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Summary  
To generate meaningful results, life cycle assessments (LCAs) require accurate technology data 

that is consistent with the goal and scope of the analysis. While literature data are available for 

many products and processes, finding representative data for highly site-specific technologies, such 

as waste treatment processes, remains a challenge. This study investigated representative life cycle 

inventory (LCI) modeling of waste treatment technologies in consideration of variations in 

technological level and climate. The objectives were to demonstrate the importance of 

representative LCI modeling as a function of the specificity of the study, and to illustrate the 

necessity of iteratively refining the goal and scope of the study as data is developed. A landfill case 

study was performed where 52 discrete landfill datasets were built and grouped to represent 

different technology options and geographical sites, potential impacts were calculated, and min-max 

intervals were generated for each group. The results showed decreasing min-max intervals with 

increasing specificity of the scope of study which indicates that compatibility between the scope of 

study and LCI model is critical. Hereby, this study quantitatively demonstrated the influence of 

representative modeling on LCA results. The results indicate that technology variations and site-

specific conditions (e.g. the influence of precipitation and cover permeability on landfill gas 

generation and collection) should be carefully addressed by a systematic analysis of the key process 

parameters. Therefore, a thorough understanding of the targeted waste treatment technologies is 

necessary to ensure appropriate data choices are made within the boundaries of the defined scope of 

the study.  

Introduction  

Representative data choices are crucial for reliable life cycle assessment (LCA) in decision-

making. However, previous studies on LCA of waste treatment technologies have revealed 

widespread use of inventory data that do not appropriately represent the case studies in question 

(Laurent et al. 2014; Astrup et al. 2014). For example, more than half of published LCAs on waste 

incineration do not describe the specific technology applied for air pollution control, preventing 

verification of inventories (Astrup et al. 2014). Representativeness is a data quality aspect linked 

with uncertainty as data ranges are often needed to appropriately represent the technological, 

geographical and temporal scope of study. The term “context” will be used throughout instead of 

“scope”, because the focus is on the definition specifying the spatial and technological coverage of 

the study, and not on the other elements of the scope definition (ISO 2006). To enhance the 
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reliability of LCA results, authors have suggested uncertainty analysis methods targeting both 

aleatory and epistemic uncertainties (e.g. Heijungs 1996; Heijungs and Kleijn 2001; Heijungs and 

Huijbregts 2004). For instance, Heijungs (1996) suggested to locate upper and lower parameter 

values to calculate min-max intervals. Min-max intervals were used to provide more robust result 

interpretation for a product-LCA, where multiple data choices were implemented in the life cycle 

inventory (LCI) of non-specific disposable beverage cups (Van der Harst and Potting 2014). 

Representativeness relates to the context of the study, hence, it is a contextual data quality aspect 

(Weidema and Wesnæs 1996). Thus, the specificity of the study context influences the required 

level of detail of the LCI. Olivetti et al. (2013) investigated the influence of the context specificity 

by quantifying the spread in the LCI of metal production corresponding to the level of knowledge 

about the material type. The authors suggested a method to identify the subset of available datasets 

that represents the specificity of the study. In addition, Bawden et al. (2016) leveraged the ‘amount 

of information’ in LCA by linking the LCI results to the level of knowledge about the system 

boundary, resulting in larger spreads in kg CO2-eq. for lower levels of knowledge. These 

approaches only function if the target data, i.e. the data representing the process one wishes to 

model (Canals et al. 2011), lie within the obtained spread; a false sense of certainty may be obtained 

if the target data are located outside of the spread. In accordance with ISO (2006), collection of data 

is iterative and further data collection is prioritized via analyses in the result interpretation phase. 

