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In many industrial processes a large proportion of energy is lost in the form of heat. Thermoelectric 

generators can convert this waste heat into electricity by means of the Seebeck effect. However, the 

use of  thermoelectric generators in practical applications on an industrial scale is limited in part 

because electrical, thermal, and mechanical bonding contacts between the semiconductor materials 

and the metal electrodes in current designs are not capable of withstanding thermal-mechanical 

stress and alloying of the metal-semiconductor interface when exposed to the high temperatures 

occurring in many real-world applications. Here we demonstrate a concept for thermoelectric 

generators that can address this issue by replacing the metallization and electrode bonding on the 

hot side of the device by a p-n junction between the two semiconductor materials, making the device 

robust against temperature induced failure. In our proof-of-principle demonstration a p-n junction 

device made from nanocrystalline silicon is at least comparable in its efficiency and power output to 

conventional devices of the same material and fabrication process, but with the advantage of 

sustaining high hot side temperatures and oxidative atmosphere. 
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1 Introduction 

Thermoelectric devices can be used for solid state cooling using the Peltier effect or to produce 

electrical energy from heat using the Seebeck effect. The latter could be very useful for harvesting 

waste heat from the combustion of fossil fuels [1], the production of steel [2] or as renewable energy 

sources using sun light [3, 4]. However, thermoelectric generators (TEGs) are often not able to 

withstand the extreme temperature conditions occurring in many of such applications. For example, 

although solar concentrators can reach temperatures above several thousand Kelvin, application 

scenarios are limited to a few hundred Kelvin in order to prevent damage to the TEGs [3], and a 

similar scenario is present in the steel industry where waste heat temperatures can reach more than 

1500 K [2]. 

TEGs are usually made from a series of intercalated p- and n- type semiconductors to which ohmic 

contacts are realized by deposition of a metal on the semiconductor to bond it to the substrate. A 

TEG therefore suffers from instability due to solid state reactions at the metal-semiconductor 

interface at high temperatures, temperature losses at the substrate or package carrier [5], thermal 

stress due to the different expansion coefficients of the metal and semiconductor at the interface 

and thermal stress due to the temperature gradient in the semiconductor material [6]. In addition to 

these issues an oxidative or corrosive atmosphere leads to further problems that block the way 

towards practical applications of thermoelectric devices as heat engines. 

A device architecture that alleviates the issues just mentioned is based on a large area p-n junction 

TEG (PN-TEG) in which the semiconductor materials are directly bonded together at the hot side and 

the electrical contacts are made exclusively on the cold side of the device (Fig. 1). Although not really 

common in the thermoelectric community, this device architecture was demonstrated occasionally 

as alternative to the standard TEG. Zakhidov et al. [7] demonstrated a thermopower enhancement in 

an array of pn junctions. A metal-semiconductor transition in iron disilicide was shown to effectively 

replace the hot side metallization in devices operated at high enough hot side temperatures, also in 

oxidizing atmosphere[8, 9]. These devices were optimized in terms of geometry and performed best 

using U-shaped PN legs with a solid bridge between p-type and n-type thermoelectric materials that 

was pushed into a metallic state by the applied temperature. A similar device concept was realized 

for space missions, where Si-Ge radioisotope TEGs where equipped with a so-called hot shoe that 

connected the n-type and p-type material directly, only separated by a thin isolating glas layer [10]. 

Span et al. [11, 12] proposed this concept for thin-film PN-TEGs. In a study based on simulation they 

suggested that a PN-TEG architecture does not only help to solve technological challenges but can 

also be used to improve the heat to electricity conversion efficiency by the thermal generation of 
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electron-hole pairs within a depletion zone [13, 14]. Following these propositions, the role of non-

equilibrium charge carriers for thermoelectricity was discussed in Ref. [15]. 

The use of a PN-TEG mitigates the problem of degradation or break-down of the hot side 

metallization upon long term high temperature operation and during cycling [16]. The mechanisms of 

this break down depend on the combination of materials but is usually connected to a mismatch of 

the coefficients of thermal expansion between the materials in contact, mechanically induced failure, 

chemical instability and diffusion of atoms at the interfaces. 

