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Preface 

This PhD thesis, entitled “Bioelectrochemical systems serve anaerobic 

digestion process for process monitoring and biogas upgrading”, comprises 

the research carried out at the Department of Environmental Engineering, 

Technical University of Denmark from October 13, 2014 to October 14, 2017. 

Professor Irini Angelidaki and Senior Researcher Yifeng Zhang were the 

supervisor and co-supervisor, respectively. 

The thesis is organized in two parts: the first part puts into context the 

findings of the PhD project in an introductive review; the second part consists 

of the papers listed below. These will be referred to in the text by their paper 

number written with the Roman numerals I- III. 

 

I Jin, X., Angelidaki, I., Zhang, Y. 2016. Microbial electrochemical 

monitoring of volatile fatty acids during anaerobic digestion. 

Environmental Science & Technology, 50(8), 4422-4429. 

 

II Jin, X., Li, X., Zhao, N., Zhang, Y., Angelidaki, I. 2017. Bio-electrolytic 

sensor for rapid monitoring of volatile fatty acids in anaerobic digestion 

process. Water Research, 111, 74-80. 

 

III Jin, X., Zhang, Y., Li, X., Zhao, N., Angelidaki, I. 2017. Microbial 

electrolytic capture, separation and regeneration of CO2 for biogas 

upgrading. Environmental Science & Technology, 51(16), 9371-9378. 

 

In addition, the following publications, not included in this thesis, were also 

concluded during this PhD study:  

Li, X., Jin, X., Angelidaki, I., Zhang, Y. 2017. Efficient treatment of aniline 

containing wastewater in bipolar membrane microbial electrolysis cell-

fenton system. Water Research, 119, 67-72. 

Li, X., Jin, X., Zhao, N., Angelidaki, I., Zhang, Y. 2017. Novel bio-electro-

Fenton technology for azo dye wastewater treatment using microbial re-

verse-electrodialysis electrolysis cell. Bioresource Technology, 228, 322-

329. 



iv 

 

In this online version of the thesis, paper I-III are not included but can be 

obtained from electronic article databases e.g. via www.orbit.dtu.dk or on 

request from DTU Environment, Technical University of Denmark, Miljoevej, 

Building 113, 2800 Kgs. Lyngby, Denmark, info@env.dtu.dk. 
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Summary 

Bioelectrochemical systems (BES), which employ microbes as catalysts to 

convert chemical energy stored in organic matter into sustainable electricity 

and high-value chemicals, is an emerging and promising technology. BES 

have broad applications including wastewater treatment, chemical production, 

resource recovery and waste remediation. Recently, new concepts of 

integrating BES with anaerobic digestion (AD) for process optimization have 

been proposed. The purpose of this work was to optimize the AD process 

using BES in two aspects: developing a new volatile fatty acid (VFA) 

monitoring system which can be used as the AD process indicator, and for 

improving biogas quality by removing CO2. 

In this thesis, a microbial desalination cell (MDC) was developed for 

measuring VFAs concentrations. The MDC was composed of three chambers, 

namely an anode, a cathode and a middle chamber. The samples were 

measured in the middle chamber, which was separated from the anode by an 

anion exchange membrane (AEM). Driven by concentration gradient, VFAs 

in their ionized form contained in the sample, diffused through AEM to the 

anode where they were microbially oxidized and produced current signals. 

The effect of operating parameters such as ionic strength and external 

resistance on the performance of the MDC-typed biosensor were assessed. 

High ionic strength and small external resistance were advantageous for 

current signal amplification. Two linear relationships between current outputs 

and VFA concentrations were observed. The response time was approx. 5 h 

and the detection range was 1 to 200 mM. The selectivity of the biosensor 

was demonstrated since organic matter such as protein and lipids were 

retained by the AEM and their interference was eliminated. The reliability 

was proved by real AD effluents.      

In order to reduce the construction cost and simplify the VFA biosensor, a 

new configuration was developed. The number of chambers was reduced 

from three to two. The new configuration was a microbial electrolysis cell 

(MEC). The anode and cathode chambers were separated by an AEM and a 

small additional voltage was supplied to the cell. The samples were measured 

in the cathode. The effect of different parameters such as external voltage, 

ionic strength and VFA composition ratio on the MEC-typed biosensor 

performance was evaluated. Higher current signals were observed under 

larger external voltage and higher ionic strengths. The current output was 

mainly contributed by acetate which was always dominant in AD reactors. 
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The current density increased linearly along with VFAs concentrations 

ranging from 5 to 100 mM. The response of the biosensor was now only 1 h 

due to the faster transfer of VFAs supported by the external voltage. The 

interference from other non-ionic organic matter (glucose, cellulose, lipids 

and protein) could be eliminated since they were retained by the membrane. 

During the process, hydrogen (H2) was generated from water hydrolysis. The 

produced H2 could potentially contribute to the energy needs for operating 

the biosensor and thereby to a self-sustaining system. Moreover, the 

biosensor was successfully validated both with synthetic and real AD 

effluents. 

To improve biogas quality, a microbial electrolytic capture, separation and 

regeneration cell (MESC) was developed. The effects of external voltage and 

inlet gas flow rate were elucidated. The current output increased along with 

the gas flow rate, while cathodic pH and upgrading performance showed 

opposite trends. The current output, cathodic pH and upgrading performance 

increased with the increasing external voltage supply. In MESC, acid and 

alkaline generation, CO2 capture, biogas upgrading and COD removal were 

simultaneously achieved. Under the optimum condition at 1.2 V external 

voltage and 19.6 mL/h gas flow rate, pH in the regeneration and cathode 

chambers could reach 1.34±0.04 and 9.19±0.11, respectively; the maximum 

methane content was up to 97.0±0.2% and COD removal efficiency reached 

98.2±2.6%. The energy consumption for biogas upgrading was around 0.17 

kWh/m
3
 raw biogas. Moreover, the generated H2 from water hydrolysis could 

potentially compensate for 23.4% of the energy consumption.  

It has been proved that the development of efficient, cheap, fast and reliable 

VFA monitoring with a wide detection range can be realized in BES which is 

sustainable and environmental friendly. The development technology could 

easily be installed as online monitoring system for optimizing the AD process. 

Moreover, BES could be a sustainable economic technology to upgrade 

biogas to biomethane and thereby increase the value of biogas.  The proof-of-

concept study in lab-scale offers ideas for expanding BES application. 
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Dansk sammenfatning 

Bioelektrokemiske systemer (BES) der benytter mikrober som katalysator for 

at konvertere kemisk energi, oplagret i organisk materiale, til bæredygtig 

elektricitet og værdifulde kemikalier, er en spirende og lovende teknologi. 

BES har brede anvendelsesmuligheder, herunder spildevandsrensning, ke-

misk produktion, resourcegenanvendelse og affaldsbehandling. Senest er nye 

koncepter, der integrerer BES med anaerob omsætning (AD) til procesopti-

mering blevet foreslået. Formålet med dette arbejde har været at optimere AD 

processen ved brug af BES på to områder: Udvikling af et nyt overvågnings-

system til flygtige fedtholdige syrer (VFA) der kan bruges som AD procesin-

dikator, og forbedring af biogaskvaliteten ved at fjerne CO2.  

I dette projektarbejde blev en mikrobiel afsaltningscelle (MDC) med tre kam-

re udviklet for at måle VFA koncentrationer. MDC’en bestod af tre kamre: et 

anodekammer, et katodekammer og et mellemkammer. Prøverne blev målt i 

det midterste kammer, som var separeret fra anoden med en anionisk udveks-

lingsmembran (AEM). Drevet af en koncentrationsgradient, diffunderede 

prøvens indhold af VFA’er i deres ioniserede form igennem AEM til anoden, 

hvor de blev mikrobielt oxideret, hvilket resulterede i strømsignaler. Effekten 

af operationsparametrene såsom ionisk styrke og ekstern modstand på ydeev-

nen af den MDC-baserede biosensor blev målt. Høj ionisk styrke og lille eks-

tern modstand var gunstig for forstærkning af strømsignalet. To lineære rela-

tioner mellem strømoutput og VFA koncentrationer blev observeret. Re-

sponstiden var cirka 5 timer, og detektionsområdet var 1 til 200 mM. Selekti-

viteten af biosensoren blev demonstreret ved at organisk materiale såsom pro-

tein og lipider blev tilbageholdt af AEM og deres forstyrrelse undgået. Påli-

deligheden blev påvist ved brug af rigtige AD effluenter.  

For at reducere produktionsomkostningerne og simplificere VFA biosensoren, 

blev en ny konfiguration udviklet. Den nye konfiguration reducerede antallet 

af kamre fra tre til to. Den nye konfiguration var en mikrobiel elektrolysecel-

le (MEC). Anode- og katodekamrene blev separeret af en AEM og en lille 

ekstra spænding blev tilført til cellen. Prøverne blev målt i katodekammeret. 

Effekten af de forskellige parametre såsom ekstern spænding, ionisk styrke 

og VFA sammensætning på den MEC-baserede biosensors ydeevne blev eva-

lueret. 