Discernibility analysis and other sensitivity and uncertainty analyses are methods to identify 

decisive parameters in comparative LCA studies, and, hereby, to prioritize further data collection 

(Heijungs and Kleijn 2001). However, the outcomes of the first LCA iteration may be biased if the 

available data are incomplete or the boundary conditions, age, and technology level deviate from 

the goal and scope definition. An inappropriate first data collection, which is only partly 

representative of the entire study context, may result in only the lower end of an appropriate data 

range being represented, causing underestimation of the contribution from a particular process. 

Sufficient understanding of the processes in question is thus essential in the initial data collection.    

On the issue of data representativeness in LCA, there are still technical domains with challenges, 

for example the domain of waste treatment technologies. As pointed out in Laurent et al. (2014) and 

Astrup et al. (2014), specific characteristics of waste treatment technologies still pose challenges 

regarding representative LCI modeling. Waste treatment technologies cover a range of processes that 

vary across sites due to their dependency on variables such as local waste composition, level of 

technological development, local energy supply, and climate. To exemplify the relevance of 
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technological representativeness, Merrild et al. (2008) showed that the ranking of incineration 

versus recycling of paper waste is influenced by the specific technology configuration of the two 

treatment alternatives (e.g. the automation level of the recycling facility). An example of 

geographical representativeness was provided by Yang et al. (2015), who showed that the leachate 

generation from Chinese landfills of similar technology levels differed among regions due to 

variations in the input waste composition and climatic conditions. Other examples of the relevance 

of representative foreground modeling of waste treatment technologies include direct methane 

emissions from landfilling of organic waste, influenced by the efficiency of landfill gas collection 

via pipes and liners (Christensen 2011), and process-specific air emissions from waste incineration 

(e.g. dioxins, particles, and nitrogen oxides) that depend on the installed flue gas treatment 

(Damgaard et al. 2010) .       

For waste treatment technologies - and other technical domains with large variations across sites 

- further work into representative LCI modeling is needed. This article aims to investigate 

representative LCI modeling of waste treatment technologies while considering inherent 

variabilities of the technologies and the study context. Specific objectives are to i) determine the 

importance of using representative LCI models and making data choices that are consistent with the 

specificity of the study context, and ii) determine whether and how the goal and scope of the study 

should be refined based on the obtained data. As an example of LCA of waste treatment 

technologies, a case study on landfilling of household waste is conducted. Landfilling is a complex 

process, and is therefore considered suitable to represent different elements of potential variabilities 

of waste treatment technologies. This article is structured by first describing the general approach, 

secondly applying it to the case study, and finally discussing the outcomes in relation to 

representative LCI modeling.               

Methodology  

General approach  

The general approach used in this study is illustrated in figure 1 as a list of steps A, B, and C. The 

steps are consistent with standard LCA procedures including goal and scope definition, LCI 

analysis and life cycle impact (LCIA) assessment (ISO 2006). Focus of this study is on 

representative data collection and inventory modeling in step B1 and B2, relative to the specificity 

of the study context defined in step A. In B1, the groupings are those technology configurations and 
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geographical locations that are likely to occur, considering the specified context and inherent 

variability of the waste treatment technology. A certain context specificity expresses a level of 

knowledge about the system, and an increase in specificity involves additionally known parameters 

(similar to specification level 1-5 in Olivetti, Patanavanich, and Kirchain 2013). Therefore, the 

number of likely technology configurations and geographical locations will decrease with 

increasing context specificity. In B2, data is collected to build the different waste treatment 

inventories within each grouping. The inventories are built as discrete datasets expressing choices 

of e.g. waste treatment technology type, location and process efficiencies. Step B requires an 

understanding of the waste treatment technologies at process level, as well as available data and 

information about expected values of key parameters. In step C, the LCIA results are calculated for 

each dataset after which sets of results are grouped according to the grouping in B1, enabling the 

development of min-max intervals for each group. Highly specific study contexts with only one 

representative dataset result in point values instead of min-max intervals. The point values appear to 

imply highly certain results, but it should be considered that single parameter uncertainty has not 

been included in this study. Parameter uncertainty should in principle be included to enhance 

robustness (e.g. Bisinella et al. 2016 and Gregory et al. 2016), but was excluded from this study to 

focus on the potential spread of discrete data choices made by the LCA practitioner. To some 

extent, parameter uncertainties were addressed as discrete choices of parameter values for 

continuous data, such as different technical efficiencies and climatic conditions (e.g., precipitation 

and temperature). Other choices in the model were truly discrete, such as the type of landfill gas 

treatment method and leachate discharge recipient.    

