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Abstract 

Targeted degradomics integrates positional information into mass spectrometry-based 

targeted proteomics workflows and thereby enables analysis of proteolytic cleavage events 

with unprecedented specificity and sensitivity. Rapid progress in establishment of  

protease-substrate relations provides extensive degradomics target lists that now can be tested 

with help of selected and parallel reaction monitoring (S/PRM) in complex biological 

systems, where proteases act in physiological environments. In this minireview, we describe 

the general principles of targeted degradomics, outline the generic experimental workflow of 

the methodology and highlight recent and future applications in protease research. 

Keywords: degradomics; parallel reaction monitoring; protease substrates; selected reaction 

monitoring, targeted proteomics. 
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Introduction 

Proteolysis is a protease-induced irreversible post translational modification, resulting in 

hydrolysis of peptide or isopeptide bonds with distinct consequences for target proteins. 

Thereby, substrates might be either eliminated by proteolytic degradation or functionally 

modified through limited proteolysis by specific removal of a defined subsequence of amino 

acids. Cellular homeostasis depends on tightly regulated proteolytic activity, which is 

spatially and temporally maintained by cofactors, inhibitors and other surrounding elements. 

Dysregulated proteolysis may lead to fatal pathologies, such as impaired tissue repair, 

inflammation, neurodegenerative disorders or cancer (Drag and Salvesen, 2010; Turk et al., 

2012). Latest databases contain information about 2700 proteases of various model organisms 

with more than 1000 in queue still to be sequenced and characterized (Rawlings et al., 2016). 

Major protease groups can be clustered on the basis of their catalytic mechanisms into 

aspartic, glutamic, cysteine, metallo, serine and threonine endopeptidases (Turk et al., 2012). 

Multiple strategies, such as substrate- and activity-based probes and natural substrate turnover 

characterized the mechanisms of these proteases, and more than 17.000 physiological 

substrates were assigned to their related cleaving enzymes (auf dem Keller and Schilling, 

2010; Rawlings et al., 2016). 

Rapid advancements in mass spectrometry (MS)-based proteomics has helped to detect 

protease substrates and active proteases in the context of their biological roles and 

significantly increased the number of known protein targets (Marino et al., 2015; Schlage and 

auf dem Keller, 2015). However, although these global approaches accumulated also an array 

of potential biomarkers, their application in the clinics is lagging behind (Anderson et al., 

2013). Techniques complimentary to shotgun proteomics, such as selected reaction 

monitoring (SRM), selected ion monitoring (SIM) and parallel reaction monitoring (PRM) 

may bridge target discovery, context dependent activity and clinical diagnosis. Methodologies 

first described by Agard et al. (2012) and Fahlman et al. (2014) have utilized previously 

collected biochemical data of proteolytic cleavages and applied SRM and targeted analysis to 

monitor substrate turnover in complex biological samples with attomolar sensitivity and high 

specificity. They have indicated that targeted degradomics, i.e. the specific proteomics-based 

analysis of selected proteolytic cleavage events, has the quantitative strength, unbiased 

reproducibility, and systematic simplicity known from general targeted proteomics, which has 

been widely applied to monitor relative protein abundances. Thus, this pioneering work can 

Brought to you by | ETH-Bibliothek Zürich
Authenticated

Download Date | 11/30/17 11:07 PM



Targeted degradomics 

4 / 17 

have a wide spectrum of applications from clinical assay improvement to elucidation of 

complex proteolytic networks. Prominent examples for proteolytic fragments, which have 

been already tested in the clinics as biomarkers are peptides released from the amyloid beta 4 

protein (APP) in Alzheimer’s disease or fibrinogen degradation products in breast and colon 

cancer (Huesgen et al., 2014). 

In this minireview, we introduce targeted degradomics as a methodology, which is 

complementary to shotgun MS-based degradomics approaches. Particularly, we focus on 

design and implementation of targeted degradomics experiments and recent applications of 

PRM and SRM in the context of proteolytic processing. Moreover, we outline the power of 

these technologies as independent functional discovery tools in addition to providing 

enhanced sensitivity in validation of degradomics screens. Finally, we discuss the potential of 

targeted degradomics methods in elucidating complex interplays between proteolysis and 

other post-translational modifications (PTMs) exploiting their high specificity and sensitivity. 

