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ESTIMATES FOR THE BERGMAN AND SZEGÖ

PROJECTIONS FOR PSEUDOCONVEX DOMAINS OF

FINITE TYPE WITH LOCALLY DIAGONALIZABLE

LEVI FORM

Philippe Charpentier and Yves Dupain

Abstract
In this paper, we give precise isotropic and non-isotropic estimates
for the Bergman and Szegö projections of a bounded pseudocon-
vex domain whose boundary points are all of finite type and with
locally diagonalizable Levi form. Additional local results on esti-
mates of invariant metrics are also given.

1. Introduction

This paper deals with precise mapping properties of the Bergman and
Szegö projections of pseudo-convex domains of finite type in Cn whose
Levi form are locally diagonalizable at every point of the boundary (see
Section 2 for a precise definition). We obtain sharp estimates for these
operators for usual Lp

k Sobolev spaces, classical Lipschitz spaces Λα and
nonisotropic Lipschitz spaces Γα related to the geometry of the domain.

Our results, in the present paper, are analog to those obtained for con-
vex domains of finite type in [MS94] and [MS97] and extend previously
known results for the strictly pseudoconvex case ([AS79] and [PS77]),
for the finite type domains of C2 ([NRSW89], see also [Chr88] and
[FK88]) and in the case of pseudoconvex domains of finite type of Cn

having a Levi form of rank n− 1 ([AC99], see also [Mac88]).
Similar results where obtained for pseudoconvex domains in Cn whose

Levi form have comparable eigenvalues (see [Koe02], [Cho02b] and
[Cho03]).
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In 1990, C. L. Fefferman, J. J. Kohn and M. Machedon studied the
class of domains we consider here and proved local Lipschitz estimate
with arbitrary small loss for the ∂ Neumann problem and the Szegö
projection [FKM90] (see also [Der99]).

The present article is the first of two papers. Here, we prove the
following results:

Theorem. Let Ω be a bounded pseudo-convex domain of finite type in Cn

with locally diagonalizable Levi form.

(1) For all p, 1 < p < +∞, and all s ≥ 0, the Bergman projection
of Ω maps continuously L p

s (Ω) into itself.
(2) For 1 < p < +∞ and s ∈ N, the Szegö projection maps continu-

ously Lp
s(∂Ω) into itself.

Theorem. Let Ω be a bounded pseudo-convex domain of finite type in Cn

with locally diagonalizable Levi form.

(1) For 0 < α < +∞, the Bergman projection maps continuously
Λα(Ω) into itself.

(2) The Szegö projection maps continuously Λα(∂Ω) into itself, for
all α ∈]0,+∞[.

A consequence of the proof is:

Corollary. Under the same conditions, the Bergman projector maps
continuously L∞(Ω) into BMO(Ω).

Defining non-isotropic Lipschitz spaces Γα, for α < 1/M where M is
the type of Ω, with the pseudo-distance associated to the geometry, we
also obtain:

Theorem. Let Ω be a bounded pseudo-convex domain of finite type in Cn

with locally diagonalizable Levi form.

(1) For α < 1/M , the Bergman projection maps continuously Λα into
Γα.

(2) The Szegö projection maps continuously Λα(Ω) into Γα(∂Ω) for 0 <
α < 1/M .

Extending the definition of Γα for all α > 0, we also give similar
results for α ≥ 1/M .

In the last section, we indicate some supplementary local results on
invariant metrics similar to those obtained by D. W. Catlin in dimen-
sion 2 [Cat89] and by J. D. McNeal for convex domains [MN01].
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In a forthcoming paper, we will improve the result of [FKM90] get-
ting local (isotropic and non-isotropic) Lipschitz estimates without loss
for the Szegö projection.

We essentially use the techniques developed in [CNS92], [NRSW89],
[MS94] and [MS97] associated to the geometric properties of the do-
main and the estimates for the Bergman kernel function proved in [CD].
In Section 2 we quickly describe this geometry and summarize the results
necessary to our purpose.

Our geometry posses some good properties similar to those of convex
domains described by McNeal in [McN94] but they are not completely
equivalent and, if we follow the ideas of [MS94] and [MS97], the proof
must be modified. For example, to evaluate |f(p) − f(q)|, p, q ∈ Ω, we
cannot use an integration along the segment [p, q] and we must use a
convenient curve essentially given by the exponential map. Similarly,
when we want to apply Cauchy formula, we don’t have directly the
existence of polydisc of good weighted size included in the domain.

Furthermore, we often need to work in some more local context, which
implies that we have to modify the definitions of the concepts we use.

In Section 3, devoted to the Bergman projection, we show how to
adapt the methods of [MS94] to the geometry of the domain we consider,
in a relatively detailed way, to get the wright estimates.

Section 4 is devoted to the Szegö projection. Because, on one hand
the N.I.S. operators theory is quite well known, and on the other hand,
we have detailed the use of the geometry in Section 3, we will only give
the main articulations of the proofs.

2. Geometry and Bergman kernel estimates

Let us first precise the class of domains we consider in this paper and
introduce the basic notations.

Definition 2.1. Let Ω be a bounded pseudo-convex domain in Cn with
smooth boundary. Let p be a point on the boundary of Ω. We say that
the Levi form is locally diagonalizable at p if there exist a neighbor-
hood V of p and a smooth basis B of sections of the complex tangent
bundle T 0,1 in V ∩∂Ω which diagonalizes the Levi form. When this prop-
erty holds at every point of the boundary, we say that Ω has a locally
diagonalizable Levi form.

Let ρ be a smooth defining function of Ω (i.e. Ω = {ρ < 0}, ∇ρ 6= 0
on ∂Ω). Let p0 be a point of ∂Ω. Let (Li)1≤i≤n−1 a family of smooth
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vector fields in a neighborhood V of p0 which is a basis of the complex
tangent space at ∂Ω in V ∩ ∂Ω diagonalizing the Levi form, and let

Ln = N =
4

|∇ρ|
2

∑

i

∂ρ

∂zi

∂

∂zi

the complex normal vector field.
If L = (L1, . . . , Lk) is a list of vector fields of B ∪ B ∪ {Ln, Ln}, we

denote by |L | the length k of L .
For each index i, let cii =

〈

∂ρ; [Li, Li]
〉

. Let L (i) the set of all lists

of vector fields L = (L1, . . . , Lk) such that Lj = Li or Lj = Li for
all j. If L ∈ L (i), we denote L (cii) = L1 . . . Lk(cii). Recall that if
Ω is of finite type there exists M > 0 such that, for all i, there exists
a list L ∈ L (i), |L | ≤ M , such that L (cii) 6= 0. Then we define, for
p ∈ V , δ > 0 and i ≤ n− 1,

Fi(p, δ) =

M−2
∑

|L |=0
L∈L (i)

∣

∣

∣

∣

L (cii)(p)

δ

∣

∣

∣

∣

2/|L |+2

,

and put Fn(p, δ) = δ−2.
Associated to these functions, we use the following notations: for

s = (s1, . . . , sn), si > 0,

F
s(p, δ) =

∏

i

F
si

i (p, δ),

and, when s = (1, . . . , 1), we simply write F instead of F s.
Moreover, if L =(L1, . . . , Lk) is a list if vector fields Lj ∈ {L1, L1, . . . ,

Ln, Ln}, and if l = (l1, . . . , ln), li being the number of indices j such that
Lj ∈ {Li, Li}, we will also write

F
L = F

l.

As usual, the notations ., &, ≃ mean that the inequality or equiva-
lence holds up to a multiplicative constant depending only on Ω and the
choice of the vector fields Li, and .∗, &∗, ≃∗ mean that the constant
depends also on ∗.

Shrinking V if necessary, the following relations hold in V×]0,+∞[:

(2.1) δ−2/M . Fi(p, δ) . δ−2,

and, for α > 1,

(2.2) α−2
Fi(p, δ) ≤ Fi(p, αδ) ≤ α−2/M

Fi(p, δ).
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2.1. Special coordinate systems. Let (Z) be the canonical coordi-
nate system of Cn. With the previous notations, to each point p of V and
all δ > 0 one can define a change of coordinate Φδ

p (sometimes denoted

simply Φp), Z = Φδ
p(z), such that Φ−1

p (0) = p and Li(p) = ∂
∂zi

, satis-

fying the following properties. Φp and Φ−1
p are polynomial coordinate

systems defined on Cn of degree less than (2M)n−1 and:

Proposition 2.1. (1) The coefficients of the polynomials defining Φp

and Φ−1
p are uniformly bounded for p ∈ V and δ > 0.

(2) The Jacobians of Φp and Φ−1
p are uniformly bounded from below.

Proposition 2.2. If a = (a1, . . . , an), Da denotes any derivative of the

form ∂|a|

∂z
b1
1

...∂zbn
n ∂z

c1
1

...∂zcn
n

with bi + ci = ai. Then

(1) For all derivative Da,
∣

∣Da(ρ ◦ (Φδ
p)

−1)(0)
∣

∣ .|a| 1, for all δ.

(2) For all derivative Da,
∣

∣Da(ρ ◦ (Φδ
p)

−1(0)
∣

∣.|a| |ρ(p)|F
a/2(p, |ρ(p)|),

if δ = |ρ(p)|.