Højere strømsignaler blev observeret under højere ekstern spænding og høje-

re ionisk styrke. Strømoutput blev primært genereret af acetat, som altid var 
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dominerende VFA type i AD-reaktorerne. Strømsignal øgedes lineært med 

VFA koncentrationer i området 5 til 100 mM. Responstiden fra biosensoren 

var nu kun 1 time grundet den hurtigere overførsel af VFA’erne, båret af den 

eksterne spænding. 

Interferensen fra andre ikke-ioniseret organisk materiale (glukose, lipider og 

proteiner) kunne elimineres da de blev tilbageholdt af membranen. Under 

processen blev hydrogen (H2) genereret ved vandhydrolyse. Den producerede 

H2 kunne potentielt bidrage til energibehovet ved at drive biosensoren, og 

dermed gøre den til et selvforsynende system. Herudover blev biosensoren 

valideret både med syntetisk og ægte AD effluenter med succes 

For at øge kvaliteten afbiogas, blev en mikrobiel elektrolyse bindings-, sepa-

rations- og regeneratorcelle (MESC) udviklet. Effekten af ekstern spænding 

og gastilstrømningsflow blev undersøgt. Strømoutput steg i takt med gasflow, 

mens katodisk pH og opgraderingseffektivitet udviste modsatte tendenser. 

Strømoutput, katodisk pH og opgraderingseffektivitet steg ved øgning af den 

eksterne spænding. I MESC, blev generering af syre og alkali, CO2 binding, 

biogas opgradering og COD fjernelse alt sammen opnået samtidigt. Under de 

optimale forhold på 1.2 V ekstern spænding, og 19.6 mL/h tilstrømning af gas, 

kunne pH i regenerations- og katodekamrene nå henholdvis 1.34±0.04 og 

9.19±0.11; det maksimale metan indhold var oppe på 97.0±0.2% og COD 

reduktionseffektiviteten nåede 98.2±2.6%. Energiforbruget for opgraderingen 

af biogas var omkring 0.17 kWh/m
3
 rå biogas. Derudover kan H2 fra vandhy-

drolysen potentielt kompensere for 23.4% af energiforbruget. 

Det er blevet bevist at udviklingen af effektiv, billig, hurtig og pålidelig VFA 

overvågning med et bredt detektionsinterval kan realiseres i BES, som er bæ-

redygtigt og miljøvenligt. Den udviklede teknologi kunne let installeres som 

et online overvågningssystem for at optimere AD processen. Herudover kun-

ne BES blive en bæredygtig økonomisk teknologi til opgradering af biogas til 

biometan, og ville derved kunne øge værdien af biogas. Resultaterne af pro-

jektet i laboratorieskala giver ideer til udvidelse af brugen af BES. 
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1 Introduction 

1.1 Background 
The rapid growths in population and industrialization have increased consumption 

of fossil fuels and generation of municipal/industrial waste. Increasing pressure on 

world fossil fuel reserves, and the need to reduce greenhouse gas emissions by 

burning these fuels, has increased the demand for seeking renewable energy sources 

to decrease the reliance on fossil fuels. In the last decade, ambitious energy policies 

have been published constantly by countries. For instance, the EU has set a target of 

a 20% share of renewable energies in overall EU energy consumption by 2020 

(Böhringer et al., 2009). They also set a long-term goal of reducing greenhouse gas 

emissions by 80-95% compared to levels in 1990 by 2050. Denmark’s long-term 

energy goal is to become completely independent of fossil fuels use by 2050 (Sova-

cool, 2013).  

Anaerobic digestion (AD), which can convert diverse waste to biogas, has been 

widely applied in many European countries and is receiving increased attention. AD 

can bring many benefits such as management and disposal municipal/industrial 

waste, generation of renewable energy, and recovery of nutrients. The biogas pro-

duction is carbon-neutral and there is no contribution to greenhouse gas emissions 

(Bohutskyi et al., 2016). Government policies have provided incentives to use bio-

mass and biogas via AD process which has promoted its use and driven its facilities 

significantly. At the end of 2013 in Denmark, the total number of biogas plants is 

174 (Edwards et al., 2015) and the building of 40-50 new large-scale biogas plants 

is required along with the increasing of biogas production potential since 50% of 

the animal manure will be supplied to biogas plants by 2020 (Thygesen et al., 

2014). However, there are still problems which impede the efficiency and there is 

still room for improvement. For instance, process instability triggered by ammonia 

inhibition, organic overload, clogging and foaming may cause a failure and serious 

economic losses. Only when it is properly monitored, will an anaerobic digester 

function effectively. What’s more, produced raw biogas with approximately 30-

40% v/v CO2 and other impurities presence exhibits a significantly low heating val-

ue which can adversely affect the engine performance (Sun et al., 2015b). It is es-

sential to upgrade biogas to the natural gas quality for various biogas utilization 

pathways. 

Therefore, it is necessary to develop technologies capable of solving the aforemen-

tioned problems. To ensure a stable biogas production and to upgrade the raw bio-

gas, a monitoring system and an upgrading system are needed to be established.     
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1.2 Anaerobic digestion process 
AD is a complex biological process in which several groups of bacteria convert 

organic material (polymers such as carbohydrates, protein and lipids) to methane 

and carbon dioxide with small amount of water, hydrogen, hydrogen sulphide, and 

ammonia (Weiland, 2010) under anaerobic conditions. Functioned by several 

groups of bacteria, AD can be divided into four steps which are hydrolysis, acido-

genesis, acetogenesis and methanogenesis (Angelidaki et al., 2011). 

In AD, hydrolysis is the first step by which polymeric compounds are hydrolysed 

into smaller units such as glucose, xylose, amino acids and long-chain fatty acids 

facilitated by various enzymes produced from fermentative bacteria (Xue et al., 

2015). The products in hydrolysis are the substrates for the following steps. How-

ever, the presence of lignin or lignocellulose waste such as grass, wood and pulping 

waste can be a problem since they are practically undegradable under anaerobic 

conditions. Hydrolysis will be the rate-limiting step if cellulose is the main sub-

strate and some physicochemical pretreatments may be needed. If the substrate is 

mainly composed of easily degradable material, the decomposition of acetate to 

methane will be the rate-limiting step. 

In the second stage, hydrolysis products are further transformed to smaller com-

pounds by the fermentative bacteria (Karthikeyan et al., 2016). The main part of the 

organic matter is converted to hydrogen, carbon dioxide and acetate. And approxi-

mately 30% is converted to other short-chain fatty acids and alcohols. If the process 

is out of balance, more volatile fatty acids (VFAs) will be produced and accumu-

late. Especially, when the generated hydrogen is not consumed fast enough and the 

increasing hydrogen partial pressure can inhibit the hydrogen production process. 

As a result, the microorganisms change their metabolism pathway to produce more 

VFAs like propionate and butyrate. 

During acetogenesis, acetate is transformed from other VFAs and alcohols by dif-

ferent microbial members (Seitz et al., 2016). Hydrogen plays a vital intermediary 

role in this process, for instance, the conversion of propionate to acetate (Equation 

1) is only achievable at low hydrogen partial pressure. To keep the hydrogen con-

centration within a certain limit, flocks and microbial consorts form so that a direct 

hydrogen transfer happens from the hydrogen producing bacteria to the hydrogen 

consuming bacteria. 

𝐶𝐻3𝐶𝐻2𝐶𝑂𝑂− +  3𝐻𝑂2 ↔  𝐶𝐻3𝐶𝑂𝑂− +  𝐻+  + 𝐻𝐶𝑂3
− +  4𝐻2                                      (1) 

Methanogenesis is the final stage of AD in which biogas is produced. Biogas is 

mainly composed of methane and non-combustible carbon dioxide (Demirel and 

Scherer, 2008). About 70% of methane comes from acetate degradation by aceti-
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clastic methanogens (Equation 2) while the remaining 30% is converted from 

H2/CO2 or formate executed by hydrogenotrophic methanogens (Equation 3 and 4).  

𝐶𝐻3𝐶𝑂𝑂− +  𝐻+ →  𝐶𝐻4 + 𝐶𝑂2                                   ∆𝐺0´ = −32.5𝐾𝐽/𝑚𝑜𝑙𝐶𝐻4          (2) 

4𝐻2 +  𝐶𝑂2 →  𝐶𝐻4 + 2𝐻𝑂2                                          ∆𝐺0´ = −130.4𝐾𝐽/𝑚𝑜𝑙𝐶𝐻4       (3) 

4𝐻𝐶𝑂𝑂− + 2𝐻𝑂2 → 𝐶𝐻4 + 3𝐶𝑂2 +  2𝐻𝑂2               ∆𝐺0´ = −119.5𝐾𝐽/𝑚𝑜𝑙𝐶𝐻4       (4) 

Methanogens which are responsible for this process are strict anaerobes and com-

monly considered to be the most sensitive to interruptions and toxici ty in the AD 

process.  

1.3 Challenges in the AD process and conventional 

solutions 

1.3.1 Challenges in the AD process 

The AD process is a complex biologically mediated process. After numerous aca-

demic and industrial studies, only a few principles of the process are known. The 

AD process can be divided by four steps: hydrolysis, acidogenesis, acetogenesis 

and methanogenesis (Madsen et al., 2011).  There are many interesting reactions 

and phenomena during the AD process. Some of the former reactions proceed from 

hours to days, while some of the latter reactions proceed in seconds to minutes. 