Concept of targeted degradomics 

By specifically monitoring preselected peptides that have been generated from proteins in a 

bottom-up approach in most cases by tryptic digest, targeted proteomics methods allow 

assessing and quantifying the same set of related proteins reproducibly in complex proteomes 

(Rost et al., 2015). For technical details of these powerful approaches, the reader is referred to 

excellent recent review articles published by pioneers in the field (Bourmaud et al., 2016; 

Ebhardt et al., 2015; Picotti and Aebersold, 2012). Targeted degradomics further extends this 

concept by selectively including semi-tryptic peptides, which are released from proteins that 

had been proteolytically processed. Concomitant analysis of the corresponding fully tryptic 

peptide (cleavage site spanning peptide) from the non-processed form of the target protein 

allows drawing conclusions with regard to degree of processing, while recording of ‘classical’ 

tryptic peptides from other regions of the protein relates differential processing to general 

changes in protein abundances in proteomes across multiple conditions. In particular, this 

enables quantifying degrees of maturation of proteins whose function is dependent on 

proteolytic removal of modulatory propeptides. Classical examples are protease zymogens, 

e.g. members of the blood coagulation cascade, which are activated by proteolytic processing. 

Hence, by integrating positional information into selection of target peptides, targeted 

degradomics quantitatively monitors specific proteolytic cleavage events and their dynamics 
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in complex proteomes with high throughput and unprecedented precision. Ultimately, this can 

be exploited to test for dynamic activities of individual proteases or net outcomes of 

interconnected protease networks through targeted analysis of related indicative proteolytic 

events. 

Generation of degradomics target lists 

Key to targeted degradomics is the availability of information on proteolytic cleavage events, 

which are translated into libraries of unique proteolytically processed peptides. Due to 

extensive biomedical research in the last decades and increasing numbers of high-throughput 

studies, a wealth of data has been deposited into custom protease-centered databases, such as 

MEROPS, TopFIND, CutDB, CaspDB and Degrabase (Crawford et al., 2013; Fortelny et al., 

2015; Igarashi et al., 2007; Kumar et al., 2014; Rawlings et al., 2016). For specific target 

proteins of interest or to assess activities of particular proteases, mining of these databases can 

be complemented by extensive literature searches to include more recently described putative 

cleavage events, which have not yet been included in common repositories. Even if no 

published data are available, indicative cleavage events for many proteases might be obtained 

with help of emerging protease predictor algorithms, which achieve high levels of accuracy, 

particularly for proteases whose cleavage specificity is dominated by selective amino acid 

residues (Song et al., 2011; Soste et al., 2014). Such substrate and cleavage site predictors are 

available for several groups of proteases (PROSPER: https://prosper.erc.monash.edu.au/ 

home.html, PeptideCutter: http://web.expasy.org/peptide_cutter/, Cascleave: http://www. 

structbioinfor.org/cascleave2/index.html, SitePrediction: http://www.dmbr.ugent.be/prx/ 

bioit2-public/SitePrediction/, ProP: http://www.cbs.dtu.dk/services/ProP/, PoPS: http://pops. 

csse.monash.edu.au) and combine sequence information, structural properties and additional 

biophysical and biological features to assign predictive values to theoretical cleavages in 

target proteins. As an additional custom resource, cleavage data might be derived from own 

shotgun discovery degradomics experiments, applying methodologies that have been 

extensively reviewed elsewhere (Rogers and Overall, 2013; Schlage and auf dem Keller, 

2015). 