Proposition 2.3. For z ∈ Φp(V ), let z̃t = (z1, . . . , zn − t), for t ≥ 0.
If z̃t ∈ Φp(V ), then

ρ ◦ Φ−1
p (z) − ρ ◦ Φ−1

p (z̃t) ≃ t.

2.2. Polydisks and pseudo-balls. For 1 ≤ i ≤ n, let

Ri(p, δ) = Fi(p, δ)
−1/2.

Let ε > 0 fixed sufficiently small. For p ∈ V and δ > 0, we define the
“polydisk” centered at p of radius δ by

Pp(δ) = (Φδ
p)

−1 {|zi| ≤ εRi(p, δ)} .

The volume of Pp(δ) is estimated in terms of the functions Fi:

Proposition 2.4. For all α > 0, if p ∈ V ,

Vol(Pp(δ) ∩ {|ρ| < αδ}) . αVol(Pp(δ))

and

(2.3) Vol(Pp(δ)) ≃ F (p, δ).

Note that the first inequality follows Propositions 2.3 and 2.1.

The change of coordinates Φδ
p is “close” to the vector fields in the

following sense.
Write Li =

∑

bji
∂

∂zj
and ∂

∂zj
=
∑

ai
jLi (in the coordinate system Φδ

p)

then
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Proposition 2.5. For all A > 0, all p ∈ V , all q ∈ Pp(Aδ), Aδ ≤ δ0,
and all α, β,

∣

∣

∣Dαβaj
i (q)

∣

∣

∣ ≤ KαβF
(α+β)/2(p, δ)R−1

i (p, δ)Rj(p, δ),

and
∣

∣

∣Dαβbji (q)
∣

∣

∣ ≤ KαβF
(α+β)/2(p, δ)R−1

i (p, δ)Rj(p, δ),

where Kαβ depends on A, α and β.

As a consequence, if L = {L1, . . . , Lk} is a list of vector fields of
length k, the vector field L1 . . . Lk can be expressed with derivatives in
the coordinate system: if we write

L1 . . . Lk(q) =
∑

|s|≤k

cs(q)D
s,

then

Proposition 2.6. For all A > 0, with the above notation, if p ∈ V ,

|ρ(p)| ≤ δ ≤ δ0, for all q ∈ Pp(Aδ), Aδ ≤ δ0, |cs(q)| ≤ KlF
L−s

2 (p, δ).

We now briefly recall the notations about the exponential map asso-
ciated to the real and imaginary parts of the vector fields Li: we denote
by expp the exponential map centered on p ∈ V associated to the 2n real
fields Yj defined by Y2k = ℜe(Lk), Y2k−1 = ℑm(Lk), for k ≤ n. Thus,
V being sufficiently small, expp is a diffeomorphism of a neighborhood

of the origin in R2n onto a neighborhood of p in V containing a fixed
ball, and, for all points p1 and p2 in V , there exists u = (u1, . . . , u2n)
such that p2 = expp1

(u). Moreover

Lemma 2.1. For all points p1 and p2 in V , if p2 = expp1
(u) then

|ui| . |p1 − p2|.

Now we recall how the “pseudo-distance” of two points of V is defined
using expp. With the previous notations, we write, for 1 ≤ k ≤ n,

R
′
2k(p, δ) = R

′
2k+1(p, δ) = Rk(p, δ),

and

γ(p1, p2) = inf{t ≥ 0 such that

p2 = expp1
(u1, . . . , u2n), with |ui| ≤ R

′
i(p1, t)}.
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Remark 2.1. This function γ is independent of the choice of the basis of
vector fields diagonalizing the Levi form in V ∩ ∂Ω. If γ′ is associated
to an other basis diagonalizing the Levi form in V ∩ ∂Ω, there exist two
constantsK1 and K2 (depending on the basis) such that K1γ≤γ

′≤K2γ.

Let the “pseudo-ball” associated to the exponential map is defined by

Bexp(p, δ) = {q = expp(u1, . . . , u2n), |ui| ≤ R
′
i(p, δ)},

and is related, for not too small δ, to the polydisks as follows:

Proposition 2.7. There exist two constants a and A such that, for
p ∈ V , |ρ(p)| < δ ≤ δ0,

Bexp(p, δ) ⊂ Pp(aδ) ⊂ Bexp(p,Aδ).

Corollary. If γ(z, w) ≤ δ and |ρ(z)| < δ ≤ δ0, then w ∈ Pz(aδ).

We will also use the notion of balls defined by curves. Let p ∈ V
and δ > 0. We denote by BC (p, δ) the set of points q ∈ V such that there
exists a curve ϕ : [0, 1] → V , piecewise C 1 such that ϕ(0) = p, ϕ(1) = q
and ϕ′(t) =

∑

i ai(t)Yi(ϕ(t)), almost everywhere, with |ai(t)| ≤ R′
i(p, δ).

The relation with the “balls” defined with the exponential map is given
by the following proposition:

Proposition 2.8. There exists K0 such that, if p ∈ V , |ρ(p)| < δ ≤ δ0,

Bexp(p, δ) ⊂ BC (p, δ) ⊂ Bexp(p,K0δ).

Corollary. For all B ≥ 1, if w ∈ BC (z,Bδ), |ρ(z)| ≤ δ ≤ δ0/B, we
have γ(z, w) .B δ.

Remark 2.2. γ defines a pseudo-distance on V ∩∂Ω but not on V because
of the restriction on δ in Proposition 2.7 and Proposition 2.8. But these
properties will be sufficient for our purpose. If π denotes the natural
projection on ∂Ω, then

∆(p1, p2) = γ(π(p1), π(p2)) + |ρ(p1) − ρ(p2)|

is a pseudo-distance on V .

The next proposition controls the variations of the weights Fi in the
polydisks and balls previously defined:

Proposition 2.9. For all B > 0, if p ∈ V , |ρ(p)| ≤ δ ≤ δ0/B, and if
q belongs either to Pp(Bδ) or to Bexp(p,Bδ) or to BC (p,Bδ), then, for
all i, Fi(p, δ) ≃B Fi(q, δ).
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2.3. Point-wise estimates of the Bergman kernel.

Proposition 2.10. Let KB(z, w) be the Bergman kernel of Ω. For all
points p, p1, and p2 in V ∩ Ω:

(1) KB(p, p) ≃ F (p, |ρ(p)|).

(2) For all lists L (resp. L ), of length less than N , composed with
holomorphic (resp. anti-holomorphic) vector fields Li (resp. Li),
li (resp. li) denoting the number of times Li (resp. Li) appears

in L (resp. L ),

∣

∣LzL wKB(p1, p2)
∣

∣ .N

∏

Fi(p1, δ)
1+

li+li
2 ,

where δ = γ(p1, p2) + |ρ(p1)| + |ρ(p2)|.
(3) In particular, for all integer m ≥ 0,

|∇mKB (p1, p2)| .m F (p1, δ)δ
−m.

In the calculus in the next sections, we will use the following equiva-
lences:

γ(p1, p2) + |ρ(p1)| + |ρ(p2)| ≃ γ(p2, p1) + |ρ(p1)| + |ρ(p2)|

≃ γ(p1, p2) + |ρ(p1)| .
(2.4)

Remark 2.3. (1) The previous estimate does not seem to be symmetric,
but, in fact, it is.

(2) In [CD] the non-isotropic estimates (2) of the previous proposition
was used to prove the continuity of the Bergman projection from L1

to L1∞. In the present paper, the isotropic estimate (3) will be sufficient
to estimate the Bergman projection, but we will need the non-isotropic
one for the Szegö projection.

3. The Bergman projection

3.1. Sobolev estimates. The goal of this section is to prove the fol-
lowing:

Theorem 3.1. Let Ω be a bounded pseudo-convex domain in Cn of finite
type with locally diagonalizable Levi form. For all p, 1 < p < +∞, and
all s ≥ 0, the Bergman projection of Ω maps continuously L p

s (Ω) into
itself.

By interpolation, it suffices to prove the result for s = k ∈ N.
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To each point p of ∂Ω, we associate a orthogonal coordinate system
(by a complex linear change) centered at p such that ∂ρ

∂xn
(p) = 1 (xn be-

ing the real part of the last complex coordinate) and 1
2 ≤ ∂ρ

∂xn
≤ 3

2 in a

neighborhood W (p) of p.
For each integer m ∈ N∗, we cover ∂Ω by a finite number of neighbor-

hood Vk(pk) ⊂W (pk), k = 1, . . . , N , pk ∈ ∂Ω, such that, in the previous
coordinate system, Vk = Vk(pk) is a polydisk centered at pk of radius r̃
such that the polydisk Uk = Uk(pk) centered at pk of radius 8mr̃ is
contained in W (pk) and in the neighborhood V related to the point pk

defined in Section 2. Let us denote ∆k = ∆k(pk) the polydisk centered
at pk of radius 2mr̃. All properties about the geometry and the Bergman
kernel, listed in the previous section are then valid in the Uk. We de-

note then F
(k)
i and γ(k) the corresponding functions Fi and γ defined

in Uk(pk).
In [MS94, p. 181], J. D. McNeal and E. M. Stein introduced a notion

of B-type kernels. For our purpose we need a small modification of this
definition:

Definition 3.1. A function B(z, w) ∈ C∞(Ω × Ω) is called a B-type
kernel if there exist two constants C and C′ such that, for (z, w) ∈
Uk × Uk,

|B(z, w)| ≤ C

n
∏

i=1

F
(k)
i (z, δk),

where δk = |ρ(z)| + |ρ(w)| + γk(z, w), and, for (z, w) /∈
⋃N

k=1 Uk × Uk,

|B(z, w)| ≤ C′.