Hence, a well-balance between products from the previous process and substrates 

for the next process is the prerequisite for a healthy AD process. However, most of 

the microbial consortium involved in the process is unknown and the complex in-

teraction among them is not fully understood either (Falk et al., 2015). Therefore, to 

maintain a stable process is a challenge for every biogas plant operator.  

On the other hand, although a stable process and consistent biogas production is 

obtained, upgrading biogas quality to nature gas can be another challenge. Raw bi-

ogas mainly contains methane and carbon dioxide, with small amount of hydrogen 

sulphide, ammonia, hydrogen, nitrogen, oxygen and carbon monoxide (Andriani et 

al., 2014). Apart from methane, the other impurities have significant negative im-

pacts on the utilization system (Sun et al., 2015). The large share of carbon dioxide 

and small amounts of other noninflammable components in biogas lower its calorif-

ic value and can be corrosive to engines. Besides, the transportation of raw biogas 

is much costly than the transportation of upgraded biomethane over long distance 

(Budzianowski et al., 2016). Therefore, it is important to remove the unwanted 

components and upgrade biogas to a higher fuel quality.  
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1.3.2 Conventional VFAs monitoring technologies 

To avoid complete failures, effective monitoring of the AD process is necessary. 

Many researchers have favoured VFAs as indicators since these short-chain acids 

are the headmost parameters to reflect the metabolic imbalance of the biochemical 

process. Currently, many analytical methods, such as titration, chromatographic, 

and spectroscopy have been established for a measure of their concentrations. 

Titration can be an alternative for quantification of VFAs if merely a measure of 

total acidity is pursued with respect to the low cost and simplicity. Molina el al. 

(2009) presented a validation procedure to determine VFA and alkalinity via an on-

line titrimetric system which was the AnaSense analyser. A pilot upflow sludge bed 

filter was monitored using the sensor based on two-point titrimetric methods. 

Results exhibited good performances with high accuracy for VFA and bicarbonate 

determination with the range of 13-1900 mg/L and 2.5-49.5 mEq/L, respectively. 

Purser el al. (2014) tested 154 samples from energy crop, slurry and food waste 

digestates for VFA quantification using two auto-titrators based on commonly 

utilized two-end-point titration methods. Compared with the results from HPLC and 

modified by statistical analysis software SigmaPlot 12, two empirical bivariate 

linear regression equations were derived. The improved titration model was applied 

to a food waste dataset and it cut the absolute tVFA mean errors by a factor of 10 

from ±3828 to ±576 mg·kg
-1

tVFA. The model was more accurate for tVFA 

determination aiming to specific digestates. 

To distinguish between the VFA acids and quantify their concentrations, 

chromatographic methods have been commonly used in research laboratories and 

industry. Boe et al. (2007) proposed an online VFAs monitoring system based on 

headspace gas chromatography. A lab-scale CSTR reactor treating manure was 

monitored and results exhibited good agreement with off-line analysis. The authors 

stated that the method is appropriate for full-scale reactors with short sensor 

response time (10 min) and a lack of filtration units. de Sá et al. (2011) described a 

method for the simultaneous determination of VFAs and carbohydrates (sucrose, 

glucose and fructose) by using high-performance liquid chromatography. It was 

argued that those compounds could be successfully quantified and the methodology 

could be applied for monitoring the anaerobic fermentation. Boe et al. (2012) 

developed a VFA sensor based on headspace chromatography. A pilot-scale manure 

digester was monitored by the on-line sensor and controlled using a programmable 

logic control system by adjusting the feed flow automatically while VFAs 

concentrations were used as the alarm threshold. The control system could 

successfully optimize the biogas production without organic overload during the 

process. However, the authors argued that routine maintenance of the mechanical 

parts is crucial to obtain the optimal performance. 
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Recently, spectroscopy has been proven to be an alternative for VFA measurement 

without problems such as sample preparation and biofouling. Falk et al. (2014) 

installed a spectrometer for VFAs monitoring on the basis of mid-infrared 

spectroscopy. Individual VFA concentration was evaluated and the partial least 

square models were developed according to a calibration. The accuracy was 

validated and the installed setup could automatically measure samples from the 

digester over 6 months without logging or biofouling problems. However, the 

authors stated that further investigation on the long term stability and installation 

on an industrial AD system would take into account. 

1.3.3 Conventional biogas upgrading technologies 

The number of biogas plants is increasing in Europe and around the globe, and so is 

the biogas production. The raw biogas is primarily composed of 60-70% v/v 

methane (CH4) and 30-40% v/v carbon dioxide (CO2), small amounts of hydrogen 

sulfide (H2S) and ammonia (NH3), trace amounts of hydrogen (H2), nitrogen (N2) 

and other gases. Since a large share of CO2 present, the calorific value of the biogas 

decreases significantly which hinders its application. Therefore, the removal of CO 2 

from biogas to reach a natural gas quality is essential and technologies that are 

performed commercially today are water scrubbing, organic solvent scrubbing, 

pressure swing adsorption, chemical adsorption, membrane separation, etc.  

In water scrubbing, CO2 is absorbed by the water at high pressure as the solubility 

of CO2 in water is much higher than that of CH4 (Nie et al., 2013). In a water 

scrubber, water is introduced at the top of the absorption column while the 

compressed biogas (under 5-10 bar) is injected from the bottom to produce 

countercurrent flow. The column is usually filled with random packing to maximum 

the gas-liquid contact area. In principle, H2S is preseparated since dissolved H2S 

can cause corrosion problems. The upgraded methane can reach a purity of 80-99% 

according to inseparable gases such as H2 and N2. The CH4 loss is normal between 

3% and 5% due to the dissolution in water. The method is cost effective and less 

complicated since water is used as solvent and fewer infrastructures are required 

(Budzianowski et al., 2016).  

The principle of organic solvent scrubbing is the same as that of the water 

scrubbing (Rochelle, 2009). Organic solvents such as methanol, polyethylene glycol 

ethers and propylene carbonate can be used to absorb CO2. Since the solubility of 

CO2 in those organic solvents is much higher than that in water, the volume of the 

absorption column can be decreased significantly. However, heating of the organic 

solvent is needed for regeneration and cooling is operated before being injected to 

the column. 

In pressure swing adsorption process, porous materials with large specific surface 

areas are used to absorb gases under higher pressure. CH4 can be separated from the 

other noninflammable gases since the strength of the physical interaction between 
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gas molecules and adsorbents are different. H2S is removed prior to the absorption 

process for it is considered toxic to adsorption materials. Typical adsorbents are 

activated carbons, silica gels, zeolite, alumina and carbon molecular sieves  

(Petersson and Wellinger, 2009). A shortcoming of this technology is that it has a 

low CH4 recovery.  

Chemical absorption is an efficient technology to remove CO2 from gas mixture. 

Alkali liquor and amines are widely used as chemical solvents and high 

concentration of CH4 can be obtained. Tippayawong and Thanompongchart (2010) 

reported a chemical absorption system designed for small-scale biogas plants. 

Sodium hydroxide, calcium hydroxide and mono-ethanolamine were employed and 

created CH4 enrich fuel with concentrations between 95% and 98%. The non-

regenerable nature of the solvents and requirement of large volume are the issues of 

the technology. 

Membrane technology separates the gases at molecular size. The membranes retain 

CH4 while CO2 and H2S permeate through the membranes under a pressure of 5-20 

bars. Deng and Hägg (2010) tested a CO2-selective polyvinylamine 

/polyvinylalcohol blend membrane with two-stage recycled processes. They found a 

CH4 recovery of 99% with a purity of 98% at a low running cost. With the 

technology development, more advanced designs on membrane gas separation units 

have been accepted and offered by the manufacturers. 

1.4 Objectives and thesis structure 
This PhD project aims to integrate microbial electrochemical technologies with AD 

for process optimization. New concepts for VFAs concentrations online monitoring 

and biogas upgrading have been proposed and investigated by integrating 

innovative bioelectrochemical systems (BES) and AD. In this thesis, new solutions 

to the key problems existing in the AD process are offered which brings 

environmental and economic benefits to both Danish and international societies. 

Specific objectives and thesis structure are introduced below. 

 Demonstrate the feasibility of a microbial desalination cell (MDC) as a simple, 

sensitive and reliable VFAs biosensor. (Paper I) 

 Provide the relationship between current densities and VFAs concentrations un-

der various conditions. (Paper I) 

 Explore the robustness of the system to complex organic matter.  (Paper I) 

 Analyse the system applicability with real AD effluent. (Paper I) 

 Modify the MDC-typed biosensor in architecture and construct a microbial elec-

trolysis cell (MEC) for VFAs concentrations detection. (Paper II) 
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 Establish the correlation between biosensor’s signal outputs and VFAs concen-

trations. (Paper II) 

 Study the influencing parameters and verify the selectivity of the system. (Paper 

II) 

 Demonstrate the feasibility of an innovative BES for biogas upgrading by vary-

ing the biogas flow rates as well as the external voltages. (Paper III) 

 Evaluate the system performance in terms of the current output, chemical  oxygen 

demand (COD) removal efficiency, quality of the outlet gas and energy input.  

