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Abstract
In this work, we present a generalization of Gale's

lemma. Using this generalization, we introduce two sharp

combinatorial lower bounds for coind (B0(𝐺)) + 1 and

coind(B(𝐺)) + 2, the two classic topological lower bounds

for the chromatic number of a graph 𝐺.
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1 INTRODUCTION AND MAIN RESULTS

1.1 Backgrounds and motivations
Throughout the article, for positive integers 𝑘 and 𝑛, two symbols [𝑛] and

([𝑛]
𝑘

)
stand for the set

{1,… , 𝑛} and the family of all 𝑘-subsets of [𝑛], respectively. For a positive integer 𝑠, a subset 𝐴 of [𝑛] is

said to be an 𝑠-stable subset if 𝑠 ≤ |𝑖 − 𝑗| ≤ 𝑛 − 𝑠 for each 𝑖 ≠ 𝑗 ∈ 𝐴. Throughout the article, the family

of all 𝑠-stable 𝑘-subsets of [𝑛] is denoted by
([𝑛]

𝑘

)
𝑠
. For 𝑛 ≥ 2𝑘, the Kneser graph KG(𝑛, 𝑘) is a graph

whose vertex set consists of all 𝑘-subsets of [𝑛] and two vertices are adjacent if their corresponding 𝑘-

sets are disjoint. Kneser 1955 [11] proved that KG(𝑛, 𝑘) can be properly colored with 𝑛 − 2𝑘 + 2 colors.

He also conjectured that this is the best possible, i.e. 𝜒(KG(𝑛, 𝑘)) ≥ 𝑛 − 2𝑘 + 2. In 1978, Lovász in a

fascinating article [12], using the Borsuk–Ulam theorem, gave an affirmative answer to this conjecture.

For an integer 𝑑 ≥ −1, by the symbol𝑆𝑑 , we mean the 𝑑-dimensional sphere. For an 𝑥 ∈ 𝑆𝑑 ,𝐻(𝑥) is

the open hemisphere centered at 𝑥, i.e. 𝐻(𝑥) = {𝑦 ∈ 𝑆𝑑 ∶ ⟨𝑥 , 𝑦⟩ > 0}. There is a well-known lemma

due to Gale [8] that asserts that for every 𝑘 ≥ 1 and every 𝑛 > 2𝑘, there is an 𝑛-set 𝑍 ⊂ 𝑆𝑛−2𝑘 such

that for any 𝑥 ∈ 𝑆𝑛−2𝑘, the open hemisphere 𝐻(𝑥) contains at least 𝑘 points of 𝑍. In particular, if we

identify the set 𝑍 with [𝑛], then for any 𝑥 ∈ 𝑆𝑛−2𝑘, the open hemisphere 𝐻(𝑥) contains some vertex of

KG(𝑛, 𝑘). Soon after the announcement of the Lovász breakthrough [12], Bárány [5] presented a short

proof of the Lovász–Kneser theorem based on Gale's lemma. Next, Schrijver [16] generalized Gale's

lemma by proving that there is an 𝑛-set 𝑍 ⊂ 𝑆𝑛−2𝑘 and a suitable identification of 𝑍 with [𝑛] such

that for any 𝑥 ∈ 𝑆𝑛−2𝑘, the open hemisphere 𝐻(𝑥) contains a 2-stable subset of size at least 𝑘, i.e. the
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open hemisphere 𝐻(𝑥) contains some member of
([𝑛]

𝑘

)
2
. Using this generalization, Schrijver [16] found

a specific vertex-critical subgraph of KG(𝑛, 𝑘) having the same chromatic number as KG(𝑛, 𝑘). This

subgraph, known as the Schrijver graph SG(𝑛, 𝑘), is an induced subgraph of KG(𝑛, 𝑘) whose vertex set

consists of all 2-stable 𝑘-subsets of [𝑛]. It is worth mentioning that Greene [9] showed that Bárány's

idea can be used in a more tricky way to avoid the use of Gale's lemma while Greene's trick does not

seem to work for the case of Schrijver graphs, that is, Gale's lemma is still essential for a Bárány type

proof of Schrijver's theorem.

1.2 Main results
For an 𝑋 = (𝑥1,… , 𝑥𝑛) ∈ {+,−, 0}𝑛, an alternating subsequence of 𝑋 is a subsequence of nonzero

terms of 𝑋 such that each of its two consecutive members have different signs. In other words,

𝑥𝑗1
,… , 𝑥𝑗𝑚

(1 ≤ 𝑗1 < ⋯ < 𝑗𝑚 ≤ 𝑛) is an alternating subsequence of 𝑋 if 𝑥𝑗𝑖
≠ 0 for each 𝑖 ∈ [𝑚] and

𝑥𝑗𝑖
≠ 𝑥𝑗𝑖+1

for 𝑖 = 1,… , 𝑚 − 1. The length of the longest alternating subsequence of 𝑋 is denoted by

alt(𝑋). We also set alt(0,… , 0) = 0. Moreover, define

𝑋+ = {𝑗 ∶ 𝑥𝑗 = +} and 𝑋− = {𝑗 ∶ 𝑥𝑗 = −}.