Remark. Note that the notion of B-type kernel does not depend neither
on the choice of the basis diagonalizing the Levi form nor on the choice
of m and the Uk.

Lemma 3.1. Let B(z, w) be a B-type kernel. Let |B| the operator as-
sociated to |B(z, w)|. Then |B| maps continuously Lp(Ω) into itself for
1 < p < +∞.

Remark. The proof of this lemma gives an other proof of the Lp part of
Theorem 2.2 of [CD].

Lemma 3.1 is an easy consequence of the Hölder inequality and the
following lemma:

Lemma 3.2. For 0 < ε < 1, there exists a constant C1 = C1(ε) such
that,

|B|
(

|ρ|
−ε
)

(z) ≤ C1 |ρ|
−ε

(z).



422 Ph. Charpentier, Y. Dupain

Proof: We have to prove the inequality
∫

Ω

|B(z, w)| |ρ(w)|
−ε

dw . |ρ(z)|
−ε
.

We consider, for m = 1, a covering (Vk) of ∂Ω, as defined at the
beginning of the section, and the associated polydisks Uk. Suppose first
z /∈

⋃

k Vk. Then |ρ(z)| is bounded from below and |B(z, w)| is uniformly
bounded and the result is clear. Suppose now z ∈ Vk0

. We cut the
domain of integration Ω in the two pieces Uk0

and Ω \ Uk0
. On Ω \Uk0

,
Propositions 2.1 and 2.8 and (2.1) imply that |B(z, w)| is uniformly
bounded and it suffices to consider the integration over Uk0

.
Let

E0 = {w ∈ Uk0
∩ Ω, such that γk0

(z, w) ≤ |ρ(z)|}

and, for k ≥ 1,

Ek =
{

w ∈ Uk0
∩ Ω, such that 2k−1 |ρ(z)| ≤ γk0

(z, w) ≤ 2k |ρ(z)|
}

,

and let us estimate
∫

Ek

|B(z, w)| |ρ(w)|
−ε

dw.

Let El
k = Ek ∩ {w such that |ρ(w)| ≤ 2k−l |ρ(z)|}.

By the corollary of Proposition 2.7Ek⊂Bexp(z,2
k|ρ(z)|)⊂Pz(a2

k|ρ(z)|).
Moreover, by Propositions 2.7 and 2.4 and (2.2)

Vol(El
k) . 2−l

n
∏

i=1

F
−1
i (z, a2k |ρ(z)|) . 2−l

n
∏

i=1

F
−1
i (z, 2k |ρ(z)|),

and, B(z, w) being a B-type kernel, (2.2) implies
∫

El
k
\El+1

k

|B(z, w)| |ρ(w)|
−ε

dw . 2−l(2k−l |ρ(z)|)−ε

≤ (21−ε)−l2−kε |ρ(z)|−ε ,

which finishes the proof of the lemma, because 0 < ε < 1.

Following [MS94, Lemma 2, p. 184], we now define operators related
to derivatives of the Bergman kernel and show that they are B-type ker-
nels. The fact that we are not on a convex domain implies that we need
to modify slightly the definitions of those operators. These operators are
associated to a covering of ∂Ω and defined by integrals. To give sense
to the considered integrals, we must restrict the domain of integration
([0,+∞[ in [MS94]) to intervals depending on the order m of deriva-
tion. This induces also that the covering of ∂Ω must have properties
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depending on m. So, for m a non zero integer, we consider a covering of
∂Ω associated to m by polydisks Vk (as defined at the beginning of the
section) and the associated ∆k and r̃. Then

Lemma 3.3. Let k ∈ {1, . . . , N}. Let m′ be an integer less or equal
than m. Let X1, . . . , Xm′ be C ∞ vector fields on Vk acting on the
first variable z of the Bergman kernel KB(z, w), and let ψ a function
in D(∆k). Then the operator whose kernel K is defined, in the coordi-
nate system associated to V (pk), by

K(z, w) =

∫ 5r̃

0

· · ·

∫ 5r̃

0

X1 . . . Xm′KB



z, w1, . . . , wn−1, wn −

m′
∑

i=1

ti





× ψ



w1, . . . , wn −

m′
∑

i=1

ti



 dt1 . . . dtm′

is defined on Ω × Ω and is a B-type kernel.

Proof: First, let us show that the kernel K is well defined. Let w ∈ Ω,
and denote

t =

m′
∑

i=1

ti and w̃t = (w1, . . . , wn−1, wn − t) .

Suppose w̃t ∈ ∆k. The inequality
∑

ti ≤ 5mr̃ and the definition
of Uk imply w ∈ Uk, and, consequently, by the choice of the coordi-
nate in V (pk), for s < t, ∂

∂xn
ρ(w̃s) ≃ 1 and ρ(w̃t) ≤ ρ(w) < 0. Thus

w̃t ∈ Ω and K is well defined.
More precisely, if ψ(w̃t) 6=0, d(w̃t,C

n \Uk)≥6mr̃, and thus, if z /∈Uk,
the distance from w to z and γk(z, w) are uniformly bounded from be-
low (Propositions 2.1 and 2.8) and |X1 . . .Xm′KB(z, wt̃)| is uniformly
bounded (Proposition 2.10).

By (2.4) and (2.2), it suffices then to prove that, for z and w in Uk

(omitting the subscript k for F
(k)
i and γk),

|K(z, w)| ≤ C

n
∏

i=1

Fi(z, |ρ(z)| + γ(z, w)).

By a change of variables,

|K(z, w)| .

∫ 2m′ r̃

0

tm
′−1 |X1 . . .Xm′KB(z, w̃t)| |ψ(w̃t)| dt,
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and the estimates of the derivatives of the Bergman kernel (Proposi-
tion 2.10) give

(3.1) |K(z, w)| .

∫ 2m′r̃

0

tm
′−1

∏n
i=1 Fi(z, δ(t))

δm′

t

|ψ(w̃t)| dt,

where δ(t) = |ρ(z)| + |ρ(w̃t)| + γ(z, w̃t).
Now, we estimate γ(z, w̃t) in terms of γ(z, w). By definition of the

function γ, there exist real numbers ui, |ui| ≤ R′
i(z, γ(z, w̃t) such that

w̃t = expz(u1, . . . , u2n). Moreover, there exits, by Lemma 2.1, num-
bers vi, |vi| ≤ K1 |w̃t − w|, such that w = expwt

(v1, . . . , v2n). As
∂ρ̃

∂xn
∼ 1, we also have |vi| ≤ K2 (|ρ(w̃t)| − |ρ(w)|).

Thus there exists a curve ϕ, piecewise C 1, such that ϕ(0) = z, ϕ(1) =
w and ϕ′(s) =

∑

i ai(s)Y
′
i(ϕ(s)), for almost all s, with

|ai(s)| ≤ 2R
′
i(z, γ(z, w̃t) +K2 (|ρ(w̃t)| − |ρ(w)|)

≤ R
′
i

(

z, 2M (γ(z, w̃t) +K2 (|ρ(w̃t)| − |ρ(w)|))
)

,

by (2.2), and, the function δ 7→ R′
i(z, δ) being increasing, we have

|ai(s)| ≤ R
′
i

(

z, 2M(γ(z, w̃t) +K2(|ρ(w̃t)| − |ρ(w)| + |ρ(z)|))
)

,

and we can apply the equivalence between the balls defined by the expo-
nential map and the balls defined by curves (corollary of Proposition 2.8)
which implies

γ(z, w) . γ(z, w̃t) + (|ρ(w̃t)| − |ρ(w)| + |ρ(z)|).

Then δ(t) & γ(z, w) + |ρ(w)|, and, because δ(t) ≥ |ρ(z)| and |ρ(w̃t)| &

|ρ(w)| + t, we get

δ(t) & |ρ(z)| + |ρ(w)| + γ(z, w) + t = δ(0) + t.

Using the fact that the functions δ 7→ Fi(w, δ) are decreasing, we
obtain from (3.1)

|K(z, w)| .