(Paper III) 

 Evaluate the systems on environmental and economic aspects. (Paper I, II and 

III) 

In Chapter 2, a state-of-the art overview of the promising BES with two application 

aspects: using BES as biosensors and using BES to upgrade biogas quality has been 

displayed.  

In chapter 3, an innovative biosensor based on the principle of MDC for VFAs 

concentrations monitoring are presented. The mechanism of the process and the 

outcome of the system are explained. Moreover, the effect of varied operational 

conditions on the performance of the sensor was investigated. The detailed 

approaches and results are reported in Paper I. 

In chapter 4, according to the results reported in chapter 3, a more advanced system 

is exhibited for VFA quantification using a MEC. Moreover, the effect of various 

external voltage, VFA composition, and ionic strength on the performance of the 

sensor was investigated. Advantages and perspectives of the method to predict the 

AD process state are discussed. (Paper II) 

In chapter 5, a novel strategy to simultaneously realize biogas upgrading, CO2 

recovery and COD removal in a bioelectrochemical system is reported. It was 

conducted in a microbial electrolytic system for ex-situ biogas upgrading. The 

effect of various biogas flow rates and external applied voltages on the system 

performance was investigated. (Paper III) 
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2 BES technology and the applications 
BES are a promising and versatile technology which can convert the chemical 

energy embedded in organic waste streams into electricity and valuable products by 

microorganisms (Berk and Canfield, 1964). BES share one common principle 

which oxidation happens in anode and reduction happens in cathode. In anode, 

generally, electron donors (mainly soluble organic matter in waste streams) are 

introduced to specific microbial consortia (i.e. exoelectrogens) and electrons are 

released through oxidation (Wang et al., 2015). In addition to a certain amount of 

electrons used for microorganism metabolism, the residual electrons are transferred 

to the anode electrode and then go through an external circuit to the cathode. The 

electrons are then captured by the abiotic or biotic acceptor in cathode. Charge 

balance/neutralization is realized by ionic specie migration. The electrons can be 

trapped directly via the external circuit for electricity generation (microbial fuel 

cells, MFCs) or used for chemical production (microbial electrolysis cells, MECs; 

microbial electrosynthesis, MES), or water desalination (microbial desalination 

cells, MDCs) (Figure 1).  

 

Figure 1. The schematic of a microbial fuel cell (a); microbial electrolysis cell (b); micro-

bial desalination cell (c); and microbial electrosynthesis (d).   
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Based on the principal feature, BES are potentially used in several aspects: 

biosensors for water quality monitoring (e.g., BOD, DO, microbial activities and 

toxicants) and biogas upgrading in biotic and abiotic ways. This chapter targets to 

review and discuss the applications of BES in biosensors and biogas upgrading. 

2.1 Biosensors 

2.1.1 Organic substrate monitoring (BOD, COD, AOC, VFAs) 

Microbial substrate oxidation rate is relevant to and can be interpreted as generated 

current. Under unsaturated condition, any variations in organic contents should be 

directly proportional to the output current. Therefore, BES have a unique ability to 

measure the contaminant concentrations (Lei et al., 2006). What’s more, an 

electrical signal transducer is not required since the direct signal is already the 

easily readable electrical current.  

In recent years various MFC-typed biosensors for BOD concentration determination 

have been demonstrated. Kim et al. (2003) tested a MFC-type sensor to detect BOD 

of wastewater and found a good correlation between the produced coulomb and the 

BOD values up to 206 ppm. The sensor was operated by employing diluted samples 

for over 5 years without any service. However, the detection range was limited and 

the response time was quite long with higher sample strength. Lorenzo et al. (2009) 

simplified the MFC configuration and established a single-chamber MFC with an 

air cathode to measure BOD concentrations. The biosensor output increased 

linearly with the BOD levels. The measuring range was larger with a better oxygen 

supply to the cathode. Peixoto el al. (2011) proposed a compact reactor with an 

anode electrode connected to a rectangular cathode chamber. The sensor was 

submerged in anaerobic wastewater for online and in situ monitoring of 

biodegradable organic content. Accurate and producible results were obtained 

indicating the application in real-time wastewater quality monitoring. Later, 

Lorenzo et al. (2014) reported a small-scale air-cathode MFC fabricated by rapid 

prototyping layer-by-layer 3D printing for continuous water quality monitoring. 

The linear detection range of COD was 3-164 ppm and the response time was as 

short as 2.8 min due to the improvement of mass transport element  via 

miniaturization.  

Apart from BOD determination in wastewater and AD effluents, the monitoring of 

assimilable organic carbon (AOC) in seawater to avoid biofouling of desalination 

plants is another application of the BES-typed biosensor (Quek et al., 2014). In 

oxygenated seawater, trace levels of AOC could still be detected in a 

hexacyanoferrated-adapted MFC biosensor (Cheng et al., 2014). Quek et al. (2014) 

investigated AOC biosensor based on a MEC principle where the anode potential 

was controlled by a potentiostat. The response of the system was rapid, sensitive 
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and showed a linear relationship between trance amounts of acetate and produced 

signals with a high correlation coefficient factor (R
2
>0.99).   

BES could also be used to monitor the AD process stability by detecting VFAs 

concentrations including acetate, propionate and butyrate. To discriminate and 

measure different VFA species (acetate, butyrate and propionate), Kaur et al. (2013) 

evaluated the MFC technology based on two electrochemical methods: coulombic 

efficiency (CE) and cyclic voltammetry (CV). The correlation between VFAs levels 

and coulomb generation exhibited good linearity. However, CE was not applicable 

since it gave a slow response of longer than 24 h when the substrate concentration 

exceeded 20 mg/L. By using CV, distinctive shapes of specific VFA along with the 

quantification could be obtained at a consistent scan rate with a rapid response time 

of 2 min. And from the oxidation peak linear correlations between VFA 

concentration and produced peak current were found. Nevertheless, the detection 

range was from 5 to 40 mg/L and was quite limited while the normal VFA 

concentrations in the AD reactor could reach several grams per liter.  What’s more, 

though the anode bacteria has been acclimated prior of its deployment, the bacterial 

communities might be influenced and even lose its function during long-term 

exposure with actual AD effluents. To protect the pre-acclimated microbial 

community from the sample matrix, Kaur et al. (2014) improved their system by 

modifying the anode with both natural polymer and polypyrrole to immobilize 

anode bacteria. Compared to the system performance with an unmodified electrode, 

the voltage output was improved, start-up time was reduced, and the system showed 

better stability and repeatability with the modified anodes. The detection range was 

widened up to 60 mg/L which still required further improvement. Since a real 

digestion effluent contains different microbial groups and various organic 

contaminants, the biofilm may be renewed continuously and adapt to other 

substrates. The biosensor behaviour may be affected in a long-term operation. To 

address the aforesaid issues, a MDC-based system was established for VFA 

measurement (Jin et al., 2015). Artificial wastewater was dosed in the middle 

chamber and VFA could penetrate to the anode chamber with the utilization of ion-

selective membrane which led to a lack of direct contact between biofilm and the 

sample matrix. To simplify the structure and reduce the capital cost, a MEC-typed 

biosensor was developed to monitor VFAs concentrations (Jin et al., 2016). The 

response time was short (1 h) and linear relationships between VFA levels and 

current densities were found in the range of 5 to 100 mM.  
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2.1.2 Toxicant detection 

If BES function at saturated fuel values and other parameters such as pH, 

temperature and conductivity are constant, then undesired variations in the current 

output can be explained by the presence of toxicants in the feeding solution. The 

used of MFC for toxic compound detection has been demonstrated recently. The 

principle is that the biosensor is set at a fixed current and changes on the current are 

recorded with the addition of toxic compounds. Stein et al. (2012b) investigated the 

effect of membrane type, current and potential on the response of the MFC-typed 

biosensor. They found the type of membrane (anion, cation, monovalent cation 

exchange membranes and bipolar membrane) seemed unlikely to affect the 

sensitivity of the sensor for nickel detection. While both a higher current density 

and overpotential could lead to a higher sensitivity. Afterwards, Stein et al. (2012a) 

established a MFC-based biosensor for sodium dodecyl sulphate (SDS) detection. 

They investigated the effect of different external resistor values and anode potential 

on sensor sensitivity and the time required by the bacteria to recover. They found a 

small resistance led to a more sensitive sensor while a large resistance favoured a 

short recovery time. High sensitivity and longer recover time was observed with a 

high current (>0.5 mA) or anode potential (>-0.4 V) control. The relationship 

between signal outputs and SDS values has not been discussed yet. Shen et al. 