Note that, by abuse of notation, we can write 𝑋 = (𝑋+, 𝑋−).
Let 𝑉 be a nonempty finite set of size 𝑛. The signed-power set of 𝑉 , denoted by 𝑃𝑠(𝑉 ), is defined as

follows;

𝑃𝑠(𝑉 ) = {(𝐴,𝐵) ∶ 𝐴,𝐵 ⊆ 𝑉 , 𝐴 ∩ 𝐵 = ∅}.

For two pairs (𝐴,𝐵) and (𝐶,𝐷) in 𝑃𝑠(𝑉 ), by (𝐴,𝐵) ⊆ (𝐶,𝐷), we mean 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷. Note

that (𝑃𝑠(𝑉 ), ⊆) is a partially order set (poset). A signed-increasing property  , is a superset-closed

family  ⊆ 𝑃𝑠(𝑉 ), i.e. for any 𝐹1 ∈  , if 𝐹1 ⊆ 𝐹2 ∈ 𝑃𝑠(𝑉 ), then 𝐹2 ∈  . Clearly, for any bijection

𝜎 ∶ [𝑛] ←→ 𝑉 , the map 𝑋 → 𝑋𝜎 = (𝜎(𝑋+), 𝜎(𝑋−) is an identification between {+,−, 0}𝑛 and 𝑃𝑠(𝑉 ).
Let 𝜎 ∶ [𝑛] ←→ 𝑉 be a bijection and  ⊆ 𝑃𝑠(𝑉 ) be a signed-increasing property. Define

alt( , 𝜎) = max
{

alt(𝑋) ∶ 𝑋 ∈ {+,−, 0}𝑛 with 𝑋𝜎 ∉ 
}
.

Also, define the alternation number of  to be the following quantity;

alt() = min{alt( , 𝜎) ∶ 𝜎 ∶ [𝑛] ←→ 𝑉 is a bijection}.

Let 𝑑 ≥ 0 be an integer, 𝑆𝑑 be the 𝑑-dimensional sphere, and 𝑍 ⊂ 𝑆𝑑 be a finite set. For an 𝑥 ∈
𝑆𝑑 , define 𝑍𝑥 = (𝑍+

𝑥 , 𝑍
−
𝑥 ) ∈ 𝑃𝑠(𝑍) where 𝑍+

𝑥 = 𝐻(𝑥) ∩𝑍 and 𝑍−
𝑥 = 𝐻(−𝑥) ∩𝑍. Now, we are in

a position to state the first main result of this article (Lemma 1), which is a generalization of Gale's

lemma. The fact that the following lemma generalizes Gale's lemma will be more clarified later, see

Corollary 1 and the discussion after it.

Lemma 1. Let 𝑛 be a positive integer, 𝑉 be an 𝑛-set, and 𝜎 ∶ [𝑛] ←→ 𝑉 be a bijection. Also, let
 ⊆ 𝑃𝑠(𝑉 ) be a signed-increasing property and set 𝑑 = 𝑛 − 𝑎𝑙𝑡( , 𝜎) − 1. If 𝑑 ≠ −1, then there are a
multiset 𝑍 ⊂ 𝑆𝑑 of size 𝑛 and a suitable identification of 𝑍 with 𝑉 such that for any 𝑥 ∈ 𝑆𝑑 , 𝑍𝑥 ∈  .
In particular, for 𝑑 ≥ 1, 𝑍 can be a set.

A hypergraph  is a pair (𝑉 (), 𝐸()) where 𝑉 () is a finite nonempty set, called the vertex set

of , and 𝐸() is a family containing some nonempty distinct subsets of 𝑉 (), called the edge set of

. For a set 𝑈 ⊆ 𝑉 (), the induced subhypergraph [𝑈 ] of , is a hypergraph with vertex set 𝑈 and
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edge set {𝑒 ∈ 𝐸() ∶ 𝑒 ⊆ 𝑈}. A graph 𝐺 is a hypergraph such that each of its edges has cardinality

two. A 𝑡-coloring of a hypergraph  is a map 𝑐 ∶ 𝑉 () ←→ [𝑡] such that for no edge 𝑒 ∈ 𝐸(), we have|𝑐(𝑒)| = 1. The minimum possible 𝑡 for which  admits a 𝑡-coloring, denoted by 𝜒(), is called the

chromatic number of . For a hypergraph , the Kneser graph KG() is a graph whose vertex set is

𝐸() and two vertices are adjacent if their corresponding edges are vertex disjoint. It is known that for

any graph 𝐺, there are infinitely many hypergraphs  for which 𝐺 and KG() are isomorphic. Each

of those hypergraphs  is called a Kneser representation of 𝐺. Note that if we set 𝐾𝑘
𝑛 = ([𝑛],

([𝑛]
𝑘

)
)

and 𝐾𝑘
𝑛 = ([𝑛],

([𝑛]
𝑘

)
2
), then KG(𝐾𝑘

𝑛 ) = KG(𝑛, 𝑘) and KG(𝐾𝑘
𝑛 ) = SG(𝑛, 𝑘). The colorability defect of a

hypergraph , denoted by cd(), is the minimum number of vertices that should be excluded so that

the induced subhypergraph on the remaining vertices is 2-colorable. Dol'nikov [7] improved Lovász's

result [12] by proving that for any hypergraph , we have 𝜒(KG()) ≥ cd().
Let  = (𝑉 ,𝐸) be a hypergraph and 𝜎 ∶ [𝑛] ←→ 𝑉 () be a bijection. Define

alt(, 𝜎) = max
{

alt(𝑋) ∶ 𝑋 ∈ {+,−, 0}𝑛 s.t. max
(|𝐸([𝜎(𝑋+)])|, |𝐸([𝜎(𝑋−)])|) = 0

}
and

salt(, 𝜎) = max
{

alt(𝑋) ∶ 𝑋 ∈ {+,−, 0}𝑛 s.t. min
(||𝐸([𝜎(𝑋+)])|| , |𝐸([𝜎(𝑋−)])|) = 0

}
.