Since cleavage events collected from public repositories or generated by predictive algorithms 

are not necessarily derived from MS-based proteomics studies, they mostly need to be 

translated into suitable peptide lists for targeted degradomics analysis. This is achieved by  
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in silico digestion of related cleaved and non-cleaved substrate proteins using sequence 

specific endopeptidases (Fahlman et al., 2014; Giansanti et al., 2016). As mentioned above, 

trypsin is the most widely used endopeptidase in bottom-up proteomics to cleave amino acid 

sequences carboxy-terminal to arginine and lysine residues. However, this specificity might 

be problematic for targeted degradomics experiments, since it overlaps with many important 

trypsin-like endopeptidases, complicating distinction between cleavages of the test protease 

and the proteomics working protease used in bottom-up approaches. Moreover, the high 

frequency of lysine and arginine in protein sequences might often lead to very short  

(<6 amino acids) semi-tryptic peptides, which are not accessible to identification by  

MS-based proteomics and thus cannot be reliably monitored in targeted experiments. 

Therefore, alternative endopeptidases, such as Lys-C, Glu-C, Asp-N or pepsin should be 

considered that have been successfully employed in bottom-up proteomics (Giansanti et al., 

2016). With LysargiNase, a very interesting novel endopeptidase has been introduced that is 

particularly interesting for targeted degradomics, since it generates peptides with N-terminal 

lysine or arginine and thus alleviates monitoring of C-terminal halves of cleaved cleavage site 

spanning peptides (Huesgen et al., 2015). The generated list of truncated semi-specific 

peptide fragments should be complemented with intact fully specific peptides per protein 

ideally N- and C-terminal to respective cleavage sites. These peptides benchmark the general 

abundance of protease target proteins in analyzed proteomes and allow evaluating proteolytic 

processing as differential event, e.g. in response to cellular stimuli. 

In contrast to classical targeted proteomics, for which extensive repositories of proteotypic 

peptides with associated MS spectra and in-line liquid chromatography (LC) retention times 

for design of optimal peptide target lists are available (Kusebauch et al., 2016), targeted 

degradomics generally requires physical validation of selected targets with help of synthetic 

peptides that are measured under standardized LC-MS conditions. Finally, introducing heavy 

isotopes in form of 13C- or 15N-amino acids provides the researcher with a mix of validated 

peptides that can be spiked into analytes for most specific monitoring of proteolytic events in 

complex biological matrices. 

Targeted degradomics experimental workflow 

A validated target list of unique peptides allows directly querying complex proteomes for  

neo-N-termini, neo-C-termini and cleavage site spanning peptides with high specificity and 
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sensitivity. In a generic targeted degradomics workflow (Figure 1), proteomes could be 

derived from any biological source material of different levels of complexity that had been 

exposed to differential protease activity. This might have happened through endogenous 

proteases whose basal activity is modulated by external stimuli or ablated in loss-of-function 

models, or upon incubation of the source proteome with selected exogenously added 

proteolytic modifiers. Moreover, substrate peptides of known cleavage events might be added 

to bioactive proteomes to specifically test for activities of endogenous proteases (Dutta et al., 

2016). The resulting substrate degradomes are further digested with respective working 

endopeptidases to generate peptides of same length and properties as in the provided target 

list. 

In a next step, prepared protein digests are analyzed by LC-MS/MS in SRM or PRM mode, 

whereby the mass spectrometer is programmed to specifically monitor peptides provided in 

the unique degradomics target list. Targeted degradomics analyses use reverse phase (RP) 

chromatography as classical in-line LC component. Normalization of LC retention times is 

achieved with help of standard peptides, e.g. iRT peptides (Biognosys, Switzerland), which 

are measured together with target peptides when preparing the target list and spiked into the 

experimental protein digest prior to LC-MS/MS analysis. The combination of defined masses 

and retention times allows narrowing in on short time windows in so called time-scheduled 

runs, increasing the number of simultaneously monitored targets with high sensitivity. 

Depending on nature and complexity of analyzed proteomes and substrate degradomes, 

additional dimensions of LC might be added either off- or in-line with RP to enhance chances 

of precisely identifying and quantifying proteolytic end products of low abundance (Di Palma 

et al., 2012). 