(2013) developed a single-chamber air-cathode reactor for fast monitoring of the 

Cu(II) toxicity. They discovered that the sensor sensitivity could be affected by 

biofilm characteristics such as density, porosity and extracellular polymeric 

substances which were controlled by flow rate and nitrogen sparging. The 

sensitivity of MFC-based toxicity sensor was also affected by the mass transfer rate 

and control mode. Jiang et al. (2015) observed better sensitivity with flow-through 

anode and controlled anode potential while the flow-by anode and constant external 

resistance contributed little to the sensitivity. Rasmussen and Minteer (2015) 

developed a MFC-based sensor for long-term arsenic monitoring. The power output 

decreased with the presence of arsenate or arsenite warning whether the 

concentration was too high. Current output deceased linearly along with the 

increasing arsenic concentrations and the detection limit for arsenate and arsenite 

were 46 μM and 4.4 μM, respectively.  

The most important role of MFC-based sensor is bacteria which oxidize a carbon 

source, release the electrons and translate directly into an electrical signal. Any 

changes in water quality can be reflected by the signal produced by bacteria. 

Therefore, MFC can be used as biosensors to detect compounds such as toxic 

organic compounds and heavy metals which could inhibit the microbial metabolic 

activity. 
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2.1.3 Microbial activity and DO assessment 

Since the produced current by BES directly reflects the metabolic activity of the 

exoelectrogens at the anode, BES have the potential to provide useful information 

on microbial respiration rate. Based on the correlation between microbial 

respiration and contaminant reduction, Tront et al. (2008) developed a MFC-

biosensor to monitor analyte concentrations and related microbial activity. The 

biosensor inoculated with Geobacter sulfurreducens were operated with media at 

varying acetate concentrations. A correlation between current outputs (0-0.30 mA) 

and acetate levels (0-2.3 mM) was established. Therefore, the respiration rate of G. 

sulfurreducens was also expressed as the electric current. In an interesting work, a 

submersible MFC was proposed to monitor microbial activity and BOD in 

groundwater (Zhang and Angelidaki, 2011). Fresh anode without biofilm was 

installed for microbial activity measurement, while biofilm enriched anode was 

used for BOD content quantification. The active microorganism concentrations 

were expressed as microbial adenosine-triphosphate (ATP) concentrations since 

they are energy carrying molecules in all living cells. With biofilm-colonized anode, 

linear relationship between current outputs and BOD up to 250 mg/L was observed. 

By switching the anode, current density increased linearly from 0.6 to 12.4 mA/m
2
 

along with the active microorganism concentrations from 0 to 6.52 nmol-ATP/L. 

Then the biosensor was tested with real contaminated groundwater to verify its 

practicability. 

Since in MFCs electrons shuttled from anode substrate oxidation are all accepted by 

oxygen at cathode, MFCs can also be used as a DO sensor. Zhang and Angelidaki 

(2012) presented a submersible signal-chamber MFC to monitor DO in situ. When 

constant substrate concentrations were employed in anode, the biosensor gave 

different responses in current outputs at varying DO levels. With an external 

resistance of 1000 Ω, the current densities increased proportionally to DO levels (0-

8.8 mg/L).   

Overall, the practical application of BES as biosensors to monitor organic substrate 

concentrations, toxicants, microbial activity and DO is quite promising. It is a 

prerequisite for bioprocess real-time monitoring to better understand and improve 

the process. 
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2.2 Biogas upgrading 
Methane produced from AD is the only valuable gas and biogas upgrading is 

essential to improve the heating value and promote the application. In BES, biogas 

upgrading can be realized by bioelectrochemical conversion of CO2 to methane or 

physicochemical CO2 capture and separation.   

2.2.1 Bioelectrochemical conversion 

Recently, many researches demonstrated hydrogenotrophic methanogens could be 

enriched in bioelectrochemical reactors, CO2 conversion to CH4 was realized 

according to Equation 3 when sufficient H2 was supplied. Villano et al. (2010) 

established a MEC with a microbial biocathode. Wastewater was oxidized in anode 

to release CO2 and electrons which were converted to the cathode containing 

hydrogenophilic methangenic culture. When cathode potential was more negative 

than -650 mV vs. SHE, CH4 was produced from CO2 reduction. Apart from via 

abiotically produced hydrogen gas, the authors claimed that CH4 generation could 

also be realized by direct extracellular electron transfer (Equation 5) which was 

highly dependent on the set cathode potential. And the CH4 production rate 

increased along with the electrode potential became more negative up to -900 mV 

vs. SHE. Based on the results, the system can be operated with AD in series while 

the effluent of AD can be polished by the anode and biogas can be introduced into 

the cathode for bioelectrochemical reduction of CO2 to CH4. 

𝐶𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻4 +  2𝐻2𝑂                                                                        (5) 

The concept of integration of AD and a CH4 producing MEC was proved by Villano 

et al. (2013) in the laboratory. The bioanode was poised at +0.200 V vs. SHE and a 

diluted stream containing acetate was introduced into anode to mimic low-strength 

AD effluent while a gaseous stream containing 30% CO2 was bubbled in the 

biocathode to simulate the biogas derived from AD. At the anode, acetate removal 

efficiency reached 94% and the effluent COD concentration remained around 38±6 

mg/L. At the cathode, when pH was controlled around 8.2, CH4 was the only 

measured end-product indicating H2 and/or electric current driven reduction of CO2. 

Apart from high COD removal and efficient conversion of CO2, other merits such 

as very low biomass growth and ammonium migration to the cathode make the 

system very promising. 

Xu et al. (2014) proposed a method for bioelectrochemical removal of CO2 which 

cooperated with AD for biogas upgrading. In the ex-situ system, biogas generation 

from a digester bottle was bubbled into a biocathode, while in the in-situ one, the 

electrode was inserted into the digester bottle where biogas production and 

upgrading were achieved simultaneously. The inlet CO2 content was around 30% 
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and the outlet CO2 content in the ex-situ system was kept below 10% while the in-

situ system had a better performance with faster gas-liquid transfer rate. An 

interesting thing in the systems was that the increased CH4 production was 

consistently lower than the total removed CO2. The authors concluded that apart 

from reduction of CO2 by electro- and/or hydrogenotrophic methanogenesis, CO2 

might be absorbed by the alkali produced in the cathode.  

Recently, a process coupling of MEC and AD for in situ converting CO2 to CH4 has 

been proposed (Bo et al., 2014). Anode was inserted into a stainless steel anaerobic 

digested reactor which served as cathode. Outlet CH4 content from the coupling 

system exceeded 98% and CH4 yield was increased 2.3-fold that of single AD 

process. At the anode, hydrogenotrophic methanogens were dominant and their 

electrochemical activity was demonstrated by clear oxidation peaks via CV 

technology. The authors concluded the hydrogenotrophic methanogens are 

electromethanogens. 

In BES for biogas upgrading, methane production mechanism in biocathodes 

remains unclear. A process called ‘electromethanogenesis’ was proposed which 

electromethanogens can directly accept electrons from cathode electrodes for CO2 

reduction (Blasco-Gómez et al., 2017). In another process, hydrogenotrophic 

methanogens remove CO2 by using H2 generated from water electrolysis in the 

cathode. And both of these contribute to the CO2 removal. 

2.2.2 Physicochemical CO2 capture and separation 

The chemical adsorption of CO2 is an efficient and low energy consumption way 

for biogas upgrading. In MECs with an external voltage, hydroxyl ions can be 

produced via water split in the cathode compartment which can drive CO2 

adsorption. A MEC system with biocathode has been established and the CO2 

removal mechanisms have been investigated by Zeppilli et al.  (2016). A gas 

mixture (30% CO2 and 70% N2) to simulate the raw biogas from AD process was 

bubbled into the cathode. Based on the mass balance calculation of the inorganic 

carbon, the authors concluded CO2 reduction to CH4 by hydrogenotrophic 

methanogens accounted for 4% and 15% with AEM and PEM, respectively of the 

total CO2 removal. CO2 removal contributed by alkalinity adsorption was 94% and 

73% of the overall values with AEM and PEM, respectively. The study highlighted 

the main mechanism of CO2 removal was its adsorption as bicarnonate ion with 

high concentration in cathode due to alkalinity generation. Later, they studied the 

effect of real effluents from two-phase AD on CO2 removal (Zeppilli et al., 2017). 

A MEC with PEM was used and the anode was fed with real effluents from a pilot-

scale two-phase AD while the cathode was fed by a CO2-rich gas phase. Fed with 

fermentate-digestate mixture, the COD removal was 360±41 mg/d (by taking into 

account sCOD only) and the removal efficiency reached 28±3%. CE was high at 

119±28% and the current transferred to cathode to reduce the CO2 which 
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contributed to CO2 removal of 3.5±0.9 mmol C/d. Since alkalinity generation from 

water electrolysis, CO2 absorption and dissolution in cathodic liquid caused CO2 

removal of 25±3 mmol C/d. Coupling AD and MEC as a post treatment has many 

merits such as low microbial growth, low-strength COD removal, CO2 removal, 

ammonium removal and comparable energy consumption. 

Except water electrolysis in MEC cathode, alkali can also be produced in employed 

bipolar membranes (BPM) via water dissociation with supplied voltage. Chen et al. 

(2012) established a bipolar membrane electrodialysis (BPMED)-MFC to produce 

alkali on site for biogas upgrading. Powered by a MFC, the BPMED produced 

alkali via water dissociation in the BPM and pH in the alkali generation chamber 

reached 9.8. With 0.5 V applied voltage, the produced alkali solution had a 

maximum pH of 11.6 which reduced CO2 content and upgraded CH4 to 100%. 

