

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 16, 2017

Web-based topology queries on a BIM model

Rasmussen, Mads Holten; Hviid, Christian Anker; Karlshøj, Jan

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Rasmussen, M. H., Hviid, C. A., & Karlshøj, J. (2017). Web-based topology queries on a BIM model. Paper
presented at LDAC2017 – 5th Linked Data in Architecture and Construction Workshop, Dijon, France.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/132703587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/webbased-topology-queries-on-a-bim-model(0a548a16-df12-4937-b5bf-0e24714afc99).html

Web-based topology queries on a BIM model

Mads Holten Rasmussen1, Christian Anker Hviid, and Jan Karlshø

Technical University of Denmark, Copenhagen, Denmark

Abstract. Building Information Modeling (BIM) is in the industry of-
ten confused with 3D-modeling regardless that the potential of modeling
information goes way beyond performing clash detections on geometri-
cal objects occupying the same physical space. Lately, several research
projects have tried to change that by extending BIM with information
using linked data technologies. However, when showing information alone
the strong communication benefits of 3D are neglected, and a practical
way of connecting the two worlds is currently missing.

In this paper, we present a prototype of a visual query interface running
in a web browser, that enables the user to gain a deeper understanding
of what can be extracted from a Building Topology Ontology (BOT)
knowledge base. The implementation enables the user to query the graph,
and provides visual 3D-feedback along with simple table results.

The main purpose of the paper is to establish a baseline for discussion of
the general design choices that have been considered, and the developed
application further serves as a proof of concept for combining BIM model
data with a knowledge graph and potentially other sources of Linked
Open Data, in a simple web interface.

1 Introduction

Today’s BIM software allows the user to (1) create geometrical objects (2) es-
tablish geometrical constraints and relationships between them and (3) assign
properties to them. Some software also offers calculation and simulation capabil-
ities making them a full-suite solution. The complexity of the BIM tools entail
that it requires special training to use them, and the fact that the most expe-
rienced engineer typically lacks IT-competencies induces that in the industry,
they are often operated by technical designers. As the tools further lack inter-
operability with the software commonly used by engineers, they are obstructed
from utilising the full BIM potential. The result is that essential information
gets trapped in proprietary BIM files or ”digital cemeteries” as one might be
tempted to call them, while engineers waste time and introduce human errors
by doing manual information takeoffs.

Point (1) and (2), respectively creating geometrical objects and establishing
geometrical constraints and relationships between them, are the key features of
the BIM tools of today and they conquer this task very well. When it comes to
(3) assigning properties to BIM objects, however, it is not completely clear why
this task is best accomplished in a large BIM suite. If other tools could instead

subscribe to the geometrical properties in the model and get notified when these
change as the design progresses, a potential efficiency gain could be achieved in
typical working tasks. By making data accessible in the cloud, larger engineering
companies and software vendors would be able to develop task-specific design
tools that are linked directly to the one true source of information, thereby
reading, manipulating and writing to a linked framework of data. The prototype
documented in this paper serves as a proof of concept of such a tool.

1.1 BIM and the semantic web

The Building Topology Ontology (BOT)1 suggested by the World Wide Web
Consortium (W3C) Linked Building Data Community Group (W3C LBD-CG)
is a compact ontology designed for expressing the semantics of a building [1]. It
was a result of a study in existing ontologies in the construction, automation and
smart cities domains, where it was discovered that basic semantics of buildings
were redundantly described in all ontologies. Currently, there are no software
implementations of the ontology, which makes it hard to communicate its po-
tential to people who do not have a background in ontology design. To illustrate
the features of the ontology and for BIM practitioners and engineers to imagine
potential use cases, a simple web application and an exporter for the commer-
cial BIM tool, Autodesk Revit2, was developed. The exporter was developed
to establish a BOT-compliant knowledge representation of a building from the
software tool most widely used in danish consulting engineering companies, but
the knowledge representation could also have been generated through the API
of another BIM-tool, or by parsing a file in the open ISO standardised Indus-
try Foundation Classes (IFC)[2] format. One could also imagine using the same
approach as presented in this paper to align with other OWL representations of
building data such as ifcOWL [3].