Within this article, we provide an experimental demonstration and characterization of a PN-TEG 

device based on nanocrystalline silicon, which operates at conditions where conventional TEGs made 

by same materials and processing break down, and has at least comparable conversion efficiency as 

conventional TEGs. We demonstrate the functionality of the device under extreme conditions such as 

open flames and high temperatures reaching 1043 K. The findings may pave the way for industrial-

scale applications where thermoelectric conversion under extreme conditions is needed and provide 

a stepping stone to investigate out of equilibrium phonons and charge carriers within a p-n junction. 

2 Methods 

2.1 p-n junction thermoelectric generator (PN-TEG) based on nanocrystalline silicon 
For the proof-of-principle device demonstration in this study we used nanocrystalline silicon as a 

thermoelectric material but in principle other materials can also be used. The main advantage of 

silicon as active thermoelectric converter material compared with other thermoelectric materials is 

that it forms a stable native oxide when exposed to high temperatures and oxidative environment. 

The resulting high temperature stability makes it attractive and naturally suitable for device 

applications under extreme environmental conditions. 

The drawback of monocrystalline bulk silicon is that its thermoelectric figure of merit,  

zT=α2 σ T/κ where α, σ, κ, T are the Seebeck coefficient, electrical conductivity, thermal conductivity 

and temperature, is small compared to conventional thermoelectric materials because of its high 

thermal conductivity. This drawback can partly be tackled by the transition from micrcrystalline to a 

nanocrystalline bulk, first shown by the ball-milling and hot pressing approach using Bi-Te-Se ingots 

[17]. In silicon, this transition from microcrystalline to nanocrystalline bulk has been shown to reduce 

the lattice thermal conductivity up to 90 % with respect to a single crystal by increased phonon 

scattering at grain boundaries [18]. This reduction in thermal conductivity resulted in an 

improvement of zT from approximately 0.2 to approx 0.7 at 1250 K [18] for n-type nanocrystalline 

silicon and, in our slightly different process (see Methods: Nanoparticle production) to zT ~ 0.6 for n-

type at 1250 K and zT ~ 0.3 for p-type at 1000 K nanocrystalline silicon [19, 20]. 
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2.2 Nanoparticles Production 
The nanostructured PN-TEG is prepared in a bottom-up approach. The process begins with the 

synthesis of highly doped silicon nanoparticles. The n-type nanoparticles are produced in a 

microwave plasma reactor using a mixture of silane (SiH4) and phosphine (PH3) gases. The doping 

concentration is tuned by adjusting the ratio of phosphine to silane. A nominal doping concentration 

of 1.5 % results in a donor concentration of NA=7.5 1020 cm-3. In a similar fashion the p-type 

nanoparticles are produced in a hot wall reactor that is fed with a mixture of silane and diborane 

(B2H6) gases. The nominal doping concentration of the p-type nanoparticles is 2 % which yields 

ND=10 1020 cm-3. The produced nanoparticles have diameters that range from 10-100 nm. For more 

specific details on the production and properties of the n-type and p-type nanoparticles see 

references [19, 21]. 

2.3 Device Assembly 
In order to produce a bulk, large area p-n junction a current assisted sintering method (also known as 

spark plasma sintering) is used by sintering a layer of p-type nanoparticles on top of a layer of n-type 

nanoparticles. A constant uniaxial pressure of 35 MPa is applied during the sintering process. A 

temperature of 1200 °C is reached with a heating rate of 30 K min-1 and then held for 5 min. For more 

details about the preparation of the nanostructured pn junctions see references [22, 23]. The 

densified p-n junction is cut to a geometry of 4 mm x 3 mm x 11 mm. The metallization on the cold 

side follows a method developed by Kessler et al. [24], and consists of a nickel silicide layer, followed 

a nickel layer, and a capping layer of silver. The workflow of this bottom-up approach is shown in 

Fig. 2. More than 50 PN-TEGs were fabricated this way. The statistical deviation of the internal 

resistance, Rint, as an indication for reproducibility is shown in the supplemental online information, 

S4. 

2.4 Power generation characteristics 
A single pair PN-TEG is soldered on a carrier substrate which is mounted on the measurement setup. 

As a heat source a silicon carbide Ohmic heater is used. The temperatures on the PN-TEG are 

measured with thermocouples and the heat sink consists of a water cooled steel base where the 

thermocouple interconnects take place and acts as a reference temperature. Measurements are 

performed in vacuum conditions of 0.1 mBar. A schematic and a photograph of the set-up are shown 

in Fig. 3. 