In other words, alt(, 𝜎) (resp. salt(, 𝜎)) is the maximum possible alt(𝑋), where 𝑋 ∈ {+,−, 0}𝑛,

such that each of (resp. at least one of) 𝜎(𝑋+) and 𝜎(𝑋+) contains no edge of . We also define

alt() = min
𝜎

alt(, 𝜎) and salt() = min
𝜎

salt(, 𝜎),

where the minimum is taken over all bijections 𝜎 ∶ [𝑛] ←→ 𝑉 (). The present authors, using Tucker's

lemma [21], introduced two tight combinatorial lower bounds for the chromatic number of KG()
improving Dol'nikov's lower bound.

Theorem A. [1] For any hypergraph , we have

𝜒(KG()) ≥ max (|𝑉 ()| − alt(), |𝑉 ()| − salt() + 1) .

Let  = (𝑉 ,𝐸) be a hypergraph and 𝜎 ∶ [𝑛] ←→ 𝑉 () be a bijection. Note that if we set

1 =
{
(𝐴,𝐵) ∈ 𝑃𝑠(𝑉 ) ∶ at least one of 𝐴 and 𝐵 contains some edge of 

}
and

2 =
{
(𝐴,𝐵) ∈ 𝑃𝑠(𝑉 ) ∶ both of 𝐴 and 𝐵 contain some edges of 

}
,

then alt(1, 𝜎) = alt(, 𝜎) and alt(2, 𝜎) = salt(, 𝜎). Therefore, in view of Lemma 1, we have the

next result.

Corollary 1. For a hypergraph  = (𝑉 ,𝐸) and a bijection 𝜎 ∶ [𝑛] ←→ 𝑉 (), we have the following
assertions.

a) If 𝑑 = |𝑉 | − alt(, 𝜎) − 1 and alt(, 𝜎) ≠ |𝑉 |, then there are a multiset 𝑍 ⊂ 𝑆𝑑 of size |𝑉 | and a
suitable identification of 𝑍 with 𝑉 such that for any 𝑥 ∈ 𝑆𝑑 , 𝐻(𝑥) or 𝐻(−𝑥) contains some edge
of . In particular, for 𝑑 ≥ 1, 𝑍 can be a set.
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b) If 𝑑 = |𝑉 | − salt(, 𝜎) − 1 and salt(, 𝜎) ≠ |𝑉 |, then there are a multiset 𝑍 ⊂ 𝑆𝑑 of size |𝑉 | and
a suitable identification of 𝑍 with 𝑉 such that for any 𝑥 ∈ 𝑆𝑑 , the open hemisphere 𝐻(𝑥) contains
some edge of . In particular, for 𝑑 ≥ 1, 𝑍 can be a set.

For two positive integers 𝑛 and 𝑘, where 𝑛 > 2𝑘, and for the identity bijection 𝐼 ∶ [𝑛] ←→ [𝑛], one can

see that salt(𝐾𝑘
𝑛 , 𝐼) = 2𝑘 − 1. Therefore, by the second part of Corollary 1, we have the strengthening

of Gale's lemma given by Schrijver [16]: there is an 𝑛-subset 𝑍 of 𝑆𝑛−2𝑘 and a suitable identification of
𝑍 with [𝑛] such that for any 𝑥 ∈ 𝑆𝑛−2𝑘, the open hemisphere 𝐻(𝑥) contains at least a 2-stable subset
of [𝑛] with size 𝑘.

Note that for any graph 𝐺, there are several hypergraphs  such that KG() and 𝐺 are isomor-

phic. By the help of Lemma 1 and as the second main result of this article, we provide two com-

binatorial approximations for two important topological lower bounds for the chromatic number of

a graph 𝐺, namely, coind(𝐵0(𝐺)) + 1 and coind(𝐵(𝐺)) + 2, see [18]. The quantities coind(𝐵0(𝐺))
and coind(𝐵(𝐺)) are respectively the coindices of two box complexes B0(𝐺) and B(𝐺) that will be

defined in Section 2. It should be mentioned that the two inequalities 𝜒(𝐺) ≥ coind(𝐵0(𝐺)) + 1𝜒(𝐺) ≥
coind(𝐵(𝐺)) + 2 are already proved [18] and we restate them in the following theorem just to empha-

size that this theorem is an improvement of Theorem A.