 

Figure 1 General approach applied in this study as a list of steps A, B, and C. The relevant LCA phases are given. LCA 

= life cycle assessment. 

Framework of landfill case study  
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A case study of landfilling of residual household waste was conducted, starting from the waste 

being received at the landfill. The functional unit was landfilling of a reference flow of 1000 kg 

waste with a temporal coverage of 100 years from the time of disposal. Mechanistic process 

modeling was applied in contrast to Olivetti, Patanavanich, and Kirchain (2013), who applied 

aggregated data from databases. Focus was on foreground modeling relative to the technological 

and geographical study context, while background data choices, e.g. marginal energy choices and 

temporal coverage, were not varied. In addition, the input waste composition was not varied. Waste 

composition is a geographical parameter, but this study focuses on geographical parameters 

representing climatic conditions. The fractional waste composition was based on Møller et al. 

(2013) and the physico-chemical composition was based on Riber et al. (2009), both sources 

representing Denmark. The chosen temporal coverage of 100 years is important, especially 

concerning slowly degradable and long-term leaching components. The temporal coverage of 100 

years was chosen because data availability decreases for landfill time spans longer than 100 years 

(Manfredi et al. 2010). The marginal heat and electricity mixes of the background model were kept 

constant even though these can significantly influence LCA results. Energy and resources to 

construct the landfill were included.  

A dedicated LCA model for waste treatment technologies, called EASETECH, was applied 

(Clavreul et al. 2014). Only secondary data based on literature and expert judgements were used, as 

the purpose was to compare the use of site-specific versus aggregated data. All landfill processes 

represented reactor landfills, i.e. engineered landfills with technical measures to control landfill gas 

and leachate generation (Christensen 2011). Two types of reactor landfills were included; a 

conventional reactor and a bioreactor landfill, the latter with enhanced gas generation from leachate 

recirculation (Christensen 2011).   

Potential impacts were calculated for impact categories recommended by the European 

Commission (2010).  Here, results for global warming (IPCC 2007) and human toxicity, 

carcinogenic (Rosenbaum et al. 2008), are illustrated and discussed. However, 14 impact categories 

were included in total, and an overview of all 14 impact categories, impact assessment methods and 

normalization references are listed in Supporting Information section 1.1.   

Process modules and key parameters  
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The landfill model was built as a sequence of process modules as illustrated in figure 2. Foreground 

processes in the landfill facility were modeled mechanistically, whereas black box processes 

[vertically aggregated processes (UNEP 2011)] were applied in the background modeling, e.g. 

upstream production of landfill construction materials. The entire LCI is documented in Supporting 

Information section 1. Mechanistic foreground modeling ensured consistency in assumptions and 

system boundaries. Furthermore, it enabled inclusion of cascading responses between the processes, 

e.g. the link between amounts of gas generation and gas collection. Seven landfill and leachate 

process modules were included: landfill gas generation, collection, oxidation and treatment; and 

leachate generation, collection and treatment. Key parameters were varied for the names in bold in 

figure 2, leading to multiple module alternatives. Cross-combinations of the module alternatives 

enabled the generation of discrete landfill datasets with varying technological and geographical 

contexts, modeled as different technology configurations and climatic conditions. Based on a total 

number of 576 module combinations, 52 landfill datasets were considered technically feasible. The 

combination approach and final selection of feasible landfills are documented in Supporting 

Information section 2. The processes are distinguished as predominantly controlled by geographical 

parameters, technological parameters or a combination, as illustrated in figure 2. The following 

gives a brief description of the key parameters in the landfill model.     
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Figure 2 Landfill model diagram consisting of seven landfill gas and leachate process modules, and specification of the 

leachate emission recipient. It is indicated if a process module is controlled by predominantly technological, 

geographical, or combined geographical/technological key parameters. Key parameters were varied for landfill gas 

generation, gas collection, and treatment as well as leachate generation and leachate emission recipient. 

