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LETTER Communicated by Rong Ge

Sequence Classification Using Third-Order Moments

Rasmus Troelsgaard
rast@dtu.dk
Lars Kai Hansen
lkai@dtu.dk
Department of Applied Mathematics and Computer Science, Technical University
of Denmark, Lyngby 2860, Denmark

Model-based classification of sequence data using a set of hidden Markov
models is a well-known technique. The involved score function, which is
often based on the class-conditional likelihood, can, however, be compu-
tationally demanding, especially for long data sequences. Inspired by re-
cent theoretical advances in spectral learning of hidden Markov models,
we propose a score function based on third-order moments. In particu-
lar, we propose to use the Kullback-Leibler divergence between theoreti-
cal and empirical third-order moments for classification of sequence data
with discrete observations. The proposed method provides lower compu-
tational complexity at classification time than the usual likelihood-based
methods. In order to demonstrate the properties of the proposed method,
we perform classification of both simulated data and empirical data from
a human activity recognition study.

1 Introduction

Classification and clustering of sequences into categories is essential to hu-
man interpretation of the data. Different methodologies have been pro-
posed to deal with this problem, and Xing, Pei, and Keogh (2010) give a brief
and general overview of the field, including model-based classification. The
general approach in model-based classification is to represent each class by
a generative model; hence, there are two main components in this classifi-
cation system. The first is the formulation of the statistical model represent-
ing each of a given set of classes, and the second is a measure of distance
between observed data and models. For probabilistic models, the obvious
and common choice is to use a distance measure derived from the class-
conditional likelihoods.

Each model is estimated using a set of exemplar data sequences (training
set) representing a specific class. Hence, the problem can be stated as fol-
lows: given L trained models and a held-out, observed sequence of length
N, find the model that best fits the observation. One classical approach to
this problem is to use the (log-)likelihood of each class-conditional model

Neural Computation 30, 1–21 (2018) © Massachusetts Institute of Technology
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2 R. Troelsgaard and L. Hansen

given the test sequence as a score for the model-sequence pair. Usually the
test sequence is assigned to the class model for which the (log-)likelihood
is the highest.

In this letter, we consider class-conditional model-based classification
for sequential data using hidden Markov models. Classification using hid-
den Markov models in particular has been applied in a variety of contexts.
Oates, Firoiu, and Cohen (1999) take the classical model-based approach
to the clustering of sequence data using one HMM per cluster. An origi-
nal HMM-based representation of images is explored in Mouret, Solnon,
and Wolf (2009). Wong & Stamp (2006) used HMMs to represent software
virus families and a log-likelihood threshold for binary classification of be-
nign software versus malware. Another practical example is found in Wang,
Mehrabi, and Kannatey-Asibu (2002), where HMM-based classification is
applied for monitoring the wear on tools in industrial machinery. Bicego,
Murino, and Figueiredo (2004) used the similarities between sequences and
models as features in a discriminatively trained classifier. One HMM is es-
timated for each training example, all sequences are then embedded in the
space of estimated HMMs using log likelihood. This line of thought is also
explored in García-García, Emilio, and Díaz-de-Mará (2009), who proposed
a KL-divergence-based similarity measure.

Recently, methods based on spectral decomposition of observed data
moments have been developed for parameter estimation in models for se-
quential data (Hsu, Kakade, & Zhang, 2012; Anandkumar, Hsu, & Kakade,
2012). While these methods provide exciting results regarding both global
convergence and the computational complexity of the parameter estima-
tion problem, the complexity of likelihood calculations, which is of par-
ticular interest when performing model-based sequence classification, is
unchanged. In settings where the amount of data to be classified is vast
and time spent on model estimation is of minor importance, we find our-
selves in need of a fast approximation to the likelihood that does not
require calculating matrix products for every observation in a given se-
quence. The advances in spectral learning using moments enable us to
view the third-order moments as sufficient statistics under the model as-
sumptions of Hsu et al. (2012) and Anandkumar et al. (2012). Based on
this interpretation, we propose a simple framework for classification of
sequences of discrete observations, using only observed third-order mo-
ments. The distance measure we propose to substitute for likelihood cal-
culations is based on Kullback-Leibler divergence between empirical and
theoretical third-order moments, and we show that it has lower computa-
tional complexity at classification time, while achieving indistinguishable
performance. An implementation of the proposed method is available at
https://github.com/tro4els/HMM-moment-classification.