Theorem 1. Let 𝐺 be a graph and  = (𝑉 ,𝐸) be a hypergraph such that KG() and 𝐺 are isomor-
phic. Then the following inequalities hold;

a) 𝜒(𝐺) ≥ coind(𝐵0(𝐺)) + 1 ≥ |𝑉 ()| − alt(),
b) 𝜒(𝐺) ≥ coind(𝐵(𝐺)) + 2 ≥ |𝑉 ()| − salt() + 1.

Note that, in addition to presenting another proof for Theorem A, Theorem 1 also reveals a new

way to estimate coind(𝐵0(𝐺)) and coind(𝐵(𝐺)) for a graph 𝐺 as well. Also, it is worth noting that

the results in [1–3] confirm that we can evaluate the chromatic number of some family of graphs by

computing alt(−) or salt(−) for an appropriate choice of a hypergraph, while it seems that it is not

easy to directly determine the values of coind(𝐵0(−)) + 1 and coind(𝐵(−)) + 2 for these graphs by

topological methods.

Remark. Motivated by Corollary 1, we can assign to any hypergraph  two topological parameters;

the dimension of  and the strong dimension of , denoted respectively by dim() and sdim(). The

dimension of  (resp. strong dimension of ) is the maximum integer 𝑑 ≥ −1 such that the vertices

of  can be identified with a multiset 𝑍 ⊂ 𝑆𝑑 so that for any 𝑥 ∈ 𝑆𝑑 , at least one of (resp. both of )

open hemispheres 𝐻(𝑥) and 𝐻(−𝑥) contains some edge of . In view of Corollary 1 and with a proof

similar to the one of Theorem 1, one can prove the following corollary.

Corollary 2. For a hypergraph , we have the following inequalities;

a) coind(𝐵0(KG())) ≥ dim() ≥ |𝑉 ()| − alt() − 1,
b) coind(𝐵(KG())) ≥ sdim() ≥ |𝑉 ()| − salt() − 1.

This article is organized as follows. Section 2 contains a brief review of elementary but essential

preliminaries and definitions that will be needed throughout the article. Section 3 is devoted to the

proof of Lemma 1 and Theorem 1. Also, in this section, as an application of the generalization of

Gale's lemma (Lemma 1), we reprove a result by Chen [6] concerning the multichromatic number of

stable Kneser graphs.
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2 TOPOLOGICAL PRELIMINARIES

This section is devoted to a brief review of some basic tools that we will need elsewhere in the article.

However, we assume basic knowledge in topological combinatorics. More details on that topic can

be found for instance in the book by Matoušek [13] or in the article by Simonyi and Tardos [17]. A

ℤ2-space is a pair (𝑇 , 𝜈), where 𝑇 is a topological space and 𝜈 is an involution, i.e. 𝜈 ∶ 𝑇 ←→ 𝑇 is

a continuous map such that 𝜈2 is the identity map. For an 𝑥 ∈ 𝑇 , two points 𝑥 and 𝜈(𝑥) are called

antipodal. The ℤ2-space (𝑇 , 𝜈) is called free if there is no 𝑥 ∈ 𝑇 such that 𝜈(𝑥) = 𝑥. For instance, one

can see that the unit sphere 𝑆𝑑 ⊂ ℝ𝑑+1 with the involution given by the antipodal map − ∶ 𝑥 → −𝑥

is free. For two ℤ2-spaces (𝑇1, 𝜈1) and (𝑇2, 𝜈2), a continuous map 𝑓 ∶ 𝑇1 ←→ 𝑇2 is called a ℤ2-map if

𝑓◦𝜈1 = 𝜈2◦𝑓 . The existence of such a map is denoted by (𝑇1, 𝜈1)
ℤ2
←→ (𝑇2, 𝜈2). For a ℤ2-space (𝑇 , 𝜈),

we define the ℤ2-index and ℤ2-coindex of (𝑇 , 𝜈), respectively, as

ind(𝑇 , 𝜈) = min{𝑑 ≥ 0 (𝑇 , 𝜈)
ℤ2
←→ (𝑆𝑑,−)}

and

coind(𝑇 , 𝜈) = max{𝑑 ≥ 0 (𝑆𝑑,−)
ℤ2
←→ (𝑇 , 𝜈)}.

If for any 𝑑 ≥ 0, there is no (𝑇 , 𝜈)
ℤ2
←→ (𝑆𝑑,−), then we set ind(𝑇 , 𝜈) = ∞. Also, if (𝑇 , 𝜈) is not free,

then ind(𝑇 , 𝜈) = coind(𝑇 , 𝜈) = ∞.

For simplicity of notation, when the involution is understood from the context, we speak about 𝑇

rather than the pair (𝑇 , 𝜈); also, we set ind(𝑇 , 𝜈) = ind(𝑇 ) and coind(𝑇 , 𝜈) = coind(𝑇 ). Throughout the

article, we endow the unit sphere 𝑆𝑑 ⊂ ℝ𝑑+1 with the involution given by the antipodal map. Note

that if 𝑇1
ℤ2
←→ 𝑇2, then ind(𝑇1) ≤ ind(𝑇2) and coind(𝑇1) ≤ coind(𝑇2). Two ℤ2-spaces 𝑇1 and 𝑇2 are ℤ2-

equivalent, denoted by 𝑇1
ℤ2
←→ 𝑇2, if 𝑇1

ℤ2
←→ 𝑇2 and 𝑇2

ℤ2
←→ 𝑇1. In particular, ℤ2-equivalent spaces have

the same index and also same coindex.