∫ ∞

0

tm
′−1

(δ(0) + t)m′+2

n−1
∏

i=1

Fi(z, δ(0) + t) dt

≤ δ(0)2
n
∏

i=1

Fi(z, δ(0))

∫ ∞

0

tm
′−1

(δ(0) + t)m′+2
dt

.

n
∏

i=1

Fi(z, δ(0)),

which completes the proof of the lemma.
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Lemma 3.4. Under the conditions of the preceding lemma, for k ∈
{1, . . . , N}, there exists a C∞ vector field T defined on Uk, Tρ = 0
on ∂Ω∩Uk, such that, if D is a derivative of order m, for all integer m′,
0 < m′ ≤ m, we have, for z ∈ Uk, w ∈ Vk and ψk ∈ D(Vk),

DzKB(z, w)ψk(w)=

∫ 5r̃

0

· · ·

∫ 5r̃

0

m′
∑

l=0

T l
w



DzKB



z, w1, . . . , wn−

m′
∑

i=1

ti









× Φl,m′



w1, . . . , wn −

m′
∑

i=1

ti



 dt1 . . . dtm′ ,

where Φl,m′ ∈ D(∆k), Dz acts on the z variable and Tw is the vector
field T acting on the w variable.

Proof: As we saw at the beginning of the proof of the previous lemma,
we can write, for t2 ∈ [0, 5r̃] (denoting w′ = (w1, . . . , wn−1)),

DzKB(z, w′, wn − t2)ψk(w′, wn − t2)

=

∫ 5r̃

0

d

dt1
[DzKB(z, w′, wn − t1 − t2)ψk(w′, wn − t1 − t2)] dt1.

Let us denote xn = ℜe(wn). Then

d

dt1
[DzKB(z, w′, wn − t1 − t2)ψk(w′, wn − t1 − t2)]

= −DzKB(z, w′, wn − t1 − t2)
∂

∂xn
ψk(w′, wn − t1 − t2)

+
∂

∂wn
(DzKB(z, w′, wn − t1 − t2))ψk(w′, wn − t1 − t2),

thus, if T =
∂

∂wn
−
∂ρ/∂wn

∂ρ/∂wn

∂

∂wn
, we obtain (the Bergman kernel being

antiholomorphic in the second variable)

DzKB(z, w′, wn − t2)ψk(w′, wn − t2)

=

∫ 5r̃

0

Tw (DzKB(z, w′, wn − t1 − t2))ψk(w′, wn − t1 − t2) dt1

+

∫ 5r̃

0

DzKB(z, w′, wn − t1 − t2)

(

−
∂

∂xn
ψk(w′, wn−t1−t2)

)

dt1.
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The lemma is then obtained easily by induction using the same method
and noting that

∂

∂wn

(

T l
wDzKB

(

z, w1, . . . , wn −

p
∑

i=1

ti

))

= T l+1
w DzKB

(

z, w1, . . . , wn −

p
∑

i=1

ti

)

.

Let D be a derivative of order m. We want to estimate Dz(PBf)(z)

for f ∈ L p
s (Ω). Denote by ∆0 the interior of Ω \

⋃N
k=1 Vk, and let ψk be

a partition of unity associated to the ∆k.
Using the same notation for w′ as before, we deduce

Corollary. For all m′, 0 < m′ ≤ m, and for each k ≥ 1, there exist

functions Ψi = Ψ
(k)
i , 0 ≤ i ≤ m′, with compact support in ∆k such that,

for f ∈ C ∞(Ω),

DPB(fψk)(z) = DPB(fψ0)(z)

+

N
∑

k=1

∫

∆k∩Ω

∫ 5r̃

0

· · ·

∫ 5r̃

0

DzKB



z, w′, wn −

m′
∑

i=1

ti





×



Ψm′(w′, wn −

m′
∑

i=1

ti)f(w) + Ψm′−1(w
′, wn −

m′
∑

i=1

ti)Tf(w) + · · ·

· · · + Ψ0(w
′, wn −

m′
∑

i=1

ti)T
m′

f(w)



 dt1 . . . dtm′ dw.

Proof: We have

Dz(PBfψk)(z) =

∫

∆k∩Ω

Dz(KB(z, w)ψk(w)f(w)) dw.
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An integration by parts gives

∫

∆k∩Ω

T l
w



DzKB



z, w′, wn −

m′
∑

i=1

ti







Φl,m′



w′, wn−

m′
∑

i=1

ti



f(w) dw

=

∫

∆k∩Ω

T l−1
w



DzKB



z, w′, wn −

m′
∑

i=1

ti









×







−TwΦl,m′



w′, wn−
m′
∑

i=1

ti



+Φl,m′



w′, wn−
m′
∑

i=1

ti



div T (w)



f(w)

− Φl,m′



w′, wn −

m′
∑

i=1

ti



Twf(w)



 dw,

where div T is the divergence of T .
By induction, we obtain

∫

∆k∩Ω

m′
∑

l=0

T l
w

(

DzKB

(

z, w′, wn−

m
∑

i=1

ti

))

Φl,m′



w′, wn−

m′
∑

i=1

ti



f(w) dw

=

∫

∆k∩Ω

DzKB



z, w′, wn −

m′
∑

i=1

ti





×



Ψm(w′, wn−
m′
∑

i=1

ti)f(w) + · · · + Ψ0(w
′, wn −

m′
∑

i=1

ti)T
m′

w f(w)



 dw,

which gives the corollary, by Lemma 3.4 and Fubini’s theorem.

Remark. For w ∈ ∆0, DKB(z, w) is uniformly bounded and thus
|DPB(fψ0)(z)| . ‖fψ0‖.

Theorem 3.1 is now a trivial consequence of the previous corollary,
Lemma 3.3 and Lemma 3.1.

3.2. Isotropic Hölder estimates. This section is also strongly in-
spired by [MS94] and we will use the same notations.

For convenience, we briefly recall here the definition of the spaces
Λα(Ω), 0 < α < +∞.
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First, for 0 < α < 1, a function f belongs to Λα(Cn) if it is bounded
and if |f(x) − f(y)| . |x− y|

α
, x, y ∈ Cn. For α > 1, α /∈ N, f belongs

to Λα(Cn) if it is bounded and if, Dβf ∈ Λα−|β|(C
n) for β of length

equal to the integral part of α. A function f belongs to Λ1(C
n) if it is

bounded and, for all x and h, |f(x+ h) + f(x− h) − 2f(x)| . |h|, and
f belongs to Λk(Cn), k ∈ N∗, if Dβf ∈ Λ1(C

n) for all β of length k − 1.
A function f belongs then to Λα(Ω) if there exists a function F ∈

Λα(Cn) whose restriction to Ω is equal to f . In other words, the Banach
space Λα(Ω) is defined as a quotient space.

We will prove the following result:

Theorem 3.2. Let Ω be a bounded pseudo-convex domain in C
n of

finite type with locally diagonalizable Levi form. For 0 < α < +∞, the
Bergman projection maps continuously Λα(Ω) into itself.

The proof is based on a result essentially due to Hardy and Littlewood:

Proposition 3.1. Let f be a bounded C∞ function on Ω. If there
exists an integer m > α such that |∇mf(z)| . |ρ(z)|−m+α on Ω, then
f ∈ Λα(Ω).

To see that PBf satisfies this sufficient condition when f ∈ Λα(Ω),
we use the following characterisation:

Proposition 3.2. For a function f defined on Ω the three following
properties are equivalent:

(1) f ∈ Λα(Ω).
(2) There are functions fk, such that f =

∑∞
0 fk and

(a) ‖fk‖L∞(Ω) .f 2−kα,

(b) for all integer m > α, ‖∇mfk‖L∞(Ω) .f,m 2mk2−kα.

(3) For all integers k and m, m > α, there exist two functions gk

and bk such that f = gk + bk and
(a) ‖bk‖L∞(Ω) .f 2−kα,

(b) ‖∇mgk‖L∞(Ω) .f,m 2mk2−kα.

Choose an integer m > α + 1 and use the decomposition of f given
by property (3) of Proposition 3.2 with k such that |ρ(z)| ≃ 2−k. Then

∇mPBf(z) = ∇mPBbk(z) + ∇mPBgk(z).

To estimate these quantities, we first prove the two following lemmas:

Lemma 3.5. For all m ≥ 1, there exits a constant C depending only
on Ω and m such that

∫

Ω

|∇m
z KB(z, w)| dw ≤ C |ρ(z)|−m .
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Lemma 3.6. Let D be a derivation of order m ≥ 2. There exist op-
erators B0, . . . ,Bm−1 defined by kernels B0, . . . , Bm−1 and vector fields
X1, . . . , Xm−1, of order 1, such that:

(1) for i = 1, . . . ,m− 1,
∫

Ω |Bi(z, w)| dw . |ρ(z)|
−1

,
(2) for all C∞ function f ,

∫

Ω

DzKB(z, w)f(w) dw

= Bm−1f(z) + Bm−2(X1f)(z) + · · · + B0(X1 . . .Xm−1f)(z).

Proof of Lemma 3.5: We use the covering {Vk} of ∂Ω, associated to m,
defined in the previous section. If z /∈

⋃

k≥1 Vk then |ρ(z)| is bounded

from below and ∇zKB(z, w) is bounded. Suppose now z ∈ Vk0
and write

∫

Ω

|∇m
zKB(z, w)| dw=

∫

Ω\Uk0

|∇m
zKB(z, w)| dw+

∫

Uk0
∩Ω

|∇m
zKB(z, w)| dw.

