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Experiences with an optimal estimation algorithm
for surface and atmospheric parameter retrieval

from passive microwave data in the Arctic
Raul Scarlat, Georg Heygster, Leif Toudal Pedersen

Abstract—We present experiences in using an integrated
retrieval method for atmospheric and surface parameters in
the Arctic using passive microwave data from the AMSR-
E radiometer. The core of the method is a forward model
which can ingest bulk data for seven geophysical parameters
to reproduce the brightness temperatures observed by a passive
microwave radiometer. The retrieval method inverts the forward
model and produces ensembles of the seven parameters, wind
speed, integrated water vapor, liquid water path, sea and ice
temperature, sea ice concentration and multi-year ice fraction.
The method is constrained using numerical weather prediction
(NWP) data in order to retrieve a set of geophysical parameters
that best fit the measurements. A sensitivity study demonstrates
the method is robust and that the solution it provides is not
dependent on initialization conditions. The retrieval parameters
have been compared with the Arctic Systems Reanalysis model
data as well as columnar water vapour retrieved from satellite
microwave sounders and the Remote Sensing Systems AMSR-
E ocean retrieval product in order to determine the feasibility
of using the same setup over pure surface with 100% and 0%
sea ice cover respectively. Sea ice concentration retrieval shows
good skill for pure surface cases. Ice types retrieval is in good
agreement with scatterometer backscatter data. Deficiencies have
been identified in using the forward model over sea ice for
retrieving atmospheric parameters, that are connected to the
treatment of surface emissivity and surface temperature. The
retrieval agrees well with legacy atmospheric retrieval products
in open ocean areas.

Index Terms—Remote sensing, Sea ice, Arctic regions, Atmo-
spheric measurements.

I. INTRODUCTION

In passive remote sensing from satellites, the radiometer
signal has contributions from surface and atmosphere. Single
parameter retrieval algorithms consider one of the two contri-
butions as the signal of interest, and the other as noise to be
ignored or compensated for, e.g. based on other channels of
the radiometer or through a priori knowledge. The basic idea
of integrated retrieval is to find a set of geophysical parameters
which, if applied to a forward model, simultaneously yields in
good approximation the observed brightness temperatures of
all radiometer channels used. Over open ocean, such integrated
retrieval exists and has been applied for more than a decade
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[1]. It is based on a forward model which predicts the observed
brightness temperatures from the geophysical state of surface
and atmosphere. However, over sea ice, an integrated retrieval
is much more difficult. The challenges are (i) the high surface
emissivity which makes the atmospheric component in the
signal much smaller, and (ii) the high variability of the sea ice
emissivity in space and time. Although sea ice forward models
exist, their use in integrated retrieval has been limited until
now because the number of required geophysical parameters
is high and their values are generally unknown. For these
reasons until now only little effort has been undertaken for
integrated retrieval of surface and atmospheric parameters over
sea ice [2], [3]. In order to take advantage of the multispectral
capabilities of imaging radiometers, in [4] an integrated re-
trieval method is proposed that can retrieve seven geophysical
parameters, wind speed (W), liquid water path (LWP) , total
columnar water vapor (TWV) , sea surface temperature (SST),
ice temperature (IT), sea ice concentration (SIC) and multi-
year ice fraction (MYIF). Optimal estimation (OE) techniques
are used to invert the forward model and extract the ensemble
of seven parameters that optimally match the observed bright-
ness temperatures. A priori information from climatological
and meteorological sources is used to constrain the method to
the natural variability of each parameter.

In the current paper we demonstrate the feasibility and
current limits of extending the coverage of this integrated
retrieval using optimal estimation methods from ocean to sea
ice. Moreover, we test how influential the a priori constraints
are and how robust the method is to different initialization set-
ups. Will the optimal estimation method (referred thereafter
as OEM) be biased towards the NWP a priori data or can it
move away from those in order to match the measurements?
The NWP data is a powerful information source but it does
not provide a complete true state of the climate system which
is why we want to use satellite observations in a consistent
method that can complete the picture.

The OEM can use different channels from a microwave
radiometer like the AMSR-E and AMSR2 instruments as an
input source. In order to avoid the discrepancies that naturally
occur between the different channels as each channel footprint
covers a somewhat different region of the Earth surface, we
use the AMSR-E Level 2A product which offers resampled
brightness temperatures in which all channels represent the
same footprint at the same resolution. This product is obtained
by applying the Backus-Gilbert method to Level 1B data in
their native resolution [5]. The source for a priori information
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is the ERA-Interim reanalysis [6], collocated in time and space
to the satellite footprint.

In order to test the behaviour of the retrieval, two data
sets of AMSR-E level 2A brightness temperatures are used.
The first data set comprises two subsets which contains
cases of validated 100% (SIC1) sea ice concentration and
the other contains cases of open water near, but at a safe
distance from the ice edge (SIC0) [7]. The dataset originates
from the sea ice project of the Climate Change Initiative and
is referred to as the Round Robin Data Package (RRDP).
The RRDP provides a source for validating the sea ice
concentration retrieval [7], [8] and for testing atmospheric
parameter retrieval over pure surface types. For each pixel
in these datasets, atmospheric parameter data from the ASR
model [9] have been collocated. In order to observe the
retrieval behaviour over a wider set of Arctic scenes, a larger
comparison dataset was also prepared. This second dataset
includes one full days data every ten days of the year 2006,
for a total of 18 winter and 18 summer season days, and it
covers the entire Arctic region north of 60◦ N. The 2006
dataset starts on January 11th 2006 and ends on January 6th

2007. As water vapour retrieval over the Central Arctic is one
of the goals of the integrated retrieval also use as reference
a dataset from a microwave sounder based method that is
especially accurate for the low atmospheric water vapour
values encountered in the Arctic [10].

II. DATA

As a source for the radiometer measurements we used the
AMSR-E Level 2A dataset [11]. This data product offered
by the NASA National Snow and Ice Data Center (NSIDC)
contains several spatially consistent subsets of brightness
temperature observations resampled to the footprint sizes of
the 6.9, 10.7, 18.7, 23.8, 36.5, and 89 GHz channels. This is
achieved by bringing the Level 1A antenna temperatures to the
common spatial resolution using a set of weighted coefficients.
Every Level 2A observation in a scan line is calculated using
the coefficients that correspond to the relative weights of
all neighbouring Level 1A observations. These coefficients
are unique for every scan position within one scan line but
they do not vary between different scan lines. The weighting
coefficients for the Level 1A observations are produced using
the Backus-Gilbert method. The different subsets are produced
by resampling the higher resolution channels to match the
larger footprint size of the lower resolution channels. The
available spatial resolutions are at 56 km for all channels,
38 km for all channels frequencies above 6.9 GHz, 21 km
for frequencies above 10.7 GHz, 12 km for frequencies above
23.8 GHz and 5.4 km for the 89 GHz channels only. In order
to include the 6.9 GHz channels in the OEM retrieval, we
use the AMSR-E Level 2A set with all channels resampled at
56 km spatial resolution.