In the following, we introduce the concept of simplicial complex that provides a bridge between

combinatorics and topology. A simplicial complex can be viewed as a combinatorial object, called

abstract simplicial complex, or as a topological space, called geometric simplicial complex. Here, we

just review the definition of an abstract simplicial complex. However, it should be mentioned that

we can assign a geometric simplicial complex to an abstract simplicial complex, called its geometric

realization, and vice versa. An abstract simplicial complex is a pair 𝐿 = (𝑉 ,𝐾), where 𝑉 (the vertex

set of 𝐿) is a set and 𝐾 ⊆ 2𝑉 (the set of simplices of 𝐿) is a hereditary collection of subsets of 𝑉 , i.e. if

𝐴 ∈ 𝐾 and𝐵 ⊆ 𝐴, then𝐵 ∈ 𝐾 . Any set𝐴 ∈ 𝐾 is called a simplex of𝐿. The geometric realization of an

abstract simplicial complex 𝐿 is denoted by ||𝐿||. For two abstract simplicial complexes 𝐿1 = (𝑉1, 𝐾1)
and 𝐿2 = (𝑉2, 𝐾2), a simplicial map 𝑓 ∶ 𝐿1 ←→ 𝐿2 is a map from 𝑉1 to 𝑉2 preserving the simplices, i.e.

if 𝐴 ∈ 𝐾1, then 𝑓 (𝐴) ∈ 𝐾2. A simplicial involution is a simplicial map 𝜈 ∶ 𝐿 ←→ 𝐿 such that 𝜈2 is the

identity map. A simplicial ℤ2-complex is a pair (𝐿, 𝜈) where 𝐿 is a simplicial complex and 𝜈 ∶ 𝐿 ←→ 𝐿

is a simplicial involution. A simplicial complex (𝐿, 𝜈) is called free if there is no simplex 𝐴 of 𝐿

such that 𝜈(𝐴) = 𝐴. For two simplicial ℤ2-complexes (𝐿1, 𝜈1) and (𝐿2, 𝜈2), the map 𝑓 ∶ 𝐿1 ←→ 𝐿2 is

called a simplicial ℤ2-map if 𝑓 is a simplicial map and 𝑓◦𝜈1 = 𝜈2◦𝑓 . The existence of a simplicial

ℤ2-map 𝑓 ∶ 𝐿1 ←→ 𝐿2 implies the existence of a continuous ℤ2-map ||𝑓 || ∶ ||𝐿1|| ℤ2
←→ ||𝐿2|| that is

called the geometric realization of 𝑓 . We respectively use ind(𝐿) and coind(𝐿) to refer to ind(||𝐿||)
and coind(||𝐿||).
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The existence of a homomorphism between two graphs is an important and generally challenging

problem in graph theory. In particular, in general, it is a hard task to determine the chromatic number

of a graph 𝐺. In the following, we assign some free simplicial ℤ2-complexes to graphs in such a

way that graph homomorphisms give rise to ℤ2-maps of the corresponding complexes. For a graph

𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) and two disjoint subsets 𝐴,𝐵 ⊆ 𝑉 (𝐺), define 𝐺[𝐴,𝐵] to be the induced bipartite

subgraph of 𝐺 whose parts are 𝐴 and 𝐵, that is, a subgraph of 𝐺 whose vertex set is 𝐴 ∪ 𝐵 and edge

set is {𝑢𝑣 ∈ 𝐸(𝐺) ∶ 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵}.

Box Complex. For a graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) and a subset 𝐴 ⊆ 𝑉 (𝐺), set

CN(𝐴) = {𝑣 ∈ 𝑉 (𝐺) ∶ 𝑎𝑣 ∈ 𝐸(𝐺) for all 𝑎 ∈ 𝐴 } ⊆ 𝑉 (𝐺) ⧵ 𝐴.

The box complex of a graph 𝐺, denoted by 𝐵(𝐺), is a free simplicial ℤ2-complex with vertex set

𝑉 (𝐺) ⊎ 𝑉 (𝐺) = 𝑉 (𝐺) × [2] and the following set of simplices

{𝐴 ⊎ 𝐵 ∶ 𝐴,𝐵 ⊆ 𝑉 (𝐺), 𝐴 ∩ 𝐵 = ∅, 𝐺[𝐴,𝐵] is complete bipartite and CN(𝐴) ≠ ∅ ≠ CN(𝐵)}.

Also, one can consider another box complex 𝐵0(𝐺) with vertex set 𝑉 (𝐺) ⊎ 𝑉 (𝐺) = 𝑉 (𝐺) × [2] and

the following set of simplices

{𝐴 ⊎ 𝐵 ∶ 𝐴,𝐵 ⊆ 𝑉 (𝐺), 𝐴 ∩ 𝐵 = ∅, 𝐺[𝐴,𝐵] is complete bipartite}.