 

Landfill gas generation was estimated using a material-specific first order decay model. Material-

specific decay rates and methane potentials varied with landfill moisture content and temperature. 

For bioreactor landfills, gas generation was modeled with higher decay rates representing enhanced 

degradation. Moisture content of the waste partly depends on the initial moisture content of the 

disposed waste and rainwater infiltration and percolation through the landfill cover, the latter being 

influenced by the precipitation level in the region and the landfill cover permeability (Yang et al. 

2015). Therefore, moisture content was defined as a combined technological and geographical 

parameter. Oxidation of non-collected methane depends on the retention time of the gas in the top 

cover (Christensen 2011). The rate of landfill gas collection and extraction influences the retention 
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time of non-collected landfill gas, why the oxidation rate was paired with the landfill gas collection 

rate. Both landfill gas collection and oxidation are considered predominantly technological 

parameters, because they are influenced by the design of the landfill gas extraction wells, liners and 

top cover (Christensen 2011). The carbon dioxide from oxidized methane was assumed carbon-

neutral, with the reasoning that CO2 emissions originating from the degradation of biogenic waste 

materials (food and yard waste) do not have a net contribution to global warming, whereas carbon 

sequestering was included for stored biogenic carbon in the landfill (Brandão et al. 2013).  

Two landfill gas treatment options were included: energy utilization and flaring. Energy 

utilization includes the generation of electricity, and system expansion was applied to include 

downstream savings from substituted marginal energy. The marginal energy technologies were 

coal-based Danish marginal electricity (Behnke 2006; DONG Energy 2007a, 2007b, 2007c) and 

thermal energy produced from a mix of waste, biofuels, surplus heat and oil (Energistyrelsen 2012). 

The choice of marginal electricity mix is a debated topic, and choosing other energy sources than 

fossil fuels could change the results. However, as mentioned previously, variation of background 

modeling choices is not considered. The flaring process was modeled at 99% methane oxidation 

efficiency, and the oxidation of other substances was also included. Selection of the suitable landfill 

gas treatment at site is influenced by the amount of landfill gas being generated, technological level 

of the landfill facility, and external energy system; landfill gas treatment is thus controlled by 

combined geographical and technological parameters.  

Leachate generation was modeled as a function of net infiltration and percolation of rainwater 

through the landfill layers. The moisture content of Danish waste is below the field capacity of 

landfills, in which case the moisture will not contribute to leachate formation; in regions with a high 

amount of organic content in the waste this might not be the case (Yang et al. 2015). Therefore, in 

this model the leachate generation is a function of net infiltration depending on precipitation, 

temperature and permeability of the landfill cover, damage to which will decrease permeability and 

increase rainwater infiltration (Yang et al. 2015). Thus, leachate generation is a combined 

geographical and technological parameter. Leachate treatment was modeled with a fixed wastewater 

treatment process. The leachate discharge, of both non-collected leachate and leachate after 

treatment, was modeled to a freshwater or marine water recipient. The local water body is a 

geographical parameter depending on the specific location of the landfill.   