Targeted degradomics assays have been mostly implemented on triple-quadrupole mass 

spectrometers (Agard et al., 2012; Dutta et al., 2016; Julien et al., 2016; Sabino et al., 2015; 

Shimbo et al., 2012; Soste et al., 2014). Triple-quadrupole instrument measurements rely on 

both precursor and fragment isolation for targeted analysis, also known as SRM. Small mass 

windows for quadrupole filters ensure reproducible and sensitive selection of target peptides 

and their fragment ions. However, the more recently introduced PRM methodology performed 

on quadrupole-Orbitrap instruments isolates only the precursor but measures all of its possible 

fragment ions (Bourmaud et al., 2016). It has been observed that in some conditions 

quantification of peptides with PRM allows higher resolution and higher sensitivity than SRM 

(Kockmann et al., 2016). The improved methodological accuracy enables a more stringent 
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quantification of proteolytically generated and modified peptides (neo-N and neo-C-terminus, 

cleavage site spanning peptide). Thus, lower limits of detection might be reached to help 

evaluating properties of low abundant proteases or proteases with low activity in a complex 

proteome. 

For design and interpretation of targeted degradomics experiments, software packages, such 

as Analyst, Skyline, and SpectroDive are applied, which are commonly used in targeted 

proteomics (MacLean et al., 2010; Poli et al., 2015). The software recognizes, annotates and 

quantifies peptides specified in unique degradomics target lists. Recovered peptide intensity 

values can be further subjected to stringent statistical normalization as well as ad hoc and post 

hoc testing using statistical downstream processing packages like MSstats (Choi et al., 2014). 

To increase sensitivity and coverage, specific subspecies of cleavage events, e.g. neo-termini, 

might be selectively enriched with help of appropriate positional proteomics approaches like 

terminal amine isotopic labeling of substrates (TAILS), combined fractional diagonal 

chromatography (COFRADIC) or subtiligase treatment (Schlage and auf dem Keller, 2015). 

Thereby, proteomes are chemically labeled on the protein level after differential exposure to 

proteases but before digestion with working endopeptidases. Notably, since application of any 

of these techniques is associated with chemical modification of target peptides, degradomics 

target lists have to be adjusted accordingly and any synthetic template peptides subjected to 

the same treatment. Furthermore, selective enrichment of terminal peptides prohibits analysis 

of e.g. tryptic peptides of the monitored protease substrate of interest from the same peptide 

mixture and thus requires separate analyses of samples prior to the enrichment step. Finally, 

several additional strategies can be applied to further enhance coverage and improve 

quantification of proteins and protease substrates of interest (Eichelbaum et al., 2012). 

Recent applications of targeted degradomics 

In recent years, the power of targeted degradomics has been exploited to tackle several 

important questions in protease research. The flexibility in study design and highly 

reproducible identification of the same peptide species in multiple samples by SRM is 

particularly suited to simultaneously monitor multiple proteolytic events over time and 

thereby determine kinetic parameters for proteases in complex systems. This was first 

demonstrated by Agard et al. (2012) who determined hundreds of catalytic efficiencies of 
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caspase-dependent cleavage events in cells both upon incubation of lysates with recombinant 

proteases and upon activation of endogenous caspases in cells by apoptosis. This study 

applied subtiligase-tagging to enrich for N-terminal peptides in combination with SRM for 

quantification, a strategy that was also successful in determining substrate preferences of 

caspase-2 and caspase-6 by quantitative kinetics (Julien et al., 2016). 

Biological fluids and specifically blood plasma present enormous challenges to stochastic 

sampling in shotgun proteomics due to their complexity and extreme dynamic range of 

protein concentrations (Hu et al., 2006). Consequently, analysis of proteolytic end products in 

body fluids highly benefits from selectivity and specificity of targeted degradomics 

approaches. As a powerful alternative to immunoblotting, sensitive SRM assays have been 

established to monitor proteolytically generated forms of cardiac troponin T in patient serum 

that are associated with severity of cardiac damage and state of a patient prior and after 

developing acute myocardial infarction (Streng et al., 2016). To test for activity of a specific 

protease – aparaginyl endopeptidase – in blood plasma, Dutta et al. (2016) developed a 

cleavable synthetic peptide whose substrate products they monitored by SRM upon 

incubation with human plasma. Since asparaginyl endopeptidase activity has been implicated 

in diseases, such as breast cancer, leukemia and dementia, this assay might serve as diagnostic 

biomarker test in future applications. A study by Wiita et al. (2014) monitored proteolytic 

signatures in serum from cancer patients in response to chemotherapy induced cell death. By 

utilizing the power of subtiligase assisted N-terminal enrichment and targeted degradomics, 

they identified and quantified processing events including many caspase cleavage products 

that significantly increased in amount in postchemotherapy plasma and might lead to a novel 

class of biomarkers to monitor response to chemotherapy. As another example, Sabino et al. 