The RRDP and the 2006 datasets will be used to test
the retrieval in a scenario where the surface conditions are
known in order to judge the impact of sea ice presence on
the atmospheric retrieval. The RRDP dataset also includes

ERA-Interim values for air and skin temperature, wind speed,
liquid water path and total water vapour collocated with each
data point. Also included in the RRDP are collocated ASCAT
(Advanced Scatterometer) backscatter values which is useful
in classifying different sea ice types according to surface
and volume scattering properties. Because the SIC1 dataset is
based on identifying convergence zones from sea ice tracking
data, this dataset is only valid for winter months when leads
that do not close during ice movement will freeze over. We
have only used the data points between October and May of
each year between 2007 and 2011.

The Remote Sensing Systems (RSS) AMSR-E ocean prod-
ucts use AMSR-E brightness temperatures and an algorithm
adapted from [12] to retrieve wind speed, columnar water
vapour, liquid water path and sea surface temperature over ice
free ocean regions. This data set covers the entire nine year
lifespan of AMSR-E and has been used for creating derived
products [13] and validated against ship based observations
[14]. Because it uses the same instrument this product provides
a sanity check for the quality of the OEM retrieval over open
ocean with less concern about collocation induced discrepan-
cies.

In order to test the retrieval we needed a reference dataset
covering as many of the parameters as possible. In order to
avoid the difficulties from comparing our results with different
single parameter retrieval products we selected the Arctic
Systems Reanalysis model [9] as a suitable source of data as it
provides a high resolution ensemble of consistent atmospheric
and surface temperature parameters. The data assimilation
systems have been optimized for the Arctic. The resolution
of the product dataset is 30 km and fields of atmospheric
water vapour, liquid water path, wind speed and skin surface
temperature have been collocated with the RRDP data points.

As an additional comparison tool for atmospheric water
vapour retrieval we selected the AMSU-B total water vapour
product [10]. This product is specially designed for the Arctic
region and it uses the high frequency sounding channels
of the AMSU-B instrument to detect the low water vapour
values typical for the atmosphere over sea ice in the Central
Arctic. One issue connected with this product is that retrieval
uncertainty increases with increasing water vapour values from
about 1 mm below 2 mm to around 3 mm above 14 mm.

III. METHOD

A. Optimal estimation method (maximum a posteriori solu-
tion)

Satellite radiometers measure the radiation naturally emitted
by the atmosphere and the Earth surface below.

Following the radiative transfer theory we can represent the
vector TA of brightness temperatures measured at the top of
the atmosphere by a microwave radiometer as a function of a
number of geophysical parameters.

TA = F (p) (1)

where p is the state vector containing both surface parameters,
atmospheric profiles and sea ice parameters. F is the forward
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operator (see Section III-D) that maps the state vector param-
eters to the observed brightness temperatures.

The estimation method used here follows [15] and is called
the maximum a posteriori method. Through an iterative pro-
cess the prior state vector pn is nudged to pn+1 in the direction
of minimizing the difference between the satellite measured
brightness temperatures and the brightness temperatures sim-
ulated by forward model while not deviating too much from
the background state.

The optimal estimation method uses a priori information on
the state of the atmosphere and ocean as an input for a forward
model in order to obtain simulated brightness temperatures.
The method iterates towards the optimal set of geophysical
parameters which when used as input for the forward model
best matches the observed brightness temperatures. A cost
function that balances the penalties of departing from the
background state vector with those for deviating from the
observed brightness temperatures is evaluated at each iteration
step. A constraint that reduces the number of possible state
vector ensembles is the background covariance matrix, while
the microwave measurement covariance matrix restricts the
observation space.

B. The inversion method

The solution is found by inverting

TA = F (p) + e (2)

where TA is the vector of satellite measured brightness
temperatures. F is the forward model, p is the state vector
comprising in our case the geophysical parameters wind speed
W, total water vapour TWV, liquid water path LWP, open
water temperature SST, sea ice temperature IT , total ice
concentration SIC and multi-year ice fraction MYIF. e is
the measurement error. The solution is found by using the
Jacobian of the forward model

M =
∂F (p)

∂p
(3)

and iterating the state vector following the Gauss-Newton
method

pn+1 = pn+Ŝ−1
n (MT

n S
−1
e (TA−F (pn))+S−1

p (pa−pn)) (4)

where Mn = M(pn) and

Ŝn = (S−1
p +MT

n S
−1
e Mn)

−1
(5)

is the a posteriori covariance matrix of the state vector.
The Gauss-Newton iteration nudges the state vector to

follow a quadratic approximation of the cost function. In the
case that the forward model is too non-linear and cannot be
well represented by a quadratic function, the iteration step
towards finding a solution needs to be chosen at each iteration
in order to decrease the cost function [15]. This can be
achieved by adding an additional parameter to the iteration
rule as proposed in the Levenberg-Marquardt method

Ŝn = ((1 + γ)S−1
p +MT

n S
−1
e Mn)

−1
. (6)

γ is chosen at each iteration step and the cost function is
reevaluated. The initial value used for γ is 10−5. If the cost
function decreases the iteration values are accepted. If the
cost function does not decrease then γ is increased by a
factor of 10 to force the iteration on a steeper decent (and a
smaller step size) towards the minimum and the same iteration
step is repeated. The current version of the retrieval uses the
Levenberg-Marquardt form (6) of the iterative equation.

The convergence conditions suggested by [15] are imple-
mented in order to stop the iteration process and output the
optimal solution. The method will check if

d2 = (pn+1 − pn)
T
Ŝ−1
n (pn+1 − pn) < 7 (7)

is true where d2 represents the degrees of freedom of the
system and the number 7 was chosen as a limit because it
is the dimension of the state vector. An additional condition
for the solution to be accepted is check for the minimum of

∆ = ||TA − F (pn)||2. (8)

If convergence has been reached the step pn for which the cost
function is minimised is accepted as the solution and sent to
output.

C. Error treatment and covariance matrices

The background values represent long term means from cli-
matological or other sources which together with the individ-
ual parameter variances in the background covariance matrix
Sp constrain the retrieved parameters to physically realistic
values. The diagonal elements of this covariance matrix should
represent the natural variability of each parameter in order to
allow for a consistent retrieval, but this information is limited
by the quality of the prior information we have about the
climate system. In order to speed up the iterative process for
finding the optimal solution, the method also uses a first guess
point that serves as initialization state. The first guess state
can also come from a background state but that is not the
only source [15]. According to [2] the retrieval accuracy is
influenced by the quality of the first guess data. In order to
test the sensitivity of the retrieval method to the background
covariance matrix and to the first guess conditions, different
implementations of the optimal estimation retrieval are com-
pared. For each of these tests one reference version was kept
the same. It uses a diagonal background covariance matrix
(see Appendix A, Table XI) obtained from year long ECMWF
ERA Interim mean variances for the atmospheric parameters
and the surface temperatures. For the sea ice concentration
and multi-year fraction variances, a locally processed dataset
using the NASA Team algorithm [16] was used for the same
time period. The background state vector for all versions tested
below represents the yearly mean values for each parameter
(Appendix A, Table XIV), and is calculated from the same
sources as the reference background covariance matrix. For
this reference OEM version, the start guess comes from
temporally and spatially collocated ECMWF ERA Interim
data.
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For testing the background covariance matrix Sp, a refer-
ence implementation of the OEM uses data from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim atmospheric reanalysis for calculating the diag-
onal elements of the covariance matrix. We compare this with
two different implementations that use climatology derived
values from the Max Planck Institute (MPI) Climate model
(F. Bunzel, personal communication). The main difference
between the ERA-Interim and the MPI derived parameter
variances is that the former included one year of data while
the latter only one winter month. From the two MPI derived
matrices one is a diagonal covariance matrix of the same
shape as the reference, while the other, besides the same
diagonal elements, also includes the off-diagonal elements that
represent covariances between parameters.