In the first integral the distance from z to w is uniformly bounded from
below and, thus, ∇m

z KB(z, w) is uniformly bounded. It suffices then to
estimate the second integral. As in the proof of Lemma 3.2 we use the
following partition of Uk0

:

E0 = {w ∈ Uk0
∩ Ω, such that γ(z, w) ≤ |ρ(z)|}

and, for k ≥ 1,

Ek =
{

w ∈ Uk0
∩ Ω, such that 2k−1 |ρ(z)| < γ(z, w) ≤ 2k |ρ(z)|

}

.

By the estimates on the derivatives of the Bergman kernel (Proposi-
tion 2.10) and the relations between Fi(z, αδ) and Fi(z, δ) ((2.2)), we
get

∫

Ek

|∇m
z KB(z, w)| dw .m

n
∏

i=1

Fi(z, 2
k |ρ(z)|)

1

(2k |ρ(z)|)m
Vol(Ek),

and the proof is finished recalling (as it has been established in the proof
of Lemma 3.2) that

Vol(Ek) .m

n
∏

i=1

Fi(z, 2
k |ρ(z)|)−1.
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Proof of Lemma 3.6: We use the partition of unity defined in Lemma 3.4,
and, by the corollary of that lemma for m′ = m− 1

DzPBf(z) =

∫

Ω

DzKB(z, w)f(w)ψ0(w) dw

+
n
∑

k=1

∫

Ω

(

∫ 5r̃

0

· · ·

∫ 5r̃

0

DzKB

(

z, w′, wn −
m−1
∑

i=1

ti

)

m−1
∑

l=0

×

(

Ψ
(k)
m−1−l

(

w′, wn−

m−1
∑

i=1

ti

)

T lf

(

w′, wn−

m−1
∑

i=1

ti

))

dt1 . . . dtm−1

)

dw.

∫

Ω
|DzKB(z, w)f(w)|ψ0(w) dw is uniformly bounded (see remark after

the corollary) and the functions Ψ
(k)
i being uniformly bounded it then

suffices to prove that

∫

Ω∩∆k

∫ 5r̃

0

· · ·

∫ 5r̃

0

∣

∣

∣

∣

∣

DzKB

(

z, w′, wn−

m−1
∑

i=1

ti

)∣

∣

∣

∣

∣

dt1 . . . dtm−1 dw.m |ρ(z)|
−1
.

As in Lemma 3.5, this is trivial if z /∈ Uk. Suppose z ∈ Uk and
w ∈ Ω ∩ ∆k. Then (w′, wn −

∑

ti) belongs also to Uk and we use the
estimates of the derivatives of the Bergman kernel (Proposition 2.10)
and the estimate of δ(t) obtained in the proof of Lemma 3.3

δ(t) = |ρ(z)| + |ρ(w̃t)| + γ(z, w̃t) & |ρ(z)| + |ρ(w)| + γ(z, w) +

m−1
∑

i=1

ti.

The properties of functions Fi (2.2) implies

∣

∣

∣

∣

∣

DzKB

(

z, w′, wn −

m−1
∑

i=1

ti

)∣

∣

∣

∣

∣

.m

∏n
i=1 Fi(z, |ρ(z)| + |ρ(w)| + γ(z, w))

(|ρ(z)| + |ρ(w)| + γ(z, w) + t1 + · · · + tm−1)
m

and thus
∣

∣

∣

∣

∣

∫ 5r̃

0

· · ·

∫ 5r̃

0

DzKB

(

z, w′, wn −

m−1
∑

i=1

ti

)

dt1 . . . dtm−1

∣

∣

∣

∣

∣

.m

∏n
i=1 Fi(z, |ρ(z)| + |ρ(w)| + γ(z, w))

|ρ(z)| + |ρ(w)| + γ(z, w)
.
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Now, to finish, it suffices to consider the partition of Uk defined in the
proof of Lemma 3.5.

End of the proof of Theorem 3.2: By Lemma 3.5

|∇mPBbk(z)| ≤ C |ρ(z)|
−m

2−kα .f C |ρ(z)|
−m+α

,

and by Lemma 3.6

|∇PBgk(z)| . |ρ(z)|−1 [‖gk‖∞ + · · · + ‖X1 . . . Xm−1gk‖∞] .

But

‖gk‖∞ + · · · + ‖X1 . . .Xm−1gk‖∞ . ‖gk‖∞ +
∥

∥∇m−1gk

∥

∥

∞
,

and, because m− 1 > α,
∥

∥∇m−1gk

∥

∥

∞
.f,m 2(m−1)k2−kα .f,m |ρ(z)|

−m+1+α
.

This completes the proof.

As an immediate corollary of Lemma 3.5 and the fact that a C 1 func-
tion satisfying |∇f(z)| . |ρ(z)| is in BMO(Ω) (Lemma 7 of [MS94]), we
have:

Corollary. Under the conditions stated in Theorem 3.1, the Bergman
projector maps continuously L∞(Ω) into BMO(Ω).

3.3. Nonisotropic Hölder estimates. Let V1, . . . , VN be a covering
of the boundary as defined in Section 3.1 (for m = 1).

For each k, if p is a point of Vk, let Φp be the change of variables as-
sociated to p and δ(p); we denote by (zi) the corresponding coordinates.
Recall that Vk is chosen so that, if ρ̃ = ρ ◦ Φ−1

p , and w, z ∈ Φp(Vk) such
that wj = zj for j < n and wn = zn + t, t ∈ R, then ρ̃(w) − ρ̃(z) ≃ t
(Proposition 2.3).

In Section 2.2, we defined the function γk(p, q) for points p and q in
the euclidean ball B(pk, rk). Let us define a global version γ of these
functions putting, for arbitrary points p and q in Ω,

γ(p, q) = inf {γk(p, q) such that p, q ∈ Vk, 1 ≤ k ≤ N} ,

if there exists k such that p, q ∈ Vk and γ(p, q) = 1 if not. Then we
denote

ρ(p, q) = min {γ(p, q) + |ρ(p)| + |ρ(q)| , |p− q|} .

With these notations, we define now the space Γα(Ω):
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Definition 3.2. For α < 1/M , Γα(Ω) is the space of continuous func-
tions f on Ω such that

|f(p) − f(q)| . ρ(p, q)α.

Remark. Note that with this definition, Γα(Ω) is independent of the
choice of the covering Vk (Remark 2.1).

In the previous section, we proved that the Bergman projection maps
continuously Λα into itself. We will now see, that, the properties of
holomorphic functions in Ω related to the geometry give a better:

Theorem 3.3. Let Ω be a bounded pseudo-convex domain of finite type
in Cn with locally diagonalizable Levi form. For α < 1/M , the Bergman
projection maps continuously Λα into Γα.

By Theorem 3.2, it suffices to show that a holomorphic function in Λα

belongs automatically to Γα. We prove this in two steps. First, we
show that the derivatives of a holomorphic function in Λαsatisfy some
non-isotropic estimates in terms of the functions Fi. The proof of the
theorem is then done in Section 3.3.2. In Section 3.3.3 we indicate briefly
how the theorem can be extended for α ≥ 1/M .

3.3.1. Nonisotropic estimates of the derivatives of a holomor-
phic function in Λα. For a = (a1, . . . , an) ∈ N

n, Da denotes the

derivative, in the (zi) coordinate system, Da = ∂|a|

∂z
a1
1

...∂zan
n

. Recall that

we denote Fa/2 =
∏n

i=1 F
ai/2
i .

Proposition 3.3. Let f ∈ Λα(Ω) ∩ H (Ω). Let p ∈ Vk, Φp the change
of coordinates corresponding to p and δ = |ρ(p)|, and Da a derivative.
Then there exits a constant C, depending only on Ω, f and a, such that

∣

∣Da(f ◦ Φ−1
p )(0)

∣

∣ ≤ C
[

F (p, |ρ(p)|)a/2 |ρ(p)|
α

+ 1
]

.

The starting point of the proof is the following lemma which is valid
for any domain Ω (c.f. [MS94, Lemma 8, p. 197]):

Lemma 3.7. Let f ∈Λα(Ω)∩H (Ω). Let ∂s be a derivative of length |s|>
α (in the canonical coordinate system). There exists a constant C de-
pending only on f , |s| and Ω such that, for all q ∈ Ω,

|∂sf(q)| ≤ C |ρ(q)|−|s|+α .

Let p ∈ Vk. This lemma and the regularity properties of the change
of variables z = Φp(Z) (Proposition 2.1) imply that, if Da denotes a
derivative with respect to the z variable of length |a| > α, then there
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exists a constant C depending only on f , |a| and Ω such that, for all z ∈
Φp(Ω),

(3.2)
∣

∣Da
(

f ◦ Φ−1
p

)

(z)
∣

∣ ≤ C
∣

∣ρ(Φ−1
p (z))

∣

∣

−|a|+α
.

We want to use this inequality through Cauchy’s formula, so, we need
to know that certain polydisks are contained in Φp(Ω):

Lemma 3.8. There exists two constants c < 1 and ν > 0, depending
only on Ω, such that, for 0 < t < δ0, if z belongs to the polydisk

{

|zi| ≤ cF
−1/2
i (p, |ρ(p)|)

(

|ρ(p)| + t

|ρ(p)|

)
1

2M2

, for i < n,

|zn + t| ≤ c |ρ(p)|

(

|ρ(p)| + t

|ρ(p)|

)
1

2M2

}

,

then

ρ ◦ Φ−1
p (z) = ρ̃(z) ≤

1

4
[ρ(p) − νt] .

