292 µm) and reduced volume, which enables a fast 

heat transfer from the heat steel plate to all transported fluid.  

 
Figure 66 - Results from CFD simulation of the simplified geometry of the microchannel considering the bottom of 

the channel is heated at 353 K (80 ⁰C) (a), 318 K (45 ⁰C) (b) or 298 K (25 ⁰C) (c), and the average linear flow velocity 

is 0.0018 m s-1. 

The required time for the fluid to reach the chosen inactivation temperature decreases for 

lower temperatures, as can be observed in Figure 66 (b) and Figure 66 (c). However, as observed 

above for the 4-mL vial, the same temperatures (318 K (45 ⁰C) and 298 K (25 ⁰C)) are reached 
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earlier in the 353 K (80 ⁰C) case (at 0.3 s the fluid is already between 338 K (65 ⁰C) and 353 K 

(80 ⁰C)) than for the lower temperatures since the temperature gradient (and thus heat transfer 

rate) is higher.  

It is also relevant to highlight that the inactivation temperature is reached close to the 

start of the channel, as can be observed in the focused regions in Figure 66. This means that the 

enzyme solution is exposed to the desired inactivation temperature through the entire length of 

the microchannel, and thus that the residence times considered during the experiment are close 

to the real ones. The distance from the inlet at which the entire volume of transported solution 

reaches the inactivation temperature also decreases with decreasing inactivation temperatures, 

from 700 µm for the simulation at 353 K (80 ⁰C) to around 550 µm at 318 K (45 ⁰C) and 0 µm at 

298 K (25 ⁰C). In all the simulations, at 0.3 s the temperature around the channel (in the 

polycarbonate plate) is lower than room temperature (298 K (25 ⁰C)) due to the fluid introduced 

being at 277 K (4 ⁰C), but quickly stabilizes to the target temperature. This is more evident in 

the simulation at 298 K (25 ⁰C), since the inactivation temperature is equal to room 

temperature. 

 

To enable the comparison with laboratory enzyme inactivation experiments performed in 

the microchannel, CFD simulations at 353 K (80 ⁰C) were performed at different average linear 

flow velocities varying between 0.0018 m s-1 and 0.025 m s-1, to include the range of velocities 

used in the laboratorial experiments (see Table 21). The temperature of 353 K (80 ⁰C) resulted 

previously in the longest distance from the inlet at which the fluid reached the target 

temperature for the three temperatures simulated. This allows a more comprehensive 

understanding of the influence of average linear flow velocity on such distance, and thus its 

influence on residence time. No significant difference was observed in the overall temperature 

distribution or the times at which the set point temperature was reached between the different 

velocities. However, the distance from the inlet at which the whole liquid reaches 353 K (80 ⁰C) 

increases with an increase in flow velocity, since there is less time due to the fluid’s higher 

velocity for the heat to diffuse across the height of the channel to the solution, as well as some 

transport of the thermal energy in the direction of the flow (Figure 67). At the lowest simulated 

velocity this distance is 700 µm, while at the highest simulated velocity the distance is close to 

8 mm. For the maximum experimental velocity (0.0087 m s-1) this distance is below 3 mm, which 

is around 1/30 of the length of channel used (87 mm), and thus its influence in the final used 

residence time was not considered for the performed experiments. 

The presented simulations provide sufficient confidence that the enzyme solution will be 

uniformly exposed to the inactivation temperature along the entire length of the channel (and 

close to the assumed residence time).  
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Figure 67 - Results from CFD simulation of the simplified geometry of the microchannel considering the bottom of 

the channel is heated at 353 K (80 ⁰C) for different flow velocities. 

In all the simulations, after 10 min the distribution of temperature in the microchannel is 

approximately the same as the one observed after 1 h, with the temperature at the top of the 

polycarbonate plate at 298 K (25 ⁰C). During the experiments however, after approximately 10 

to 15 min the top of the polycarbonate plate was hot to the touch, indicating a temperature 

above at least 313 K (40 ⁰C). This discrepancy could come from the polycarbonate properties 

(namely the specific heat capacity of 1426 J Kg-1 K-1) assumed during the simulation, which 

could differ from the ones of the polycarbonate used for the microfluidic plate. The temperature 

during the experiments may also be higher than the simulated ones. However, since the heat 

provided by the Peltier elements is regulated based on the temperature measured by the PT 

1000 sensor, and this sensor is placed close to the channel, this is not expected to be the case. 

In the simulations, the area surrounding the channel forming most of the platform, as well as 

the possible influence of the double adhesive tape between the steel and the polycarbonate plate 

were not considered. These factors might also affect how heat dissipates from the platform, thus 

influencing the temperature reached on the outside of the platform.  

Nonetheless, since the focus of the CFD simulation was to understand the heat transfer 

to the enzymatic solution flowing inside the channel, which was possible to visualize in the 

performed simulations, the simulation was considered to have yielded enough understanding of 

the heating properties of both inactivation strategies to be able to trust in the design of the 

microfluidic system developed. 

5.3.2 Characterization of inactivation performance  

The results from the spectrophotometric measurements performed after the enzyme 

solutions where pumped through the microfluidic channel at various residence times and 

inactivation temperatures are presented in Figure 68, both for glucose oxidase and catalase. 

The presented values have a standard deviation between 3.87x10-9 M min-1 and 8.66x10-7 M 

min-1 for GOx and 2.90x10-6 M min-1 and 1.29x10-4 M min-1 for Cat. 
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Both enzymes display a similar inactivation trend. At 338 K (65 ⁰C) or higher 

temperatures, a significant decrease in product formation/ hydrogen peroxide consumption is 

observed in both systems, especially for residence times higher than 60 s. In the ThermoMixer 

complete inactivation of the enzymes is observed at 353 K (80 ⁰C) for residence times of 120 and 

180 s. This is in agreement with the simulation results reported in Figure 63, where only for 

these residence times the temperature inside the vial is closer to the desired temperature. In 

the microchannel, enzyme inactivation occurs at lower temperatures than 353 K (80 ⁰C). In this 

system, at 338 K (65 ⁰C) and residence times of 120 s and 180 s almost no activity is observed. 

This is a good indication that the whole volume of the enzyme solution has been subjected to 

the same temperature for the defined residence time in the microchannel, as supported by the 

simulations.  

Both enzymes seem to behave similarly in terms of inactivation at the used temperatures, 

although a faster inactivation of catalase was to be expected since it is known for being the less 

stable of the two enzymes [401]. GOx inactivation is known to occur through loss of its co-factor 

(FAD), which happens around 332 K (59 ⁰C), followed by loss of conformation above 335 K (62 

⁰C) (mid-point for loss of secondary and tertiary structure, according to Gouda et al. (2003)) 

[402]. This mid-point of conformation loss may even occur at a lower temperature (328 K (55 

⁰C)) [403]. The obtained values during the experiments concur with the previous temperatures, 

since the amount of product at 338 K (65 ⁰C) is around half of the values obtained at 328 K (55 

⁰C), and a rapid decrease in activity is observed at 338 K (65 ⁰C). Catalase, such as GOx, is 

prone to denaturation for temperatures above 328 K (55 ⁰C) [404], due to a process of protein 

denaturation [405], [406] by dissociation of its subunits [401]. 

 

Figure 68- Amount of colorimetric product formation by GOx and hydrogen peroxide consumed by Cat, measured in 

the spectrophotometer immediately after inactivation in the ThermoMixer ((a) for GOx and (c) for Cat) and 

microfluidic platform ((b) for GOx and (d) for Cat). 
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The developed platform is intended for use as an intermediary step between reaction and 

quantification, and so it should guarantee that the reaction has stopped at the desired residence 

time before the measurement is performed. Since the measurements executed immediately after 

inactivation (as it would happen in the modular platform) at 353 K (80 ⁰C) show no activity for 

both enzymes, this goal has been achieved. 

5.3.3 Characterization of deactivation ability  

The developed platform could also be applied as a final step in an enzyme screening 

platform, where the inactivated enzyme or reaction mixture could be stored for later use or 

analysis. To check the stability of the inactivation, whether reversible inactivation or 

deactivation of the enzymes was achieved in the platform, the activity of the inactivated enzyme 

solutions was measured after one (Cat) and two days (GOx). The inactivated GOx solutions were 

added to a 200 mM glucose solution in a 1:1 proportion and the amount of consumed glucose 

was measured in an HPLC. The measured glucose concentrations in the HPLC for the different 

samples obtained at the selected temperatures and residence times are presented in Figure 69 

(a). Between the measurements at different times in the HPLC, the samples were kept at room 

temperature (~298 K (25 ⁰C)) stored inside the device’s sampler unit. As can be observed in 

Figure 69 (a), the samples pumped through inside the microfluidic system consumed less than 

10 mM of glucose after 1 and 2 days, while the samples inactivated in the ThermoMixer, 

consumed almost all the present glucose. This may indicate that a partial irreversible 

denaturation of GOx occurs in the microfluidic platform, while in the ThermoMixer the enzyme 

is able to return to the active state after exposure to the inactivation temperatures and used 

residence times. It is also possible to notice that the samples inactivated in the ThermoMixer at 

298 K (25 ⁰C) and 310 K (37 ⁰C), especially at the shorter residence times, present a higher 

overall variability between them. This might be related to the non-uniform distribution of 

observed temperature in the simulations performed for the 4-mL vial at the shorter residence 

times.  

In the results presented in Figure 69 (a), significant deactivation of GOx is observed for 

all the inactivation and residence times tested, even for temperatures below the temperature 

where FAD dissociation occurs (332 K (59 ⁰C), according to Gouda et al. (2003)) [402]). So, the 

observed GOx deactivation (at temperatures lower than 332 K (59 ⁰C)) may indicate that other 

phenomena, besides temperature, are involved in the loss of conformation (e.g. hydrophobic 

interactions with channel walls). On the other hand, Zoldák et al. (2004) observed that 

irreversible denaturation of GOx occurred if the enzyme solution was immediately cooled to 293 

K (20 ⁰C) upon inactivation at 328 K (55 ⁰C). Zoldák et al. (2004) also observed that dissociation 

of the co-factor and of the protein dimer occurred after the inactivation rate limiting step [403]. 

This may explain in part the observed deactivation for the temperatures below 328 K (55 ⁰C), 

but other phenomena might be involved in the extent of detected denaturation, since no 

significant difference is observed between the different inactivation temperatures tested in 

terms of glucose consumption. 

The inactivated catalase solutions were kept at room temperature overnight and 

consumption of hydrogen peroxide was measured in the spectrophotometer the following day 

(Figure 69 (b)). As shown in Figure 69 (b), the samples presented a regain of activity for samples 
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inactivated at temperatures up to 318 K (45 ⁰C), and loss or even no activity for samples 

inactivated at higher temperatures for 180 s.  