All three versions of the OEM are run for the RRDP SIC1
dataset and the retrieval parameters are compared to collocated
ASR fields for TWV. The same background values calculated
from ECMWF yearly means were used for all versions, the
only difference between these OEM implementations being
the shape of the background covariance matrix. The results
are shown in Table I.

TABLE I
COMPARISON OF OEM RETRIEVAL AND ASR USING DIFFERENT

BACKGROUND COVARIANCE MATRICES.

Parameter Stat Ref Climate-diag Climate-full
Bias -0.28 -0.09 2.32

TWV [mm] RMSD 2.43 2.08 3.35
R 0.21 0.22 0.11
Bias 0.20 0.17 0.16

LWP [mm] RMSD 0.27 0.19 0.19
R 0.01 0.04 0.07
Bias 15.21 16.60 17.05

IST [K] RMSD 16.01 17.24 17.73
R 0.69 0.71 0.69
Convergent pts. 11681 8180 10377
Avg. iterations 13.9 14.37 15.25

The largest difference between versions can be seen in
the number of convergent cases and the average number
of iterations required to reach convergence. Ideally the off
diagonal elements of the background covariance matrix should
introduce more information about the state of the climate sys-
tem before the measurement are taken. However, it is difficult
to evaluate whether the covariances used are representative for
the yearly time scales used in the retrieval testing. The results
of this comparison seem to indicate that these covariances
impose an additional constraint on the method which in certain
cases cannot be satisfied within 50 iterations resulting in non-
convergent results. The comparison with ASR shows small
differences between versions for retrieval accuracy, therefore
we chose the best case scenario of using ERA-Interim data
as a source in order to achieve the highest number of valid
retrieval pixels.

For each AMSR-E Level 2A footprint, spatially and tem-
porally collocated ECMWF values are used as the first guess
in the iterative process. This represents a reference version for
testing the sensitivity to initialization conditions. For this test,
a different implementation of the retrieval was used, that has
just one fixed state vector as first guess for all pixels. The

results of comparing these two OEM versions with ASR data
are shown in Table II.

TABLE II
COMPARISON OF OEM RETRIEVAL AND ASR USING DIFFERENT FIRST

GUESS CONDITIONS.

Parameter Stat Ref Static first guess
Bias -0.28 -0.21

TWV [mm] RMSD 2.43 2.33
R 0.21 0.18
Bias 0.20 0.21

LWP [mm] RMSD 0.27 0.27
R 0.01 0.02
Bias 15.21 15.87

IST [K] RMSD 16.01 16.58
R 0.69 0.69
Convergent pts. 11681 11893
Avg. iterations 13.90 13.09

The differences between the two cases are small. The
individually adapted start points reduce slightly the number of
required iterations, but do not change the comparison results,
indicating the independence of the iteration procedure to the
start guess values. We would expect normally that a fist guess
that is closer to the solution will result in a faster convergence
and more convergence cases than if one fixed value is used as
the starting point. However, this result seems to indicate that
the collocated ECMWF is in some few cases farther away from
the solution than one fixed mean set of parameters. It should
be noted however that the difference in number of convergent
points between the two cases is small (1.8% difference).

The satellite measurements are connected with a measure-
ment error due to instrumental noise. In addition to this noise,
the simulations themselves contain modelling errors. These
error sources need to be taken into account when constructing
the constraints under which the OEM has to match the
measurements. Following the testing done for the background
covariance matrix and the start guess position, we compared
four different brightness temperature covariance matrices (Se)
in order to asses the impact on the retrieval. The reference
run is based on the pre-launch AMSR-E radiometric error
values. A different covariance matrix is constructed from the
variances of the differences between observed and modelled
brightness temperatures over the entire RRDP SIC1 data set.
These variance values should include the modelling error as
well as the errors of the forward model input parameters and
the measurement errors of the instrument. These values are
obviously larger than the pre-launch radiometric errors so that
this covariance matrix is named L for short reference. In
order to test the sensitivity of the retrieval to changes in the
brightness temperature covariance matrix we also tested one
version that uses all values in L multiplied by two and one
that uses the same elements but divided by two. The results
of comparing these retrieval runs against ASR are shown in
Table III.

The brightness temperature covariance matrix has the largest
impact on the retrieval out of all of the a priori constraints
imposed on the method. By including the modelling and input
parameter error into the Se matrix, the modelled brightness
temperatures are allowed to have larger deviations from the
measurements. The increase in number of convergent cases
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TABLE III
COMPARISON OF OEM RETRIEVAL AND ASR USING DIFFERENT

BRIGHTNESS TEMPERATURE COVARIANCE MATRICES.

Parameter Stat Ref L 2L 1/2L
Bias -0.28 0.09 0.39 -0.23

TWV [mm] RMSD 2.43 1.21 1.23 1.25
R 0.21 0.26 0.22 0.31
Bias 0.20 0.11 0.13 0.09

LWP [mm] RMSD 0.27 0.12 0.13 0.11
R 0.01 0.08 0.07 0.09
Bias 15.21 7.27 5.61 9.17

IST [K] RMSD 16.01 7.85 6.17 9.84
R 0.69 0.91 0.93 0.85
Convergent pts. 11681 15884 16428 14935
Avg. iterations 13.91 11.87 8.92 11.78

as well as the decrease in average number of iterations was
to be expected as practically the constraint on brightness
temperature matching has been relaxed. Data points where the
measurements could not be matched to within radiometer error
before 50 iterations were reached will now achieve this match
faster with the larger permitted TB error. This is evident in
the differences between the 1/2L, L and 2L versions where
the larger variances result in more convergent points. This
mechanism can also be seen in the variation in the number
of average iterations needed for reaching convergence. The
2L version has the smallest number of average iterations
with 8.92 while the 1/2L and L versions are very close
to each other with 11.78 and 11.87 respectively. The better
agreement of the L matrix OEM versions with ASR data data
represents the trade-off for the optimal estimation approach.
While it is necessary to account for the TB modelling error
in the constraints to ensure an unbiased retrieval, and because
the background constraints have not changed, it follows that
the method output will move closer to the NWP data when
relaxing the brightness temperature constraint.

It is important to note that the background state is static
(from climatological means) while the comparison is done
with collocated simultaneous data. Also of note is that the ASR
data used in this comparison is not the same as the ECMWF
data source used in calculating the background constraints and
first guess values for the method, but the two are very similar.
More details about the correlation between these two NWP
data sources are given in the Results (Section IV).