This rest of this letter is organized as follows. Section 3 introduces the
proposed score function in the context of both stationary and nonstationary
HMMs and relates it to a particular composite likelihood. Next, we compare

https://github.com/tro4els/HMM-moment-classification
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Sequence Classification Using Third-Order Moments 3

the computational complexity of the proposed method to the likelihood-
based approach. Finally, an upper bound on the convergence time of a
Markov chain is exploited to reduce memory requirements for the proposed
method. Section 4 sketches an approach to sequence embedding wherein
the distance score for sequence-model pairs plays a central role. In sections
5 and 6, we present classification results of both simulated and real-world
data sets respectively.

2 Definitions

In this letter, we use the standard parameterization of the discrete hidden
Markov model with S hidden states and K observation symbols:

π(1) ∈ R
S: Initial state probability vector

π
(1)
h = P(z1 = h)

T ∈ R
S×S: Transition probability matrix

T g,h = P(zn = g|zn−1 = h) n ≥ 2
O ∈ R

K×S: Observation probability matrix
Oi,h = P(xn = i|zn = h) n ≥ 1

for g, h ∈ {1, 2, . . . , S}, i ∈ {1, 2, . . . , K}.

3 KL Divergence of Third-Order Moments

In this section, we develop the basic ideas of using third-order moments for
classification of sequence data. Recently, the work of Hsu et al. (2012) and
Anandkumar et al. (2012) proved that parameter estimation in the hidden
Markov model is possible with observed moments of orders as low as 3
under certain rank conditions of the parameter matrices. This means that
third-order moments act as sufficient statistics for the HMM under the mild
conditions rank(T )= rank(O) = S. We now use this interpretation of the
third-order moments as sufficient statistics of the HMM to formulate a score
function relating an observed sequence to an estimated HMM.

The main idea is to use the third-order moments of observed discrete
sequences as multinomial probability distributions. These distributions can
then be related to the theoretical third-order moments due to a set of model
parameters, via a suitable probabilistic measure such as the KL divergence.
Because the third-order moments in the general case are dependent on the
initial state distribution π(1), we start by describing the simplified case of
assumed stationarity of the HMM (π(1) = π̂).

3.1 Stationary Markov Processes. Let P̄1,2,3 be the empirical third-order
moment of the observed sequence, and let P1,2,3 be the corresponding theo-
retical third-order moment due to model parameters:
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4 R. Troelsgaard and L. Hansen

P1,2,3(·, k, ·) = O diag(π̂)T�diag(O(k, ·))T�O� k ∈ [1, K].

We can then use the KL divergence of P1,2,3 from P̄1,2,3 as a measure of dif-
ference between a model and an observed sequence:

KL(P̄1,2,3‖P1,2,3) =
K∑

i=1

K∑
j=1

K∑
k=1

P̄1,2,3(i, j, k) log
P̄1,2,3(i, j, k)
P1,2,3(i, j, k)

.

Note that this is also valid in the nonstationary case if observations from
a suitable burn-in period are discarded (see section 3.5). This, however, re-
quires that the length of the test sequence is at least as long as the maximum
convergence time of all the class models, which might limit the practical
usefulness of the method.

With the goal of avoiding discarding burn-in data for classification in the
nonstationary case, we now present the main contribution of this letter.

3.2 Nonstationary Markov Processes. If stationarity cannot be as-
sumed, the expectation of the state distribution changes along the underly-
ing Markov chain. Hence, we have to consider the third-order moments for
each triplet in the observed sequence separately. Let P̄n,n+1,n+2 be the empir-
ical third-order moment of the triplet starting at position n in the sequence,
and let Pn,n+1,n+2 be the corresponding theoretical third-order moment due
to model parameters:

Pn,n+1,n+2(·, k, ·) = O diag(T n−1π(1) )T�diag(O(k, ·))T�O� k ∈ [1, K].

We can then, for an arbitrary position n, calculate the KL divergence of
Pn,n+1,n+2 from P̄n,n+1,n+2:

KL(n) = KL(P̄n,n+1,n+2‖Pn,n+1,n+2)

=
K∑

i=1

K∑
j=1

K∑
k=1

P̄n,n+1,n+2(i, j, k) log
P̄n,n+1,n+2(i, j, k)
Pn,n+1,n+2(i, j, k)

. (3.1)

Each KL(n) can then interpreted as a cost describing how well P̄n,n+1,n+2

approximates the theoretical third-order moment of that particular triplet
Pn,n+1,n+2.