 

Figure 69 – Substrate consumed by the static and in flow inactivated enzymes (GOx (a) and Cat (b) after 1 and 2 

days. The black line represents the maximum value of glucose (a) consumed by the enzyme solutions inactivated in 

the microfluidic system. Samples of 20 s inactivation times were only measured for the higher temperatures (328 K 

(55 ⁰C), 338 K (65 ⁰C) and 353 K (80 ⁰C)) used in the microfluidic thermal inactivation platform. 

Activity of catalase pumped through the microfluidic system is lower for 338 K (65 ⁰C) and 

353 K (80 ⁰C) than the one inactivated in the ThermoMixer, since some substrate consumption 

was measured for the latter samples. The occurrence of deactivation in both systems might be 

related to the already mentioned lower stability of catalase relative to glucose oxidase, thus 

translating into a smaller difference in deactivation between the two inactivation strategies. 

Furthermore, the samples from catalase solutions from both inactivation systems formed 

agglomerates overnight, especially for the higher residence time (180 s) and inactivation 

temperatures (338 K (65 ⁰C) and 353 K (80 ⁰C)), as presented in Figure 70. Agglomeration of 

protein indicates loss of conformation due to denaturation of enzymes, and thus enzymatic 

deactivation, which is consistent with the very low substrate consumption measured for these 

conditions. Catalase deactivation associated with protein aggregation is a known phenomenon 

[407]. 

Nevertheless, for both enzymes, a decrease in enzyme activity is observed with increasing 

temperature and a significant difference in substrate consumption between the samples 
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inactivated in the ThermoMixer and in the microfluidic platform was obtained. The observed 

deactivation phenomenon seems to depend on the type of enzyme, since GOx deactivation 

occurred mainly in the microchannel at all the used temperatures (possibly due to hydrophobic 

interactions with the channel), while catalase deactivation occurs mainly due to the effect of 

temperature. However, for both enzymes, a high degree of deactivation for the duration of the 

assay was observed. 

 

Figure 70 – Photographs showing the formation of agglomerates in inactivated catalase samples after 1 day at room 

temperature for different inactivation temperatures at the longest residence time (a) and at different residence times 

at the highest inactivation temperature (b). 

The observed (partial) deactivation for both enzymes in the microfluidic system could be 

influenced by other factors such as the closer proximity of the microfluidic transported enzyme 

to the heat source (steel plate forming the bottom of the channel) and considerably faster heat 

transfer to the solution (0.6 s instead of 161 s according to the simulations). The microfluidic 

system also provides an environment with a more uniform distribution of temperature and time 

controlled exposure to the desired inactivation temperature, which might contribute to less 

variability in the measured data and a higher denaturation (resulting in a high degree of 

aggregation in the case of catalase).  Also, the presence of air/vapor bubbles in the fluid, 

especially at the higher temperatures (338 K (65 ⁰C) and 353 K (80 ⁰C)) can contribute to higher 

denaturation of the enzymes in the microfluidic channel. Proteins are sensitive to the 

interaction with air/liquid interfaces, which are known as a major cause of enzyme 

denaturation, due to exposure of hydrophobic regions and increasing protein-protein 

interactions, as well as adsorption of the proteins to the interface, which in turn may lead to 

enzyme aggregation [408], [409]. Furthermore, the platform has a layer of double sided adhesive 

tape between the steel bottom plate and the channel polycarbonate plate, thus forming part of 

the walls of the channel. During fluid flow the enzyme may have been exposed to residues of 

adhesive from this tape, which could further contribute to denaturation. However, since the two 

enzymes performed differently when pumped inside the system (aggregation in the case of 

catalase but not glucose oxidase, for example), this is probably not a significant factor. 

Deactivation at high temperatures occurs through a mix of conformational changes and 

covalent process [410]. If no covalent bonds are formed or are formed to a small extent, only 

denaturation occurs and full functional activity could be regained using one of the strategies 

previously mentioned in the introduction. In this work, no special enzyme treatment was 

applied to induce reactivation, except placing the enzyme at room temperature after the 

inactivation, since the goal was to achieve enzyme inactivation. However, the capability to 
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control both inactivation and reactivation, especially in a continuous format is very interesting 

in terms of potential applications, and could be tested using the presented platform. 

The described system may not allow heating and cooling rates as fast as some other 

technologies presented in the introduction (e.g. MW heating), but offers a simpler setup and 

easier integration with other modules. The used Peltier elements can be easily substituted if a 

wider range of temperatures is required, and together with the integrated PT 1000 sensor, 

provide a good control of the applied temperature. Integration is facilitated by using standard 

inlet finger tight connectors, but also by designing the meander channel with dimensions 

compatible with most commercial microfluidic systems. Furthermore, the inclusion of two 

channels with different lengths increases the flowrate range and thus the number of different 

inactivation times possible for the platform, further increasing its flexibility towards different 

reactor or sensing modules.  

5.3.4 Other considerations 

The specific application for which the thermal inactivation platform presented here was 

developed, was to achieve inactivation of the reaction mixture coming from the silicon meander 

channel so as to perform online quantification of glucose with the glucose electrochemical 

sensors integrated in the platform presented in Chapter 4. Due to time constraints, however, 

the final integration of all these platforms was not possible. Nonetheless, it should be 

highlighted that inactivation of both enzymes (GOx and catalase) could be achieved within the 

flowrates used in the silicon meander channel (between 0.125 and 2 µL s-1). Furthermore, the 

solutions should cool rapidly to a temperature close to room temperature, especially if dilution 

of the inlet solution would be applied, thus not significantly affecting the integrated sensors. 

However, tests with the integrated platforms would need to be performed in order to validate 

this hypothesis. In the case when cooling had not proceed at sufficient speed, due to the reaction 

being already stopped, a longer outlet tubing, connecting the thermal inactivation and the 

quantification platforms, could be used to guarantee the reaction mixtures are always at similar 

temperatures during quantification. 

5.4 Conclusion 

The presented thermal inactivation platform is capable of achieving fast inactivation of 

mesophilic enzymes, such as glucose oxidase and catalase. Inactivation is achieved in this 

system at temperatures around the mid-point of inactivation at relatively long exposure time 

(120 s at 338 K (65 ⁰C)) or at a higher temperature in a duration compatible with continuous 

inactivation of enzymes coming from a reactor module (20 s at 353 K (80 ⁰C)). Furthermore, the 

system causes partial deactivation of both enzymes towards a possibility for storage of the 

enzymes without the reaction proceeding significantly. The developed continuous thermal 

inactivation platform has an improved performance relative to the standard inactivation 

method at laboratory scale, a benchtop ThermoMixer, since inactivation is achieved faster for 

both enzymes and with a lower residual activity. The characterization of temperature 

distribution and heating efficiency of both inactivation methods by using computational fluid 
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dynamics, also showed a faster heating rate and uniform temperature distribution for the 

developed microfluidic system. The simulations also demonstrate that the introduced fluid is 

heated to the inactivation temperature within 3 mm of the channel length for all the 

experimental flow velocities. The assumed inactivation times can thus be considered as close to 

the real inactivation exposure times that the enzymes experienced.  

Control of the reactivation process could be a further advantage with this system. If a 

solution with denaturant agents is added to the enzyme upon collection at the outlet or by 

coupling with another microchannel, formation of covalent bonds and thus irreversible enzyme 

denaturation, can be avoided. The continuous enzymatic thermal inactivation system could also 

be used to perform reactions at well-controlled temperatures, allowing introduction or removal 

of reaction components through the secondary channel. The platform could be further applied 

for the characterization of enzyme activity at different temperatures, by coupling the system 

with an online sensor for a reaction product, or even a camera if a colorimetric assay is used, 

since the system is transparent. By inverting the position of the Peltier elements, in order to 

achieve temperatures below ambient temperature or even temperatures below 273 K (0 ⁰C), 

characterization of psychrophilic enzymes could be performed. On the other hand, by changing 

the Peltier elements to other thermoelectric modules with a wider temperature difference 

between the cool and the hot side, characterization of thermophilic enzymes could also be 

attained, thereby greatly extending the applicability of this module.  
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Chapter 6 
Project outcome and future perspectives 

As described in this thesis, there is an increasing need for fast, comprehensive and high-

throughput platforms for the screening and characterization of biocatalysts. Despite the 

constantly developed creative and multiplexed microfluidic approaches, the achieved high-

throughput capabilities still fall short of the required. Microfluidics can still not compete with 

the high-throughput requirements provided by microtiter plates and standard analytical 

equipment, such as HPLC and GC. Nevertheless, microfluidic systems can significantly 

accelerate the screening phase of process development by simplifying intermediary screening 

and characterization steps. 

 

This simplification can be achieved through the fabrication of generic microfluidic 

modules, which can integrate different sensing methods or accommodate a wide range of 

concentrations of the target analyte. Another approach is the use of a general sensor, e.g. oxygen 

or pH, to quickly compare different catalysts before proceeding to a more detailed 

characterization or to be used as a complement to the characterization achieved with benchtop 

analytical equipment. Furthermore, the automation and parallelization of such systems would 

allow an operator-free performance of these simplified approaches. Both strategies were 

investigated in more detail in Chapter 4 and Chapter 3, respectively. 

Acceleration of screening could be further increased through the combination of such 

simple automated quantification and monitoring chips with sorting modules, such as the ones 

described in Chapter 1. A higher amount of data could thus be gathered from the parallelized 

online monitoring, but also a collection of optimal biocatalysts would simultaneously be 

obtained. Interconnectivity between the different systems could even result in an iterative 

selection of the optimal biocatalyst or operational conditions, by (re)submitting the sorted 

optimal catalysts to a narrower set of process parameters. An example of such strategy has been 

applied in droplet-based directed evolution, as mentioned in the introduction of Chapter 3. 

Computational fluid dynamic models, similar to the one presented in Chapter 2, as well as 

mechanistic models could be linked with sensor data, thus providing in-depth understanding of 

reaction kinetics and the biocatalysts’ window of operation. 

However, such endeavor can only be achieved if standardized microfluidic designs and 

connections are offered and applied. An effort to share designs of microfluidic structures should 

be made, similar to current attempts at sharing and/or facilitating access to developed 

mathematical and mechanistic models. For the latter, this has resulted in effortless 

incorporation and application of different models, even when developed in different 

computational languages. However, unlike mathematical models, the outcome and combination 

of microfluidic designs can vary greatly with the fabrication technique, especially its resolution, 

and/or materials available. Hence, careful selection of the fabrication technology and assembly 

method has to be made in order to ease device validation and modular application. 
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In this thesis, a small contribution to such vision is presented in the form of three 

microfluidic systems with different functions: online reaction monitoring with oxygen sensors 

in a microreactor, sensor integration with in situ sample dilution in a quantification module, 

and thermal enzyme inactivation. 