D. The forward model

The purpose of the forward model is to translate the seven
geophysical parameters into the twelve brightness temper-
atures corresponding to the AMSR-E radiometer. Here we
use a modified version from [1] as forward operator which
will be inverted in order to perform the retrieval. Over open
ocean the original forward model has not been changed. Here
we will overview the working principles in short and we
refer to the original paper for a detailed description. The sea
surface emissivity model takes into account water salinity,
sea surface temperature and a geometric model for the wind
roughened ocean surface to calculate the surface contribution.
For the atmospheric component the forward model includes
frequency specific absorption and scattering coefficients. In

the frequency range of the AMSR-E channels the main atmo-
spheric absorbers are oxygen and water vapour so these values
have been calculated from compiled radiosonde observations.
The atmospheric emission is computed from the amount of
atmospheric water vapour and the liquid water path through
a list of regression equations. An important feature of the
forward model is that the radiative transfer equation uses the
absorption-emission approximation which excludes scattering
from large rain drops and ice particles. This assumption is
valid for clear and cloudy skies and for light precipitation
conditions for the frequency range of 6 to 37 GHz. At the
89 GHz channels however, scattering by clouds is no longer
negligible.

The original implementation of the forward model was
designed to work over open ocean surfaces. In order to use
it over the ice covered central Arctic the calculation of the
surface emission has been modified in [4] to account for
the different microwave emissivity of sea ice. Each pixel is
considered as being formed of a mixture of thermal microwave
emission from open water, first year and multi-year ice. The
up-welling thermal contribution of the surface is:

TS = CowEowTow + CfyiEfyiTfyi + CmyiEmyiTmyi (9)

where C, E and T are the concentration, emissivity and
temperature of open water (ow), first year ice (fyi) and multi-
year ice (myi) concentrations respectively. The sum of the
three concentrations must be 1. The second equation that
needs to be modified is the one responsible for calculating
the reflection and scattering of the atmospheric down-welling
radiation. The reflectivity R of a pixel will be calculated from
individual reflectivities of each surface type:

R = 1−E = 1− (CowEow +CfyiEfyi +CmyiEmyi). (10)

The frequency dependent emissivities are based on the
values retrieved empirically by [17]. These represent monthly
averages and the individual value for each pixel is calculated
by interpolating in time between these monthly values.

Because sea ice dominates the microwave signal at the
instrumental frequencies, it is important that the forward model
can simulate unbiased brightness temperatures when compared
to the measurements. Any bias in the simulations will influ-
ence the retrieved geophysical parameters because the optimal
estimation method will try to compensate for the brightness
temperature difference by adjusting the predicted state vector.
In order to test whether a bias is present, we calculated
the mean differences between the retrieval step simulated
brightness temperatures and the AMSR-E measurements for
the SIC1 dataset (Table IV). The highest discrepancies occur
in the two 89 GHz channels and for now we have discontinued
including these two channels in any retrieval scheme and also
in the test cases described in the previous section. Excepting
the 89 GHz channels, high biases are also present in the
horizontal polarization channels while the lowest bias at 18.7V
is still around 1 K. In order to compensate for these biases
over sea ice, we assume that the difference in brightness
temperatures is entirely caused by the surface component
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through the prescribed emissivities. Under this assumption
we calculate a set of corrected emissivities that minimise the
channel wise difference between the simulated and observed
brightness temperatures.

In order to minimise the influence of monthly variations
throughout the winter season, the new corrected emissivities
are calculated as winter averages, even though a slight im-
provement may be obtained by using temporally varying emis-
sivities. After correction the differences are lowered across all
channels with values between 0.15 and 1.7 K for the 6.9 - 37
GHz interval (Table IV, Column C). The bias in the 89GHz
channels has also been lowered but still remains higher than
6.5 K. The initial and corrected set of emissivities are shown
in Appendix A (Table XIII).

TABLE IV
MEAN DIFFERENCES (IN K) BETWEEN SIMULATED AND OBSERVED

BRIGHTNESS TEMPERATURES. COLUMN A: INITIAL SETUP THAT USES
EMISSIVITIES INTERPOLATED BETWEEN MONTHLY MEANS. COLUMN B:
EMISSIVITIES AVERAGED OVER THE ENTIRE WINTER DATASET FOR EACH

ICE TYPE. COLUMN C: DIFFERENCES AFTER CORRECTING THE AVERAGED
WINTER EMISSIVITIES.

Channel A B C
SIC1 winter pixels

6.9V 2.335 4.776 1.711
6.9H 4.998 6.408 1.46

10.7V 3.094 5.133 1.451
10.7H 6.011 6.751 1.719
18.7V 0.982 1.936 1.046
18.7H 3.039 3.145 1.589
23.8V 1.033 1.507 0.587
23.8H 2.436 2.531 0.588
36.5V 1.566 0.554 -0.236
36.5H 2.372 1.657 -0.156
89V -18.461 -15.428 -6.678
89H -21.315 -16.365 -7.689

Multi-year ice pixels
6.7V 3.957 5.337 2.015
6.7H 4.178 3.092 1.196

10.7V 3.724 5.183 1.692
10.7H 2.836 1.893 1.384
18.7V -0.831 0.618 0.957
18.7H -2.703 -2.332 0.451
23.8V -2.944 -1.56 -0.226
23.8H -3.432 -2.673 -1.157
36.5V -7.462 -6.267 -1.948
36.5H -5.939 -4.927 -2.168
89V -26.249 -24.227 -7.303
89H -24.492 -22.127 -8.136

First year ice pixels
6.9V 3.191 5.611 1.344
6.9H 7.301 10.072 1.181

10.7V 3.708 5.873 1.047
10.7H 8.266 10.651 1.096
18.7V 1.304 2.643 0.735
18.7H 4.971 6.814 1.326
23.8V 1.580 2.871 0.638
23.8H 4.048 5.769 0.917
36.5V 3.731 4.137 0.814
36.5H 4.789 6.188 1.224
89V -12.672 -6.959 -4.055
89H -16.918 -8.506 -5.197

E. OEM retrieval setup

Following the sensitivity to a priori constraints presented
above, we chose a retrieval set-up that includes the reanalysis
derived background covariance matrix and their climatological

mean as background values. The first guess is given by collo-
cated ERA-Interim fields for the atmospheric parameters and
NASA Team derived sea ice concentration and multi-year ice
fraction. After applying the corrected sea ice emissivities, the
brightness temperature covariance matrix is calculated from
the variances of the channel wise differences between simula-
tions and observations. The values for for the background error
(Sp) and the brightness temperature (Se) covariance matrices
are shown in Appendix A (Tables XII, XI).