Note that in the typical classification scenario, the cost is calculated
for a single sequence x = {x(1), x(2), . . . , x(N)}. Thus, for any given n ∈
{1, 2, . . . , N − 2}, equation 3.1 reduces to − log(Pn,n+1,n+2(x(n), x(n+1), x(n+2))).
To obtain a cost using the full sequence, we calculate the arithmetic mean
across all triplets, which is exactly equivalent to considering the joint
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Sequence Classification Using Third-Order Moments 5

discrete probability distribution of all triplets in the sequence:

1
N − 2

N−2∑
n=1

KL(n) = 1
N − 2

N−2∑
n=1

− log
(

Pn,n+1,n+2(x(n), x(n+1), x(n+2))
)
.

(3.2)

With N being the length of the observed candidate sequence, the de-
scribed procedure requires the calculation of up to the Nth power T , which
can be demanding in terms of memory. However, the Markov chain con-
verges to its stationary distribution, and for a given allowed distance ε from
this stationary distribution, it is possible to derive a bound on the conver-
gence time for the chain. This can be exploited to limit the maximum power
of T to calculate. In section 3.5, we derive such a convergence time bound.
Let ci, j,k ≥ 0 be the number of occurrences of the triplet (i, j, k) in the station-
ary part of the sequence x, and let cs = ∑K

i=1
∑K

j=1
∑K

k=1 ci, j,k be the number
of triplets beyond the convergence time. We can then simply calculate the
KL divergence from the stationary distribution and use the weighted arith-
metic mean:

1
N − 2

N−2−cs∑
n=1

KL(n) + cs

N − 2
KLstationary

= 1
N − 2

N−2−cs∑
n=1

− log
(

Pn,n+1,n+2(x(n), x(n+1), x(n+2))
)

+ cs

N − 2

K∑
i=1

K∑
j=1

K∑
k=1

ci, j,k

cs
log

ci, j,k

cs

P̂1,2,3(i, j, k)

= 1
N − 2

N−2∑
n=1

− log
(

Pn,n+1,n+2(x(n), x(n+1), x(n+2))
)

+ 1
N − 2

K∑
i=1

K∑
j=1

K∑
k=1

ci, j,k log
ci, j,k

cs
, (3.3)

where P̂1,2,3 denotes the stationary third-order moment. We observe that
equation 3.3 is just equation 3.2 plus the additional term on the last line of
equation 3.3, which is due to the Shannon entropy of the empirical station-
ary third-order moment.

3.3 Interpretation as Composite Likelihood. An empirical moment es-
timated from a single triplet is clearly a very crude approximation. Con-
trast the usual practice of method of moments, where averaging over
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6 R. Troelsgaard and L. Hansen

a huge number of samples is exploited. The intuition behind using the
one-sample approximations along the chain is that each of the terms KL(n) =
− log (Pn,n+1,n+2(i, j, k)) on average is lower for a matching pair of se-
quence and model than for nonmatching pairs. Furthermore, by viewing
the model-based third-order moments along a Markov chain as a reparam-
eterization of the HMM, when disregarding the entropy term, equation 2.3
corresponds to a negative per sample composite log likelihood of this model
given the observations (triplets). The pseudo-likelihood was introduced in
Besag (1975) as a product of possibly correlated local conditional likelihood
terms. Later, under the term composite likelihood Lindsay (1988) generalized
the concept to also include marginal likelihood terms of subcomponents.
This interpretation of the KL-divergence-based distance score further jus-
tifies the proposed approach. Based on the above analysis, we propose the
following composite log-likelihood score function for model-based classifi-
cation using HMMs:

D(x, P) = 1
N − 2

N−2∑
n=1

− log
(

Pn,n+1,n+2(x(n), x(n+1), x(n+2))
)
. (3.4)

3.4 Computational Complexity. We now compare the computational
complexity of the proposed method and the classical likelihood-based ap-
proach. The cost of estimating the L class HMMs is disregarded as we focus
solely on the classification step.

We start by examining the total complexity of scoring a single observed
sequence by L estimated models. The likelihood calculations scale with
O(LNS2). Thus, we obtain a mean per class complexity of O(NS2).