In the following sections we seek to document the design considerations and
the overall system architecture of the application and in closing we cover our
reflections on future work.

2 Building Topology

In the prototype, a subset of the semantics defined in BOT is extracted in
order to describe relationships in the BIM model. Some relationships are directly
accessible in the Revit API and some are not. While anything can be derived by
performing operations on the geometry, it can be a time-consuming task both
to develop and run the code and for the purpose of this case study, only the
directly available relationships have been extracted.

1 https://w3id.org/bot#
2 www.autodesk.com/Revit

2.1 Class definitions

In the current implementation only some of the main elements are exported.
Walls, doors and windows are exported as bot:Elements, levels as bot:Storeys
and spaces/rooms as bot:Spaces. Revit Spaces are the Mechanical engineers’
representations of rooms, and the main reason for using them is that they have
other predefined properties than for architectural rooms. Spaces can further be
used to subdivide a room. From a BOT perspective, they are both spaces and are
exported as such. This means that a model containing both rooms and spaces
will have duplicate geometries at some locations, but when querying over the
data this can be taken care of by including properties or filtering by the content
of the URI. The design of the URIs is covered in section 3.

A level in Revit is not a physical zone with containment of and adjacencies
to other zones and elements as in BOT, but even though it has no physical
representation it still conceptually exists and is hence exported as such.

2.2 Relationships

A limited set of relationships have been extracted at the current stage. bot:hasSpace
describes the spaces and rooms that are located on a level, bot:adjacentElement
describes walls surrounding and sharing a common interface with rooms/spaces
and bot:hostsElement describes the windows and doors that are hosted in a
wall. In the further development of the exporter, also zone adjacencies/contain-
ments and relevant interfaces introduced in [4] should be exported.

2.3 Properties

Two general properties, rdfs:label from the Resource Description Framework
(RDF) Schema3 namespace and rvt:guid from a fictive Revit namespace are ex-
ported along with all the exported objects. rvt:guid holds the Globally Unique
ID (GUID) of the Revit object and the rdfs:label is generated a little differ-
ently based on the type of object (see Table 1).

Table 1. Properties exported from Revit.

Revit element(s) Revit property OWL property Datatype

Wall, Door, Window, Level, Space, Room GUID rvt:guid xsd:string
Wall, Door, Window Type rdfs:label xsd:string
Wall Width nir:width cdt:length
Wall Length nir:length cdt:length
Level Name rdfs:label xsd:string
Room, Space Name Number rdfs:label xsd:string
Room, Space Area nir:spaceArea cdt:ucum
Room, Space Volume nir:spaceVolume cdt:ucum

3 https://www.w3.org/TR/rdf-schema/

As the W3C LBD-CG work on properties was at the time of writing not
fully developed a set of properties in a fictive Niras4 namespace were extracted.
The prod vocabulary5 generated from IFC4 was briefly reviewed, but none of
the properties listed in Table 1 were available.

In the further development, property extraction could be handled through a
mapping table, thereby leaving it up to the user to specify which vocabularies
to export to.

3 System architecture

The overall system architecture enables the users to (1) generate BOT-compliant
triples from a Revit model (2) Upload the BIM model and convert it for rendering
in the browser (3) Upload BOT-triples to a triplestore and (4) perform SPARQL6

queries on the triplestore and filter the 3D-view based on the result.

Tool

Upload

Triplestore

Forge
BIM Model

- Generate URIs
- Extract relationships
- Write triples

.ttl

.rvt/

.nwd/

.ifc

C:/model.ttl

C:/model.rvt

Web APP

1. Generate triples 2. Export files 3. Upload files 4. Send to APIs 5. Save to db

BOT
API

Forge
API

Fig. 1. The infrastructure from file export over the web application to pushing data
to the two databases.

3.1 Revit

In Revit, a tool (1) generates custom property: URI for all objects (2) generates
custom property: host for the project (3) generates URIs as a concatenation
of :host/:project number/:object type/:GUID where the GUID is the one
assigned by Revit (4) generates the BOT-relationships described in section 2
in the Resource Description Framework (RDF)7 language and (5) exports the
generated data to a Turtle8-file.