The involution on 𝐵(𝐺) (resp. 𝐵0(𝐺)) is given by interchanging the two copies of 𝑉 (𝐺); that

is, (𝑣, 1) → (𝑣, 2) and (𝑣, 2) → (𝑣, 1) for any 𝑣 ∈ 𝑉 (𝐺). In view of these involutions, one can con-

sider ||𝐵(𝐺)|| and ||𝐵0(𝐺)|| as free ℤ2-spaces. One can check that any graph homomorphism

𝐺 → 𝐻 implies that there are two simplicial ℤ2-maps 𝐵(𝐺)
ℤ2
←→ 𝐵(𝐻) and 𝐵0(𝐺)

ℤ2
←→ 𝐵0(𝐻); and

consequently, ind(𝐵(𝐺)) ≤ ind(𝐵(𝐻)), coind(𝐵(𝐺)) ≤ coind(𝐵(𝐻)), ind(𝐵0(𝐺)) ≤ ind(𝐵0(𝐻)), and

coind(𝐵0(𝐺)) ≤ coind(𝐵0(𝐻)). It is known that 𝐵(𝐾𝑛) and 𝐵0(𝐾𝑛) are ℤ2-equivalent to 𝑆𝑛−2 and

𝑆𝑛−1, respectively. Hence, 𝜒(𝐺) ≥ ind(𝐵(𝐺)) + 2 ≥ coind(𝐵(𝐺)) + 2 and 𝜒(𝐺) ≥ ind(𝐵0(𝐺)) + 1 ≥

coind(𝐵0(𝐺)) + 1. Indeed, it is known that (see [13,17,18])

𝜒(𝐺) ≥ ind(𝐵(𝐺)) + 2 ≥ ind(𝐵0(𝐺)) + 1 ≥ coind(𝐵0(𝐺)) + 1 ≥ coind(𝐵(𝐺)) + 2. (1)

For more about different simplicial complexes assigned to graphs and their relationships, one can

see [14].

3 PROOF OF MAIN RESULTS

This section is devoted to the proofs of main results. It should be mentioned that the following proof is

based on an idea similar to that used in an interesting proof of Ziegler for Gale's lemma (see page 67

in [13]).

Proof of Lemma 1. For simplicity of notation, assume that 𝑉 = {𝑣1,… , 𝑣𝑛} where 𝜎(𝑖) = 𝑣𝑖. Consider

the following curve

𝛾 = {(1, 𝑡, 𝑡2,… , 𝑡𝑑) ∈ ℝ𝑑+1 ∶ 𝑡 ∈ ℝ}

and set𝑊 = {𝑤1, 𝑤2,… , 𝑤𝑛}, where𝑤𝑖 = 𝛾(𝑖) for 𝑖 = 1, 2,… , 𝑛. Now, let𝑍 = {𝑧1, 𝑧2,… , 𝑧𝑛} ⊆ 𝑆𝑑

be a set such that 𝑧𝑖 = (−1)𝑖 𝑤𝑖||𝑤𝑖|| for any 1 ≤ 𝑖 ≤ 𝑛. Note that if 𝑑 ≥ 1, then 𝑍 is a set. Consider
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the identification between 𝑉 and 𝑍 such that 𝑣𝑖 ∈ 𝑉 is identified with 𝑧𝑖 for any 1 ≤ 𝑖 ≤ 𝑛. It can

be checked that every hyperplane of ℝ𝑑+1 passing trough the origin intersects 𝛾 in no more than 𝑑

points. Moreover, if a hyperplane intersects the curve in exactly 𝑑 points, then the hyperplane cannot

be tangent to the curve; and consequently, at each intersection point, the curve passes from one side of

the hyperplane to the other side.

In what follows, for any 𝑦 ∈ 𝑆𝑑 , we will show that 𝑍𝑦 ∈  completing the proof. On the contrary,

suppose that there is a 𝑦 ∈ 𝑆𝑑 such that 𝑍𝑦 ∉  . Let ℎ be the hyperplane passing trough the origin that

contains the boundary of 𝐻(𝑦). We can move this hyperplane continuously to a position such that it

still contains the origin and has exactly 𝑑 points of 𝑊 = {𝑤1, 𝑤2,… , 𝑤𝑛} while during this movement

no points of 𝑊 crosses from one side of ℎ to the other side. Consequently, during the aforementioned

movement, no points of 𝑍 = {𝑧1, 𝑧2,… , 𝑧𝑛} crosses from one side of ℎ to the other side. Hence, at

each of these intersections, 𝛾 passes from one side of ℎ to the other side. Let ℎ+ and ℎ− be two open

half-spaces determined by the hyperplane ℎ. Now consider 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ {+,−, 0}𝑛 ⧵ {𝟎}
such that

𝑥𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑤𝑖 is on ℎ

+ if 𝑤𝑖 is in ℎ+ and 𝑖 is even

+ if 𝑤𝑖 is in ℎ− and 𝑖 is odd

− otherwise.

.