In the stationary case, the third-order moment of the test sequence can
be calculated in O(N), and because it is independent of the number of
classes, it has to be calculated only once. Comparison of the third-order
moment of a test sequence to moments of all the trained class models takes
O(min(N, K3)L). Here, it is exploited that the cost function depends on only
the N triplets that are actually observed. This means that in the stationary
case, the total computational complexity of the moment comparison be-
comes O(min(N, K3)L + N) and O(min(N, K3) + N

L ) for the per class com-
plexity.

In the nonstationary case we have to consider all triplets in the test se-
quence separately, resulting in a total complexity of O(NL) and per class
complexity O(N). This analysis shows that the classification task in theory
can be performed faster when using third-order moments compared to the
classical likelihood approach.

Although the computational complexity remains unchanged, the mem-
ory requirements will of course increase compared to the stationary situa-
tion as we have to store third-order moments for all possible positions in a
chain (in theory, infinitely many). Section 3.5 outlines a method to limit the



NECO_a_01033-Troelsgaard MITjats-NECO.cls October 30, 2017 19:43

U
nc

or
re

ct
ed

Pr
oo

f

Sequence Classification Using Third-Order Moments 7

amount of required memory based on an upper bound on the convergence
time of a Markov chain (to the stationary distribution).

3.5 Estimating Convergence Time for a Markov Chain. This section
describes how to calculate an upper bound on the convergence time of an
ergodic Markov chain given an upper bound on the total variation distance
at any given time instance t. We begin by stating a bound for the slightly
simpler case of a reversible Markov chain and then proceed to the more gen-
eral case of a nonreversible chain. The convergence time of a reversible ir-
reducible Markov chain with transition probability matrix T and stationary
distribution π̂ can be bounded using an upper bound on the relative point-
wise distance �(t). This quantity is larger than the total variation distance

�(t) = maxi, j |T t
i, j

π̂i
− 1| for which the following bound exists: �(t) ≤ β1(T )t

π̂min

where β1(·) denotes the second largest eigenvalue (Durrett, 2007).
For a general nonreversible Markov chain, a similar result exists for the

multiplicative reversibilization of T , M(T ) = TT̃ , where T̃ j,i = π̂ jT i, j

π̂i
(Fill,

1991). Let X 2
0 = ∑S

x=1
(π(1)

x −π̂x )2

π̂x
. Then, according to Fill (1991), the upper

bound on the total variation distance at time step t is

∥∥∥T tπ(1) − π̂

∥∥∥
tv

= 1
2

S∑
x=1

∣∣∣(T tπ(1) )x − π̂x

∣∣∣ ≤ (β1(M(T )))
t
2

2
X0,

from which we can construct an upper bound on t given an acceptable total

variation distance ε ∈ [0, min
(

1, X0
2

)
:]

ε ≥ (β1(M(T )))
t
2

2
X0

⇐⇒ t ≥ 2
log

(
2ε
X0

)
log β1 (M(T ))

. (3.5)

This bound can be used to limit the number of third-order moments to store
in memory and thereby make classification more feasible.

3.6 Classification Procedure. We have now introduced all the neces-
sary tools for a procedure to classify sequences using third-order moment
representation of class-conditional HMMs. The procedure is described in
algorithm 1. For simplicity, the algorithm assumes equal prior class prob-
abilities, but an extension using a nonuniform prior is straightforwardly
obtained by subtracting the logarithm of the prior class probabilities from
the corresponding distance scores.
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8 R. Troelsgaard and L. Hansen

3.7 Exploiting Approximate Convergence. We now show an example
of how classification performance can be affected by the size of ε. We il-
lustrate the effect by analyzing a simulated five-class problem using the
proposed composite likelihood as a distance score in the classifier (as de-
scribed in section 3.2). For the purpose of illustration, all class models share
parameters T and S but differ by their initial distributions π(1). Thus, all
class-conditional models have identical stationary distributions and iden-
tical stationary third-order moments. We assess the classification perfor-
mance using the well-known F1-measure. Figures 1 and 2 show how the
classification performance decreases when the accepted distance to the sta-
tionary distribution is increased.
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Sequence Classification Using Third-Order Moments 9

Figure 1: Classification performance using KL divergence as a function of ε.
Repetitions of the experiment are in gray, and the mean classification score of
the repetitions is in black.

Figure 2: Classification performance using KL divergence as a function of ε.
This plot shows the performance relative to using ε = 10−20 (not assuming con-
vergence). Repetitions of the experiment are in gray, and the mean classification
score of the repetitions is in black.