 

The microreactor module was applied to two different types of biocatalysts, an enzyme in 

solution and a whole cell catalyst, demonstrating the flexibility of this microdevice in terms of 

sample material. The chosen case-studies also allowed demonstrating this microreactor’s 

applicability to different types of study performed during a bioprocess screening phase: 

characterization of reaction kinetics and operation window (Chapter 2) and comparison of a 

desired property, such as oxygen consumption rate (Chapter 3).  

The former study (Chapter 2) was performed with the help of a computational fluid 

dynamic model, demonstrating the usefulness and capabilities provided by the association of 

data acquisition with a reaction model, in terms of attaining increased knowledge on the 

reaction. The performance of this model would be significantly improved by combination with a 

mechanistic model, where different reaction mechanisms, kinetic constants, side or competitive 

reactions, deactivation models and/or thermodynamic parameters could be defined, enabling an 

iterative and automated optimization of the reaction parameters. Such a model could thus 

contribute with added insight into an unknown reaction mechanism besides the empirical 

knowledge gained from the experimental data. The use of mathematical and fluidic models can 

considerably improve the accuracy of a mechanistic model as well as enable the prediction of 

properties of a certain biocatalyst or of its behavior in the presence of a given substrate, based 

on previous empirical knowledge obtained at a different set of operational conditions and/or 

with similar biocatalysts.  

In the second case-study (Chapter 3), different biocatalysts were screened in terms of 

oxidation rate (the target property) for the same reference substrate. It would be also possible 

to apply such strategy in the microreactor system, but to the characterization of a biocatalyst 

with different and more industrially relevant substrates. This would require the use of a multi-

entry valve system (to introduce a metered volume of the different tested substrates) coupled 

with a mixing system in case the reaction dynamics are slower than the ones measured in the 

case presented in Chapter 3. Solvent resistant materials would have to be used in the valve 

system, tubing and mixer used, but the presented designs for the commercial polymeric valve 

(Chapter 2) and for the mixing/dilution unit (Chapter 4) could still be applied. 

 

The platform for sensor integration with in situ sample dilution (Chapter 4) has been 

successfully used for a long period of time (up to 12 h) with two different screen-printed 

electrochemical glucose sensors, capable of quantifying diluted glucose solutions. The chosen 

materials (PMMA and double sided adhesive tape) and fabrication method (laser ablation), 

enabled a fast prototyping cycle from design to use. New chamber sizes and geometries can thus 

be easily implemented in the microchip design, if differently sized or shaped sensors are 

required. However, the improvement of the sensing chamber design towards a slip-in/slip-off 

type of sensor port would result in a more practical device.  
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Validation of the mixing/dilution unit was performed by comparing data from the 

integrated sensors and HPLC measurements at the output. The influence of flow velocity 

inherent to this type of sensors, due to the laminar flow conditions and membrane over the 

sensing element, was taken into account considering the previously performed in-flow 

calibration curves. Quantification by these sensors can be refined by tailoring the chambers’ 

dimensions or even separating the dilution and the quantification units. The platform’s 

performance may be further improved if electrochemical sensors with direct analyte detection 

are used. In this case, by operating at higher sample dilutions (and thus high flowrates), a 

minimum diffusion layer, as well as minimal influence of flow velocity, may be achieved. The 

same can be accomplished by decreasing the height of the chambers resulting in a higher 

velocity on the sensor surface for the same applied flowrates. 

The platform presented in Chapter 4 may also serve as a microreactor module with a two-

point monitoring. The two integrated sensors could, in such case, be used to quantify the 

substrate at the inlet and at the outlet of the microreactor, providing direct product 

quantification as long as reaction stoichiometry and compound interactions are known. 

Alternatively, the first sensor could present exact substrate quantification at the inlet, while 

the second sensor would quantify the product or a side-product at the outlet. The latter strategy 

would be extremely useful for cascade systems requiring spatial separation of the reactions 

involved, and in situations where the substrate of the reaction occurring in the module is the 

product of a previous reaction. Moreover, depending on the integrated sensor and on its 

functionalization, more than one reaction compound could thus be monitored. 

Another possible application for the developed quantification/dilution platform is as an in-

flow labeling unit, by enabling a good contact between the two introduced streams, as well as 

by tailoring the provided amount of each stream. Further tests, possibly aided by the already 

developed CFD model for this mixing/dilution unit, should be performed to assess the efficiency 

of the platform as a labeling unit. 

 

The thermal inactivation platform (Chapter 5) allowed to take full advantage of the fast 

heat transfer occurring at microscale, resulting in the inactivation of two different enzymes in 

flow within 20 s at a relatively high temperature (80 ⁰C). Denaturation of part of the enzymes 

in solution was also achieved within this very short interval, suggesting that control of the type 

of inactivation, may also be possible with this system by better studying the relationship 

between exposure time and inactivation temperature, and denaturation, as well as the 

percentage of irreversibly inactivated enzymes in the process. Furthermore, if upon collection 

at the outlet or by coupling with another microchannel, a solution with denaturing agents is 

added to the enzyme, formation of the covalent bonds resulting in enzyme denaturation may be 

avoided, and a better control of inactivation reversibility be attained.  

This system may also be used to perform reactions at well-controlled temperatures, 

allowing introduction or removal of reaction components through the secondary channel. The 

platform could then be further applied to the characterization of enzyme activity at different 

temperatures, by coupling the system with an online sensor for a reaction product, such as the 

quantification platform described in Chapter 4. 

Activity studies of extremophiles at different temperatures may also be possible in the 

developed platform simply by changing the integrated Peltier elements. The electronic circuit 
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established can hence be changed in order to allow a fast switch between different 

thermoelectric modules to increase the applicability of the platform. 

  

Both platforms presented in Chapters 4 and 5 are simple to fabricate, using low cost and 

accessible materials, have a design and concept compatible with mass production and are re-

usable, which further lowers their overall cost. Their characteristics, together with the 

biocompatibility of the materials selected, wide application channel design and standardized 

connections make both platforms good additions to any modular microfluidic-based screening 

platform. 

 

Finally, even though it was not possible to accomplish it during these past three years, it 

would be exciting to connect the different modules discussed above and monitor the glucose 

oxidation with the GOx and catalase cascade reaction system, as initially intended. The 

application of the developed platforms to such a well-studied reaction system, would allow to 

validate their modular capabilities and ease of operation, as well as to identify possible 

operational issues. The validation of the different developed modules operating together would 

then enable its application to relevant case studies towards eventually establishing it as 

standard biocatalyst screening tool for laboratory facilities. 
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Summary of all the simulations performed in Chapter 2 

Table 1 – Summary of simulation performed assuming an enzyme diffusion coefficient of 6.7x10-10 m2s-1. 

Name 
[glucose 

in] (mM) 

kcat 

(s-1) 
kcatalase (s-1) 

Doxygen 

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

5xGOx+9

4 U/mL 

50 

250 0.002586 0.00000028 0.002199 0.000530 

0.002417212 

0.00515362 0.224474 

0.6895 

0.31147 0.294541 24.7623 

24.252 

24.67530 

250 0.002586 0.0000028 0.002199 0.000530 0.0262652 0.224474 0.726703 0.636911 24.7623 24.2601 

250 0.002586 2.8E-05 0.002199 0.000530 0.0444744 0.224474 1.09712 0.947414 24.7623 23.8897 

5xGOx+8

30 U/mL 

250 0.002586 0.00000028 0.00232907 0.000654703 

0.002182663 

0.00515363 0.225212 

0.777 

0.311647 0.294368 24.7616 

26.6155 

24.67510 

250 0.002586 0.0000028 0.00232907 0.000654703 0.0262653 0.225212 0.726765 0.636838 24.7616 24.26 

250 0.002586 2.8E-05 0.00232907 0.000654703 0.0445108 0.225212 1.09876 0.948593 24.7616 23.888 

500 0.002586 0.00000028 8.15E-05 6.86E-05   0.22527    24.7615   

                

10xGOx 

5 

1000 0 0.00000028 1.70E-05 1.69E-05 

0.000242486 

0.00195692 0.225236 

0.241 

0.321407 0.299731 2.27336 

4.245 

2.17719 

250 0 0.00000028 0.0147181 0.00190571 0.00419216 0.225747 0.317202 0.295881 2.27285 2.1814 

1000 0 0.0000028 1.70E-05 1.69E-05 0.0158762 0.225236 0.87839 0.750939 2.27336 1.62021 

250 0 0.0000028 0.0147181 0.00190571 0.0318055 0.225747 0.659268 0.584901 2.27285 1.83933 

5xGOx 

1000 0 0.00000028 3.68E-05 3.40E-05 

0.000307 

0.00293761 0.225467 

0.623 

0.319074 0.298218 2.2731 

4.202 

2.17949 

250 0 0.00000028 0.102187 0.0755216 0.00620117 0.153634 0.311331 0.290175 2.34505 2.18735 

1000 0 0.0000028 3.68E-05 3.40E-05 0.0218548 0.225467 0.776762 0.67478 2.2731 1.7218 

250 0 0.0000028 0.102187 0.0755216 0.0484365 0.153634 0.514591 0.469225 2.34505 1.98409 

1xGOx 

1000 0 0.00000028 0.125009 0.102487 

0.144863 

0.00719884 0.125878 

0.236 

0.305889 0.285745 2.37283 

6.111 

2.19282 

250 0 0.00000028 0.198304 0.19209 0.115585 0.0330976 0.136845 0.127197 2.46560 2.36185 

1000 0 0.0000028 0.125009 0.102487 0.0571119 0.125878 0.455071 0.419137 2.37283 2.04364 

250 0 0.0000028 0.198304 0.19209 0.149533 0.0330976 0.13842 0.12854 2.46560 2.36028 

                

5xGOx+9

4 

U/mL+0.2

5 mM 

H2O2 

50 

250 0.002586 0.00000028 0.017552 0.00712544 

0.044547623 

 0.206827 

1.1885 

  16.3729 

16.83 

 

250 0.02586 0.00000028 0.0177466 0.0073167  0.207395   16.3723  

250 0.2586 0.00000028 0.0196618 0.00920078  0.213091   16.3665  

250 2.586 0.00000028 0.0359201 0.02513  0.257232   16.3225  

250 2.586 0.00000028 0.0539291 0.0411364 0.00616504 0.235065 0.386954 0.2792 16.34470 16.19280 