BPMED has quite low investment and operation cost while alkali production on site 

will cut the transportation cost which is very appealing (Chen et al., 2013). 

Recently, in a novel BES system, alkali and acid were produced and used in situ for 

biogas upgrading and CO2 recovery (Paper III) (Jin et al., 2017). CO2 was removed 

from the synthetic biogas via alkalinity adsorption in cathode and CH4 content 

could reach as high as 97.0±0.2%. Without electromethanogens, produced H2 was 

present in the outlet mixture which enhanced the Wobbe index.   

Overall, these reports indicate that employing BES as a post treatment unit to 

simultaneously recover electric energy from AD effluent, generate a better quality 

final effluent, enrich CH4 and remove CO2 of an AD biogas is quite appealing.   

  



17 

3 Realizing VFAs monitoring in a 

microbial desalination cell 

3.1 Main scientific challenges related to VFAs 

monitoring in BES 
VFAs monitoring in AD has been considered as a valid solution for the AD process 

control. During the AD process, imbalance triggered by organic overloading and 

ammonia inhibition can cause VFAs accumulation and then pH decrease 

(Kretzschmar et al., 2015). Therefore, the AD process state can be evaluated by 

VFAs levels so that swift solutions can be proposed when a problem occurs.  

Recently, there has been accelerating interest in BES-based biosensors. BES-based 

biosensor has been demonstrated its feasibility for organic substrate determination, 

such as COD, AOC and VFAs. All of them share one common principle (Sun et al., 

2015a). Organic substrates are oxidized by exoelectrogens enriched in the anode.  

Electrons are released and transfer from the anode to the cathode via an external 

circuit. In the cathode, electrons are accepted by the final electron acceptor which is 

oxygen usually (Wang et al., 2015). Since the amount of transferred electrons is 

dependent on the microbial respiration and proportional to the amount of oxidized 

organic material, the current/voltage generated from BES should be proportional to 

the fuel concentration when the anode biofilm is in steady state.  

In most researches on BES-based biosensors, acetate was commonly used as the 

model substrate on behalf of COD and AOC (Di Lorenzo et al., 2014; Chouler and 

Di Lorenzo, 2015). In general, samples were dosed in the anode which could cause 

a series of problems. First, pre-acclimated biofilm could be influenced by 

microorganisms, organic matter, toxicants present in the samples which could affect 

the system performance. Secondly, since substrate was directly available for the 

microorganisms, the saturated concentration was usually around several dozens 

milligram per liter. The detection range was quite limited while VFA 

concentrations in real AD effluent could always reach several grams per liter 

(Banks et al., 2011; Madsen et al., 2011; Kaur et al., 2013). And sample dilution 

would make the technology more complex and unpractical.  

3.2 An innovative concept to overcome technical 

issues on VFAs monitoring in BES 
In order to overcome the technical issues associated with VFAs monitoring in BES, 

a microbial desalination cell (MDC) has been developed in Paper I (Figure 2). The 

MDC consisted of three chambers which were anode, middle and cathode chamber. 

They were separated by an AEM and cation exchange membrane (CEM), 
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respectively. Samples containing various VFAs concentrations were measured in 

the middle chamber. The hypothesis was that VFAs in their ionized form could 

diffuse through the AEM to the anode where they were oxidized by exoelectrogens 

attached on the anode electrode. Electricity was produced the current signal might 

be proportional to the VFAs concentrations. What’s more, complex organic matter 

such as protein and lipids would be retained by the AEM. MDC could be used for 

VFAs detection rather than a measurement of total organic matter.  

The experiment aimed to seek a correlation between VFAs concentrations and the 

current output from the biosensor; investigate the effect of ionic strength and 

external resistance on the biosensor’s performance; verify the reliability of the 

biosensor with the presence of other organic matter in samples and real AD 

effluents.   

   
Figure 2. Sensor prototype (a) and schematic diagram (b). A, the anode chamber; M, the 

middle chamber; C, the cathode chamber; AEM, the anion exchange membrane; CEM, the 

cation exchange membrane. (Paper I) 

 

The working volume of each chamber was 250 mL. The anode and cathode 

chamber was filled with buffer solution (Kvesitadze et al., 2012) and NaCl solution, 

respectively. Instead of releasing it in the anode in other studies, synthetic digestate 

with various VFAs concentrations were dosed in the middle chamber. Synthetic 

digestate contained acetate, propionate, butyrate and formate at a concentration 

ratio of 10:2:2:1 to mimic the actual AD effluent (Hollinshead et al., 2014). A 

resistance was connected in the system and the voltage across it was monitored 

using a digital multimeter with 30 min internals. The anode and middle chamber 

was performed in the anaerobic condition while the cathode was aerated for oxygen 

reduction. 
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3.3 Effect of VFAs concentrations on the system 

performance 
Outcomes of this study showed that the current output increased along with VFAs 

concentrations (Figure 3). When VFAs concentrations were low (1 and 5 mM), the 

mass transfer rate driven by concentration gradient to the biofilm surface was far 

lower than the rate of substrate (VFAs) consumption which limited the current 

output (Quek et al., 2015). When VFAs concentrations were high (100 and 120 

mM), the mass transfer rate increased along with the bulk VFAs concentrations and 

the maximum current was soon achieved within 2 hours.  

VFAs diffused through the AEM and accumulated in the anode. When the biosensor 

was operated for 5 hours, the amount of VFAs in the anode increased positively 

along with the bulk VFAs in the middle chamber. The linear correlation agreed well 

with Fick’s first law (𝐽 = −𝐷
𝑑𝜑

𝑑𝑥
). Additionally, the current outputs observed at 5 h 

were plotted against VFAs levels and two linear relationships with good correlation 

coefficient factors were obtained (Figure 4). In the first stage with VFAs 

concentrations from 1 to 30 mM, the current density increased linearly from 

0.04±0.01 to 8.50±0.32 mA/m
2
 with a steep slope. In the second stage, the current 

density grew from 8.50±0.32 to 10.80±0.72 mA/m
2
 with VFAs concentrations 

ranged from 30 to 120 mM. Substrate was the limiting factor in the first stage while 

other parameters (e.g. architecture, material, conductivity, microorganisms et al.) 

played an important role in the current output in the second stage (Rismani-Yazdi et 

al., 2011; Lefebvre et al., 2012).  

 

Figure 3. Typical current generation from the biosensor during the batch mode experiment 

while a 1000 Ω external resistance was used to connect the anode and cathode.  (Paper I)  
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Figure 4. The relationship between current density and VFAs concentrations at 5 h. (Pa-

per I) 

 

3.4 Effect of varied operational conditions on the 

system performance 
To study the effect of ionic strength, certain amounts of salt were added into the 

samples. When the increment of ionic strength was less than 100%, the increased 

ionic strength was advantageous for the electricity production. The increased con-

ductivity facilitated proton transfer and therefore decreased the internal resistance 

(Lefebvre et al., 2012). However, when the ionic strength increased further, more 

inorganic anions existed and penetrated through the AEM. The competition be-

tween inorganic anions and ionized VFAs was intense and less VFAs diffused to 

the anode. The current density decreased when the increment of conductivity was 

larger than 150%.  

Notably, the biosensor showed different current outputs with different external re-

sistances. External resistance could affect the electron flow rate and microbial 

communities (Rismani-Yazdi et al., 2011; Jung and Regan, 2011). Lower external 

resistances resulted in higher current outputs. A higher current output was an evi-

dence of a faster microbial respiration rate and therefore more VFAs consumption. 

A highly sensitive biosensor can be constructed with a low external resistance since 

the signals will be amplified. However, large deviations in current outputs were 

observed with low external resistances. This can be explained by the relatively high 

internal resistance which can be easily influenced by the operational conditions and 

sample quality. 

In other biosensor studies, sample measurement was usually conducted in the anode. 

The current output from the BES-based biosensor was proportional to all degrada-

ble substrates concentrations (Madsen et al., 2011; Kim et al., 2003; Zhang and An-

gelidaki, 2011). In the MDC-typed biosensor, the ion-selective membrane allowed 
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ionized VFAs to enter into the anode while other organic matter such as protein and 

lipids were retained. Apart from the interference from various organic matter, real 

AD effluents are more complex (Fradler et al., 2014). In tests with real AD efflu-

ents, results calculated from the biosensor agreed well with those measured by GC 

regardless of sample quality and reactor operational parameters.  The MDC-typed 

biosensor has been proved to be robust and reliable.  
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4 Improving VFAs monitoring in a 

microbial electrolysis cell 

4.1 A novel concept describing VFAs detection in 

MEC 
In chapter 3, MDC has been demonstrated its feasibility as a VFA biosensor. How-

ever, the MDC-based VFA biosensor consists of three chambers and two pieces of 

membrane which increases the capital cost to some extent. To reduce the capital 

cost, a simple microbial electrolysis cell (MEC) was constructed in Paper II (Figure 

5) for fast VFAs monitoring. The MEC had two chambers (i.e. anode and cathode) 

which were separated by a piece of AEM. Apart from a 10 Ω resistance, a power 

supply was connected in the system to provide an additional voltage to the circuit. 