The power generation characteristics of the PN-TEG were performed in vacuum using an in-house 

test system. The I-V curves at different temperature gradients were automatically measured by 

sweeping the load resistance using an electronic load system. The designed measurement system is 

allowed to set up the measuring current range from 0 to 15 A with the minimum 1 mA step size. The 

controlled software system was designed based on the Apache web server software (Open Source 
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Software, OSS) which is able to have maximum flexible setting up of required measurements such as 

gas control, cycling, and long-term stability tests etc. To define the accurate temperature gradient, a 

thermocouple with wire diameters of 0.5 mm was placed on the Ag electrode at the hot side of the 

PN-TEG. The thermocouple on the hot side is also used as the process variable for the control 

parameters of the heater controller. The efficiency of the device was determined by the measured 

out power and calculated the heat flux at the cold side. The detail of the experimental setup could be 

seen elsewhere [25]. 

3 Results 

3.1 Optimizing geometry to achieve maximum power output 
To optimize device performance we first studied the device power output as a function of the ratio of 

the cutting height h to the leg height LY (see Fig. 1b), aiming to achieve the highest power output [8]. 

This is done experimentally and by a simulation based on the Onsager-de Groot-Callen theory (see 

supplemental S.1). The maximum output power Pmax can be written in the linear limit as 

  
int

2

max 4R
V

P OC=        (1) 

where VOC is the device open circuit voltage, and Rint the internal resistance. To investigate the effects 

of the cutting length $h$ on the output power the thermoelectric material with p-n junction is 

removed from the substrate, a cut is made along the p-n junction and then the thermoelectric 

material with p-n junction is re-soldered the to the metallized substrate again. In the simulation this 

is done by disconnecting the bonds at the p-n interface (see supplemental information S.1). 

A simulation shows that internal current loops form for a device with h=0 (see supplemental 

information S.1). These current loops lead to undesired electrical losses. Cutting along the p-n 

junction reduces these losses at the cost of higher internal resistance. Hence, a peak is observed in 

both, experiments and simulations in Fig. 4 where the maximum output power at a given cut length 

Pmax(h) is normalized by the power of an uncut device Pmax(h=0). The peak in maximum power output 

is not sensitive to the temperature difference in the simulation. However, the experimental data 

shows that both the magnitude and the location of the peak vary with applied temperature 

difference with no apparent trend except that the experimental data for ∆T = 400 K fits the model 

best. The reason for this is that in the model the connections between nodes are ohmic whereas in 

the real device electric transport takes place across a non-ideal diode. As the temperature of the 

experimental device rises, the non-ideal diode interface begins to see a flatband condition and 

responds as an ohmic linear junction, thus the experimental data for  ∆T = 400 K fits the model best. 
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The fact that the experimental data for   ∆T = 200 K  and  ∆T = 300 K  does not follow a clear trend 

can be understood from the inhomogeneous nature of the junction of the p and n-type materials 

which can be seen from the SEM image in Fig. 5a) and Fig. 5b) and optically induced voltage 

measurements in Fig. 5c). In optically induced voltage measurements the sample is scanned with a 

laser source of 532 nm, and FWHM of 20 µm and the output voltage measured at a given set of x,y 

coordinates. Fig. 5c) shows that in the area of the p-n junction a large and inhomogeneous voltage 

signal appears, which relates to the localized optical generation and separation of charge carriers 

within a depletion zone. The inhomogeneous nature of the junction arises from the mixing of the 

nanoparticle powders prior and during the densification step. 

3.2 Increased temperature leads to improved performance 
Despite the fact that in a PN-TEG the semiconductor materials are connected by a p-n junction which 

in principle is electrically isolating, the PN-TEG exhibits a very low internal resistance when the 

temperature is increased, thermal carrier generation lowers the potential barrier at the junction. The 

measured internal resistance Rint shown in Fig. 6 has the following form: 

  ( ) 




 −
∝

Tk
E

TR
B

activationexpint      (2) 

where kB is the Boltzmann constant and Eactivation is the average activation energy of the device. In an 

ideal diode, the Eactivation would be gactivationg EEE ≤≤2/ , (where Eg is the bandgap) depending on 

whether transport is dominated by recombination within the space charge region or diffusion of 

minority charge carriers. The activation energy of the PN-TEG is ~ 230 meV, much lower than the 

bandgap of silicon which is 1.12 eV. The low activation energy arises from a high density of intraband 

states, which in turn are created during the mixing of the nanoparticle powders prior and during the 

sintering process. The low activation energy is beneficial for the operation of the PN-TEG because a 

quasi-ohmic contact is created at the p-n junction when the temperature on the hot side is 

increased. Unlike conventional TEGs where Rint increases linearly with temperature [26], in a PN-TEG 

Rint decreases exponentially with temperature until the equivalent of a flat band condition is reached. 

