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Summary. Within the framework of periodic structures, the calibration of RL shunted
piezoelectric inclusions is investigated with respect to maximum damping of a particular
wave form. A finite element setting is assumed, with local shunted inclusions inside the
unit cell. The effect of the shunts is represented for a targeted wave form, characterized
by its short-circuited eigenvalue problem and two correction coefficients, representing the
influence from residual modes, not addressed by the supplemental damping. Calibration
formulae are finally derived for the shunt inductance L and resistance R. The presentation
contains dispersion diagrams and vibration amplitude curves for the optimally calibrated
RL shunt system in a 1-D periodic structure with local piezoelectric inclusions.

1 PERIODIC STRUCTURE

The equilibrium equation for a structure may be determined by vanishing virtual work
in a finite element formulation with element displacements contained in the element dis-
placement vector ue. The element virtual work can then be expressed as

δWe = δuT

e

(

[−ω2me + ke]ue + befe − fe

)

(1)

with element mass matrix me, stiffness matrix ke, participation vector be, piezoelectric
force fe and external load fe. Wave propagation for a periodic structure is commonly ana-
lyzed by representing the spatial dependence of the wave via the normalized wavenumber
γℓe in the factorized form

ue = E(γℓe)Aeu (2)

Here Ae extracts the element displacements from the global displacement vector u, while
the wavenumber dependent exponential matrix E(γℓe) represents the spatial advancement
of the wave through the element.

The total work is obtained by summation over the elements in the periodic structure

δW =
Ne
∑

e

δWe = δuT

(

(−ω2M+K)u−Wf
)

= 0 (3)
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introducing the global mass and stiffness matrices

M =

Ne
∑

e

(EAe)
Tme(EAe) , K =

Ne
∑

e

(EAe)
Tke(EAe) (4)

while the piezoelectric forces are represented by the term

Wf =

Np
∑

p

(EAp)
Tbpfp =

Np
∑

p

wpfp , wp = (EAp)
Tbp (5)

with summation over the reduced number of elements representing a piezoelectric inclu-
sion. The equilibrium equation from (3) can then be written in homogeneous form1

(−ω2M+K)u+Wf = 0 (6)

The construction of the unit cell is shown in Fig. 1 for a unidirection rod-type structure,
where the gray areas represent piezoelectric inclusions and (c) illustrates the periodicity.

2 PIEZOELECTRIC SHUNT FORCE

In (6) the vector f may contain electromechanical forces fp from several piezoelectric
elements within the unit cell. An electromechanical force is defined as

fp = θV , p = 1, 2, . . .Np. (7)

where V is the voltage across the element nodes, while θ represents the electromechani-
cal coupling coefficient. The piezoelectric coupling is governed by the electrical balance
equation,

Q = −θbT

p
up + CV (8)

where Q is the charge in the element, while C is the capacitance of the piezoelectric
element associated with blocked strain conditions.

1 2 3 4 5

1 2 3 4 5

(a)

(b)

(c)

Figure 1: (a) Periodic bar with (b) unit cell and (c) representative spring-mass system.
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The shunt properties are expressed by the impedance relation V = −iωZ(ω)Q, whereby
(

1 + iωCZ(ω)
)

f = θ2C−1iωCZ(ω)v (9)

in which the piezoelectric forces are collected in the vector f = [f1, f2, . . . , fNp
]T , while

v = WTu , W =
[

w1,w2, . . . ,wNp

]

(10)

represents the displacement vector for the piezoelectric inclusions.

3 MODAL EQUATION

The free vibration properties (ωj and uj) for the unit cell structure with piezoelectric
inclusions, periodic boundary conditions and short-circuited electrodes is governed by

(

K − ω2
j
M

)

uj = 0 (11)

The piezoelectric displacement vector v is approximated by the contribution vrqr from the
targeted mode j = r and supplemental flexibility from the non-resonant modes (j 6= r).
This augmented modal representation can be written as2,3

v = vrqr −
( 1

krκ′
r

−
1

ω2mrµ′
r

)

f (12)

where vr = WTur, while κ′
r
and µ′

r
represent apparent flexibility and inertance ratios

associated with the influence of residual modes. Elimination of v in (9) gives
[

1 +
θ2

Ckr

1

κ′
r

+
1

iωCZ(ω)
−

θ2

Ckr

ω2
r

ω2

1

µ′
r

]

vT

r
f =

θ2

Ckr
krν

2
r
qr (13)

in which the modal participation factor is νr =
√

vT

r
vr. In (13) the flexibility correction

modifies the apparent electromechanical coupling, while the inertance correction in the last
term represents an artificial inductance that alters the shunt frequency. The corresponding
structural equation of motion follows from a modal representation of (6),

(−ω2mr + kr)qr + vT

r
f = 0 (14)

The two coupled equations (13) and (14) comprise an eigenvalue problem, governing the
wave propagation in the unit cell. The residual mode correction coefficients κ′

r
and µ′

r

can be determined by introducing a pure inductive shunt Z(ω) = iωL for each of the np

inclusions. Hereby, the structural frequency ωr splits into np + 1 frequencies around ωr,
of which ωA and ωB are associated with structural vibration modes, while the remaining
modes are highly damped. The two frequencies determine intermediate coefficients

κ∗ =
[

1−
(ωA

ωr

)2][(ωB

ωr

)2

− 1
]

, µ∗ =
[

1−
( ωr

ωB

)2][( ωr

ωA

)2

− 1
]

(15)

which are subsequently used to determine the actual correction coefficients

1

κ′
r

=
1

κ∗

−
kr

θ2C−1
,

1

µ′
r

=
1

µ∗

−
kr

θ2ω2
r
L

(16)
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4 CALIBRATION

The desired resonant vibration damping is obtained by shunts with a resistor R and
an inductor L placed in parallel in the shunt, whereby the impedance is given as

1

Z(ω)
=

1

R
+

1

iωL
(17)

Upon substitution, the flexibility relation (13) can be expressed in short form as

[ 1

κr

+
ωr

iωβr

−
ω2
r

ω2µr

]

vT

r
f = krν

2
r
qr (18)

in which the resulting stiffness, damper and inertance ratios are defined as

1

κr

=
kr

θ2C−1
+

1

κ′
r

,
1

βr

=
kr

θ2ωrR
,

1

µr

=
kr

θ2ω2
r
L
+

1

µ′
r

(19)

with correction coefficients κ′
r
and µ′

r
determined in (16).

Effective vibration control of the targeted mode j = r is obtained by initially requiring
that the damping should be identical in the two non-redundant wave forms. This is for
the parallel RL shunt secured by the simple relation

µr = κr ⇒
1

ω2
r
CL

= 1 +
θ2

krC

( 1

κ′
r

−
1

µ′
r

)

(20)

which determines the shunt inductance L. The maximum damping is then obtained at
the bifurcation point in a complex root locus diagram, associated with

βr =
√

1
4
κr ⇒

1

ωrCR
=

√

4
θ2

krC

(

1 +
θ2

krC

1

κ′
r

)

(21)

explicitly calibrating the shunt resistance R. Alternatively, the factor 1
4
can be increased

to 1
2
, whereby optimal vibration amplitude mitigation is instead obtained2,3.
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