4 “Embedding” Sequences for Classification

To improve on the classical model-based classification approach, several
authors have suggested “embedding” the observed test sequences in a
space spanned by the training sequences (García-García et al., 2009; Bicego,
Murino, & Figueiredo, 2004). An arbitrary discriminatively trained classi-
fier can then be applied to leverage this new representation of sequences.

The main idea is to estimate a single HMM for each training example and
let the embedding of a sequence be defined by the distance scores relating
it to all the training models.

Similar to the work in García-García et al. (2009), for a single sequence,
we normalize its scores relating it to the training sequences, such that it
sums to 1. This allows us to use the Jensen-Shannon divergence as the sim-
ilarity score in the embedding space. Given a test sequence to be classified,
one has to evaluate the distance score for all trained models. Hence, the
distance score remains a central component of the classification procedure.
The procedure is described in algorithm 2 in appendix B.

We include this classification strategy to provide an alternative evalu-
ation of the proposed composite likelihood distance score. For the results
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10 R. Troelsgaard and L. Hansen

presented in sections 5 and 6, we used a K-nearest-neighbor classifier where
K was chosen via five-fold cross-validation on the training sequences.

5 Classification of Simulated Time Series

This section illustrates how the proposed composite likelihood score, D,
compares to the negative log likelihood, �, under different simulated con-
ditions such as lengths of the observed sequences, diagonality of the tran-
sition matrices, and how interrelated the class-conditional models are.

For estimation of the class-conditional models, we rely on the classical
Baum-Welch/EM algorithm (Baum, Petrie, Soules, & Weiss, 1970; Demp-
ster, Laird, & Rubin, 1977). Although alternatives such as spectral estima-
tion techniques presented by Anandkumar et al. (2012), Anandkumar, Ge,
and Hsu (2014), and Troelsgaard and Hansen (2016) in principle could be
used as well, in order not to unintentionally favor the moment-based clas-
sification scheme, the likelihood-based estimation is preferred.

The numbers of symbols in the training and test sequences are ∼
Poisson(N̄), N̄ ∈ {10, 50, 200, 1000}. The numbers of training and test se-
quences per class are fixed at 30 and 50, respectively.

The diagonality is controlled by the parameter Tdiag ∈ ]0, 1[. The param-
eter ρ ∈ ]0; 1] controls the variance of the elements of T and is used as a
means to generate sets of more or less interrelated HMMs. For a detailed
description of the construction of the HMMs used in these classification ex-
periments, we refer readers to appendix A.

We consider a simulated classification problem with L = 5 classes, where
each class-conditional model (unless explicitly stated otherwise) is an S = 4
state HMM with K = 15 discrete observation symbols.

5.1 Results. The performance is reported in terms of the F1-measure.
The reported evaluation quantities are mean values over all classes. Each
experiment was repeated 20 times to quantify variation in performance. The
error bars denote the standard deviations of the estimated mean values.

Figure 3 shows how classification performance is improved by longer
observed sequences. Furthermore, class-conditional models closer to each
other are harder to distinguish between. These observations hold for both
� and D. The performances of the two methods are virtually indistin-
guishable, with the exception that for long sequences (N̄ � 1000) and class-
conditional models quite close to each other (ρ � 0.05), D seems to be su-
perior. To better illustrate the minor differences, Figure 4 shows the mean
of the pairwise relative performances relative to �. Hence the results for �

are constant at 1.
In total, we performed 428 experiments with different combinations of

parameters. With the null hypothesis that F1(�) ≥ F1(D), we can calculate
p-values for the experiment by applying Bonferroni correction to paired-
samples binomial sign tests. Hence, we calculate the probability of ob-
serving the experimental results or more extreme results under the null
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Sequence Classification Using Third-Order Moments 11

Figure 3: This figure shows how the performances of � and D vary for different
amounts of diagonality of T and the parameter ρ. The results are reported in
terms of F1 using ε = 0.001 in the calculation of the bound on the convergence
time.

hypothesis. For a couple of the classification problems with low values of
ρ shown in the lower plots of Figure 4 (N̄ = 1000, Tdiag ∈ {0.25, 0.7, 0.95}),
we find (corrected) p-values in the range [0.0008, 0.0327] indicating that the
null hypothesis is very unlikely for these particular classification problems.