IV. RESULTS

For developing this method into an operational retrieval rig-
orous validation against in-situ or other independent reference
data is necessary. When we are dealing with seven different
geophysical parameters, finding adequate validation data for
each of them is a challenging task. Field experiments in the
Arctic naturally take place during the boreal summer when
the sea ice is more likely to be affected by the presence of
melt-ponds and surface melt that greatly affect the microwave
signature of the surface. Also because the current working
resolution of the OEM depends on that of its lowest frequency
channel, 56 km, localized radiosonde and surface data can
also prove problematic in that they don’t represent a large
scale average. While a more thorough validation effort for the
output parameters of the OEM is planned for future studies,
in the current work we want to focus on testing the working
principles of the method. An example of how the retrieval
output looks like for one day (January 11th, 2006) is shown
in Figure 1. Most parameters look realistic with the notable
exception of LWP and IT . Both parameters show values that
seem too large for the Arctic with a few regions approaching
0.3 mm of LWP and a large swath of the Central Arctic
showing ice temperatures above 270 K. All parameters are
presented in more detail below, with a description of possible
error sources in the discussion (Section V).

A. Wind speed

The retrieval of atmospheric parameters is conditioned by
the relationships through which the forward model relates
these parameters with the top of the atmosphere brightness
temperatures. In the microwave spectrum the surface rough-
ness together with the surface temperature and water salinity
determine the ocean surface emissivity. The ocean salinity
is prescribed in the model from climatology sources since
it has a negligible impact for frequencies above 5 GHz. In
the case of wind speed the connection is made through the
modelled surface emissivity of the ice-free ocean. This means
that although the method will retrieve wind speed values
as part of the state vector even in sea ice covered regions,
these values reproduce the climatological background and are
not considered a result of the retrieval and are not analysed
further. The RRDP SIC0 data set is especially well suited for
evaluating the wind speed retrieval because it offers a large set
of open ocean data points free of sea ice contamination. When
using the 2006 data set only data points below 15% SIC were
compared to the ASR data. The RSS product is also included
in a comparison as a sanity check for the OEM retrieval. A
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Fig. 1. OEM retrieval example of seven parameter maps for 11th of January 2006.

big advantage of this product is that because it uses the same
AMSR-E instrument perfect collocation is possible. The RSS
product uses a newer version of the Wentz forward model than
the one implemented in the OEM, but the retrieval over ocean
is based on TB regressions and does not use the supplementary
constraints of the OEM described in Section III-C.

TABLE V
COMPARISONS OF ERA-INTERIM AND OEM VS ASR WIND SPEED (M/S)

OVER SIC0. OEM VS RSS WIND SPEED PRODUCT COMPARISON DONE
OVER THE 2006 DATA SET.

Scenario Bias Stdev Diff R
ERA vs ASR, SIC0 -0.47 2.49 0.82
OEM vs ASR, SIC0 -1.09 3.50 0.62
OEM vs RSS, 2006 DS -2.01 2.95 0.76

Table V shows the results of comparing the optimal esti-
mation retrieval with the ASR model and with the RSS data
product. Over SIC0 scenes we have established a baseline
relationship between the ASR product as reference and ERA-
I data used as the first guess in the iterative process. There
is no significant bias between the ERA-I wind speed product
and the ASR data, together with a relatively small standard
deviation of the difference at 2.5 m/s and a moderately high
correlation of 0.82. For the same dataset the OEM retrieval
exhibits a larger negative bias at -1.09 m/s and larger spread
of the differences to the ASR model with a standard deviation
of 3.5 m/s while the correlation is decreased to 0.62. The
comparison with the RSS product over a larger dataset presents
a much better agreement between the two retrieval products
while the OEM underestimation trend is confirmed. The larger

correlation between the RSS product and the OEM retrieval
are expected because of the use of a common instrument and
similarities between the forward models used.

The behaviour of the retrieval over SIC0 compared to the
ASR model data is exemplified in Figure 2. The two data
products agree better at the lower range of wind speed values
but start to diverge more in higher wind speed conditions.
The forward model parametrization of wind speed effects is
susceptible to larger errors at higher parameter values [1],
which could explain the outliers that appear at the high end of
wind speed range in the OEM retrieval. Because this parameter
is highly variable in time and space, collocation differences
also play a role in the disagreement between the model and
the retrieval.

B. Total water vapour

The distribution of water vapour is not uniform throughout
the atmosphere and this is visible in our comparison data sets.
The central Arctic has a lower water vapour load than the
lower latitudes and in general sea ice covered regions will
be drier than open ocean ones. We compared the first guess
ECMWF value with the ASR reference for both the SIC0 and
SIC1 sets. Besides comparing the OEM with ASR data, we
also included the AMSU-B TWV product over RRDP SIC1
pixels. The sanity test against RSS product is done over ice
free ocean regions from the large 2006 data set.

For the SIC0 scenario, the two models match well with a
low negative bias for ERA-I and a high correlation of 0.94
(Table VI). The OEM retrieved TWV matches fairly well
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Fig. 2. Scatterplot of ASR data vs OEM retrieved wind speed for the SIC0
dataset. The identity line is shown in black and the fit of the data is show in
red.

TABLE VI
COMPARISONS OF ERA-INTERIM) VS ASR TWV (MM) OVER SIC0 AND
SIC1. ERA-INTERIM AND OEM COMPARISON VS AMSU-B TWV OVER
SIC1. OEM VERSUS RSS WATER VAPOUR PRODUCT COMPARISON DONE

OVER THE 2006 DATA SET.

Scenario Bias StDev Diff R
ERA vs ASR, SIC0 -0.57 1.26 0.94
OEM vs ASR, SIC0 -0.54 1.38 0.92
ERA vs ASR, SIC1 0.08 0.29 0.98
OEM vs ASR, SIC1 1.18 1.23 0.37
ERA vs AMSU-B, SIC1 -0.94 1.68 0.94
OEM vs AMSU-B, SIC1 -0.61 3.13 0.71
OEM vs RSS, 2006 DS -0.11 0.75 0.97

with the ASR model over SIC0 with bias, difference standard
deviation and correlation very close to the comparison values
between the two models

This comparison can also be viewed as a scatterplot in
Figure 3. We consider this comparison to be a sanity check
for the OEM because in these conditions the retrieved output
should not deviate too strongly from the NWP TWV data in
conditions of no sea ice cover.

The agreement between ASR and ERA-Interim is seen over
SIC1 scenes as well, with a high correlation of 0.98. The
reference comparison between the OEM first guess from ERA-
Interim and the AMSU-B retrieval over SIC1 shows good
correlation but a high standard deviation for the very low water
vapour values encountered in this region. The OEM retrieval
again performed differently from the first guess data for the
comparison with AMSU-B TWV, scoring a slightly lower bias
but higher standard deviation. The moderately high correlation
of 0.71 with a dedicated Arctic retrieval product is considered
a good result. The best match for the OEM is again over open
water with the RSS product for bias, standard deviation and
correlation.

Fig. 3. Scatterplot of ASR data vs OEM retrieved TWV for the SIC0 dataset.
The red line shows the fit of the data, while the black line represents the one
to one correspondence.

TABLE VII
COMPARISONS OF ERA-INTERIM AND OEM WITH ASR LWP (G/M2)

OVER SIC0 AND SIC1. OEM VERSUS RSS LIQUID WATER PATH PRODUCT
COMPARISON DONE OVER THE 2006 DATA SET.