250 2.586 0.0000028 0.0539291 0.0411364 0.0325052 0.235065 0.72934 0.572979 16.34470 15.8504 

250 2.586 2.8E-05 0.0539291 0.0411364 0.0539711 0.235065 0.964063 0.774477 16.34470 15.6157 

250 25.86 0.00000028 0.0816688 0.0630347  0.352193   16.2276  

250 25.86 0.00000028 0.109029 0.091745  0.297937   16.28180  

250 0.002586 0.00000028 0.0305797 0.01624 0.00616265 0.198319 0.298135 0.364499 16.38140 16.28160 
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 
kcatalase (s-1) 

Doxygen  

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

5xGOx+83

0 

U/mL+0.25 

mM H2O2 

50 

250 0.002586 0.00000028 0.0177466 0.00731667 

0.097672507 

 0.207426 

1.259 

  16.3723 

16.896 

 

250 0.02586 0.00000028 0.0196619 0.00920035  0.213151   16.3665  

250 0.2586 0.00000028 0.03592 0.0251271  0.257197   16.3225  

250 2.586 0.00000028 0.0816687 0.0630346  0.352193   16.2276  

250 2.586 0.00000028 0.0720164 0.05344 0.00616887 0.370598 0.542897 0.123515 16.20920 16.03690 

250 2.586 0.0000028 0.0720164 0.05344 0.0325512  0.870866 0.430325 16.20920 15.7089 

250 2.586 2.8E-05 0.0720164 0.05344 0.0540937  1.10544 0.630947 16.20920 15.4744 

250 25.86 0.00000028 0.0913324 0.0678447  0.376219   16.2036  

250 25.86 0.00000028 0.120446 0.0992354  0.313119   16.26670  

250 0.002586 0.00000028 0.0143212 0.0052831 0.00616263 0.209289 0.298431 0.363611 16.37050 16.2814 

5xGOx+94 

U/mL+830 

U/mL 

250 0.002586 0.00000028 0.0176895 0.00726546 

0.029340463 

 0.207075 

0.6445 

  16.3726 

16.1065 

 

250 0.02586 0.00000028 0.019103 0.00869773  0.209803   16.3699  

250 0.2586 0.00000028 0.0314163 0.0210636 0.0052114 0.231868 0.3414 0.243474 16.3478 16.23830 

250 0.2586 0.0000028 0.0314163 0.0210636 0.0273886 0.231868 0.741156 0.574505 16.3478 15.8385 

250 0.2586 2.8E-05 0.0314163 0.0210636 0.0467426 0.231868 1.06195 0.845477 16.3478 15.5177 

5xGOx+83

0 

U/mL+830 

U/mL 

250 0.002586 0.00000028 0.0178313 0.00740237  0.207542   16.3722  

250 0.02586 0.00000028 0.020451 0.00999427  0.21443   16.3652  

250 0.2586 0.00000028 0.0391728 0.0279015 0.00521236 0.260736 0.386154 0.19948 16.3189 16.19350 

250 0.2586 0.0000028 0.0391728 0.0279015 0.0273981 0.260736 0.77908 0.535414 16.3189 15.8006 

250 0.2586 2.8E-05 0.0391728 0.0279015 0.0468004 0.260736 1.09988 0.806264 16.3189 15.4798 

5xGOx+94 

U/mL+H2

O 

  0.00000028 0.0302236 0.0191952 

0.00203 

 0.248468 

0.5575 

  16.3313 

14.9535 

 

250 0.002586 0.00000028 0.0175462 0.00711969 0.0061626 0.20683 0.297559 0.28131 16.3729 16.28220 

250 0.002586 0.0000028 0.0175462 0.00711969 0.0324827 0.20683 0.651915 0.577096 16.3729 15.9278 

250 0.002586 2.8E-05 0.0175462 0.00711969 0.0539384 0.20683 0.894593 0.784894 16.3729 15.6851 

5xGOx+83

0 

U/mL+H2

O 

  0.00000028 0.0544072 0.0394311 

0.01114 

 0.32448 

0.779 

  16.25530 

16.586 

 

250 0.002586 0.00000028 0.0307588 0.0164246 0.00616267 0.19868 0.29883 0.2805 16.38110 16.2810 

250 0.002586 0.0000028 0.0307588 0.0164246 0.032483 0.19868 0.652285 0.575679 16.38110 15.9275 

250 0.002586 2.8E-05 0.0307588 0.0164246 0.0539963 0.19868 0.89525 0.783658 16.38110 15.6845 
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 

kcatalase  

(s-1) 

Doxygen  

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Sensor 

5 (sim) 

Outlet 

(sim) 

Sensor 

5 (exp) 

Outlet 

(tube) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

1xGOx+83

0U/mL 

50 

250 0.002586 0.00000028 0.123499 0.103842 

0.018839168 

 0.124091 

0.8075 

  24.8628 

23.9285 

 

500 0.002586 0.00000028 0.0550014 0.0343572  0.194235   24.7926  

1000 0.002586 0.00000028 0.0068 0.00226466 0.0058587 0.22412 0.311031 0.292265 24.7627 24.67580 

1000 0.002586 0.0000028 0.0068 0.00226466 0.0299016  0.691043 0.607828 24.7627 24.2958 

1000 0.002586 2.8E-05 0.0068 0.00226466 0.0497915  0.993768 0.863798 24.7627 23.9931 

0.5xGOx+8

30U/mL 

250 0.002586 0.00000028 0.170349 0.158484 

0.034514333 

 0.0678416 

0.594 

  24.9191 

21.2758918

9 

 

500 0.002586 0.00000028 0.123513 0.10386  0.124076   24.8628  

1000 0.002586 0.00000028 0.0550182 0.0343718 0.00914674 0.194226 0.304638 0.28605 24.7927 24.68230 

1000 0.002586 0.0000028 0.0550182 0.0343718 0.0455332  0.567002 0.509069 24.7927 24.4199 

1000 0.002586 2.8E-05 0.0550182 0.0343718 0.0700276  0.708898 0.632692 24.7927 24.278 

2000 0.002586 0.00000028 0.00680491 0.00226666  0.22413   24.7627  

                

1xGOx+83

0U/mL 

(3.083 s) 

10 

1000 0.002586 0.00000028 0.166405 0.154306 0.151596039 0.00441158 0.0741354 0.542094017 0.319164 0.915701 4.80295 3.99182906 4.55792 

1xGOx+83

0U/mL 

(4.625 s) 

250 0.002586 0.00000028 0.202167 0.197252 

0.123739242 

 0.0283068 

0.5055 

  4.9189 

4.125 

 

500 0.002586 0.00000028 0.180808 0.171247  0.0557999   4.89139  

1000 0.002586 0.00000028 0.139851 0.122078 0.00673907 0.107655 0.276018 0.25612 4.8395 4.67114 

1000 0.002586 0.0000028   0.0423075  0.393374 0.354443 4.8395 4.55378 

1000 0.002586 2.8E-05   0.0712063  0.430639 0.387505 4.8395 4.51652 

1000 0.258 mM 0.00000028 0.139851 0.122078 0.116221 0.107655 0.461336 0.415415 4.8395 4.485820 

1xGOx+83

0U/mL 

(6.17 s) 

1000 0.002586 0.00000028 0.113286 0.0902762 0.065687257 0.00439839 0.139854 0.554196581 0.320226 0.291006 4.840310 
3.42401709

4 
4.65994 

1xGOx+83

0U/mL 

(9.25 s) 

250 0.002586 0.00000028 0.17969 0.169183 

0.110886788 

 0.0568452 

0.689 

  4.94054 

4.626 

 

500 0.002586 0.00000028 0.137673 0.118163  0.109608   4.88779  

1000 0.002586 0.00000028 0.0644809 0.036992 0.00640897 0.192573 0.312374 0.291037 4.80481 4.68501 

1000 0.002586 0.0000028   0.0409734 0.192573 0.583367 0.523228 4.80481 4.41402 

1000 0.002586 2.8E-05 0.0644809 0.036992 0.0676724 0.192573 0.687105 0.617952 4.80481 4.31028 

1000 0.02586 0.00000028 0.0644809 0.036992 0.00640844 0.192573 0.313999 0.289341 4.80481 4.68338 

1000 0.2586 0.00000028 0.0644809 0.036992 0.00641387 0.192573 0.331242 0.27178 4.80481 4.66614 

1000 2.586 0.00000028 0.0644809 0.036992 0.00643514 0.192573 0.431203 0.16611 4.80481 4.56618 

1000 25.86 0.00000028 0.0644809 0.036992  0.192573   4.80481  
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 

kcatalase  

(s-1) 

Doxygen  

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Sensor 

5 (sim) 

Outlet 

(sim) 

Sensor 

5 (exp) 

Outlet 

(tube) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

1xGOx+83

0U/mL 

(18.5 s) 

10 

250 0.002586 0.00000028 0.135475 0.114933 

0.026724109 

 0.111688 

0.7965 

  4.88893 

4.50659459

5 

 

500 0.002586 0.00000028 0.060737 0.032526  0.195268   4.80539  

1000 0.002586 0.00000028 0.00195548 0.000322005 0.00769506 0.225648 0.3742 0.351152 4.77438 4.62583 

1000 0.002586 0.0000028 0.00195548 0.000322005 0.0440309 0.225648 0.876404 0.80383 4.77438 4.12362 

1000 0.002586 2.8E-05 0.00195548 0.000322005 0.0698596 0.225648 1.07163 0.989242 4.77438 3.9284 

200 1000 0.002586 0.0000028 0.000191937 0.000170382 0.001880697 0.0300138 0.225979 1.055 1.09354 0.9802 99.7747 97.42 98.9071 

1xGOx+83

0U/mL (37 

s) 

10 

250 0.002586 0.00000028 0.0594424 0.0307167 

0.000508363 

 0.196589 

0.759 

  4.80357 

3.86110810

8 

 

500 0.002586 0.00000028 0.00173098 0.000435421  0.227052   4.77289  

1000 0.002586 0.00000028 0.000168555 0.000167702 0.00935793 0.227888 0.49605 0.466228 4.77202 4.503860 

1000 0.002586 0.0000028 0.000168555 0.000167702 0.0484676 0.227888 1.40098 1.32291 4.77202 3.59893 

1000 0.002586 2.8E-05 0.000168555 0.000167702 0.0740795 0.227888 1.73353 1.65069 4.77202 3.26638 

1000 0.002586 0.258mM 0.000168555 0.000167702 0.124152 0.227888 2.001460 1.920720 4.77202 2.998440 

0.5xGOx+8

30U/mL 

(3.083 s) 

1000 0.002586 0.00000028 0.194691 0.188432 0.188467169 0.00924474 0.037854 0.542094017 0.302663 0.276023 4.8391500 
3.31761538