For the null hypothesis F1(�) ≤ F1(D), the three lowest obtained p-values
were 0.0620, 0.1722, and 0.3118, indicating no general tendency to reject
the null hypothesis. Because the true likelihood is the best possible score
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12 R. Troelsgaard and L. Hansen

Figure 4: This figure shows how the relative performances of � and D vary for
different amounts of diagonality and the parameter ρ. See Figure 3 for absolute
performance. The results are reported in terms of F1 relative to the score of �. In
the calculation of the bound on the convergence time, we set ε = 0.001.

function if the assumed model is correct, the obtained results should raise
suspicion if the class-conditional models were exact. This is, however, not
the case in these experiments, where both training and test data are simu-
lated from a set of HMMs. We ascribe the obtained results to the fact that
the class-conditional models are estimated from a finite set of example se-
quences, but detailed analyses of this phenomenon are beyond the scope of
this letter.
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Sequence Classification Using Third-Order Moments 13

Figure 5: This figure shows that the performances of � and D remain compara-
ble for different assumed sizes, S, of the state space. This property is important
because the relative advantage of the composite likelihood with regard to com-
putational complexity increases with S. In the calculation of the bound on the
convergence time, we set ε = 0.001. The results are conditioned on Tdiag = 0.7.

To illustrate how the distance score D performs in regimes where it be-
comes increasingly cost effective (i.e., larger values of S; see section 3.4),
Figure 5 shows the absolute performance of � and D for S ∈ {2, 4, 10, 15}.
We observe no clear performance difference, which further strengthens the
eligibility of using the proposed composite likelihood as a score function
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14 R. Troelsgaard and L. Hansen

in this particular HMM classification setting. Figure 7 shows time spent on
calculating score function D relative to � for different values of S and N̄. As
expected, the performance advantage of using the composite likelihood in-
creases with the assumed state-space size S. The computational advantage,
however, does not exactly match the theoretical improvement, which we as-
cribe to implementation and internal optimization of Matlab. In summary,
the statistical tests indicate that usingD as the distance score in HMM-based
classification of discrete sequence data provides equally good results com-
pared to the classical likelihood score � at a reduced computational cost.

5.2 Classification Results for Sequence Embedding. Using the se-
quence embedding procedure described in section 4, we now compare
performance to the classical model-based approach. Figure 6 shows that
� and D perform equally well in all the simulated classification prob-
lems. Furthermore, we observe that the embedding improves performance
slightly for moderate to long sequences (N̄ ∈ 50, 200, 1000) when class-
conditional models are quite different and have a dominating diagonal
structure (Tdiag = 0.95). On the contrary, the embedding seems to have a
negative impact on performance under the conditions of more interrelated
class-conditional models and fewer diagonal transition matrices. These per-
formances of � and D for high values of ρ are significantly better than with-
out the embedding (cf. the significance test in the previous section).

Figure 7 shows the time spent on classification relative to the time of �.
The figure clearly illustrates the gains of the reduced computational com-
plexity of using D over � for everything but very short sequences.

5.3 Conclusion of Experiment with Simulated Data. For short se-
quences, using the classical log-likelihood approach is both faster and more
accurate in terms of F1 score. For increased sequence lengths, in addition to
being faster, the performance of the composite likelihood score catches up
and produces results indistinguishable from the log likelihood. Embedding
test sequences in the space of training sequences seems to be most benefi-
cial for long sequences (� 50) as long as class-conditional models are quite
dissimilar.

6 Classification of Human Activities

We now turn to application of the proposed method on nonsimulated se-
quence data. We use the UCI HAR benchmark data set (Anguita, Ghio,
Oneto, Parra, & Reyes-Ortiz, 2013), a human activity recognition data set
consisting of inertial measurements from a waist-mounted mobile device
during six different activities. We perform five-fold cross-validation on the
training set (21 persons) for finding the optimal number of states S, for
each class. Table 1 shows the class labels and the optimal number of hidden
states for each of the six classes. As input, we used body acceleration and
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Figure 6: Relative performance when using sequence embedding for classifica-
tion. The presented results are conditioned on ε = 0.001, S = 4, and Tdiag = 0.95.

angular velocity, and all variables were scaled to unit variance, whitened,
and quantized into 50 “symbols” using K-means clustering (Elkan, 2003).

In this experiment, we assume that the boundaries of activities are
known in advance such that every training and test sequence contains data
from only a single activity. Thus, the task is to provide a label for each test
segment.