Proof: Let z be a point in the polydisk described in the lemma and
z′ = z + (0, . . . , 0, t). Taylor’s formula gives

|ρ̃(z′) − ρ̃(0)| ≤
∑

|s|≤M

∗c|s|Dsρ̃(0)F−s/2(p, |ρ(p)|)

(

|ρ(p)| + t

|ρ(p)|

)

|s|

2M2

+A,

where ∗ are absolute constants and, by Proposition 2.2 (1), and (2.1),
A satisfies

A ≤ K1c
M+1 |ρ(p)|

M+1

M
−M+1

2M2 ≤ K2 |ρ(p)| c.

Moreover, Proposition 2.2 (2) implies

|Dsρ̃(0)| ≤ K |ρ(p)|F s/2(p, |ρ(p)|)

and

|ρ̃(z′) − ρ̃(0)| ≤ cK3(|ρ(p)| + t).

On the other hand, by Proposition 2.3, there exists a constant ν such
that ρ̃(z)−ρ̃(z′) < −νt, which implies the lemma, for c small enough.

Proof of Proposition 3.3: Let l > α be an integer. Using (3.2) and the
previous lemma, Cauchy’s formula applied at the point (0, . . . , 0,−t)
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shows that there exists a constant K depending only on f , l, Ω and |s|
such that

(3.3)

∣

∣

∣

∣

Da ∂l

∂zl
n

f ◦ Φ−1
p (0, . . . , 0,−t)

∣

∣

∣

∣

≤ KF
a/2(p, |ρ(p)|)

(

|ρ(p)|

|ρ(p)| + t

)
1

2M2
[

1

|ρ(p)| + t

]−α+l

.

We choose l = [α]+1. The function f ◦Φ−1
p being holomorphic, we have

∂l

∂zl
n

(

f ◦ Φ−1
p

)

=
∂

∂xn

∂l−1

∂zl−1
n

(

f ◦ Φ−1
p

)

, and

Da ∂
l−1

∂zl−1
n

(

f ◦ Φ−1
p

)

(0, . . . , 0,−t) = Da ∂
l−1

∂zl−1
n

(

f ◦ Φ−1
p

)

(0, . . . , 0,−δ0)

−

∫ δ0

t

Da ∂l

∂zl
n

(

f ◦ Φ−1
p

)

(0, . . . , 0,−u) du = A+B.

Note first that |A| is bounded by a constant depending only on |a| and f ,
because Φ−1

p (0, . . . , 0,−δ0) belongs to a fixed compact of Ω.
If α is not an integer, (3.3) implies

|B| ≤ KF
a/2(p, ρ(p))

∫ δ0

t

du

(|ρ(p)| + u)
l−α

≤ K1F
a/2(p, |ρ(p)|)

1

(|ρ(p)| + t)l−α−1
,

and a simple iteration gives the estimate of the proposition.
If α is an integer (then l = α+ 1), the same inequality implies

|B| ≤ KF
a/2(p, ρ(p)) |ρ(p)|

1/2M2

∫ δ0

t

du

(|ρ(p)| + u)
1+ 1

2M2

≤ KF
a/2(p, |ρ(p)|)

(

|ρ(p)|

(|ρ(p)| + t)

)1/2M2

,

and we may follow the same proof as before.

3.3.2. Proof of Theorem 3.3. The result is a trivial consequence of
Theorem 3.2 and the following lemma:

Lemma 3.9. For α < 1/M , a holomorphic function in Λα(Ω) verifies
|f(p) − f(q)| . ρ(p, q)α, p, q ∈ Ω.
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Proof: Let us denote by Z = (Zi) the coordinate system associated
to each Vk as in the beginning of Section 3.1. We showed, at the
beginning of the proof of Lemma 3.3, that if Z ∈ Vk0

∩ Ω, the point
Zt = (Z1, . . . , Zn−1, Zn − t) belongs to Uk0

∩ Ω for 0 ≤ t ≤ r̃.
To prove the lemma, f being in Λα, it suffices to establish the estimate

when ρ(p, q) = γ(p, q)+ρ(p)+ρ(q), and, f being bounded, when p and q
are in some Vl for l ≥ 1 and so that ρ(p, q) is small (i.e. ≪ r̃).

To simplify the notations, let τ = ρ(p, q), and consider the asso-
ciated points pτ and qτ (in the Z coordinates). By Proposition 2.8,
qτ ∈ Bexp(pτ ,Kτ), and there exist coefficients (ui)1≤i≤2n such that
qτ = exppτ

(u1, . . . , u2n) and |ui| . R′
i(pτ , τ).

Thus, if we denote fτ (p) = f(p) − f(pτ ), and the similarly for q, we
have

f(p) − f(q) = fτ (p) − fτ (q) + f(pτ ) − f(qτ )

= fτ (p) − fτ (q) +

∫ 1

0

∑

uiYif(exppτ
(tu1, . . . , tu2n)) dt.

The function f being holomorphic the last integral can be written
∫ 1

0

∑

viLif(exppτ
(tu1, . . . , tu2n)) dt,

where |vi| . Ri(pτ , τ). Now, in the coordinate system defined by Φw(t),

w(t) = exppτ
(tu1, . . . , tu2n), Li(w(t)) = ∂

∂zi
, and Proposition 3.3 gives

(recall α < 1/M)

|Lif(w(t))| . F
1/2
i (w(t), |ρ(w(t))|) |ρ(w(t))|

α
.

But, ρ(w(t)) belongs to [ρ(pτ ), ρ(qτ )], and thus, by the properties
of coordinate system (Zi), |ρ(w(t))| ∼ τ . Then, Proposition 2.9 gives
Fi(wt, |ρ(w(t))|) ∼ Fi(pτ , τ) and

|f(pτ ) − f(qτ )| . τα.

f being holomorphic, d
dt (f(pt)) = ∂f

∂Zn
(pt), then, if we write fτ (p) as

an integral of d
dt(f(pt) between 0 and τ , α < 1 and Lemma 3.7 imply

(recall |ρ(pt)| & t)

|fτ (p)| ≤ C(f)

∫ τ

0

tα−1 dt = C(f)τα.

The similar inequality is clearly true replacing p by q. Then the lemma
is proved.
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3.3.3. The case α ≥ 1/M . The spaces Λα are well adapted to our
purpose for all α > 0, but those given by Definition 3.2 cannot be used,
for α ≥ 1/M , to obtain results on the Bergman projection (for example,
if α > 1/M it forces the function to be constant in certain directions). To
get through the general case we have to define the spaces Γα in another
way.

The functions in Λα can be characterized by the existence of a decom-
position in a sum of functions whose derivatives are well controlled in an
isotropic way (Proposition 3.2). Similarly, for α < 1/M , the space Γα

can be characterized (see Lemma 3.9 for the fact that if f satisfy Def-
inition 3.3 below then f ∈ Γα(Ω), and the methods of [MS94] and
Proposition 2.5 for the converse) using such a decomposition but with
non-isotropic estimates for the derivatives. It is then natural to define
the space Γα, for all α > 0, as follows (recall that we denote by Z = (Zi)
the coordinate system associated to each Vl as in the beginning of Sec-
tion 3.1).

Definition 3.3. A function f belongs to Γα, 0 < α < +∞, if it is
in Λα(V0) and, for every l ≥ 1 and every integer k there exists func-
tions fk and gk, defined in Vl ∩ Ω, such that f = fk + gk in Vl ∩ Ω
and:

(1) ‖fk‖L∞ .f 2−kα.
(2) If Z ∈ Vl ∩ Ω and |ρ(Z)| ≥ 2−k, for all integer m ≥Mα,

|∇mgk(Z)| .f,m 2mk2−kα.

(3) If Z ∈ Vl∩Ω and |ρ(Z)| < 2−k, Da being a derivative of length |a| ≥
Mα with respect to the coordinate system Φ = ΦZ associated to Z
and δ = |ρ(Z)|,

∣

∣Da(gk ◦ Φ−1)(0)
∣

∣ .f,a F
a/2(Z, 2−k)2−kα.

Theorem 3.4. Let Ω be a bounded pseudo-convex domain of finite type
in Cn with locally diagonalizable Levi form. For 0 < α < +∞, the
Bergman projection maps continuously Λα into Γα.

Once again, the result follows the next lemma:

Lemma 3.10. For all α > 0, each function in Λα(Ω) belongs to Γα(Ω).

Proof: Recall that we showed, at the beginning of the proof of Lem-
ma 3.3, that if Z ∈ Vl ∩Ω, the point Zt = (Z1, . . . , Zn−1, Zn − t) belongs
to Ul ∩ Ω for 0 ≤ t ≤ r̃.
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Let s > α be an integer. By integration by parts, we have, for Z ∈
Vl ∩ Ω and f holomorphic in Ul ∩ Ω,

f(Z) =
(−1)s−1

(s− 1)!