5 
4.57434 

0.5xGOx+8

30U/mL 

(4.625 s) 

250 0.002586 0.00000028 0.213033 0.21054 

0.098479688 

 0.0142486 

0.39027027 

  4.93297 

4.34791891

9 

 

500 0.002586 0.00000028 0.202167 0.197252  0.0283068   4.9189  

1000 0.002586 0.00000028 0.180814 0.171255 0.0500766 0.0557913 0.217697 0.199536 4.8914 4.72949 

1000 0.002586 0.0000028 0.180814 0.171255 0.0995402  0.236248 0.215034 4.8914 4.71094 

1000 0.002586 2.8E-05 0.180814 0.171255 0.121197  0.241652 0.219645 4.8914 4.70554 

1000 0.002586 0.258mM 0.180814 0.171255 0.171844  0.251127 0.227841 4.8914 4.696060 

2000 0.002586 0.00000028 0.139864 0.122093  0.107639   4.83952  

0.5xGOx+8

30U/mL 

(6.17 s) 

1000 0.002586 0.00000028 0.166433 0.153406 0.142687313 0.00785836 0.0740057 0.619752137 0.305976 0.279842 4.906260 
3.26214529

9 
4.67429 

0.5xGOx+8

30U/mL 

(9.25 s) 

250 0.002586 0.00000028 0.201595 0.196195 

0.122764202 

 0.0288472 

0.501702703 

  4.96854 

4.26318918

9 

 

500 0.002586 0.00000028 0.17969 0.169183  0.0568493   4.94054  

1000 0.002586 0.00000028 0.137687 0.118182 0.0115505 0.109613 0.294546 0.275839 4.88778 4.70285 

1000 0.002586 0.0000028 0.137687 0.118182 0.0692117  0.407869 0.37578 4.88778 4.58952 

1000 0.002586 2.8E-05 0.137687 0.118182 0.0986961  0.431654 0.397702 4.88778 4.56574 

2000 0.002586 0.00000028 0.0645017 0.0370114   0.19255    4.80483   
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 

kcatalase  

(s-1) 

Doxygen  

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Sensor 

5 (sim) 

Outlet 

(sim) 

Sensor 

5 (exp) 

Outlet 

(tube) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

0.5xGOx+8

30U/mL 

(18.5 s) 

10 

250 0.002586 0.00000028 0.178541 0.167447 

0.04522381 

 0.0579554 

0.642918919 

  4.94248 

4.50659459

5 

 

500 0.002586 0.00000028 0.135475 0.114932  0.111689   4.88892  

1000 0.002586 0.00000028 0.0607579 0.0325461 0.0118503 0.195248 0.361745 0.340965 4.80541 4.638910 

1000 0.002586 0.0000028 0.0607579 0.0325461 0.0674234  0.663199 0.620755 4.80541 4.33746 

1000 0.002586 2.8E-05 0.0607579 0.0325461 0.0966097  0.734479 0.690435 4.80541 4.26618 

200 1000 0.002586 0.0000028 0.00302871 0.00106401 0.003765649 0.0440333 0.225085 0.849351351 0.905624 0.824982 99.7757 
90.5478378

4 
99.0952 

10 

2000 0.002586 0.00000028 0.00195815 0.000322326 0.04522381  0.225656 0.642918919   4.7744 
4.50659459

5 
 

0.5xGOx+8

30U/mL 

(37 s) 

250 0.002586 0.00000028 0.134761 0.113687 

0.001961409 

 0.112622 

0.73227027 

  4.88752 

3.86110810

8 

 

500 0.002586 0.00000028 0.0594427 0.0307087  0.19677   4.80332  

1000 0.002586 0.00000028 0.00173208 0.000434823 0.0138348 0.227053 0.476935 0.452155 4.77291 4.523030 

1000 0.002586 0.0000028 0.00173208 0.000434823 0.0716926  1.05793 1.01258 4.77291 3.94203 

1000 0.002586 2.8E-05 0.00173208 0.000434823 0.100296  1.19305 1.14744 4.77291 3.80691 

1000 0.002586 0.258 mM 0.00173208 0.000434823 0.164194  1.321810 1.275770 4.77291 3.678150 
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Table 2 – Summary of simulation performed assuming an enzyme diffusion coefficient 4.95x10-11 m2s-1. 

Name 
[glucose 

in] (mM) 

kcat 

(s-1) 
kcatalase (s-1) 

Doxygen 

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

5xGOx+94 

U/mL 

50 

250 0.002586 0.0000028 0.004500 0.001562 0.00241721

2 

 0.224321 0.6895 

 

  24.7626 
24.252 

 

300 0.002586 0.0000028 0.002182 0.000647 0.0236714 0.224793 0.756334 0.658998 24.7621 24.2306 

5xGOx+83

0 U/mL 

250 0.002586 0.0000028 0.00463227 0.00168894 
0.00218266

3 

 0.225131 
0.777 

 

  24.7618 

26.6155 

 

300 0.002586 0.0000028 0.00228897 
0.00075068

2 
0.0236463 0.225667 0.757894 0.658319 24.7612 24.229 

                

10xGOx 

5 

1000 

0 

0.0000028 1.71E-05 1.69E-05 

0.00024248

6 

0.0158757 0.2256 

0.241 

0.878573 0.75078 2.27303 

2.37098 

1.62006 

800 0.0000028 2.28E-05 2.12E-05 0.0174969 0.225696 0.847286 0.727346 2.27294 1.65135 

300 0.0000028 7.87E-03 1.46E-03 0.0286608 0.226627 0.692374 0.609567 2.27204 1.80629 

250 0.0000028 0.0213497 0.00578261  0.223767   2.27491  

5xGOx 

1000 0.0000028 1.93E-04 4.18E-05 

0.000307 

0.0218578 0.226147 

0.623 

0.777396 0.674732 2.2725 

2.62881 

1.72125 

800 0.0000028 0.0010407 0.00013662 0.0244739 0.22657 0.740472 0.646673 2.27208 1.75818 

300 0.0000028 0.0845417 0.0561467 0.043213 0.175127 0.55879 0.503513 2.32356 1.9399 

250 0.0000028 0.105514 0.0797485 0.0484454 0.150798 0.514389 0.467745 2.34790 1.984310 

1xGOx 

1000 0.0000028 0.127604 0.105779 

0.144863 

0.0572454 0.123737 

0.236 

0.448572 0.417418 2.37497 

2.77336 

2.04427 

800 0.0000028 0.145954 0.127883 0.0720098 0.100671 0.389239 0.359482 2.39804 2.10947 

300 0.0000028 0.193949 0.186726 0.141238 0.0390863 0.164075 0.151945 2.45963 2.33464 

250 0.0000028 0.198897 0.192846  0.0326726   2.46604  

                

5xGOx+94 

U/mL+0.25 

mM H2O2 

50 

 

300 0.002586 0.0000028 0.0281441 0.0134121 

0.044547623 

0.0291318 0.200284 

1.1885 

0.682862 0.683173 16.3795 

16.83 

15.8969 

300 0.02586 0.0000028 0.0283588 0.0136368  0.20075   16.379  

300 0.2586 0.0000028 0.0304678 0.0158485  0.205267   16.3745  

250 2.586 0.0000028 0.0612789 0.046877 0.0324984 0.22267 0.709173 0.593863 16.35710 15.87060 

300 2.586 0.0000028 0.0481456 0.0345107 0.0291464 0.238977 0.747022 0.615632 16.34080 15.8328 

300 25.86 0.0000028 0.100148 0.0823456 0,0291743 0.309729 0,867044 0,484823 16.27000 15,7127 

5xGOx+83

0 /mL+0.25 

mM H2O2 

300 0.002586 0.0000028 0.0127715 0.00389953 
 

 

0.097672507 

 

 

0.0292902 0.209951 

1.259 

0.682934 0.674688 15.7812 

16.896 

15.3082 

300 0.02586 0.0000028 0.014215 0.0052563  0.216055   16.3637  

300 0.2586 0.0000028 0.0265273 0.0167552  0.263577   16.3162  

250 2.586 0.0000028 0.0806781 0.0619495  0.347709   16.23210  

300 2.586 0.0000028 0.0652629 0.0467368 0.0292062 0.376541 0.902097 0.458561 16.20320 15.6776 

300 25.86 0.0000028 0.0751761 0.0501244 0,0292135 0.408895 0,939785 0,418665 16.1709 15,64 
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 
kcatalase (s-1) 

Doxygen 

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

5xGOx+94 

U/mL+830 

U/mL 

50 

300 0.002586 0.0000028 0.0161246 0.00564555 

0.02934046 

 0.208044 

0.6445 

  16.3717 

16.1065 

 

300 0.02586 0.0000028 0.0178383 0.0072091  0.21153   16.2686  

250 0.2586 0.0000028 0.0403365 0.026896 0.0273881 0.226056 0.739576 0.574807 16.3537 15.84020 

300 0.2586 0.0000028 0.0319829 0.019979 0.0246496 0.234847 0.772379 0.596387 16.3449 15.8074 

300 2.586 0.0000028 0.0667084 0.0467522  0.297733   16.282  

300 25.86 0.0000028 0.0603778 0.0401005  0.343885   16.2359  

5xGOx+83

0 

U/mL+830 

U/mL 

300 0.002586 0.0000028 0.0162418 0.00575519 

- 

 0.208534 

- 

  16.3712 

- 

 

300 0.02586 0.0000028 0.0189374 0.0082311  0.215791   16.364  

250 0.2586 0.0000028 0.04722324 0.0332728  0.250999   16.3287  

300 0.2586 0.0000028 0.0374267 0.0248136 0.0246591 0.263936 0.812538 0.555565 16.3158 15.7672 

300 2.586 0.0000028 0.0560496 0.0377804  0.337725   16.242  

300 25.86 0.0000028 0.0553405 0.036642  0.353575   16.2262  

5xGOx+83

00 

U/mL+830 

U/mL 

300 0.002586 0.0000028 0,0174009 0,00685505 

- 

0,0273845 0,213343 

- 

0,708459 0,60744 16,3664 

- 

15,8713 

300 0.2586 0.0000028 0,0502698 0,0347214 0,0274211 0,332305 0,861518 0,449565 16,2474 15,7182 

5xGOx+83

000 

U/mL+830 

U/mL 

300 0.002586 0.0000028 0,026681 0,0155768 0,0273949 0,250115 0,757055 0,55729 16,3296 15,8227 

300 0.2586 0.0000028 0,0545465 0,0363486 0,0274379 0,352947 0,890457 0,417805 16,2268 15,6893 