Scenario Bias Std diff R
ERA vs ASR, SIC0 18.8 62.9 0.60
OEM vs ASR, SIC0 87.8 75.5 0.39
ERA vs ASR, SIC1 1.7 6.3 0.67
OEM vs ASR, SIC1 145.9 64.9 0.06
OEM vs RSS, 2006 ds 58.4 48.8 0.76

C. Liquid water path

Liquid water path has a strong impact on atmospheric ab-
sorption at the higher microwave frequencies, and the AMSR-
E data thus contains valuable information on this variable.

However, this is a difficult parameter to represent in models
both because of our incomplete knowledge about the complex
physics involved as well as the low amounts of non precip-
itating liquid water present in the Arctic atmosphere. Over
SIC0 for this parameter the ERA-I shows moderate agreement
with ASR, with a positive bias and a moderate correlation
of 0.6 (Table VII). The OEM displays a larger positive bias
and similar stdev versus the ASR model together with a small
correlation of 0.37. Over SIC1 the two models (ASR and ERA-
Interim) show better agreement with lower values for both bias
and standard deviation than over open water. The correlation
coefficient increases slightly to 0.67. As in the case of the SIC0
comparison, the OEM retrieval shows large discrepancies to
the ASR product with high bias and standard deviation and a
very low correlation coefficient at 0.05. We need to emphasize
that disagreement with the model data is not viewed as a
negative result because we cannot expect models to represent
correctly clouds with their high spatial and local variability at
the time, place and resolution of the satellite footprint [9].
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TABLE VIII
COMPARISONS OF ERA-INTERIM AND OEM WITH ASR SKIN

TEMPERATURE (K) SIC0 AND SIC1. OEM VERSUS RSS SEA SURFACE
TEMPERATURE COMPARISON IS DONE OVER THE 2006 DATA SET.

Scenario Bias Std diff R
ERA vs ASR, SIC0 -0.12 0.29 0.97
OEM vs ASR, SIC0 -1.43 1.82 0.18
ERA vs ASR, SIC1 2.78 2.39 0.94
OEM vs ASR, SIC1 10.15 4.99 0.71
OEM vs RSS, 2006 DS -1.09 2.18 0.69

D. Surface temperature

This parameter is included in the surface emission sim-
ulation and thus in estimating the reflection and scattering
of the downwelling radiation by the surface. Because of the
modifications applied to the forward model in order to include
sea ice covered surfaces, temperature has been split into two
parameters. One refers to the temperature of the ice free ocean
surface (SST - sea surface temperature). The other refers to
the sea ice temperature (IT) and is in turn connected to the
empirical sea ice emissivities. The retrieval method will return
both values for each pixel and in the forward calculations
these temperatures are applied to the percentage of cover
corresponding to each surface type. This means that retrieved
ice temperatures over 0% sea ice reproduce the background.
This is also the case for sea surface temperatures for data
points with 100% SIC. In the case of partially ice covered
pixels, we calculated IT statistics only for pixels with SIC
above 75% and SST statistics only for pixels with SIC below
15%.

Depending on the frequency, the microwave emission of sea
ice can come from the ice layer 20 cm deep at 6.9 GHz or at
most a few cm deep for the 37 GHz channels in the case of
first year ice. This penetration depth varies with snow cover,
ice type and season. The ice temperature (IT) retrieved by
the method will represent the emission of the ice and snow
volume within the penetration depth. The ASR model data
is not the ideal comparison tool for this parameter as the
skin temperature included in the ASR model will frequently
differ from the temperature of the emitting layer inside the ice
because of the temperature gradient inside the snow and ice
pack [17].

Over open water the penetration depth of microwaves is
small enough that we can approximate the emission layer
temperature for the sea surface temperature. While the two
models agree well with each other (Table VIII), the OEM
retrieved SST shows a higher negative bias of around 1.4 K and
a corresponding standard deviation of 1.8 K when compared
to the ASR data. Like in the case of LWP the retrieval
shows a very low correlation with the ASR model. Unlike
the comparison with the model data, the sanity test with the
RSS SST product shows similar levels of bias and standard
deviation but significantly better correlation at 0.7. Over SIC1
there is a larger discrepancy in terms of bias and standard
deviation between models (ASR and ERA-Interim) but a high
correlation coefficient of 0.94. The microwave emission layer
temperature retrieved by the OEM shows a large positive bias
and standard deviation versus the ASR skin temperature prod-

uct but a moderately high correlation at 0.7. This behaviour is
expected as the emission layer inside the snow and ice volume
is typically warmer than the atmosphere interface layer due to
thermal insulation, while the skin temperature is closer to the
atmospheric air temperature.

The systematic difference between ASR skin temperature
and OEM retrieved sea ice temperature is shown in Figure 4.
Following the explanation that the microwave emitting layer
temperature will be significantly higher than that of the in-
terface layer between snow/sea ice and air, there is a trend in
how the OEM retrieval differs from the ASR parameter. At the
lower range of values the difference between the two can be
as high as 20 K while at the higher ranges of temperatures the
difference decreases to within 5 K. This behaviour is consistent
with the observations in [17]. During the winter season when
the air temperature and the closely related skin temperature
are at their lowest, the difference with the temperature deeper
inside the sea ice is greatest due to the strong insulation effect
of the snow layer. As this snow layer decreases and the skin
temperature increases, the temperature gradient inside sea ice
decreases as well.

Fig. 4. Scatterplot of ASR skin temperature vs OEM retrieved sea ice
temperature for the SIC1 dataset. The fit line is represented in red, while
the black line is the one to one fit.

E. Sea ice concentration

Sea ice is formed from the freezing of the surface ocean
water. An important consequence of this process is that new
sea ice includes brine pockets which influence its microwave
emission. Depending on the age of the sea ice, this salt
content may vary, youngest ice having generally the highest
amount and old ice the lowest. Besides sea ice salinity, the
sea ice surface roughness and snow cover also influence the
surface component of the microwave emission. As a simple
although not perfect reference and background state for sea
ice concentration, we use the NASA Team algorithm which
provides both total concentration and multi-year ice fraction.

This comparison was done by looking at the mean retrieved
ice concentration value as well as the standard deviation of
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TABLE IX
NASA TEAM AND OEM SEA ICE CONCENTRATION (%) MEAN VALUE

AND STANDARD DEVIATION FOR SIC0 AND SIC1.

Scenario Mean Std
NT, SIC0 11.94 14.09
OEM, SIC0 1.30 1.98
NT, SIC1 94.97 3.99
OEM, SIC1 97.79 2.02

TABLE X
MULTI-YEAR ICE FRACTION (%) MEAN VALUE AND STANDARD

DEVIATION FOR NASA TEAM PRODUCT, OEM RETRIEVAL AND THE
DIFFERENCE BETWEEN THE TWO FOR THE SIC1 DATASET.