Samples with varied VFAs concentrations were quantified in the cathode chamber. 

The hypothesis was that, besides diffusion driven by concentration gradient, ionized 

VFAs could also migrate under the external voltage through the AEM to the anode 

where they were microbially oxidized and converted into current signals. The VFAs 

monitoring process was accelerated and hydrogen was produced in the cathode 

from electrolysis as byproduct during the process. The purpose of the experiment 

was to build relationships between VFAs concentrations and the current output 

from the MEC-typed biosensor. Moreover, different operational parameters such as 

the external voltage, ionic strength and VFA composition ratio were investigated. 

In order to verify the robustness of the biosensor, interruptions such as the presence 

of other organic matter, anode exposure to oxygen and samples with low pH were 

introduced to the reactor. Finally, the biosensor performance with real effluents 

from a lab-scale AD reactor has been evaluated.  

 

Figure 5. Prototype (a) and schematic diagram (b) of the bio-electrolytic sensor. (Paper II) 

  

a b 
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4.2 Effect of VFAs concentrations on the system 

performance 
Under operating conditions with 0.5 V external voltage and a 5:1:1concentration 

ratio of acetate, propionate and butyrate, the current density from the MEC-typed 

biosensor increased along with VFAs concentrations with a range of 5 to 120 mM 

(Figure 6a). Under each concentration, the current density rose rapidly along with 

the time and a platform was observed without obvious increase after 4 hours (data 

was not shown). Equilibrium between VFAs transportation and microbial consump-

tion was reached within 4 hours. Moreover, no matter from low to high concentra-

tions of VFAs or vice versa, the current density was independent from the sequence 

of measurement and showed a good reproducibility. When VFAs were removed 

from the sample, little current density was observed. After a period of starvation, 

the biosensor responded immediately once VFAs were introduced into the system. 

When the operation time was 1 hour, the current density observed (0.03±0.01 to 

2.43±0.12 A/m
2
) increased linearly with VFAs concentrations (5 to 100 mM).   

 

Figure 6. Typical current density generation along with time from the biosensor (a) and 

the relationship between current density generated at 1 h and initial VFA levels in the art i-

ficial AD effluent (b). (Paper II) 
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4.3 Effect of varied operational conditions on the 

system performance 
The system was influenced by external voltage, VFA concentration ratio and ionic 

strength. The current density increased with the increasing external voltage. The 

applied voltage induced fast electron transfer kinetic and compensated the electrode 

overpotential, which enhanced VFAs consumption by anode respiring bacteria 

(ARB) (Lee et al., 2009). The difference in concentrations between the bulk VFAs 

in the cathode and those in the anode was increased. Thus, more VFAs transported 

to the anode and consumed by the ARB with the assistance of external power, and 

higher current density was obtained. VFAs composition influenced the anode mi-

crobial community, the anion transportation across the AEM (Jung and Regan, 

2011), as well as the signal outputs. Results showed that the proportion of acetate 

had an important impact on the biosensor. Acetate is the favorable substrate for 

most of ARB such as Geobacter while propionate and butyrate may need to be first 

degraded to acetate with the help of fermentative bacteria (Yang et al., 2015).  Be-

sides, the transportation rate of acetate through the AEM was faster than those of 

propionate and butyrate (Zhang and Angelidaki, 2015). When the proportion of ace-

tate was above 70%, the influence of VFAs composition on the biosensor was lim-

ited. The increased ionic strength within a certain range was advantageous for the 

bioelectricity production. High ionic strength benefited the system by reducing the 

internal resistance (Liu et al., 2005). However, when the conductivity increment 

was larger than 150%, no further increase in the current density was observed indi-

cating the saturation of the system. When a certain amount of VFAs were available 

for the microorganism and substrate was not the limiting factor, the operational pa-

rameters were dominant in the electricity production.  

Prior to the installation of MEC, enrichment of biofilm with VFAs was conducted 

to establish specific electrogenic functionality. Apart from bacterial community 

acclimation, the overall selectivity of the biosensor was improved by using an AEM 

which allowed selective negative-charged ions transport across the membrane. The 

AEM allowed VFAs to transport while ionisable species (glucose, cellulose, protein 

and lipids) were retained. In real AD effluent, organic contents such as glucose, 

long-chain fatty acids, and amino acids rather than short-chain VFAs take up a part. 

Therefore, in our systems, the interference from other organic matter was eliminat-

ed. Moreover, our systems were robust against interruptions such as temporary an-

ode exposure to oxygen injection and samples with low pH.  

In tests with real effluents from a lab-scale AD reactor, the biosensor showed relia-

ble results for VFA monitoring compared with that measured by GC (Figure 7). 

Though VFAs concentrations fluctuated during the monitoring process, the biosen-

sor could easily handle samples with a wide concentration range and exhibit accu-

rate results. 
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Figure 7. Monitoring test of a lab-scale CSTR. (Paper II) 

 

4.4 Strengths and outlook of the technology 
The merits of the biosensor are obvious. The biosensor isolated the biofilm from 

samples which could protect the microbial community from inocula and inhibitors 

in the samples. The biosensor could distinguish VFAs, rather than conduct a meas-

urement of all degradable organic matter. Moreover, the detection range was wid-

ened significantly that sample dilution was not required. The detection time was 

quite short (1 hour) compared with that in other studies (Kaur et al., 2013). During 

the monitoring process, hydrogen (H2) was produced from water hydrolysis. The 

produced H2 could contribute for the energy needs for operating the biosensor. And 

a self-sustaining system can be pursued.     

Integrating BES with AD in other applications such as AD effluent polishing, elec-

tricity generation and biogas quality upgrading, the scale up of BES technology is 

certainly needed for industrial applications. However, the major challenge for sys-

tem scale up is that the maximum power density generated by a BES and the per-

formance of the reactor is not directly proportional to the size of the reactor  (Du et 

al., 2007). In contrast, the down scale or even miniaturization of BES-based biosen-

sor should be pursued. A smaller size reactor could make a better performance and 

shorter response time which are limited by the mass transfer to the biofilm. There-

fore, the technology will be less costly and more practical. 

  



27 

5 Realizing CO2 capture and separation 

from biogas in a novel BES  

5.1 A novel BES for biogas upgrading  
Energy crisis and climate change are global issues in these days. Renewable energy 

resources, which are recognized as clean sources of energy, receive great interest 

(Nematollahi et al., 2016).  Biogas is a clean renewable energy as an alternative of 

fossil fuels and the production process is carbon-neutral. The utilization of biogas 

generated from biomass degradation contributes to achieve a sustainable bioenergy 

ecosystem for countries (Sun et al., 2015a). Biogas consists of mainly methane 

(CH4) and carbon dioxide (CO2), as well as small amounts of ammonia (NH3), 

hydrogen sulphide (H2S), nitrogen (N2), oxygen (O2), hydrogen (H2) and carbon 

monoxide (CO) (Sun et al., 2015). Since the presence of impurities, especial CO2 

which usually accounts for 30-40%, the heating value of raw biogas is quite low 

which limits its industrial application (Andriani et al., 2014). Biogas upgrading is 

necessary and the upgraded biogas could be injected into the natural gas grids or 

compressed for vehicles (Budzianowski et al., 2016). In the current work, a novel 

microbial electrolytic capture, separation and regeneration cell (MESC) was 

proposed for biogas upgrading. The system consisted of three chambers which were 

anode, regeneration and cathode chamber. They were separated by a BPM and an 

AEM, respectively (Figure 8).   

In the anode, organic matter were microbial oxidized to release electrons, protons 

and CO2. Electrons transferred via external circuit to the cathode. With an external 

voltage, electrons and protons were chemically reduced; H2 evolved and alkaline 

generated in the cathode. Water dissociation happened inside the BPM and H
+
 was 

produced in the regeneration chamber. The hypothesis was that raw biogas was 

introduced into the cathode chamber via a diffuser. Then CO2 was absorbed by 

alkaline to form HCO3
-
 and CO3

2-
. These negative charged species could pass 

through the AEM to maintain charge balance or driven by concentration gradient. 

In the regeneration chamber, produced H
+
 from water splitting reacted with HCO3

-
 

and CO3
2-

 and regenerated CO2. The experiment mainly studied the system 

performance with regard to enriched methane concentrations, COD removal 

efficiency and current output under different external voltage and biogas flow rate. 
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Figure 8. The schematic diagram of the MESC reactor. BPM, bipolar membrane; AEM, 

anion exchange membrane (Paper III)  

 

5.2 The MESC reactor performance 
Under operating conditions with 1.2 V external voltage and 19.6 mL/h gas flow rate, 

outcomes of the system was shown in Figure 9. A maximum current density of 1.7 

A/m
2
 was produced during the process. And COD decreased from 2341±320 to 

41.2±12 mg/L with removal efficiency at 98.2%. The current output was mainly 

influenced by the substrate concentrations and exoelectrogens (Lu et al., 2015). The 

lowest pH in the regeneration chamber and the highest pH in the cathode chamber 

reached 1.34±0.04 and 9.19±0.11, respectively. Acid and alkali were produced in 

the regeneration and cathode chamber, respectively. The highest conductivity in the 

regeneration chamber was 22.79±0.75 mS/cm which was mainly contributed by H
+
 

produced via the BPM (Cao et al., 2009). Alkali in the cathode was used to absorb 

CO2 in situ. During the whole process, notably, the portion of CH4 was higher than 

90% and even up to 97.0±1.3%. The minimum portion of CO2 reached 0.5±0.2%. 