(2015) used multiplexed iTRAQ-based TAILS to record proteolytic fragments released into 

wound fluids at multiple time points after wounding in a pig vacuum therapy model. Among 

them, a cleavage fragment of the integrin adapter protein kindlin-3 was detected, which could 

be assigned to caspase-3 activity and readily validated by SRM in samples from an 

independent experiment. 

It should be noted that so far, most studies applied targeted degradomics to validate and 

specifically monitor protease cleavage products that had been identified after enrichment of 

terminal peptides. However, it can be expected that the importance of termini enrichment will 

decrease with increasing performance of mass spectrometers. As an example, the Kindlin-3 
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neo-N terminus monitored by SRM in pig wound exudates by Sabino et al. (2015) was 

identified both before and after TAILS enrichment of protein N-termini. 

Future directions 

The unique capabilities of targeted degradomics approaches are particularly suited to address 

current major challenges in understanding the complex functions of proteases in biological 

systems. For instance, targeted degradomics allows deciphering interconnected protease 

activation networks and their relations by monitoring zymogen propeptide removal as crucial 

regulatory event in protease activation. Starting with the famous waterfall cascade of blood 

coagulation, interdependent zymogen activation networks have been described for many 

protease groups including caspases, cathepsins, kallikreins and matrix metalloproteinases that 

all together with their substrates and inhibitors form the protease web (Fortelny et al., 2014). 

With help of targeted analyses, it will be possible to develop quantitative models of protease 

activation networks by concomitant monitoring of decrease in abundance of spanning 

peptides and increase in abundance of corresponding neo-termini at sites of proteolytic 

removal of inhibitory propeptides (Fahlman et al., 2014) (Figure 2). Respective abundance 

ratios will determine activation potentials of individual network nodes and ultimately 

delineate proteolytic potentials of modules and subnetworks and their disturbance by gain- or 

loss-of-function in model systems of increasing levels of complexity. Thereby, the high 

specificity and sensitivity of targeted degradomics will enable direct transfer of results from 

test tube and cell-based assays to analysis of biological material from animal models and 

patients suffering from diseases associated with detrimental aberrant protease activities. 

Ultimately, studies of this kind have the potential to convert current limited attempts of 

interfering with single protease-substrate relations into powerful strategies of attacking 

disturbances in protease networks as underlying causes of many pathologies. 

Another area of research that is predestined to strongly benefit from targeted degradomics is 

the analysis of interplay between proteolysis and other post-translational modifications in 

form of PTM crosstalk. As a prime example of such complicated interactions, proteolytic 

processing of fibroblast growth factor 23 is regulated by reciprocal O-glycosylation and 

phosphorylation of a critical serine residue in P1’ position of a furin-type cleavage site 

(Tagliabracci et al., 2014). Moreover, Dix et al. (2012) demonstrated the functional interplay 

between phosphorylation and proteolysis during apoptosis, and TAILS has been applied to 
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phosphorylated and non-phosphorylated proteomes to identify phosphorylation-dependent 

cleavages of target proteins by caspases (Turowec et al., 2014). Similarly, glycosylation of 

either the cleaving protease or the substrate protein can strongly affect cleavage kinetics and 

modulate specificities (Goettig, 2016). Several powerful enrichment techniques have been 

developed and applied to study single PTMs, but stochastic sampling in shotgun approaches 

complicates analysis of the same peptide in different PTM-modified forms. This might be 

overcome by targeted proteomics and enable efficient characterization of PTM-dependent 

proteolytic cleavage events when combined with targeted degradomics methods. 