Assume that 𝑥𝑖1
, 𝑥𝑖2

,… , 𝑥𝑖𝑛−𝑑
are nonzero entries of 𝑋, where 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛−𝑑 . It is easy to check

that any two consecutive terms of 𝑥𝑖𝑗
's have different signs. Since 𝑋 has 𝑛 − 𝑑 = alt( , 𝜎) + 1 nonzero

entries, we have alt(𝑋) = alt(−𝑋) = alt( , 𝜎) + 1; and therefore, both 𝑋𝜎 and (−𝑋)𝜎 are in  . Also,

one can see that either 𝑋𝜎 ⊆ 𝑍𝑦 or (−𝑋)𝜎 ⊆ 𝑍𝑦. Therefore, since  is a signed-increasing property,

we have 𝑍𝑦 ∈  that is a contradiction. ■

Multichromatic Number of Stable Kneser Graphs. For positive integers 𝑛, 𝑘, and 𝑠, the 𝑠-stable
Kneser graph KG(𝑛, 𝑘)𝑠 is an induced subgraph of KG(𝑛, 𝑘) whose vertex set is

([𝑛]
𝑘

)
𝑠
. In other words,

KG(𝑛, 𝑘)𝑠 = KG([𝑛],
([𝑛]

𝑘

)
𝑠
). The chromatic number of stable Kneser graphs has been studied in sev-

eral articles, for instance see [4,10,15]. Meunier [15] posed a conjecture about the chromatic number

of stable Kneser hypergraphs that is a generalization of a conjecture of Alon et al. [4]. Restricting to

Kneser graphs rather than Kneser hypergraphs, Meunier's conjecture asserts that the chromatic number

of KG(𝑛, 𝑘)𝑠 is 𝑛 − 𝑠(𝑘 − 1) for 𝑛 ≥ 𝑠𝑘 and 𝑠 ≥ 2. Clearly, in view of Schrijver's result [16], this con-

jecture is true for 𝑠 = 2. Moreover, for 𝑠 ≥ 4 and 𝑛 sufficiently large, Jonsson [10] gave an affirmative

answer to the graph case of Meunier's conjecture.

For two positive integers 𝑚 and 𝑛 with 𝑛 ≥ 𝑚, an 𝑚-fold 𝑛-coloring of a graph 𝐺 is a homomorphism

from 𝐺 to KG(𝑛, 𝑚). The 𝑚-th multichromatic number of a graph 𝐺, denoted by 𝜒𝑚(𝐺), is defined as

follows

𝜒𝑚(𝐺) = min {𝑛 ∶ 𝐺 ←→ KG(𝑛, 𝑚)} .

Note that 𝜒1(𝐺) = 𝜒(𝐺). An 𝑚-fold 𝑛-coloring of a graph 𝐺 is called a multicoloring of 𝐺 with color

set [𝑛]. The following conjecture of Stahl [19] has received a considerable attention in the literature.

Conjecture A. ([19]) For positive integers 𝑚, 𝑛, and 𝑘 with 𝑛 ≥ 2𝑘, we have

𝜒𝑚(KG(𝑛, 𝑘)) =
⌈
𝑚

𝑘

⌉
(𝑛 − 2𝑘) + 2𝑚.
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Stahl [20] proved the accuracy of this conjecture for 𝑘 = 2, 3 and arbitrary values of 𝑚. Chen [6]

studied the multichromatic number of 𝑠-stable Kneser graphs and generalized Schrijver's result. In

what follows, as an application of Lemma 1, we present another proof of Chen's result. Note that, as a

special case of Chen's result, we have the chromatic number of 𝑠-stable Kneser graphs provided that 𝑠

is even.

Theorem B. [6] For positive integers 𝑛, 𝑘, and 𝑠 with 𝑛 ≥ 𝑠𝑘, if 𝑠 is an even integer and 𝑘 ≥ 𝑚, then
𝜒𝑚(KG(𝑛, 𝑘)𝑠) = 𝑛 − 𝑠𝑘 + 𝑠𝑚.

Proof. It is straightforward to check that 𝜒𝑚(KG(𝑛, 𝑘)𝑠) ≤ 𝑛 − 𝑠𝑘 + 𝑠𝑚. For a proof of this observation,

we refer the reader to [6]. Therefore, it is enough to show 𝜒𝑚(KG(𝑛, 𝑘)𝑠) ≥ 𝑛 − 𝑠𝑘 + 𝑠𝑚. For the set

[𝑛], let  = (𝑛, 𝑘, 𝑠) ⊆ 𝑃𝑠([𝑛]) be a signed-increasing property such that (𝐴,𝐵) ∈  if both 𝐴 and

𝐵 contain at least
𝑠

2 pairwise disjoint 𝑠-stable 𝑘-subsets of [𝑛]. One can see that alt( , 𝐼) = 𝑠𝑘 − 1
where 𝐼 ∶ [𝑛] ←→ [𝑛] is the identity bijection. Thus, by Lemma 1, for 𝑑 = 𝑛 − 𝑠𝑘, there exists a multiset

𝑍 ⊂ 𝑆𝑑 of size 𝑛 such that under a suitable identification of 𝑍 with 𝑉 , for any 𝑥 ∈ 𝑆𝑑 , we have

𝑍𝑥 ∈  . In other words, for any 𝑥 ∈ 𝑆𝑑 , the open hemisphere 𝐻(𝑥) contains at least
𝑠