5xGOx+94 

U/mL+H2

O 

250 0.002586 0.0000028 0.023049 0.00983621 
0.00203 

 

0.032484 0.203674 

0.5575 

0.651221 0.576887 16.3761 

14.9535 

15.92860 

300 0.002586 0.0000028 0.0159439 0.00548206 0.0291317 0.207743 0.682962 0.601424 16.3720 15.8968 

5xGOx+83

0 

U/mL+H2

O 

250 0.002586 0.0000028 0.0389812 0.0220088 

0.01114 

 0.192456 

0.779 

  16.38730 

16.586 

 

300 0.002586 0.0000028 0.0282959 0.0135665 0.0291561 0.200668 0.684142 0.600831 16.37910 15.8956 

                

1xGOx+83

0U/mL 

50 

250 0.002586 0.0000028 0.122971 0.104066 

0.018839168 

 0.124927 

0.8075 

  24.8621 

23.9285 

 

500 0.002586 0.0000028 0.0566694 0.0372226  0.192625   24.7944  

800 0.002586 0.0000028 0.0199434 0.00978666 0.0341833 0.218571 0.654692 0.578412 24.7684 24.3323 

1000 0.002586 0.0000028 0.010126 0.00427456 0.0299261 0.223228 0.692713 0.608249 24.7637 24.2942 

0.5xGOx+8

30U/mL 

250 0.002586 0.0000028 0.16973 0.158153 

0.034514333 

 0.0688226 

0.594 

  24.9181 

21.27589 

 

500 0.002586 0.0000028 0.122985 0.104082  0.124911   24.8621  

800 0.002586 0.0000028 0.0786935 0.0575224 0.0524642 0.172425 0.52298 0.471712 24.8146 24.464 

1000 0.002586 0.0000028 0.0566852 0.0372363 0.0455968 0.192612 0.568232 0.508978 24.7944 24.4188 

                

1xGOx+83

0U/mL 

(4.625 s) 

10 

1000 0.002586 0.0000028 0.135628 0.120323 

0.123739242 

0.0422708 0.112382 

0.5055 

0.397151 0.355216 4.83477 

4.125 

4.55 

800 0.002586 0.0000028 0.152378 0.139633 0.0539954 0.0915403 0.358973 0.322868 4.85561 4.58818 

1000 0.002586 2.8E-05   0.0710629  0.434502 0.0710629  4.51265 

1000 0.002586 0.258mM   0.116018  0.465327 0.416466  4.48183 

1000 0.002586 0.00000028   0.00668666  0.279051 0.256318  4.6681 
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 
kcatalase (s-1) 

Doxygen 

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

1xGOx+83

0U/mL 

(9.25 s) 10 

1000 0.002586 0.0000028 0.0678637 0.0416443 

0.110886788 

0.0410414 0.189395 

0.689 

0.58434 0.522747 4.80802 

4.626 

4.41307 

800 0.002586 0.0000028 0.0939903 0.0683461 0.0474617 0.162318 0.533174 0.481557 4.8351 4.46424 

1000 0.002586 0.00000028   0.00641165  0.313749 0.291094  4.68367 

1000 0.02586 0.00000028   0.00640998  0.314317 0.290503  4.6831 

1000 0.2586 0.00000028   0.00641526  0.31983 0.284815  4.67759 

1000 2.586 0.00000028   0.00642076  0.369469 0.232372  4.62795 

1000 25.86 0.00000028   0.00642071  0.430271 0.170503  4.56714 

1xGOx+83

0U/mL 

(18.5 s) 

1000 0.002586 0.0000028 0.00413121 0.00067439 
0.026724109 

0.0440915 0.225515 
0.7965 

0.877353 0.804566 4.77467 
4.506595 

4.12283 

800 0.002586 0.0000028 0.0145544 0.00328086 0.0503952 0.223363 0.810222 0.748203 4.77696 4.19010 

200 

1000 0.002586 0.0000028 0.000310214 0.000184037 

0.001880697 

0.030027 0.226084 

1.055 

1.09504 0.981439 99.7747 

97.42 

98.9057 

800 0.002586 0.0000028 0.000713418 0.000292282 0.0339027 0.225949 1.03598 0.932958 99.7749 98.9649 

3000 0.002586 0.0000028 5.62E-05 5.61E-05 0.0166885 0.226353 1.34743 1.18718 99.7744 98.6533 

1xGOx+83

0U/mL (37 

s) 

10 

1000 0.002586 0.00000028   

0.000508363 

0.00935974  

0.759 

0.49601 0.467076  

3.861108 

4.504000 

1000 0.002586 0.0000028 0.000169498 0.000167699 0.048538 0.228017 1.4044 1.32623 4.77199 3.59561 

800 0.002586 0.0000028 0.00022917 0.000210349 0.0547717 0.227811 1.29133 1.22478 4.7722 3.70868 

1000 0.002586 2.8E-05   0.0740795  1.73362 1.65079  3.26639 

1000 0.002586 0.258mM   0.124149  2.001350 1.921910  2.998660 

0.5xGOx+8

30U/mL 

(4.625 s) 
10 

1000 0.002586 0.0000028 0.178463 0.170113 

0.098479688 

0.099315 0.0585338 

0.39027027 

0.238789 0.21597 4.88864 

4.347919 

4.70838 

800 0.002586 0.0000028 0.187378 0.180608  0.0471474   4.90003  

1200 0.002586 0.0000028 0.169658 0.15978 0.0830889 0.0697316 0.278539 0.251676 4.87743 4.66862 

1000 0.002586 0.00000028   0.049558  0.219959 0.200271  4.72721 

1000 0.002586 2.8E-05   0.120905  0.244201 0.220587  4.77030 

1000 0.002586 0.258mM   0.17155  0.2537 0.228839  4.69347 

0.5xGOx+8

30U/mL 

(9.25 s) 

1000 0.002586 0.0000028 0.139065 0.120117 

0.122764202 

0.0696285 0.108703 

0.501702703 

0.408266 0.375346 4.88872 

4.263189 

4.58916 

800 0.002586 0.0000028 0.155236 0.139528  0.0884519   4.90897  

1200 0.002586 0.0000028 0.123413 0.101648 0.0588398 0.127917 0.458765 0.419329 4.86951 4.53866 
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Name 
[glucose 

in] (mM) 

kcat 

(s-1) 
kcatalase (s-1) 

Doxygen 

(cm2 s-1) 

[Oxygen] (mM) [Gluconic acid] (mM) 
[H2O2] 

(mM) 
[Glucose] (mM) 

Sensor 5 

(sim) 

Outlet 

(sim) 

Sensor 5 

(exp) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

Outlet 

(tube) 

Outlet 

(sim) 

Outlet 

(exp) 

Outlet 

(tube) 

0.5xGOx+8

30U/mL 

(18.5 s) 

10 

1000 0.002586 0.0000028 0.0651115 0.0365112 

0.04522381 

0.0675538 0.191463 

0.642918919 

0.662413 0.619873 4.80895 

4.506595 

4.338 

800 0.002586 0.0000028 0.0917885 0.06388  0.163925   4.83649  

1200 0.002586 0.0000028 0.0428222 0.0179671 0.0602235 0.20969 0.721808 0.672119 4.79072 4.2786 

200 

1000 0.002586 0.0000028 0.00469412 0.00166786 

0.003765649 

0.0440701 0.224644 

0.849351351 

0.90679 0.825898 99.7763 

90.54784 

99.0942 

800 0.002586 0.0000028 0.0101777 0.00415662  0.222311   99.7787  

1200 0.002586 0.0000028 0.00231592 0.000782312 0.0397884 0.225471 0.957224 0.867905 99.7754 99.0436 

3000 0.002586 0.0000028 0.000121258 0.000112717 0.0241981 0.226217 1.19621 1.0641 99.7746 98.8046 

0.5xGOx+8

30U/mL 

(37 s) 

10 

1000 0.002586 0.00000028   

0.001961409 

0.013842  

0.73227027 

0.476844 0.453028  

3.861108 

4.523190 

1000 0.002586 0.0000028 0.00251765 0.000513647 0.0718141 0.227061 1.0587 1.0138 4.77297 3.94134 

800 0.002586 0.0000028 0.0112583 0.00210561  0.225353   4.77474  

1200 0.002586 0.0000028 0.000697572 0.000300875 0.0645182 0.227454 1.1481 1.09523 4.77256 3.85192 

1000 0.002586 2.8E-05   0.100296  1.19309 1.147752  3.80694 

1000 0.002586 0.258 mM   0.164191  1.321700 1.277060  3.678330 
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Appendix II 
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Test of assembled silicon meander channel and polymeric valve chip 

The assembly of the silicon meander channel and the polymeric valve chip was also 

evaluated by continuously introducing glucose, while alternatively introducing pulses of 

Gluzyme (0.2 g L-1) or water. All the solutions were introduced at 0.05 µL s-1 (images 1. 2 and 3), 

0.2 µL s-1 (images 4 and 5) and 0.4 µL s-1 (images 7. 8 and 9). Tests with food coloring dye 

performed only with the valve chip allowed to precisely time when the pulse of Gluzyme solution 

was introduced in the silicon meander, and are used in the figures below to illustrate the 

different points in the experiment. The images are numerated according to the order in which 

the corresponding moment in the graph presented occurs. The same schematics as presented in 

Chapter 2, section 2.3.2.1 were used.  
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Appendix III 
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CFD physics reports (Chapter 2) 

Table 3 – Domain Physics for meander channel for the simulation 1xGOx+830 U/mL at 9.95 s. 