∫ r̃

0

ts−1 d
s

dts
f(Zt) dt+ E(Z),

where E is C∞ on Vl ∩ Ω.
For k such that 2−k ≤ r̃, we define fk and gk by

fk(Z) =
(−1)s−1

(s− 1)!

∫ 2−k

0

ts−1 d
s

dts
f(Zt) dt,

gk(Z) =
(−1)s−1

(s− 1)!

∫ r̃

2−k

ts−1 d
s

dts
f(Zt) dt+ E(Z)

so that f = fk + gk.
Then

Lemma. With the previous notations, if f ∈ Λα(Ω) is holomorphic, we
have

|fk(Z)| ≤ C(f)2−kα

and, if Φp is the change of coordinates associated to p = Z2−k and δ =
|ρ(p)| and z = Φp(Z), for all derivative Da,

∣

∣Da(gk ◦ Φ−1
p )(z)

∣

∣ ≤ C(f, a)
[

F
a/2(Z2−k , |ρ(Z2−k)|) |ρ(Z2−k)|

α
+ 1
]

.

Proof: By the choice of the coordinate system, |ρ(Zt)| & t, and, f being

holomorphic, ds

dts (f(Zt)) = ∂sf
∂Zs

n
(Zt), then s > α and Lemma 3.7 imply

|fk(Z)| ≤ C(f)

∫ 2−k

0

t−s+α+s−1 dt = C(f)2−kα.

To estimate the derivatives of gk, let us first integrate by parts:

gk(z) = Ẽ(Z)+

s−1
∑

l=0

∗2−kl d
l

dtl
f(Zt)|t=2−k = Ẽ(Z)+

s−1
∑

l=0

∗2−kl d
lf

dZ l
n

(Z2−k),

where the ∗ are absolute constants depending only on s and Ẽ is C ∞

on Vl ∩ Ω.
Then, Proposition 3.3, (2.1) and the fact that |ρ(Z2−k)| & 2−k imply

∣

∣Da(gk ◦ Φ−1
p )(z)

∣

∣≤C(f)
[

F
a/2(Z2−k , |ρ(Z2−k)|) |ρ(Z2−k)|

α
+1
]

.
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To prove Lemma 3.10, it suffices to show that the functions gksatisfies
properties (2) and (3) of Definition 3.3. Denote by z̃ and z the coordinate
system associated to Φp and Φq where q = Zq = Z and p = Z2−k , and

write Li =
∑

bji
∂

∂zj
=
∑

b̃ji
∂

∂z̃j
, ∂

∂zi
=
∑

aj
iLj ,

∂
∂z̃i

=
∑

ãj
iLj . Because

|ρ(Z)| < |ρ(Z2−k)|, Propositions 2.5 and 2.9 imply that all the derivatives
∣

∣

∣Da
z (bji )

∣

∣

∣,
∣

∣

∣Da
z (aj

i )
∣

∣

∣,
∣

∣

∣Da
z̃ (b̃ji )

∣

∣

∣ and
∣

∣

∣Da
z̃ (ãj

i )
∣

∣

∣ are

.a F
a/2(Z, |ρ(Z2−k)|)F

1/2
i (Z, |ρ(Z2−k)|)F

−1/2
j (Z, |ρ(Z2−k)|).

It follows immediately that
∣

∣Da
z̃ (gk ◦ Φ−1)(0)

∣

∣ .a

∣

∣Da
z (gk ◦ Φ−1

p )(z)
∣

∣ .

Now, |ρ(Z)| < 2−k implies |ρ(Z2−k)| ∼ 2−k, and, because |a| ≥ Mα,
(2.1) and (2.2) give the required inequality.

If |ρ(Z)| ≥ 2−k, the result is trivial because the function Fa/2(p, δ)δα

is decreasing in the case |a| ≥Mα.

4. The Szegö projection

The theory of “non isotropic smoothing” operator (NIS operator) was
introduced in [NRSW89] to study the Szegö projection for domains
of finite type in C2, and then extended to decoupled domains of Cn

in [CG94] and to convex domains of finite type in [MS97].
These operators are defined in relation with a (non-isotropic) good

pseudo-distance which confers to the domain a structure of homogeneous
space. Then the method consists to prove first that the class of NIS
operators is stable under basic operations (composition, derivation, Lie
brackets. . . ), second that a NIS operator of order 0 maps certain spaces
into themselve (Lp spaces, non-isotropic Hölder spaces. . . ), and, finally,
that the Szegö projection is a NIS operator of order 0. Relations between
the Szegö projection and the Bergman kernel and pointwise estimates of
this kernel are used to prove the last point.

In the case of convex domains of finite type J. D. McNeal and
E. M. Stein [MS97] obtained also classical Hölder estimates proving
pointwise estimates for the Szegö kernel inside the domain.

Note that the NIS operators has also been used in [CNS92] to study

the ∂-Neumann problem.
The goal of this section is to show that the NIS operator theory and

its applications to the Szegö projection can be developed in the case
of domains of finite type with locally diagonalizable Levi form. The
general ideas of the NIS operators theory being now well known, we
will only show how to adapt this theory to our context (giving slighty
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modified definitions for bump functions and NIS operators) and give
the essential steps without detailled proofs. The proofs can easily be
deduced from [MS97].

4.1. NIS operators and bump functions. As we did in Section 3,
we cover Ω by open sets Vk, 0 ≤ k ≤ N0, the sets Vk, 1 ≤ k ≤ N0, being

a covering of ∂Ω. For each k ≥ 1, let {L
(k)
1 , . . . , L

(k)
n−1} be a basis of the

complex tangent space diagonalizing the Levi form in Vk ∩ ∂Ω.
First we define the “bump functions” as follows:
Let x0 ∈ ∂Ω ∩ Vk and δ > 0 such that the “polydisk” Px0

(δ) (see
Section 2.2) is contained in Vk. A function Φ ∈ C N (Px0

(δ) ∩ ∂Ω) with
compact support is called a normalized “bump function” of order N if,

for every list L (associated to the vector fields L
(k)
i or L

(k)

i , i < n) of
length less than N ,

|L Φ| ≤ F (x0, δ)
−L /2.

Note that the properties of the change of coordinates (Section 2.2) and
Proposition 2.7 show that, for α ∈]0, 1[, there exists a constant CN,α such
that, for k ≥ 1, if Px0

(δ) ⊂ Vk, there exists a function Φ identically equal
to 1 in Px0

(αδ) ∩ ∂Ω such that Φ/CN,α is a normalized bump function
of order N .

These bump functions are used to define partitions of unity to localize
the problems in the open sets Vk so that we can work with the vector

fields L
(k)
i .

Now we give the definition, adapted to our situation, of a NIS operator
of order a:

Definition 4.1. An operator A mapping C ∞(∂Ω) into itself and de-
fined by

A f(x) =

∫

∂Ω

A(x, y)f(y) dσ(y),

where A is C∞ outside the diagonal is called an operator of order a =
(a1, . . . , an) if there exists a family of operators Aε defined by kernels Aε

satisfying the five following properties:

(1) For f ∈ C ∞(∂Ω), Aεf converges to A f in C∞(∂Ω).
(2) Aε ∈ C∞(∂Ω × ∂Ω).
(3) For k = 1, . . . , N0, and all lists L and L ′ associated to vector

fields L
(k)
i and L

(k)

i of length α and β,
(a) for all (x, y) ∈ Vk × Vk,

∣

∣LxL
′
yAε(x, y)

∣

∣ .α,β F (x, γk(x, y))
−a+L+L

′

2 ,
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(b) for all (x, y) /∈
⋃

k≥1(Vk × Vk),
∣

∣LxL
′
yAε(x, y)

∣

∣ .α,β 1,

the constants in the inequalities being independent of ε.
(4) For r ∈ N∗, there exists Nr ∈ N∗ such that, for all normalized

bump function Φ on Px0
(δ) ∩ ∂Ω (contained in Vk) of order ≥ Nr

and all list L (as before),

‖L (AεΦ)‖∞ .r F
−a+L

2 (x0, δ),

the estimate being uniform in ε.
(5) The properties (1)–(4) are satisfied by the adjoint A ∗ of A .

Following the methods of [NRSW89] and [MS97], with the previous
definition it is easy to prove the next stability properties:

Proposition 4.1. (1) If A1 and A2 are NIS operators of respective

order a and b, and if
∑

ak+bk≥0
ak+bk

2 +
∑

ak+bk<0
ak+bk

M < 2n
M ,

then A1 ◦ A2 is a NIS operator of order a+ b.
(2) If A is a NIS operator of order a and if D is a differential operator

of order 1, then the family of kernels DxAε(x, y) defines a NIS
operator of order a− (1, 0, . . . , 0).

(3) If A is a NIS operator of order a and h ∈ C∞(∂Ω), the opera-
tor [A , h] is a NIS operator of order a+ ( 1

M , 0, . . . , 0).

4.2. The Szegö projection as an operator of order 0. We use the
relation, shown in [NRSW89], between the Szegö projection and the
Bergman kernel. Let us recall it briefly.