Scenario Mean Std
NT, SIC1 34.79 24.95
OEM, SIC1 42.19 30.53
NT-OEM, SIC1 -7.40 10.66

the data over the validated 100% and 0% scenes in the SIC1
and SIC0 datasets respectively (Table IX). For the SIC0 set,
the OEM shows a significantly lower mean retrieval value of
1.3% compared to the first guess NASA Team result of almost
12%. In terms of standard deviation, the OEM retrieval shows
much lower variability for SIC0 at just below 2% standard
deviation, while the initial guess is a lot more noisy at 14%
standard deviation. Over SIC1 scenes, the differences between
the NASA Team product and the OEM retrieval are smaller
in terms of mean retrieved value with 97.8% for OEM and
95% for NASA team. While the standard deviation of NASA
Team first guess data is lower for 100% SIC scenes, it is
still twice as large as the value for OEM SIC at 4% and
2% respectively. Compared to the other results presented in
this study, the SIC1 and SIC0 results for ice concentration
retrieval can be considered validation results as the RRDP
consists of verified scenes of pure surface types. For an
operational product however, validation with intermediary ice
concentration data is still necessary. We would like to point
out that the NASA Team algorithm implementation used here
does not reflect the quality of the operational product based
on the same algorithm. Here we used a simplified version
of this method that does not include any weather filters which
explains the large mean value and standard deviation exhibited
over SIC0. The purpose of this comparison is to show that the
OEM retrieval can improve on a lower quality first guess SIC
value both in terms of absolute value and retrieval noise.

F. Multi-year ice fraction

During the melt season, most of the salt in the ice drains out
and ice that remains will thus have a very low salinity. Old ice
therefore has a significantly different emissivity compared to
young ice. For this reason the empirical emissivities contain a
set of values that apply to the fraction of old ice detected in the
satellite footprint. The first guess as well as the background
value of the multi-year ice fraction is again provided by the
NASA Team algorithm.

Over SIC1 the NASA Team retrieved old ice fraction is
lower and it shows less variability than the OEM retrieval
(Table X). On their own these values are difficult to evaluate

because the reference dataset is not divided by ice type. This
comparison thus serves to showcase how the OEM diverges
from the NASA Team data used as first guess.

In order to better asses the skill of MYIF retrieval we
can compare the two products above with collocated ASCAT
backscatter data which is a measure of the surface and volume
scattering from sea ice. Here a higher MYIF is expected to
correlate with higher backscatter values.

Fig. 5. ASCAT backscatter vs NASA Team (a) and OEM (b) MYIF retrievals.

In Figure 5 it is shown that both NASA Team and OEM
MYIF retrievals agree with the scatterometer data at low MYIF
values. As the backscatter value increases however, the scatter
of the NASA Team product increases, resulting in an overall
correlation of 0.78. The OEM retrieval agrees better with the
backscatter values throughout the whole range of values and
scores a better correlation at 0.89.

V. DISCUSSION

The results presented in this study aim to characterize the
behaviour of the OEM versus the NWP background and first
guess that are necessary components of the optimal estimation
approach. The comparison does not aim to validate retrieval
skill from the OEM but is a test of the ability to retrieve
complementary data using a consistent passive microwave
based retrieval. Validation using independent sources is a
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future goal for this project, once the basic principles have
been thoroughly proven.

The integrated retrieval depends on how well the forward
model can account for the contribution of each of the seven
geophysical parameters to the final signal. The cost function
which is minimized in order to reach convergence, balances the
penalty of moving away from the background values with the
penalty of moving away from the observed brightness temper-
atures. This mechanism ensures that the method will retrieve
the optimal ensemble of state vector parameters for which the
forward modelled brightness temperatures are constrained by
the modelling error of the measured brightness temperatures.
Besides matching the equivalent brightness temperature as it
would be seen by the satellite instrument, the forward model
has to attribute correctly the contribution of each geophys-
ical parameter to the composite signal. The simplifications
included in the forward model will have an adverse influence
on the retrieval. The two NWP products, ASR and ERA-
Interim are well correlated but significantly distinct datasets
which is why we used the first as a verification reference and
the other as start guess value.

The relevant limitations in the case of wind speed are
connected to the approximations used in the forward model.
For a detailed overview of these error sources we refer the
reader to the forward model description in [1]. Wind speed is
one of the most variable geophysical parameters in both time
and space and, besides the known deficiencies of the forward
model, collocation discrepancies can also contribute to the lack
of correlation between the models and the OEM. Over a large
dataset and with perfect collocation because of the common
instrument the OEM retrieval shows good agreement with the
RSS wind speed product (Table V).

The surface temperature is used to determine the cloud
temperature necessary for liquid water path calculations as
well as for the water vapour regression equation. This is where
a significant difference between the NWP and the MW remote
sensing approach is worth mentioning. The skin temperature
present in NWP data refers to the temperature of the interface
layer between the surface and the atmosphere. Over sea ice this
would represent the temperature of the top most layer of the
snow or ice which is close to the temperature of the air above
it. For the microwave radiometer however, the ice temperature
represents the temperature of an emitting layer of variable
thickness that depends on the different penetration depths of
the channel frequencies. The penetration depth difference for
AMSR-E frequencies varies between 1 cm at 89 GHz and 7 cm
at 6.9 GHz for first-year ice and between 4 cm and 30 cm
for multi-year ice [17]. Because of the temperature gradient
inside the ice pack, the difference between the surface air
temperature and the emitting layer temperature will increase
with decreasing channel frequency. Because each channel
“sees” a slightly different surface temperature the final output
temperature is the value that minimizes the cost function for
that particular data point and can be understood as a composite
value depending on the different channel speciffic emission
layer temperatures and the background ice surface temperature
(Table VIII).

The individual contribution from the other two atmospheric

parameters of total columnar water vapour and liquid water
path are both connected in the forward model with the surface
temperature. The bias in retrieved ice temperature can be con-
nected to the positive bias in water vapour retrieval (Table VI)
through the water vapour - effective air temperature regression
equations used in the forward model. Because the effective air
temperature is derived from the surface temperature and water
vapour is likewise dependent on the effective air temperature
it is realistic to expect the surface temperature bias to be
transmitted to the water vapour values. When comparing the
OEM water vapour retrieval with the AMSU-B product it is
important to note that the AMSU-B instrument uses three
channels around the strong water absorption line at 183 GHz.
The AMSR-E instrument used by the OEM has two channels
around the weak water absorption line at 22 GHz, so that
the information content available to the two methods is very
different, with higher sensitivity to low water vapor values
available to the AMSU-B method. The comparison between
the two retrievals shows relatively good correlation and small
bias. The match is however worse than between ERA-Interim
and AMSU-B TWV. As a separate observation to the difference
in sensitivity to low TWV values between the two methods
it is worth mentioning that the forward model used by the
OEM was tuned using global water vapour ranges, which are
generally higher than those present in the Arctic.

A similar situation exists in the case of liquid water path
where the cloud temperature is calculated by the forward
model as the mean between surface and freezing temperatures.
An overestimation of the surface temperature will lead to
an overestimation of the cloud temperature which implies
an overestimation in liquid water path (Table VII) who’s
absorption characteristics are inversely correlated with cloud
temperature [18]. A second error source related to the cloud
temperature is that the current calculation technique will
always lead to cloud temperatures below the freezing point
over sea ice regions. While supercooled clouds are frequent,
there is no modeling in the forward model about the percentage
to which they are frozen. About ice clouds the model assumes
negligible absorption and scattering. This leads to brightness
temperature errors at higher frequencies. A possible solution
for the cloud temperature parametrization is also suggested in
[18], by using data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud top temperature product
to adapt the parametrization to typical cloud temperatures
expected in the retrieval region.