After Th, the hot side temperature reaches 686 K saturation is observed in Rint in Fig. 6 indicating that 

the equivalent of a flat band condition has been reached (see insets in Fig. 6) and hence the top part 

of the device behaves as close as possible to an ohmic contact. 

3.3 Performance comparison between PN-TEGs and conventional TEGs 
A side by side comparison between a PN-TEG and a conventional TEG built in the same lab by the 

same source materials and processing shows that higher temperature differences can be applied to 

the PN-TEG and that the output power and efficiency of a PN-TEG can be equal or superior to a 

conventional TEG. The output power of a PN-TEG is compared to a conventional TEG simulated in 
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ideal conditions (no electrical or thermal contact resistances), and also compared to an experimental 

conventional TEG that was fabricated from the same source materials and methods [24]. In Fig. 7, we 

do this comparison by means of a normalized output power P0 which is defined as 

  
nA

LP
P max

0 =         (3) 

where n is the number of thermocouples, A the cross-sectional area of one thermocouple and L the 

length of the semiconductor legs. In Fig. 7, P0 of a nanocrystalline silicon PN-TEG with the optimal 

cutting ratio h/LY=0.73  is shown. The simulation of the conventional TEG is fed with measured 

temperature dependent values of α, σ, and κ from the same materials used to make the PN and 

conventional TEGs [19, 20] and included in Fig. 7. 

The offset between the TEG simulation data and TEG experimental data in Fig. 7 arises from the fact 

that the simulation contains no parasitic electrical and thermal contact resistances, whereas the 

measured device clearly included these losses decreasing the power output by about one order of 

magnitude. Since the conventional TEG has a limited range in operational temperature, a fit 

proportional to ∆T2 is shown as a dashed line. 

The PN-TEG shows a poor performance in the lower temperature regime in Fig. 7, orders of 

magnitude lower than the conventional TEG. This is because the diode limits the current flow. As the 

temperature difference is increased, the diode approaches the flat band mode and the PN-TEG 

outperforms the experimental conventional TEG and approaches the simulation of an ideal TEG with 

no parasitic losses. This shows that a PN-TEG offers clear advantage not only in higher temperature 

stability but also in better performance compared to a conventional TEG. 

We next performed efficiency measurements by applying a controlled temperature difference to the 

PN-TEG and measured the heat flow and output power [25]. Fig. 8a) shows sample current-voltage 

measurements for the PN-TEG under different temperature differences where the linear response of 

the PN-TEG can be observed and with cold side temperature fixed at approximately 300 K. Fig.8b) 

compares the PN-TEG with an ideal (no electrical and thermal contact resistances) conventional TEG 

using measured α(T), σ(T), κ(T) which is the maximum possible efficiency for the given materials and 

it is shown that the PN-TEG reaches about 60 % of the maximum possible efficiency. The maximum 

efficiency of a PN-TEG reaches 0.57 % at Th=823 K, compared to the efficiency of a previously 

reported conventional TEG built by the same source materials and processing which had a maximum 

efficiency of 0.25 % at Th=823 K [24]. In both cases the cold side was coupled to cooling water at 

approximately 300 K. The higher efficiency of the PN-TEG at even lower hot side temperature than 

that of the conventional TEG clearly demonstrates the advantage of the design of the PN- TEG, which 

minimizes the thermal and electrical losses on the hot side. 
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Since the PN-TEG does not require a hot side substrate and metallization it could hereby be 

characterized up to 1043 K on the hot side temperature (see supplemental information S.3) which is 

considerably higher than the maximum hot side temperature of 873 K reported on the conventional 

TEG [24] showing how a thermoelectric module can benefit from the PN-TEG architecture. 