Domain - Meander 

Type Fluid 

Location 

INLET_ASSEMBLY INLET_BLOCKS, PIPE_ASSEMBLY PIPE_BLOCKS, 

PIPE_ASSEMBLY PIPE_BLOCKS 2, PIPE_ASSEMBLY PIPE_BLOCKS 3, 

PIPE_ASSEMBLY PIPE_BLOCKS 4, PIPE_ASSEMBLY PIPE_BLOCKS 5, 

PIPE_ASSEMBLY PIPE_BLOCKS 6 

Materials 

Water 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Settings 

Buoyancy Model Non Buoyant 

Domain Motion Stationary 

Reference Pressure 1.0000e+00 [atm] 

Additional Variable Catalase 

Kinematic Diffusivity 4.9500e-11 [m^2 s^-1] 

Option Transport Equation 

Additional Variable GOx 

Kinematic Diffusivity 4.9500e-11 [m^2 s^-1] 

Option Transport Equation 

Additional Variable Gluconolactone 

Kinematic Diffusivity 6.7000e-10 [m^2 s^-1] 

Option Transport Equation 

Additional Variable Glucose 

Kinematic Diffusivity 6.7000e-10 [m^2 s^-1] 

Option Transport Equation 

Additional Variable H2O2 

Kinematic Diffusivity 2.1000e-09 [m^2 s^-1] 

Option Transport Equation 

Additional Variable Oxygen 

Kinematic Diffusivity 2.1000e-09 [m^2 s^-1] 

Option Transport Equation 

Turbulence Model Laminar 

Domain Interface - Domain Interface 1 

Boundary List1 Domain Interface 1 Side 1 

Boundary List2 Domain Interface 1 Side 2 

Interface Type Fluid Fluid 

Settings 

Interface Models General Connection 

Mass And Momentum Conservative Interface Flux 

Mesh Connection Automatic 
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Domain Interface - Domain Interface 2 

Boundary List1 Domain Interface 2 Side 1 

Boundary List2 Domain Interface 2 Side 2 

Interface Type Fluid Fluid 

Settings 

Interface Models General Connection 

Mass And Momentum Conservative Interface Flux 

Mesh Connection Automatic 

Domain Interface - Domain Interface 3 

Boundary List1 Domain Interface 3 Side 1 

Boundary List2 Domain Interface 3 Side 2 

Interface Type Fluid Fluid 

Settings 

Interface Models General Connection 

Mass And Momentum Conservative Interface Flux 

Mesh Connection Automatic 

Domain Interface - Domain Interface 4 

Boundary List1 Domain Interface 4 Side 1 

Boundary List2 Domain Interface 4 Side 2 

Interface Type Fluid Fluid 

Settings 

Interface Models General Connection 

Mass And Momentum Conservative Interface Flux 

Mesh Connection Automatic 

Domain Interface - Domain Interface 5 

Boundary List1 Domain Interface 5 Side 1 

Boundary List2 Domain Interface 5 Side 2 

Interface Type Fluid Fluid 

Settings 

Interface Models General Connection 

Mass And Momentum Conservative Interface Flux 

Mesh Connection Automatic 
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Table 4 – Boundary physics for meander channel for the simulation 1xGOx+830 U/mL at 9.95 s. 

Domain Boundaries 

Meander 

Boundary - Inlet GOx 

Type INLET 

Location INLET_ASSEMBLY INLET1 

Settings 

Additional Variable Catalase 

Additional Variable Value 2.8530e-03 [m^-3 mol] 

Option Value 

Additional Variable GOx 

Additional Variable Value 6.0470e-04 [m^-3 mol] 

Option Value 

Additional Variable Gluconolactone 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Glucose 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable H2O2 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Oxygen 

Additional Variable Value 1.9000e-01 [m^-3 mol] 

Option Value 

Flow Regime Subsonic 

Mass And Momentum Normal Speed 

Normal Speed 2.5000e-02 [m s^-1] 
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Boundary - Inlet Glucose 

Type INLET 

Location INLET_ASSEMBLY INLET2 

Settings 

Additional Variable Catalase 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable GOx 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Gluconolactone 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Glucose 

Additional Variable Value 1.0000e+01 [m^-3 mol] 

Option Value 

Additional Variable H2O2 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Oxygen 

Additional Variable Value 2.5800e-01 [m^-3 mol] 

Option Value 

Flow Regime Subsonic 

Mass And Momentum Normal Speed 

Normal Speed 2.5000e-02 [m s^-1] 

Boundary - Domain Interface 1 Side 1 

Type INTERFACE 

Location INLET_PIPE_CONNECTOR 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 
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Boundary - Domain Interface 1 Side 2 

Type INTERFACE 

Location PIPE_ASSEMBLY PIPE_OUTLET 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

Boundary - Domain Interface 2 Side 1 

Type INTERFACE 

Location INLET_PIPE_CONNECTOR 2 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 
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Boundary - Domain Interface 2 Side 2 

Type INTERFACE 

Location PIPE_ASSEMBLY PIPE_OUTLET 2 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

Boundary - Domain Interface 3 Side 1 

Type INTERFACE 

Location INLET_PIPE_CONNECTOR 4 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

 

  



Micro scale reactor system development with integrated advanced sensor technology  

204 
 

 

Boundary - Domain Interface 3 Side 2 

Type INTERFACE 

Location PIPE_ASSEMBLY PIPE_OUTLET 3 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

Boundary - Domain Interface 4 Side 1 

Type INTERFACE 

Location INLET_PIPE_CONNECTOR 3 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 
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Boundary - Domain Interface 4 Side 2 

Type INTERFACE 

Location PIPE_ASSEMBLY PIPE_OUTLET 5 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

Boundary - Domain Interface 5 Side 1 

Type INTERFACE 

Location INLET_PIPE_CONNECTOR 5 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

 

  



Micro scale reactor system development with integrated advanced sensor technology  

206 
 

 

Boundary - Domain Interface 5 Side 2 

Type INTERFACE 

Location PIPE_ASSEMBLY PIPE_OUTLET 4 

Settings 

Additional Variable Catalase 

Option Conservative Interface Flux 

Additional Variable GOx 

Option Conservative Interface Flux 

Additional Variable Gluconolactone 

Option Conservative Interface Flux 

Additional Variable Glucose 

Option Conservative Interface Flux 

Additional Variable H2O2 

Option Conservative Interface Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

Boundary - Outlet 

Type OPENING 

Location PIPE_ASSEMBLY PIPE_OUTLET 6 

Settings 

Additional Variable Catalase 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable GOx 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Gluconolactone 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Glucose 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable H2O2 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Oxygen 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Flow Direction Normal to Boundary Condition 

Flow Regime Subsonic 

Mass And Momentum Opening Pressure and Direction 

Relative Pressure 0.0000e+00 [bar] 
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Boundary - Meander Default 

Type WALL 

Location 

INLET_ASSEMBLY WALL, PIPE_ASSEMBLY MEANDERWALL, 

PIPE_ASSEMBLY MEANDERWALL 2, PIPE_ASSEMBLY 

MEANDERWALL 3, PIPE_ASSEMBLY MEANDERWALL 4, 

PIPE_ASSEMBLY MEANDERWALL 5, PIPE_ASSEMBLY 

MEANDERWALL 6, PIPE_ASSEMBLY SENSOR, PIPE_ASSEMBLY 

SENSOR 2, PIPE_ASSEMBLY SENSOR 3, PIPE_ASSEMBLY 

SENSOR 4, PIPE_ASSEMBLY SENSOR 5, PIPE_ASSEMBLY 

SENSOR 6, PIPE_ASSEMBLY SIDEINLET, PIPE_ASSEMBLY 

SIDEINLET 2, PIPE_ASSEMBLY SIDEINLET 3, PIPE_ASSEMBLY 

SIDEINLET 4, PIPE_ASSEMBLY SIDEINLET 5, PIPE_ASSEMBLY 

SIDEINLET 6 

Settings 

Additional Variable Catalase 

Option Zero Flux 

Additional Variable GOx 

Option Zero Flux 

Additional Variable Gluconolactone 

Option Zero Flux 

Additional Variable Glucose 

Option Zero Flux 

Additional Variable H2O2 

Option Zero Flux 

Additional Variable Oxygen 

Option Zero Flux 

Mass And Momentum No Slip Wall 
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Table 5 – Domain physics for the tube for the simulation 1xGOx+830 U/mL at 9.95 s. 

Domain - Fluid 

Type Fluid 

Location LIQUID 

Materials 

Air at 25 C 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Settings 

Buoyancy Model Non Buoyant 

Domain Motion Stationary 

Reference Pressure 1.0000e+00 [atm] 

Additional Variable Catalase 

Kinematic Diffusivity 4.9500e-11 [m^2 s^-1] 

Option Diffusive Transport Equation 

Additional Variable GOx 

Kinematic Diffusivity 4.9500e-11 [m^2 s^-1] 

Option Transport Equation 

Additional Variable Gluconolactone 

Kinematic Diffusivity 6.7000e-10 [m^2 s^-1] 

Option Transport Equation 

Additional Variable Glucose 

Kinematic Diffusivity 6.7000e-10 [m^2 s^-1] 

Option Transport Equation 

Additional Variable H2O2 

Kinematic Diffusivity 2.1000e-09 [m^2 s^-1] 

Option Transport Equation 

Additional Variable Oxygen 

Kinematic Diffusivity 2.1000e-09 [m^2 s^-1] 

Option Transport Equation 

Heat Transfer Model Isothermal 

Fluid Temperature 2.5000e+01 [C] 

Turbulence Model Laminar 

Domain - Tube 

Type Solid 

Location SOLID 

Settings 

Domain Motion Stationary 

Domain Interface - Domain Interface 1 

Boundary List1 Default Fluid Solid Interface Side 2 

Boundary List2 Default Fluid Solid Interface Side 1 

Interface Type Fluid Solid 

Settings 

Interface Models General Connection 

Mesh Connection GGI 
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Table 6 – Boundary physics for the tube for the simulation 1xGOx+830 U/mL at 9.95 s. 

Domain Boundaries 

Fluid 

Boundary - Inlet 

Type INLET 

Location INLET 2 

Settings 

Additional Variable Catalase 

Additional Variable Value 2.8530e-03 [m^-3 mol] 

Option Value 

Additional Variable GOx 

Additional Variable Value 6.0500e-04 [m^-3 mol] 

Option Value 

Additional Variable Gluconolactone 

Additional Variable Value 1.8940e-01 [m^-3 mol] 

Option Value 

Additional Variable Glucose 

Additional Variable Value 4.8080e+00 [m^-3 mol] 

Option Value 

Additional Variable H2O2 

Additional Variable Value 1.8178e-01 [m^-3 mol] 

Option Value 

Additional Variable Oxygen 

Additional Variable Value 4.1644e-02 [m^-3 mol] 

Option Value 

Flow Regime Subsonic 

Mass And Momentum Normal Speed 

Normal Speed 5.0000e-03 [m s^-1] 

Boundary - Default Fluid Solid Interface Side 1 

Type INTERFACE 

Location INNERTUBE_2 

Settings 

Additional Variable Catalase 

Option Zero Flux 

Additional Variable GOx 

Option Zero Flux 

Additional Variable Gluconolactone 

Option Zero Flux 

Additional Variable Glucose 

Option Zero Flux 

Additional Variable H2O2 

Option Zero Flux 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Mass And Momentum No Slip Wall 
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Boundary - Outlet 

Type OPENING 

Location OUTLET 2 

Settings 

Additional Variable Catalase 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable GOx 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Gluconolactone 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Glucose 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable H2O2 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Additional Variable Oxygen 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Flow Direction Normal to Boundary Condition 

Flow Regime Subsonic 

Mass And Momentum Opening Pressure and Direction 

Relative Pressure 0.0000e+00 [Pa] 

Tube 

Boundary - Default Fluid Solid Interface Side 2 

Type INTERFACE 

Location INNERTUBE_1 

Settings 

Additional Variable Oxygen 

Option Conservative Interface Flux 

Boundary - Toptube 

Type WALL 

Location TOPTUBE 

Settings 

Additional Variable Oxygen 

Additional Variable Value 8.6000e+00 [m^-3 mol] 

Option Value 
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Boundary - bottom 

Type WALL 

Location BOTTOMTUBE 

Settings 

Additional Variable Oxygen 

Additional Variable Value 0.0000e+00 [m^-3 mol] 

Option Value 

Boundary - wall out 

Type WALL 

Location OUTWALL 2 

Settings 

Additional Variable Oxygen 

Additional Variable Value 8.6000e+00 [m^-3 mol] 

Option Value 
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Appendix IV 
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CFD physics reports (Chapter 4) 

Table 7 – Domain Physics for meander channel for the slanted grooves geometry (1:1 dilution). 