In addition to a strong contribution of targeted degradomics to solving important issues in 

protease biology, it can be expected that rapid advancements in targeted proteomics 

technologies will steadily increase the power of the concept. Currently, targeted proteomics 

assays are typically limited to simultaneous analysis of a few hundred peptides per  

LC-MS/MS run with high resolution. Recently, Gallien et al. (2015) introduced internal 

standard triggered-parallel reaction monitoring (IS-PRM), which they showed to significantly 

increase the number of measurable peptides in a single LC-MS/MS run by using synthetic 

isotopically labeled peptides to trigger scheduled high resolution measurements. As a very 

powerful emerging technology, data-independent acquisition (DIA) combines advantages in 

coverage of shotgun proteomics for discovery-based applications with sensitivity and 

reproducible monitoring of selected peptides by SRM or PRM. This is achieved by selecting 

all instead of only the most intense precursor ions for fragmentation and further analysis on 

time-of-flight or Orbitrap analyzers. Here, a particular challenge is the deconvolution of 

multiplexed fragment spectra, a computationally intensive task that is more and more 

alleviated by introduction of novel software packages for data interpretation (Navarro et al., 

2016). Advanced sample preparation strategies and selective enrichment of protein termini 

together with DIA could be a key workflow to characterize proteolytic events with highest 

coverage and precision in increasingly complex biological matrices. 

Conclusions 

Targeted degradomics is a powerful concept to precisely monitor proteolytic events and their 

modulation under changing conditions in complex biological systems with high specificity 

and sensitivity. With the growing knowledge of specific protease activities and the 

improvements in high-throughput protease substrate discovery, more and more 
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comprehensive degradomics target lists can be compiled to analyze protease action and 

function with extensive coverage and at increasing levels of complexity. Numerous software 

packages are under active development that will further leverage data interpretation and 

exchange of results within the protease research community. Several studies have already 

exploited the power of targeted degradomics to define kinetic parameters of hundreds of 

proteolytic cleavages in parallel and to assess protease activities in blood and body fluids, 

which pose particular challenges to MS-based proteomics. Targeted proteomics opens up 

many new avenues of research, e.g. to explore interconnected protease activation networks 

under physiological conditions and to study the complex interplay between proteolysis and 

other major PTMs. Rapid developments in MS-based proteomics technologies will further 

push the boundaries of throughput, sensitivity and specificity to get closer to the ultimate aim 

of understanding the entire protease web and its perturbations in health and disease. 
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Figures 

 

Figure 1 Generic targeted degradomics workflow. 

Targeted degradomics workflows start with identifying the proteolytic cleavage of interest in 

protease cleavage databases like CutDB, MEROPS or UniProt. Numerous, high confidence 

proteolytic cleavages have been identified and annotated. Substrate proteins are then 

subjected to theoretical endopeptidase treatment with mass spectrometry working proteases 

like trypsin, ArgC or AspN to generate a unique peptide list of newly formed neo-N-termini, 

neo-C-termini and cleavage site spanning peptides. After selection and validation of 

degradomics target lists, sample proteomes are subjected to test protease treatment and 

digested by selected sequence specific working endopeptidases. Peptides are separated by  

in-line liquid chromatography and analyzed by targeted mass spectrometry for members of 

degradomics target lists. In SRM mode, triple-quadrupole instruments select both precursor 

ions (Q1) and predefined fragments (Q3), whereas quadrupole-Orbitrap instruments only 

select the precursor ion (Q) but follow all fragments over the chromatographic elution peak 

that is integrated for quantitation. 
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Figure 2 Mapping protease activation networks by targeted degradomics. 

Activation of proteases is monitored by recording generation of neo-N termini and loss of 

cleavage site spanning peptides upon zymogen propeptide removal by targeted degradomics. 

Relative quantification of the spanning peptide of the inactive proform and the neo-N 

terminus of the active mature protease in relation to activities of activating upstream proteases 

determines degree of activation and thus activation potentials within an activation network. 

Integration of data and functional modulation of individual nodes allows mapping of 

complicated interconnected protease activation networks in complex biological matrices. 
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