Grouping relative to specificity of study context 
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The grouping of the 52 landfill datasets is depicted in figure 3. The left-hand side expresses six 

levels of specificity of the technological and geographical context, corresponding to step A in figure 

1. The top level specifies the waste treatment category, here an engineered landfill, where the 

technology type and location is unknown. In the second level, the technology type is known, here a 

bioreactor or conventional reactor landfill, but the regional and specific location as well as landfill 

gas collection, oxidation, and treatment is unknown. In the third level, the regional location – and 

therefore the amount of landfill gas and leachate generation - is known, but the specific location as 

well as landfill gas collection, oxidation, and treatment is unknown. In the fourth level the specific 

location, i.e. freshwater or marine recipient, is known but the landfill gas collection, oxidation, and 

treatment is unknown. Finally, the fifth level specifies the landfill gas collection and oxidation 

efficiencies, and the sixth level specifies the landfill gas treatment method. Thus, each level 

expresses a degree of knowledge about the system, and the next level involves an additional known 

parameter. The order of the levels of specification is not universal; for example, in other situations 

the geographical location may be known before the type of landfill. Also, the landfill gas treatment 

method could be known as one of the first parameters, but it is here placed at the sixth level of 

specification, because the choice of gas treatment partly depends on the amount of gas being 

generated and collected, i.e. on the fifth specification level in figure 3.    

The hierarchy diagram in figure 3 shows the groupings per specification level, corresponding to 

step B1 in figure 1. Corresponding to step B2 in figure 1, LCI data was collected and landfill 

datasets were generated representing these groups. All 52 datasets belonged in the top group, 36 

datasets belonged in the bioreactor and conventional reactor groups, and 16, 6, 12, and 18 datasets 

belonged in the landfill gas and leachate generation groups. For the bottom three levels, the datasets 

were less aggregated and sometimes equal to a single dataset, due to the high level of specificity of 

the study context. 
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Figure 3 Left-hand side: six levels of context specificity with increasing specification from top to bottom (step A in 

figure 1). Levels 2 to 6 specify an additional parameter compared to the previous level. Hierarchy diagram: Grouping 

and LCI modeling of likely landfill configurations and geographical locations per specification level (step B in figure 

1). The terms “high,” “medium,” and “low” refer to the parameter alternatives in figure 2. LCI = life cycle inventory; 

LFG = landfill gas; gen. = generation. 

Finally, potential impacts were calculated and sets of results were gathered according to the groups 

in figure 3, corresponding to step C in figure 1. Min-max intervals were calculated including mean 

values. Applying the min-max interval reflects a lack of information on the probability of the 

applicability of each landfill configuration within each group, i.e. a lack of information about the 

more likely waste treatment scenario. Some mean values of the min-max intervals will be weighted 

towards a certain preference, due to a larger frequency of some technology configurations and 

climatic conditions in a group. Such mean values are asymmetric and the corresponding min-max 

intervals are non-uniform.   

Results and discussion  

Potential impacts relative to specificity of study context  

The first objective of this article to determine the importance of representative LCI modeling 

relative to the study context, is addressed in this section. In figure 4 and 5, the LCA results are 

plotted as a function of increasing specificity of the technological and geographical study context, 

and the six specification levels in figure 3 are shown on the x-axis. Characterized potential impacts 

are shown for two example categories: Global warming (GW) and human toxicity, carcinogenic 
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(HTc). Results for all 14 impact categories are given in Supporting Information, Excel file. GW and 

HTc impacts were chosen because they are directly affected by the two main impact contributors 

from landfilling: landfill gas and leachate, as identified in previous studies (e.g., Manfredi et al. 

2010). Landfilling contributes to other environmental impacts due to the related fuel and material 

use and the substances emitted with leachate (dissolved and suspended substances) and landfill gas 

(volatile degradation products), directly and after treatment. To ease interpretation of figure 4, some 

results with similar key parameters are circled and labeled. The variations in the LCIs of the 52 

landfill datasets – concerning generation, treatment and emission of landfill gas and leachate – led 

to variations in results (figure 4). Landfills that flared the collected landfill gas did not receive 

savings from avoided marginal energy and therefore exhibit positive net GW impacts (figure 4). 