Moreover we show that a PN-TEG can be operated in harsh environment like open flames. We have 

exposed a series connection of four PN-TEGs to a Bunsen burner as heat source while the cold side 

was water cooled. A sketch is shown in Fig.9, and a video showing the experiment can be found in 

the supplemental information. While conventional TEGs fail this experiment, a PN-TEG based on 

silicon suffers no damage. Even though oxidation occurs at the hot side of the PN-TEG, this does not 

create a device failure since no metal-semiconductor interface is affected. In fact, exposing the 

silicon PN-TEG at the hot side to high-temperatures and corrosive operation conditions, just 

produces a capping layer of silicon oxide which makes the device even more robust. 

4 Conclusion 

We have shown that a thermoelectric generator made with a p-n junction on the hot side can reach 

higher efficiency than a counterpart made with traditional ohmic contacts on the hot side. The p-n 

junction on the hot side makes the PN-TEG more robust against temperature induced failure such as 

alloying or diffusion at the metal-semiconductor interface. Hence, higher temperatures and harsh 

conditions such as open flames can be applied on the hot side of a PN-TEG showing how the findings 

here reported can have practical applications. The concept of a PN-TEG is demonstrated with nano-

crystalline silicon, but other materials, especially those prepared by spark plasma sintering can 

benefit from this approach. We believe that the concept of a PN-TEG can be further improved by 

tunning the activation energy, for example by having higher doping concentration on the hot side of 

the thermoelectric leg. This work open up a new and unexplored way of designing and using TEG. 
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Figures and Figure Captions 

Figure 1 

 

Figure 1) Schematics of the device setup for conventional and PN-TEG architectures. a) In a 

conventional TEG the p-type and n-type semiconductor materials which comprise the active device 

are connected electrically in series using a metal interconnect. The active device is then mounted on 

a substrate which is often made of ceramic. b) In a PN-TEG the metal contact and substrate on the 

hot side are dismissed, and the electrical connection made by a p-n junction of the semiconductor 

materials. The dismissal of the metal contacts and substrate on the hot side in a PN-TEG proves to be 

a formidable technological advantage. 
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Figure 2 

 

Figure 2) Workflow of the processing of PN-TEGs. 
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Figure 3 

 

Figure 3a) Schematic of the set-up for the characterization electrical output data of PN-TEGs with 

varying hot side temperature. Reproduced with permission, Ref.[27], Copyright 2014, Springer. b) 

Photograph of the actual setup. 
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Figure 4 

 

Figure 4) Output power gain factor in dependency of the ratio of the cutting height and the length of 

the device h/LY. A maximum gain in output power is predicted  by the simulation and confirmed by 

the experiments. 
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Figure 5 

 

Figure 5a) SEM image of the p-n junction. The sample was dipped in hydrofluoric acid prior to 

imaging; boron doped nanocrystalline silicon develops more agglomeration of SiOX and thus appears 

more porous. b) Zoom-in of p-n junction region of the sample. c) Optically induced voltage 

measurements which can be correlated to domains where charge generation and separation is 

successful, show the inhomogeneous nature of the p-n junction. (c) reproduced with permission 

from Ref. [27], Copyright 2014, Springer. 
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Figure 6 

 

Figure 6) Temperature dependency of Rint with temperature shows that a flat band condition is 

reached for temperatures higher than 686 K. 

Page 16 of 19AUTHOR SUBMITTED MANUSCRIPT - JPhysD-114045.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Figure 7 

 

Figure 7) Normalized output power of a PN-TEG and a conventional TEG made from the same 

materials and process, as well a simulation of an ideal conventional TEG shows that PN-TEG performs 

best at high temperature differences. 
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Figure 8 

 

Figure 8(a) Output voltage and output power for the PN-TEG as a function of current under different 

hot side temperatures show the linear response of the PN-TEG. (b) Experimental V(j) and efficiency of 

the PN-TEG (solid lines) compared with the calculation of a conventional TEG under ideal conditions 

(dotted lines). The maximum efficiency of a conventional TEG made of the same materials and 

processing reaches 0.25 % at Th = 873 K [24]. The cold side in all cases was coupled to cooling water 

at approximately 300 K. 
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Figure 9 

 

Figure 9) Open flame operation of a series connection of 4 PN-TEGs made of nanocrystalline silicon. 

The cold side is water cooled. a) Sketch of the experiment. b) Photograph of the experimental 

realization (see supplemental information for video).  
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