4 The company in which the main author is employed.
5 https://raw.githubusercontent.com/w3c-lbd-cg/props/master/IFC4-output.ttl
6 https://www.w3.org/TR/sparql11-query
7 https://www.w3.org/RDF/
8 https://www.w3.org/TR/turtle/

Writing the URIs to a property on the Revit objects makes them available
when exported to IFC or Navisworks. In the web app, these are used when
filtering the 3D view. When visiting the URI in a browser the user should be
presented with some useful information about the object and its relations, but
at the current stage, the API is not capable of doing that.

Basing the URI on the Revit GUID establishes a mechanism for understand-
ing the origin of an object as objects can also be created elsewhere. The URI
design makes the rvt:guid property redundant, and it is a topic for discussion
whether this property should exist.

Making the triples and the files accessible in the web app is currently handled
by uploading the exported files from Revit, but it would be more user-friendly
to push them directly to the web through the backend application. In Fig. 1 this
would imply that step 2 and 3 could be skipped. To further improve the user
experience the connection could be established through web sockets enabling a
continuous communication between Revit and the server.

3.2 Web APP

Both the front- and backend of the application are built in Typescript9 and
compiled to JavaScript. JavaScript has a solid infrastructure through the Node
Package Manager (npm)10 and provides the convenience of running both on a
server and in a browser. Typescript is a typed superset of JavaScript that enables
better control as the application scales and further, it is the chosen language
used in the Angular11 framework which the frontend is built upon. The reason
for choosing Angular is that it is developed and maintained by Google and is
hence widely used and well documented. Angular further adds some guidelines
for the application structure which makes it more modular and easier to scale.
The BIM model is rendered in the threejs12 based Forge Viewer13 and Forge also
handles the conversion and storage of the BIM models. Also for the triplestore
a commercial product, Stardog14, was used.

We would have preferred to base the prototype on non-commercial products
like xeogl15 on which BIMSurfer16 is built or pure threejs for the viewer and
Apache Jana Fuseki17 for the triplestore, but the commercial solutions deliver a
certainty of future maintenance and a flat learning curve since documentation is
well developed.

9 https://www.typescriptlang.org
10 https://www.npmjs.com
11 https://angular.io/
12 https://threejs.org/
13 https://developer.autodesk.com/en/docs/viewer/v2/overview
14 http://www.stardog.com/
15 https://github.com/xeolabs/xeogl
16 http://bimsurfer.org/
17 https://jena.apache.org/documentation/serving data/

When adding a new project the backend creates a new database in the triple-
store named P followed by the 6 digit project number (ex. P100100) and inserts
some general information about the project in the default graph (see Lst. 1.1).
Once a project is generated a so-called Bucket can be assigned to it. This can
be done by clicking ”add bucket” in the project overview, and doing so will
generate a bucket using the Forge Data Management API and assign a new
property rvt:bucketKey to the project in the triplestore. The bucket key must
be globally unique, so in the current implementation it is niras p followed by the
project number (ex. niras p100100). Buckets contain objects and objects are
translated files such as BIM models. When uploading a model the file is uploaded
to the backend that further sends it to the Forge API. The Forge API returns
an object key and begins the translation of the file to SVF-format, which can be
rendered by the viewer. The current implementation supports translations from
IFC, Navisworks (NWC), Revit (RVT) and Sketchup (SKP) files but the Forge
Derivative API supports +60 formats.

Listing 1.1. Project data

@prefix doap: <http :// usefulinc.com/ns/doap#> .

@prefix prov: <http :// www.w3.org/ns/prov#> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

<generatedProjectURI > a foaf:Project , doap:Project ,

prov:Entity ;

rdfs:label "projectName" ;

doap:name "projectName" ;

doap:created "dateTime "^^ xsd:datetime ;

rdfs:comment "projectDescription" ;

doap:description "projectDescription" .

When a test file is opened in the viewer there is a significant difference to
how it is rendered. The RVT-file does not contain spaces and neither does the
IFC. Several elements in the IFC has deformed elements. The NWC-file includes
spaces, has no deformed geometry, includes spaces and textures and has a file
size of less than 10 % of the IFC and nearly 1 % of the much larger RVT-
file. However, the properties of the spaces don’t seem to be available from the
property tree and hence it is not possible to isolate spaces based on their URI.