For all atmospheric parameters retrieved over open ocean,
the OEM retrieval matches moderately well to very well
with the RSS product because both are matching observed
brightness temperatures from the same instrument. This com-
parison shows that the OEM is more sensitive to the brightness
temperature measurements than to the NWP a priori data
which is encouraging as the measurements contain better
information than the models. While the RSS product is a
standard in passive microwave remote sensing, it can only be
applied over open ocean areas while the aim of the OEM is
to provide atmospheric retrieval in pure sea ice and mixed
surface conditions as well.

The sea ice concentration retrieval provides a reasonable
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level of accuracy for absolute values of sea ice cover in
the SIC1 and SIC0 datasets (Table IX). The corrected set of
averaged sea ice emissivities represents a compromise solution
for use over the SIC1 dataset. The overall differences between
simulated and observed brightness temperatures has been
significantly reduced compared to the initial version that uses
the uncorrected emissivity set (Table IV), however at a local
level the mean emissivity values might not be representative
for a particular sea ice region and this discrepancy will affect
the retrieved sea ice concentration value as in all other sea ice
concentration algorithms using fixed tie-points. The inclusion
of only two ice types with fixed signatures in time and space is
a necessary simplification that will lead to errors when the real
sea ice signature is significantly different from these. Ideally a
more elaborate snow/ice emissivity model should be included
that can adequately represent the surface variability. For the
moment the large number of parameters required by such a
model make it an impractical approach.

From the comparison with ASCAT backscatter values it
is apparent that the OEM MYIF retrieval provides a better
agreement with scatterometer data than the NASA Team
product (Figure 5). While this is not a validation for the true
multi-year ice fraction, differences between young ice and old
ice scattering properties represent one criterion to distinguish
between the two ice types. The OEM results are more stable
throughout the whole MYIF range of values while the NASA
Team result shows a larger scatter for high ASCAT backscatter.

VI. CONCLUSIONS

The aim of this study was to investigate the behaviour of
the OEM retrieval over pure surface types and determine its
sensitivity to different a priori constraints. We have shown that
the background error covariance matrix has a strong influence
over the rate of convergence. Using climatological sources for
the diagonal elements of this matrix results in more itera-
tions necessary to reach convergence and lowers the overall
number of convergent cases. Using a full covariance matrix
that includes off diagonal elements derived from the same
climatological source has a negative effect on the retrieval,
while also slightly reducing the number of convergent cases.

The differences between results using a static versus a
collocated NWP start guess for each data point are small,
demonstrating the stability of the results against different
starting conditions. The difference in number of convergent
cases is minimal, with a slight advantage for the static case
together with a small increase in the average number of
iterations required to reach convergence.

Testing different versions of the brightness temperature
covariance matrix proved a large influence both on the retrieval
and on the convergence statistics. After including the channel
wise combined modelling error, forward model parameter error
and the measurement error into this matrix, the agreement
with ASR improved. This is expected behaviour because by
increasing the variances for the brightness temperature the
constraint of matching the measurements is relaxed. Without
implementing the modelling error however the retrieval would
be subjected to potential bias contamination from the forward
model.

Using the initial empirical emissivities from [17] for re-
trieval over sea ice areas resulted in large biases between the
simulated and observed brightness temperatures. We modified
the emissivities towards minimising these biases resulting
in a new set of winter sea ice emissivities. The corrected
emissivities have decreased the differences between model and
measurements to an average of 1 K from an average of 2.8 K.

We have compared OEM retrieval results over pure 100%
and 0% sea ice concentration scenes with ASR model data.
Despite the fact that the first guess data from ERA-Interim and
the ASR product match very well, in sea ice covered regions
the OEM does not always agree with the models. The fact
that the sanity test comparison over ice free areas against both
ASR model data and the RSS product show good agreement
suggests that the OEM is strongly constrained to match the
measured brightness temperatures and not the NWP data used
as a priori. This approach shows promise once the deficiencies
of the sea ice emissivity modeling are reduced.

There is a discrepancy between the surface temperature
product from NWP and the sea ice emission layer temperature
that can be retrieved from passive microwave radiometers.
Over sea ice, this discrepancy is quite large and is expected to
influence the retrieval of liquid water path and water vapour.
This difficulty may be overcome in the case of liquid water
path by employing a new parametrization for cloud tempera-
ture, based on the MODIS cloud top temperature product as
is suggested in [18]. For water vapour, the regression curves
used currently by the forward model can be tested against
radiosonde profiles measured in the Arctic and updated accord-
ingly. The passive microwave retrieved surface temperature has
to be seen as different from the surface physical temperature
as it is connected to the emitting layer temperature. This
parameter can yield more useful information by separating
the current unique value by channel, depending on frequency
penetration depth, by using the empirical regression equations
from [17]. A list of consistent, frequency dependent, emission
layer temperatures can be retrieved like this and included in
an improved sea ice forward model.

For simplicity, in this study we only used an OEM setup
that used the ten AMSR-E channels between 6.9 and 36.5 GHz
resampled at the common resolution of 56 km. In order to
improve the product resolution in the future the 6.9G Hz,
10.7 GHz and 18.7 GHz channels can be excluded from the
retrieval and the method can produce output at the 21 km
spatial resolution of the 23.8 GHz channels. Depending on
the number of desired parameters, different combinations of
channels can be used for balancing frequency dependent sensi-
tivity with retrieval resolution. For determining these optimal
pairings between measurement input and retrieval output, a
channel wise parameter sensitivity study is planned. Connected
to this, but with the aim of improving atmospheric sensitivity,
the 89 GHz channels can be included in the retrieval once
the forward model underestimation is corrected. Preliminary
testing has shown that both excluding the low frequency
channels as well as including the 89 GHz channels are useful
approaches that give reasonable results.
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APPENDIX

A priori constraints and ancillary data used in the OEM

TABLE XI
DIAGONAL ELEMENTS OF BACKGROUND ERROR COVARIANCE MATRIX -

Sp . SHOWN HERE ARE THE STANDARD DEVIATIONS.

Parameter
√
σ2

WS [m/s] 3.5
TWV [mm] 3.3
LWP [g/m2] 142.8
SST [K] 4.9
IT [K] 4.9
SIC [%] 31.6
MYIF [%] 54.7

TABLE XII
DIAGONAL ELEMENTS OF THE BRIGHTNESS TEMPERATURE COVARIANCE

MATRIX - Se . SHOWN HERE ARE THE STANDARD DEVIATIONS (K).

Channel
√
σ2

6.9V 1.68
6.9H 3.46
10.7V 1.53
10.7H 3.71
18.7V 1.31
18.7H 3.27
23.8V 0.98
23.8H 2.57
36.5V 1.81
36.5H 2.52
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