The background data on marginal energy were important for the landfill technologies with landfill 

gas collection and utilization, as the avoided marginal energy production led to relatively large 

savings for some impact categories, namely GW (avoided fossil CO2 emissions), photochemical 

oxidant formation (avoided NOx emissions) and fossil resource depletion (avoided coal use). Impact 

categories mainly influenced by leachate emissions were human toxicity, ecotoxicity and 

eutrophication. Figure 4 clearly shows that the specification of the leachate recipient influences the 

HTc results. This is due to the larger HTc impact factors for freshwater releases compared to marine 

water releases (Rosenbaum et al. 2008). Figure 5 provides an example of the specification of a 

bioreactor landfill starting from landfill category level. Comparing the GW and HTc results in 

figure 5 indicates that the importance of LCI data is both a function of the study context and impact 

categories of interest.     

The general trend in figure 4 is a shift from min-max intervals to point values from left to right, 

with the number of representative landfill datasets decreasing with increasing specificity of the 

study context. For GW, the global maximum and minimum value - equal to the maximum and 

minimum of the largest interval – had an absolute difference of 750 kg CO2-eq. (-457 to 293 kg 

CO2-eq.), and for HTc the global maximum value was 45 times larger than the global minimum 

value (3.79-9 to 1.70-7 CTUh). A previous study found a GW range from -209 to 162 kg CO2-eq. 

per ton landfilled waste (Manfredi et al. 2009), which is within the maximum interval of this case 

study. Environmental savings in GW are due to the stored biogenic carbon in the landfill and 

marginal energy substitution from landfill gas utilization. If the marginal electricity and heat mixes 

had been renewable sources, the GW savings for the landfill technologies utilizing landfill gas 

would have been smaller. The general trend of decreasing result ranges from left to right in figure 4 
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was less evident for HTc. The HTc ranges at the right-hand side of figure 4 are due to the 

aggregation of semi-high and high leachate generation in the LCI model; an example of the 

influence of a foreground modeling choice. The HTc impacts should be seen in light of the chosen 

temporal coverage of 100 years and would have been larger for longer time scales; yet, the increase 

in impacts would not change the relative results of the landfill datasets, due to the fixed waste input 

in the case study. For an overview, table 1 shows the normalized global minimum, maximum and 

mean values for all 14 impact categories.  

In figure 4 and 5, some min-max intervals were non-uniform with unsymmetrical means. For 

these, it would be invalid to assume symmetry around the mean value as the distribution of 

representative technologies is skewed due to a larger frequency of some technology configurations 

and climatic conditions. An example of such a non-uniform interval is the largest min-max interval 

for HTc, where different frequencies of landfills with varying leachate management caused the 

asymmetry. Hence, to obtain representative result intervals and mean values, information should be 

collected about – not only the range of parameter values – but also the frequency of the parameter 

values expected within the boundaries of the scope of study. This finding is in line with the concept 

of weighted averages, previously investigated in Henriksson et al. (2013) and Levis and Barlaz 

(2011).  

Information of decisive parameters are needed to prioritize further data collection as part of the 

iterative nature of LCA. The example in figure 5 illustrates decisive parameters of landfill 

modeling, being those specifications reducing the result range of GW and HTc. For GW, decisive 

parameters were mainly the landfill type and landfill gas management. For HTc, decisive 

parameters were mainly the leachate generation and leachate recipient. Knowledge about the 

variability of these parameters is critical for the reliability of the study. The example in figure 5 also 

indicates that even for a relatively specific study context – where the landfill type is known 

(bioreactor landfill) - variation of rainwater infiltration, waste degradation rates, and landfill gas 

treatment is still relevant. Supporting Information section 3 contains a summary of decisive 

parameters for all 14 impact categories.   