As the BOT semantics are stored in a separate file, this turtle-file needs to be
uploaded as well. The backend receives the file and puts the triples in a named
graph named tag:/:ttlFileName: where :ttlFileName is extracted from the
received file. When more models are available, one then has the option to query
based on relationships in one graph or in all graphs. Further, the named graph
makes it easy to delete all triples associated with a specific model.

The triplestore can be queried from the viewer and the results are returned
in a table. All results consisting of URIs are extracted and in the viewer, ele-
ments carrying these URIs are isolated as shown in Fig. 2. The example shows
what wall elements are adjacent to the space, and provides a visual feedback
for quality assurance and understanding purposes. Communication with Forge

and Stardog is done through two separate Express18 based REST APIs. The
one communicating with Forge just adds a middle layer for security reasons and
basically extends the routs already exposed by Forge. This will not be further de-
scribed. The one communicating with the triplestore handles the management of
projects, upload of triples and doing queries on the graph. The full set of routes
are listed in Table 2.

Fig. 2. Querying the model.

Get triples doesn’t fully follow HTTP conventions as is it is handled by a
POST request, but as the query is sent to the API through the request body, it
is not possible to use a GET request.

Table 2. REST-API Routes for the backend handling communication with Stardog.
:host is the address of the server that hosts the REST API (ex. https://niras.dk) and
:name is the name of the database in which the requested data is stored.

Route Method Description

:host/projects GET Get all projects (databases)
:host/project POST Create project
:host/project/:name DELETE Delete project
:host/projects/:name GET Get project details
:host/:name/admin/postTriples POST Insert triples
:host/:name/admin/getTriples POST Get triples
:host/:name/bot POST Insert BOT-compliant file

18 https://expressjs.com

4 Future work

The prototype is just a proof of concept and the list of future work is exhaustive.
Some considerations were already considered in section 3, but in general we would
like to see more projects and software implementations dealing with export of
BIM data to BOT knowledge bases.

It would be interesting to see projects dealing with the generation of data
outside the BIM tool and doing reasoning on a combination of the two. A simple
example could be grouping of spaces into different zones like fire cells. It would
also be interesting to see a project dealing with management of a continuous
communication between the BIM tools and the triplestore. This implies dealing
with properties that change over time, calculations based on properties that
might change over time and the problems this might entail.

Some effort by the W3C LBD-CG is being put into developing product and
property ontologies and it would be an obvious improvement of the Revit ex-
porter to align with these. Product classes would allow for more specific queries
than what is possible with bot:Element and there are several use cases that
could benefit from having updated geometrical data from the BIM tool available
at hand.

5 Conclusion

The main contribution of the study is the illustration of a simple architecture
for combining 3D model data with data from a triplestore. It was succeeded to
develop a working prototype of a tool to perform queries in the browser with
visual 3D representations of the results, and it is the authors’ belief that the
visual feedback will enhance the communication of what can be expressed with
BOT. At the current stage of development only some BOT data is exported
from the BIM tool and this is a problem since the users might misinterpret the
capabilities of the ontology.

References

1. Mads Holten Rasmussen, Pieter Pauwels, Christian Anker Hviid, and Jan Karlshø.
Proposing a central aec ontology that allows for domain specific extensions. In Joint
Conference on Computing in Construction, volume 1, pages 237–244, 2017.

2. Thomas Liebich and Jeffrey Wix. Highlights of the development process of industry
foundation classes. In Proceedings of the 1999 CIB W78 Conference, 1999.

3. Pieter Pauwels and Walter Terkaj. EXPRESS to OWL for construction industry:
Towards a recommendable and usable ifcOWL ontology. Automation in Construc-
tion, 63:100–133, 2016.

4. Mads Holten Rasmussen, Pieter Pauwels, Maxime Lefrançois, Georg Ferdinand
Schneider, Christian Anker Hviid, and Jan Karlshø. Recent changes in the building
topology ontology. In Linked Data in Architecture and Engineering, 2017.

View publication statsView publication stats

https://www.researchgate.net/publication/320757039