Using the values in Table 1, we estimated one HMM per class using the
full training set and then classified the sequences corresponding to the nine
left-out persons. The confusion matrix shown in Figure 8 is obtained from
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Figure 7: Mean timing factor (relative to �). For long sequences, the proposed
composite likelihood-based method is superior to the log-likelihood calcula-
tions. It is also evident that the embedding procedure is quite costly because of
the higher number of model estimations and score function evaluations.

Table 1: Optimal Number of Hidden States Obtained via Five-Fold Cross-
Validation on the Training Data Set.

Walking 13
Walking-upstairs 6
Walking-downstairs 4
Sitting 4
Standing 3
Lying 3

80 random repetitions of the experiment. Thus, variation in results are due
to random initializations of HMM parameters and of cluster centers in the
quantization process.

The mean (microaveraged)F1 scores for � and D, respectively, are
1
80

∑80
i=1 F1(�(i) ) = 0.8152 and 1

80

∑80
i=1 F1(D(i) ) = 0.8303. Although these two

numbers seem very close, both score functions are applied to the same test
data and class-conditional models at each random repetition. Hence we are
dealing with paired samples of F1, which enables us to evaluate the pairwise
differences instead of two separate measures.

6.1 Paired-Samples Binomial Sign Test. To assess whether the differ-
ence is significant, we perform a one-sided paired samples sign test with
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Figure 8: Mean confusion tables from 80 repetitions of the UCI HAR classifica-
tion task. The colors are based on the values in the figure (yellow: larger values;
blue: smaller values) and are meant to visually clarify the structure in the ma-
trices.

the null hypothesis F1(�) ≥ F1(D) and the alternative hypothesis that F1(�) ≤
F1(D). The number of pairs where F1(�(i) ) < F1(D(i) ) is 49, and the opposite is
12. This results in a p-value of 9.85 · 10−7, that is, the probability of observ-
ing 12 or fewer negative differences if the null hypothesis is true. The result
of this test suggests that D performs slightly better than � for this particular
classification problem. As discussed in section 5, the true likelihood is the
optimal score function if the class-conditional models are correct. The per-
formance of the composite likelihood for this particular problem suggests
that representing the HMM by its time-dependent third-order moments
can lead to better classification performance in cases exhibiting certain
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imbalances between training data and test data regarding the number of
examples and their distributional properties.

7 Conclusion

We have proposed a new score function for use in hidden Markov model-
base classification problems, dominated by long sequences of discrete ob-
servations. The score is based on expectations of triplets along a Markov
chain, and can be interpreted as a composite likelihood for a moment-based
hidden Markov model representation. We show how the memory require-
ments of the proposed method can be controlled by considering the con-
vergence time of Markov chains. Finally, we show that the proposed score
performs at least on par with the commonly used likelihood-based score,
but at a substantially reduced computation time in classification of long
data sequences.

Appendix A: Construction of Simulated HMM Classification Problems

Each column in the transition matrices is constructed by a single draw from
a Dirichlet distribution with base measure α = ∑S

j=1 α j and concentration
parameter σ . To be able to control the diagonal structure of the transition
matrices, the distribution of the ith column, T i, is sampled from Dirichlet
distribution with the base measure given by

α j =
{

Tdiag j = i
1−Tdiag

S−1 j 
= i
,

where Tdiag ∈ ]0, 1[
The interpolation parameter ρ ∈ ]0, 1] controls the variance of the simu-

lated multinomial elements. We let ρ determine the relative size of the vari-
ance to a maximum variance vmax, which is determined by a given minimal
concentration parameter σmin.

Although the variances of diagonal and off-diagonal elements in gen-
eral are different, the relation between σ and ρ is independent of the base
measure and is given by

σ = σmin + 1
ρ

− 1.

In our experiment, the columns of T are generated using σmin = S. Hence,
the set of most unrelated models is drawn using σ = S, which is obtained
by setting ρ = 1, and for ρ → 0, the Dirichlet distribution becomes the Dirac
delta function: δ(α).
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Appendix B: Embedding Algorihm

Acknowledgments

This work was supported in part by Innovation Fund Denmark under the
CoSound project, case number 0603-00475B. This publication reflects only
our own views.