Domain - Fluid 

Type Fluid 

Location SOLID 

Materials 

Water 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Settings 

Buoyancy Model Non Buoyant 

Domain Motion Stationary 

Reference Pressure 1.0000e+00 [atm] 

Additional Variable tracer 

Kinematic Diffusivity 1.0000e-10 [m^2 s^-1] 

Option Transport Equation 

Turbulence Model Laminar 
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Table 8 – Boundary Physics for meander channel for the slanted grooves geometry (1:1 dilution). 

Domain Boundaries 

Fluid 

Boundary - inlet1 

Type INLET 

Location INLET1 

Settings 

Additional Variable tracer 

Additional Variable Value 1.0000e+00 [kg m^-3] 

Option Value 

Flow Regime Subsonic 

Mass And Momentum Normal Speed 

Normal Speed 1.0000e-03 [m s^-1] 

Boundary - inlet2 

Type INLET 

Location INLET2 

Settings 

Additional Variable tracer 

Additional Variable Value 0.0000e+00 [kg m^-3] 

Option Value 

Flow Regime Subsonic 

Mass And Momentum Normal Speed 

Normal Speed 1.0000e-03 [m s^-1] 

Boundary - outlet 

Type OPENING 

Location OUTLET 

Settings 

Additional Variable tracer 

Additional Variable Value 0.0000e+00 [kg m^-3] 

Option Value 

Flow Direction Normal to Boundary Condition 

Flow Regime Subsonic 

Mass And Momentum Opening Pressure and Direction 

Relative Pressure 0.0000e+00 [Pa] 

Boundary - wall 

Type WALL 

Location WALLS 

Settings 

Additional Variable tracer 

Option Zero Flux 

Mass And Momentum No Slip Wall 
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Appendix V 
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CFD physics reports (Chapter 5) 

Table 9 – Domain Physics for glass vial geometry at 353 K. 

Domain - air 

Type Fluid 

Location AIR 

Materials 

Air Ideal Gas 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Water 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Settings 

Buoyancy Model Buoyant 

Buoyancy Reference Density 1.2250e+03 [kg m^-3] 

Gravity X Component 0.0000e+00 [m s^-2] 

Gravity Y Component -9.8100e+00 [m s^-2] 

Gravity Z Component 0.0000e+00 [m s^-2] 

Buoyancy Reference Location Automatic 

Domain Motion Stationary 

Reference Pressure 1.0000e+00 [atm] 

Heat Transfer Model Thermal Energy 

Homogeneous Model On 

Turbulence Model Laminar 

Domain - fluid 

Type Fluid 

Location WATER 

Materials 

Air Ideal Gas 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Water 

Fluid Definition Material Library 

Morphology Continuous Fluid 
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Settings 

Buoyancy Model Buoyant 

Buoyancy Reference Density 1.2250e+03 [kg m^-3] 

Gravity X Component 0.0000e+00 [m s^-2] 

Gravity Y Component -9.8100e+00 [m s^-2] 

Gravity Z Component 0.0000e+00 [m s^-2] 

Buoyancy Reference Location Automatic 

Domain Motion Stationary 

Reference Pressure 1.0000e+00 [atm] 

Heat Transfer Model Thermal Energy 

Homogeneous Model On 

Turbulence Model Laminar 

Domain - glass 

Type Solid 

Location GLASS 

Settings 

Domain Motion Stationary 

Domain Interface - Default Fluid Fluid Interface 

Boundary List1 Default Fluid Fluid Interface Side 1 

Boundary List2 Default Fluid Fluid Interface Side 2 

Interface Type Fluid Fluid 

Settings 

Interface Models General Connection 

Mass And Momentum Conservative Interface Flux 

Mesh Connection GGI 

Domain Interface - Default Fluid Solid Interface 

Boundary List1 Default Fluid Solid Interface in air Side 1,Default Fluid Solid Interface in fluid Side 1 

Boundary List2 Default Fluid Solid Interface in glass Side 2 

Interface Type Fluid Solid 

Settings 

Interface Models General Connection 

Heat Transfer Conservative Interface Flux 

Mesh Connection GGI 
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Table 10 – Boundary Physics for glass vial geometry at 353 K. 

Domain Boundaries 

air 

Boundary - Default Fluid Fluid Interface Side 1 

Type INTERFACE 

Location WATER_2 

Settings 

Heat Transfer Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 

Boundary - Default Fluid Solid Interface in air Side 1 

Type INTERFACE 

Location Primitive 2D C 

Settings 

Heat Transfer Conservative Interface Flux 

Mass And Momentum No Slip Wall 

Boundary - top 

Type OPENING 

Location TOP 

Settings 

Flow Direction Normal to Boundary Condition 

Flow Regime Subsonic 

Heat Transfer Opening Temperature 

Opening Temperature 2.5000e+01 [C] 

Mass And Momentum Opening Pressure and Direction 

Relative Pressure 0.0000e+00 [Pa] 

Fluid gas 

Volume Fraction Value 

Volume Fraction 1.0000e+00 

Fluid water 

Volume Fraction Value 

Volume Fraction 0.0000e+00 

Boundary - sym1_air 

Type SYMMETRY 

Location SYM1 

Settings 

Boundary - sym2_air 

Type SYMMETRY 

Location SYM2 

fluid 

Settings 

Boundary - Default Fluid Fluid Interface Side 2 

Type INTERFACE 

Location WATER_1 

Settings 

Heat Transfer Conservative Interface Flux 

Mass And Momentum Conservative Interface Flux 
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Boundary - Default Fluid Solid Interface in fluid Side 1 

Type INTERFACE 

Location Primitive 2D A 

Settings 

Heat Transfer Conservative Interface Flux 

Mass And Momentum No Slip Wall 

Boundary - sym1_water 

Type SYMMETRY 

Location SYM1_WATER 

Settings 

Boundary - sym2_water 

Type SYMMETRY 

Location SYM2_WATER 

Settings 

glass 

Boundary - Default Fluid Solid Interface in glass Side 2 

Type INTERFACE 

Location Primitive 2D, Primitive 2D B 

Settings 

Heat Transfer Conservative Interface Flux 

Boundary - sym1_glass 

Type SYMMETRY 

Location SYM1_GLASS 

Settings 

Boundary - sym2_glass 

Type SYMMETRY 

Location SYM2_GLASS 

Settings 

Boundary - top_wall_glass 

Type WALL 

Location TOP_WALL 

Settings 

Heat Transfer Fixed Temperature 

Fixed Temperature 2.5000e+01 [C] 

Boundary - wall 

Type WALL 

Location WALL 

Settings 

Heat Transfer Fixed Temperature 

Fixed Temperature 8.0000e+01 [C] 
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Table 11 – Domain Physics for meander channel for the thermal inactivation platform at 0.0087 m s-1 inlet flow. 

Domain - fluid 

Type Fluid 

Location FLUID 

Materials 

Water 

Fluid Definition Material Library 

Morphology Continuous Fluid 

Settings 

Buoyancy Model Non Buoyant 

Domain Motion Stationary 

Reference Pressure 1.0000e+00 [atm] 

Heat Transfer Model Thermal Energy 

Turbulence Model Laminar 

Domain - pmma 

Type Solid 

Location PMMA 

Settings 

Domain Motion Stationary 

Domain Interface - Default Fluid Solid Interface 

Boundary List1 Default Fluid Solid Interface Side 1 

Boundary List2 Default Fluid Solid Interface Side 2 

Interface Type Fluid Solid 

Settings 

Interface Models General Connection 

Heat Transfer Conservative Interface Flux 

Mesh Connection GGI 
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Table 12 – Boundary Physics for meander channel for the thermal inactivation platform at 0.0087 m s-1 inlet flow. 

Domain Boundaries 

fluid 

Boundary - inlet 

Type INLET 

Location INLET 

Settings 

Flow Regime Subsonic 

Heat Transfer Static Temperature 

Static Temperature 2.5000e+01 [C] 

Mass And Momentum Normal Speed 

Normal Speed 8.7000e-03 [m s^-1] 

Boundary - Default Fluid Solid Interface Side 1 

Type INTERFACE 

Location TOP_CHANNEL_1 

Settings 

Heat Transfer Conservative Interface Flux 

Mass And Momentum No Slip Wall 

Boundary - outlet 

Type OPENING 

Location OUTLET 

Settings 

Flow Direction Normal to Boundary Condition 

Flow Regime Subsonic 

Heat Transfer Opening Temperature 

Opening Temperature 2.5000e+01 [C] 

Mass And Momentum Opening Pressure and Direction 

Relative Pressure 0.0000e+00 [Pa] 

Boundary - sym1_fluid 

Type SYMMETRY 

Location SYM1 

Settings 

Boundary - sym2_fluid 

Type SYMMETRY 

Location SYM2 

Settings 

Boundary - heating 

Type WALL 

Location METAL 

Settings 

Heat Transfer Fixed Temperature 

Fixed Temperature 8.0000e+01 [C] 

Mass And Momentum No Slip Wall 
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pmma 

 

Boundary - Default Fluid Solid Interface Side 2 

Type INTERFACE 

Location TOP_CHANNEL_2 

Settings 

Heat Transfer Conservative Interface Flux 

Boundary - sym1_pmma 

Type SYMMETRY 

Location SYM1_PMMA 

Settings 

Boundary - sym2_pmma 

Type SYMMETRY 

Location SYM2_PMMA 

Settings 

Boundary - endings 

Type WALL 

Location END 

Settings 

Heat Transfer Adiabatic 

Boundary - envrionment 

Type WALL 

Location ENVIRONMENT 

Settings 

Heat Transfer Fixed Temperature 

Fixed Temperature 2.5000e+01 [C] 
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