2 pairwise disjoint

vertices of KG(𝑛, 𝑘)𝑠. Now let 𝑐 ∶ 𝑉 (KG(𝑛, 𝑘)𝑠) ←→
(𝐶
𝑚

)
be an 𝑚-fold 𝐶-coloring of KG(𝑛, 𝑘)𝑠. For

each 𝑖 ∈ {1, 2,… , 𝐶 − 𝑠𝑚 + 1}, define 𝐴𝑖 to be a set consisting of all 𝑥 ∈ 𝑆𝑑 such that 𝐻(𝑥) contains

some vertex 𝑣 of KG(𝑛, 𝑘)𝑠 having the color 𝑖 in its assigned color set, i.e. 𝑖 ∈ 𝑐(𝑣). Furthermore,

define 𝐴𝐶−𝑠𝑚+2 = 𝑆𝑑 ⧵
⋃𝐶−𝑠𝑚+1

𝑖=1 𝐴𝑖. One can check that each 𝐴𝑖 contains no pair of antipodal points,

i.e. 𝐴𝑖 ∩ (−𝐴𝑖) = ∅; and also, for each 𝑖 ∈ {1, 2,… , 𝐶 − 𝑠𝑚 + 1}, 𝐴𝑖 is an open subset of 𝑆𝑑 and

𝐴𝐶−𝑠𝑚+2 is thus closed. Note that the Borsuk–Ulam theorem asserts that for any covering of 𝑆𝑑 by

𝑑 + 1 sets𝐵1,… , 𝐵𝑑+1, each𝐵𝑖 open or closed, there exists an 𝑖 such that𝐵𝑖 contains a pair of antipodal

points. Accordingly, we must have 𝐶 − 𝑠𝑚 + 2 ≥ 𝑑 + 2 = 𝑛 − 𝑠𝑘 + 2 that completes the proof. ■

In what follows, in view of Lemma 1 and with a similar approach as in proof of Proposition 8 of [17],

we prove Theorem 1.

Proof of Theorem 1. Let 𝜎 ∶ [𝑛] ←→ 𝑉 () be an arbitrary bijection. To prove the first part, set 𝑑 =|𝑉 | − alt(, 𝜎) − 1. In view of inequalities of (1) and the definition of alt(), it is sufficient to prove

that coind(𝐵0(𝐺)) + 1 ≥ |𝑉 | − alt(, 𝜎). If 𝑑 ≤ 0, then the assertion follows from the definition of

coindex. Hence, suppose 𝑑 ≥ 1. Now in view of Corollary 1, there exists an 𝑛-set 𝑍 ⊂ 𝑆𝑑 and an

identification of 𝑍 with 𝑉 such that for any 𝑥 ∈ 𝑆𝑑 , at least one of open hemispheres 𝐻(𝑥) and 𝐻(−𝑥)
contains some edge of .

For any vertex 𝐴 of KG() and any 𝑥 ∈ 𝑆𝑑 , define 𝐷𝐴(𝑥) to be the smallest distance of a point in

𝐴 ⊂ 𝑆𝑑 from the set 𝑆𝑑 ⧵𝐻(𝑥). Note that 𝐷𝐴(𝑥) > 0 if and only if 𝐻(𝑥) contains 𝐴. Define

𝐷(𝑥) =
∑
𝐴∈𝐸

(𝐷𝐴(𝑥) +𝐷𝐴(−𝑥)).

Since, for any 𝑥 ∈ 𝑆𝑑 , at least one of 𝐻(𝑥) and 𝐻(−𝑥) contains some edge of , we have 𝐷(𝑥) > 0.

Thus, the map

𝑓 (𝑥) = 1
𝐷(𝑥)

(∑
𝐴∈𝐸

𝐷𝐴(𝑥)||(𝐴, 1)|| + ∑
𝐴∈𝐸

𝐷𝐴(−𝑥)||(𝐴, 2)||)

is a ℤ2-map from 𝑆𝑑 to ||𝐵0(KG())||. It implies coind(𝐵0(𝐺)) ≥ 𝑑.

b) To prove the second part, set 𝑑 = 𝑛 − salt(, 𝜎) − 1. In view of the inequalities of (1) and the def-

inition of salt(), it is sufficient to prove that coind(𝐵(𝐺)) + 2 ≥ |𝑉 | − salt(, 𝜎) + 1. If 𝑑 ≤ 0, then
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the assertion follows from the definition of coindex. Hence, suppose 𝑑 ≥ 1. Now in view of Corol-

lary 1, there is an 𝑛-set 𝑍 ⊂ 𝑆𝑑 and an identification of 𝑍 with 𝑉 such that for any 𝑥 ∈ 𝑆𝑑 , the open

hemisphere 𝐻(𝑥) contains some edge of . Define 𝐷(𝑥) =
∑

𝐴∈𝐸 𝐷𝐴(𝑥). Since the open hemisphere

𝐻(𝑥) contains some edge of , we have 𝐷(𝑥) > 0 for each 𝑥 ∈ 𝑆𝑑 . Thus, the map

𝑓 (𝑥) = 1
2𝐷(𝑥)

∑
𝐴∈𝐸

𝐷𝐴(𝑥)||(𝐴, 1)|| + 1
2𝐷(−𝑥)

∑
𝐴∈𝐸

𝐷𝐴(−𝑥)||(𝐴, 2)||
is a ℤ2-map from 𝑆𝑑 to ||𝐵(KG())||. This implies coind(𝐵(𝐺)) ≥ 𝑑. ■
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