The diminished CO2 was mainly converted to (bi)carbonate in the cathode which 

accounted for 37% of the total initial CO2. The (bi)carbonate in the regeneration 

chamber shared 12% of the total initial CO2 and the regenerated CO2 made up a 

small percentage of the total (only 2%). Therefore, acid and alkali production, COD 

removal, current production and biogas upgrading were realized simultaneously in a 

single reactor. 
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Figure 9. MESC performance at 19.6 mL/h gas flow rate with 1.2 V and control 

experiement. A, anode chamber; R, regeneration chamber; C, cathode chamber. The 

current density output and COD changes (a); pH profiles in three chambers (b); 

conductivity profiles in three chambers (c); methane and carbon dioxide contents in the 

outlet gas (d). (Paper III) 

  

5.3 The effect of operational conditions on system 

performance  
The system was influenced by external voltage and biogas flow rate. When the 

applied voltage was changed from 0, 1.0 to 1.2 V at around 19.6 mL/h gas flow rate, 

the highest pH in the cathode were 6.44±0.05, 7.37±0.12 and 9.19±0.11, 

respectively. The maximum CH4 content of the output gas increased from 

85.5±0.3%, 89.2±0.4% to 97.0±0.2%. The applied voltage induced fast electron 

transfer kinetic and compensated the electrode overpotential, which enhanced the 

substrate consumption by ARB (Lee et al., 2009) and favorite the electrolysis 

process. The current density, cathodic pH and upgrading performance increased 

with the increasing external voltage supply. When the gas flow rate was around 28 

mL/h, CH4 contents were not improved further with a higher voltage at 1.4 V. Other 

factors limited the system performance.  

When the external voltage was fixed at 1.2 V, the gas flow rate changed from 13.4, 

19.6, 25.3 to 27.7 mL/h. A low gas flow rate (13.4 mL/h) resulted in relative low 
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current densities. Raw biogas introduction to the catholyte functioned as mixing 

and affected H2 bubble release and mass transfer. A low COD removal efficiency 

(78.7±3.5%) was found which was affected by the reduction process in the cathode. 

When gas flow rate was higher than 13.4 mL/h, the current output and COD 

removal exhibited similar results along with the operation time. With the gas flow 

rate increasing, cathodic pH declined obviously due to the more CO2 absorption in 

the alkaline catholyte. However, the upgrading performance decreased and the 

portion of CH4 dropped to 86.0±0.3% at 27.7 mL/h gas low rate. Low gas flow rate 

resulted in a small treatment capacity while high gas flow rate decreased the purity 

of CH4. Therefore, a proper feeding gas flow rate is crucial to improve the system 

performance. 

In a continuous mode, the system was operated for 40 days without salt solution 

switch. For the whole period, CH4 content kept above 88% with a maximum value 

at 97.5±0.74% (Figure 10). CO2 content was kept below 9%. The adsorption 

capacity was huge since ionized HCO3
-
 and CO3

2-
 was transferred to the 

regeneration chamber and separated from the system as CO2. To obtain the natural 

gas quality, a two-stage process which may potential lead to further biogas 

purification and high process efficiency could be investigated.  

 

Figure 10. Methane, hydrogen and carbon dioxide contents in the outlet gas in the contin-

uous mode. (Paper III)  
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5.4 Energy consumption and capital cost  
Energy consumption derived from peristaltic pumps and power source. For the 

batch experiment in Figure 9, energy consumptions from pumps were 7×10
-5

 kWh 

which was quite small in lab scale. Energy input from the external power supply 

was 4.8×10
-4

 kWh. Therefore, the energy consumption for biogas upgrading was 

around 0.17 kWh/m
3
 raw biogas. The electrical energy consumed in water 

scrubbing is around 0.2-0.32 kWh/Nm
3
 raw gas, and 0.15-0.22 kWh/Nm

3
 with 

membrane technology (Sun et al., 2015; Bauer et al., 2013). Apart from the 

dominant methane, H2 was produced during the process and collected at the end of 

the batch which could compensate part of the energy consumption.  

 At present, it is still very challenging to scale up the technology for industrial 

application since the capital cost is a big barrier. The cost of a pilot scale reactor 

can be estimated around several thousand euros per m
3
 according to Table 1. A 

pilot MEC plant with 100 L in size treating domestic wastewater in the UK cost 

equivalent around 2800 €/m
3 

(Heidrich et al., 2014). Keeping cost down requires 

choosing better and cheaper materials and producing more valuable products rather 

than sole electricity such as hydrogen.  

  

Table 1. Construction material price list for BES plants 

Category USD EUR 

Polycarbonate Reactor (/m
3
) 5000 4400 

Bipolar membrane (/m
2
) 1300 1144 

Cation /Anion exchange membrane (/m
2
) 120 105.6 

Plain carbon cloth anode (/m
2
) 320 281.6 

Pt-catalyst cathode (/m
2
) 600 528 
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6 Conclusions  
This thesis mainly focused on the optimization of AD process with BES technology. 

The AD process state was evaluated by VFAs monitoring in MDC/MEC-typed bio-

sensors. Biogas upgrading and COD removal were conducted in a MESC. The main 

findings are summarized:   

 The feasibility of MDC technology as a simple and reliable VFAs biosensor has 

been proved. Two linear correlations between current density and VFA levels 

were obtained in the system. The VFA detection range (1 to 120 mM) was much 

broader than that of other studies. The biosensor had no response to protein and 

lipids suggesting its selectivity. The response time was 5 h which is adequate for 

frequent VFA monitoring in AD reactors.  

 The MEC technology has been demonstrated feasible as a VFAs biosensor. The 

relationship between current density and VFA concentrations up to 100 mM was 

linear. The external voltage, VFA composition and ionic strength affected the 

sensor performance. However, linear relationships between current density and 

VFA levels were always observed. H2 was collected during the process which 

could compensate the energy consumption. The VFAs transportation was accel-

erated by an external voltage and a short response time (1 h) was obtained.  

 In MDC/MEC-typed biosensors, other organic matter (glucose, protein, lipids) 

rather than VFAs was retained by the AEM and their interference was eliminated. 

When explored with real AD effluent, the results from MDC/MEC-typed biosen-

sors were reliable because no significant differences between results from bio-

sensors and GC were observed.   

 The proof of concept of the MESC for simultaneous CO2 capture, separation and 

regeneration, biogas upgrading and COD removal was demonstrated. At the op-

timum conditions, COD removal efficiency reached 98.2±2.6% and the maxi-

mum methane content was up to 97.0±0.2%. Energy consumption for biogas up-

grading was around 0.17 kWh/m
3
 raw biogas. H2 was detected which could com-

pensate for part of the energy consumption. 

 BES assisted by exoelectrogenic microorganisms as biocatalysts are quite 

environmental friendly since no expensive or toxic mediators are employed. 

With value-added products such as hydrogen, methane and hydrocarbons, the 

system could be energy self-sufficient which is very promising. However, the 

capital cost is one of barriers for scale-up and commercialization of BES. 
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7 Future Perspectives 
In this thesis, the novel concept of using BES to monitor VFAs concentrations or 

upgrade biogas has been proposed. Influencing parameters have been investigated 

and satisfied results have been achieved. However, further improvement and modi-

fication might be still needed.   

 In the MDC-based VFA biosensor, energy consumption derived from aeration 

which can be removed by employing air-cathode. The feasibility of the new ar-

chitecture as VFAs biosensor should be verified and the effect of operation pa-

rameters such as conductivity, temperature, external resistance on the system 

performance should be investigated. 

 In the MEC-based VFA biosensor, since AD effluent was directly introduced to 

the cathode chamber where anaerobic condition was maintained, a single-

chamber reactor may still function well. It can submerge into an AD reactor 

which serves as the cathode. The performance of the further simplified reactor 

in terms of feasibility, detection range, response time and reliability should be 

investigated. At present, the valid volume of our biosensor reactors is several 

hundred milliliters. Miniaturization of the reactors to several milliliters could 

accelerate the mass transfer, short the response time and reduce the capital cost 

which is the future direction of research. 

 In the MESC reactor for biogas upgrading, the outlet CH4 content in the contin-

uous mode was around 88% which still needs to be improved to meet the natural 

gas quality. A two-stage process may be employed to achieve further biogas pu-

rification and high process efficiency. In the future, synthetic gas with different 

gas compositions (e.g. 80% CH4 and 20% CO2; 90% CH4 and 10% CO2) should 

be tested in the continuous mode. What’s more, in order to implement the 

MESC technology in a commercial application, a detailed environmental and 

economic impact assessment should be conducted.  
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