The second objective of this article, to determine whether and how the goal and scope of the study 

should be refined based on the obtained data, is addressed in the following two sections. Two 

principal situations of unrepresentative data choices are discussed, namely situation A) where a site-

specific dataset is used to represent a general engineered landfill with unknown location and 
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technology configuration, and situation B) where a horizontally aggregated dataset is used to 

represent a specific conventional reactor landfill with known location and technology configuration, 

yet still with local variabilities.  

   

Figure 4    Global warming potential (given in kg CO2-equivalents) and human toxicity, carcinogenic, potential (given 

in comparative toxic units for humans) as a function of the specificity of the study context. The labels on the x-axis 

equal the six specification levels in figure 3. Results expressing similar key parameters are circled and the parameter is 

written. “High,” “medium,” and “low” refer to the parameter alternatives in figure 2. BRL = bioreactor landfill; CRL = 

conventional reactor landfill; med. = medium; FR = freshwater; LFG = landfill gas; MA = marine water. 

 
Table 1 Global minimum, maximum and mean LCA result values for all 14 impact categories. The values are norma-

lized to units of Person Equivalents. Applied normalization references are shown in Supporting Information section 1.1. 

* GW OD HTc HTnc PM IR POF TA TE FE ME ET RDfos RD 
Min -5.6-2 7.1-4 7.0-5 -8.6-4 -3.3-3 -9.0-5 -2.3-3 -4.2-4 1.7-3 -5.3-7 1.9-3 -5.5-3 -2.4-2 -1.7-5 
Max 3.6-2 3.1-3 3.1-3 10-3 1.1-3 9.0-6 7.5-5 1.6-3 8.9-3 1.6-6 10-3 3.1-1 3.8-3 2.7-5 
Mean -4.5-3 2.0-3 7.8-4 2.6-3 -5.1-4 -2.5-5 5.5-3 6.7-4 4.2-3 8.9-7 4.7-3 9.5-2 -5.8-3 2.1-5 

*GW (climate change,), OD (stratospheric ozone depletion), HTc (human toxicity, carcinogenic), HTnc (human 
toxicity, non-carcinogenic), PM (particulate matter), IR (ionizing radiation), POF (photochemical ozone formation), TA 
(terrestrial acidification), TE (terrestrial eutrophication), FE (freshwater eutrophication), ME (marine eutrophication), 
ET (freshwater ecotoxicity), RDfos (fossil resources depletion), RD (metals/minerals depletion)  
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Figure 5 Global warming potential (given in kg CO2-equivalents) and human toxicity, carcinogenic, potential (given 

in comparative toxic units for humans) as a function of the specificity of the study context. The diagram is an example 

of specification of a certain bioreactor landfill, with the actual specifications explained on the x-axis. 

Situation A: Site-specific dataset to represent non-specific study context  

Situation A is illustrated in figure 6, where A1 expresses the obtained LCA results based on the 

available data, and A2 illustrates the hypothetical LCA results if appropriate data, representing the 

target processes, had been used. The result interval corresponding to A2 (-457 to 293 kg CO2-eq.) is 

3.8 times larger than the result interval corresponding to A1 (-457 to -261 kg CO2-eq.). The interval 

of A1 lies within the interval of A2, but only covers the lower fraction of the interval of A2. 

Therefore, the interval of A1 underestimates the variation and potential impacts from landfilling. 

Figure 6 clearly shows that selecting specific data (A1) involves a deselection of alternative 

technology configurations and geographic locations (range of possibilities in A2). Deselections may 

stem from deliberate LCI modeling choices or be predefined in datasets or models (Gentil et al. 

2010). An issue arises especially when deselections are not in line with the goal and scope 

definition, and are unknown or, even worse, ignored by the LCA practitioner.  
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It is recommended to either refine the goal and scope of the study towards being more site-

specific, or to estimate an additional spread around A1 to better fit the target data of A2. If 

quantitative information about the spread of the parameter values are unavailable, the spread may 

be estimated based on expert judgement, e.g. possibility theory as fuzzy sets (Clavreul et al. 2013). 