NECO_a_01033-Troelsgaard MITjats-NECO.cls October 30, 2017 19:43

U
nc

or
re

ct
ed

Pr
oo

f

20 R. Troelsgaard and L. Hansen

References

Anandkumar, A., Ge, R., & Hsu, D. (2014). Tensor decompositions for learning latent
variable models. Journal of Machine Learning Research, 15, 2773–2832. http://dl
.acm.org/citation.cfm?id=2697055

Anandkumar, A., Hsu, D., & Kakade, S. (2012). A method of moments for mixture
models and hidden Markov models. In JMLR: Workshop and Conference Proceed-
ings, 23, 1–31. arXiv:1203.0683v3.

Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A pub-
lic domain dataset for human activity recognition using smartphones. In Pro-
ceedings of the European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (pp. 24–26). http://www.i6doc.com/en/livre
/?GCOI=28001100131010

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique oc-
curring in the statistical analysis of probabilistic functions of Markov chains. An-
nals of Mathematical Statistics, 41(1), 164–174. doi: 10.1214/09-STS284

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical
Society. Series D, 24(3), 179–195.

Bicego, M., Murino, V., & Figueiredo, M. a. T. (2004). Similarity-based classification of
sequences using hidden Markov models. Pattern Recognition, 37(12), 2281–2291.
doi: 10.1016/j.patcog.2004.04.005

Dempster, a. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society, Series B
(Methodological), 39(1), 1–38. doi: 10.1.1.133.4884

Durrett, R. (2007). Random graph dynamics. Cambridge: Cambridge University Press.
Elkan, C. (2013). Using the triangle inequality to accelerate K-means. In Proceedings

of the International Conference on Machine Learning (pp. 147–153). Cambridge, MA:
AAAI Press.

Fill, J. A. (1991). Eigenvalue bounds on convergence to stationarity for nonreversible
Markov chains, with an application to the exclusion process. Annals of Applied
Probability, 1, 62–87. http://www.jstor.org/stable/2959625

García-García, D., Emilio, H. P., & Díaz-de-María, F. (2009). A new distance mea-
sure for model-based sequence clustering. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 31(7), 1325–1331. http://e-archivo.uc3m.es/handle
/10016/8978

Hsu, D., Kakade, S. M., & Zhang, T. (2012). A spectral algorithm for learning hid-
den Markov models. Journal of Computer and System Sciences, 78(5), 1460–1480.
arXiv:0811.4413v6

Lindsay, B. G. (1988). Composite likelihood methods. Contemporary Mathematics,
80(1), 221–239.

Mouret, M., Solnon, C., & Wolf, C. (2009). Classification of images based on hid-
den Markov models. In Proceedings of the 2009 Seventh International Workshop on
Content-Based Multimedia Indexing. doi: 10.1109/CBMI.2009.22

Oates, T., Firoiu, L., & Cohen, P. R. (1999). Clustering time series with hidden Markov
models and dynamic time warping. In Proceedings of the IJCAI-99 Workshop on Neu-
ral, Symbolic and Reinforcement Learning Methods for Sequence Learning. Bethesda,
MD: Institute of Mathematical Statistics.

http://dl.acm.org/citation.cfm?id=2697055
http://www.i6doc.com/en/livre/?GCOI=28001100131010
10.1214/09-STS284
10.1016/j.patcog.2004.04.005
10.1.1.133.4884
http://www.jstor.org/stable/2959625
http://e-archivo.uc3m.es/handle/10016/8978
10.1109/CBMI.2009.22


NECO_a_01033-Troelsgaard MITjats-NECO.cls October 30, 2017 19:43

U
nc

or
re

ct
ed

Pr
oo

f

Sequence Classification Using Third-Order Moments 21

Troelsgaard, R., & Hansen, L. K. (2016). Spectral learning of hidden Markov models in
non-stationary data. Manuscript submitted for publication.

Wang, L., Mehrabi, M. G., & Kannaatey-Asibu, E. (2002). Hidden Markov model-
based tool wear monitoring in turning. Journal of Manufacturing Science and Engi-
neering, 124(3), 651. 10.1115/1.1475320

Wong, W., & Stamp, M. (2006). Hunting for metamorphic engines. Journal in Com-
puter Virology, 2(3), 211–229. doi: 10.1007/s11416-006-0028-7

Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on sequence classification. ACM
SIGKDD Explorations Newsletter. Retrieved from http://dl.acm.org/citation.cfm?
id=1882478

Received October 24, 2016; accepted July 31, 2017.

10.1115/1.1475320
10.1007/s11416-006-0028-7
http://dl.acm.org/citation.cfm?id=1882478