For x ∈ ∂Ω, let N(x, t) denote the integral curve of N normalized
so that N(x, 0) = x and ρ(N(x, t)) = t. Choose b sufficiently small so

that N(x, t) ∈ Ω ∩
(

⋃

k≥1 Vk

)

, 0 ≤ t ≤ b. For g ∈ C∞(Ω), define the

kernel Agε
by

Agε
(x, y) =

∫ b

ε

KB(N(x, t), y)g(N(x, t)) dt.

We assume |∇ρ| ≡ 1 on ∂Ω. Thus, if f ∈ C∞(∂Ω) and if f̃ denotes a
C∞(Ω) extension of f , Stokes formula shows that

∫

∂Ω

Agε
(x,w)f(w) dσ(w) =

∫ b

ε

g(N(x, t))PB

(〈

∂f̃ , ∂ρ
〉)

(N(x, t)) dt

+

∫ b

ε

g(N(x, t))PB(f̃∆ρ)(N(x, t)) dt,

where PB is the Bergman projection.
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As the Bergman projection maps C ∞(Ω) into itself, the preceding
formula shows that the operator Agε

, defined with the kernel Agε
, con-

verges, in C ∞(∂Ω), to the operator Ag defined by the kernel

Ag(x, y) =

∫ b

0

g(N(x, t))KB(N(x, t), y) dt.

Following the calculus made in [MS97], it is easy to show that Ag is
an operator of order 0.

Our domain being of finite type, the Szegö projection PS maps
C∞(∂Ω) into itself. Thus, writing, for f ∈ C∞(∂Ω),

d

dt
PSf(N(x, t)) =

n
∑

i=1

gi(N(x, t))
∂PSf

∂zi
(N(x, t)),

by integration by parts we immediately obtain that

PSf = lim
ε→0

n
∑

i=1

Agiε

(

∂ρ

∂zi
PSf

)

,

the convergence being in C ∞(∂Ω). Using the fact that f − PSf is or-
thogonal to holomorphic functions and that the kernel of Agiε

is anti-
holomorphic in the second variable, we easily obtain

(4.1) PSf = lim
ε→0

(Pεf +QεPSf) ,

in C∞(∂Ω), where Pε =
∑n

i=1
∂ρ
∂zi

Agiε
and Qε = Q̃+

∑n
i=1

[

Agiε
, ∂ρ

∂zi

]

,

with Q̃ the operator of order
(

1
M , 0 . . . , 0

)

associated to the Poisson ker-
nel.

In other words, this method allows us to write PS as a limit of well
controlled operators. Then the fact that PS is of order 0 follows Propo-
sition 4.1.

4.3. Estimates for the Szegö projection.

4.4. Lp estimates. The restriction to ∂Ω×∂Ω of the function γ defined
in Section 3.3 is a pseudo-distance which defines a structure of homo-
geneous space on ∂Ω. Thus, we can use the T(1) Theorem of [DJS85]
to show that a NIS operator of order 0 is bounded on L2(∂Ω), an then
also on Lp(∂Ω), 1 < p < +∞. Using commutations properties (similar
to Corollary 4.2 of [MS97]), we obtain

Theorem 4.1. For 1 < p < +∞ and s ∈ N, the Szegö projection maps
continuously Lp

s(∂Ω) into itself.
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4.5. Hölder estimates. Let us first consider the calssical Hölder space
Λα(∂Ω) (i.e. defined with the euclidean distance). Following (4.1), we
can write PS = P +QPS , where P is an operator of order 0 and Q an

operator of order
(

1
M , . . . , 0

)

, and, iterating, PS =
∑N−1

i=0 QiP +QNPS .

The Szegö projection being autoadjoint, we also have PS =
∑N−1

i=1 P ∗Q∗i+
PSQ

∗N . Then, writing PS = P ∗
SPS , we approximate PS by operators

whose kernels are in C ∞(∂Ω×∂Ω) holomorphic in the first variable and
antiholomorphic in the second, and we can prove that the Szegö projec-
tion satisfies interior estimates in the sense of Definition 4 of [MS97],
and reproduce without any difficulty the proof of this paper to obtain:

Proposition 4.2. The Szegö projection maps continuously Λα(Ω) into
itself for all α ∈]0,+∞[.

Consider now, for 0 < α < 1/M , Γα(∂Ω), the space of function
satisfying a Hölder estimate of exponent α with respect to the pseudo-
distance defined with γ. Then Γα(∂Ω) is the restriction to ∂Ω of the
space Γα(Ω) introduced in the previous section. We extend this definition
to all α > 0 by Γα(∂Ω) = {F|∂Ω, F ∈ Γα(Ω)}.

Note that if a function f ∈ Λα(∂Ω) is the restriction of a holomorphic
function F in Ω (i.e. if it’s Poisson integral is holomorphic), then F be-
longs to Λα(Ω). Using then Proposition 4.2 and Lemma 3.10 it is easy
to prove:

Theorem 4.2. For all α ∈]0,+∞[, the Szegö projection maps continu-
ously Λα(∂Ω) into Γα(∂Ω).

5. Further results

The geometric study of pseudo-convex domains near points of finite
type with locally diagonalizable Levi form made in [CD] gives two es-
sential properties:

(1) The existence of a change of coordinate Φδ
z, attached to a point z ∈

Ω and a δ > 0, related, uniformly in z and δ, to the functions
Fi(z, δ) (Section 2.1 and 3.5 of [CD]).

(2) The existence of a plurisubharmonic function on Ω whose hessian is
controlled, in strings, by the functions Fi(z, δ) (Section 4 of [CD]).

These local properties where used in [CD] to obtain estimates of
the Bergman kernel and, in the previous sections, using these estimates
and property (1), we proved some estimates for the Bergman and Szegö
projections when all the boundary points satisfies our hypothesis.
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It is also possible to use the two properties to give precise estimates of
the standard invariant metrics of Ω under the local hypothesis of finite
type and diagonalizability of the Levi form:

Theorem 5.1. Let Ω be a bounded pseudoconvex domain in Cn with
C∞ boundary. Suppose that there is a point of finite type z0 ∈ ∂Ω
and a neighborhood U of z0 where the Levi form is diagonalizable. Let
us denote by BΩ(z, L) (resp. CΩ(z, L), resp. KΩ(z, L)) the Bergman
(resp. Caratheodory, resp. Kobayashi) metric of Ω at the point z ∈ Ω.
Let Li, 1 ≤ i ≤ n − 1 be a basis which diagonalizes the Levi form and
Ln the complex normal vector field. Then if L is a holomorphic vector
at the point z ∈ Ω ∩ U , L =

∑n
i=1 biLi, we have

BΩ(z, L) ≃ CΩ(z, L) ≃ KΩ(z, L) ≃

n
∑

i=1

|bi|F
1/2
i (z, δ(z)),

where δ(z) is the distance to the boundary, the constants in the equiva-
lences being independent of z and L.

Note that, using uniform properties of the change of variables Φδ
z′ ,

it is enough to prove the equivalence of the metrics on a suitable do-
main Ω′

z′ = Φδ
z′(Ω). To do that, we follow the method introduced by

D. W. Catlin [Cat89] in C2, as S. Cho did in [Cho02a] for the case of
domains whose Levi form have comparable eigenvalues.

The starting point is an analog of Theorem 3.1 of [Cat89] which
is easily proved using the proofs of Theorem 4.1 and Proposition 5.1
of [CD]:

Theorem 5.2. There exists a neighborhood U of z0 such that, for all
δ > 0 small enough, there exists a function λδ ∈ C∞(Cn) with the
following properties:

(1) |λδ(z)| ≤ 1.

(2) For all L =
∑

biLi,
〈

∂∂λδ(z);L,L
〉

&
∑

|bi|
2
F

1/2
i (z, δ), for z ∈

U ∩ {|ρ(z)| < δ}.
(3) For z′ ∈ U ∩ {|ρ(z)| < δ} and any derivative D = Dα1 . . . Dαn , in

(Φδ
z′)−1 (U ∩ {|ρ(z)| < δ} ∩ Pz′(δ)),

∣

∣Dλδ ◦ Φδ
z′

∣

∣ . F
α/2(z′, δ).

Then Catlin’s proof can be done with anisotropic estimates using
cutoff functions associated to the anisotropic polydisk Pz . The func-
tion Jα(ξ′) introduced by Catlin in Section 4 of [Cat89] corresponds to
the function δ+ γ(z′, ξ′) (see Lemma 3.5). The existence of the uniform
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bumping is given by a theorem of S. Cho [Cho92] which is valid in any
finite type domain.

As shown by J. D. McNeal in [MN01], Theorem 5.1 and the estimates
on the Bergman kernel recalled in Section 2.3 give an estimate for the
∂ problem for the norms associated to an invariant metric:

Theorem 5.3. Let Ω be a domain in Cn which satisfies the hypothesis
of Theorem 3.1. Then there exists a constant C > 0 such that, for any
(n, 1)-form α, ∂-closed, there exists a solution u of the equation ∂u = α
satisfying

‖u‖I ≤ C ‖α‖I ,

where ‖.‖I denotes the norm associated to any of the metrics of Cara-
theodory, Bergman or Kobayashi.
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