One should not by default assume that the available data equal the mean or median of the 

distribution, since – with the mean of A1 as an example – such an assumption would give an 

interval covering an area below the minimum value of the target interval A2, causing additional 

unrepresentativeness. Alternatives to expert judgement include using default uncertainty factors to 

estimate additional uncertainties, based on an assessment of representativeness and other data 

quality aspects (Ciroth et al. 2013). However, authors have criticized the conversion of data quality 

to uncertainty factors for being inaccurate in their representation of the processes in question (Lloyd 

and Ries 2007).  

Situation B: Aggregated dataset to represent specific study context  

Situation B is illustrated in figure 6, where B1 expresses the obtained LCA results based on the 

available data, and B2 illustrates the hypothetical LCA results if appropriate data, representing the 

target processes, had been used. The result interval of B1 is wider than that of B2, and is accurate in 

the sense that the target interval and mean value of B2 lie within the range of possibilities for B1. 

However, the attention should be paid to the mean value of B1, because often only the mean or 

median of aggregated datasets are available to LCA practitioners. The mean value of B1 

overestimates the target mean of B2 because B1 includes lower performing landfill technologies 

than those included in the interval of B2. Thus, the entire interval of B1 must be included to be able 

to cover B2. Including the entire interval of B1, however, leads to the need of refining the goal and 

scope definition according to the available data. The refined goal and scope imply a broader 

technological and geographical coverage of the study, and lower level of knowledge about the 

system. Refining the scope is in line with the standards (ISO 2006), but the lessening of scope 

specificity is probably only rarely done in actual LCA studies often based on single technology 

choices.  

Situation B might occur when the LCA practitioner experiences data gaps and ends up using 

aggregated data as a proxy (Björklund 2002). In this case study, the mean value of B1 was the result 

of aggregation across different landfill technologies and geographical locations, whereas the 

variation of B2 was due to uncertainty about one discrete data choice, namely landfill gas treatment. 
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The importance of information about the spread around horizontal averages have been studied for 

more than 20 years (Smet and Stalmans 1996; Meron et al. 2016). However, there is generally no 

information about the spread around aggregated data from databases, e.g. ecoinvent (Ecoinvent 

2015) and European Life Cycle Database (ELCD 2017), possibly because this information is held 

by the original data provider or the dataset stem from only one source. Thus, the LCA practitioner 

must quantify the potential spread, e.g. based on expert judgement and data quality assessment, as 

mentioned for situation A. Another approach would be to go and collect primary data, but this 

would require additional resources in terms of time and money.  

 

Figure 6 Global warming potential (given in kg CO2-equivalents) as a function of the specificity of the study context. 

Two situations (A and B) of unrepresentative data choices in LCA are sketched. Top diagram: A1 expresses the interval 

and mean value of the obtained data (represent an efficient conventional reactor landfill), while A2 expresses the target 

interval and mean value (an average engineered landfill). Bottom diagram: B1 expresses the interval and mean value of 

the obtained data (represent an average engineered landfill), while B2 expresses the target interval and mean value (an 

efficient conventional reactor landfill). LCA = life cycle assessment; LFG = landfill gas. 

Conclusion  
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The importance of inherent technology variations was evaluated through modeling these as a 

function of the specificity of the study context, in terms of technology configurations and climatic 

conditions. A landfill case study was conducted by building 52 discrete landfill datasets, grouping 

these to represent different technology options and geographical sites, calculating potential impacts, 

and generating min-max intervals representing the groupings. The results showed decreasing min-

max intervals with increasing specificity of the study context, highlighting that compatibility 

between the study context and the LCI model is critical. Thus, this study quantitatively 

demonstrated the influence of representative modeling on LCA results, emphasizing the need for 

iterative modeling and goal and scope refining. The results demonstrated the relevance of process 

variations at a relatively high detail level, e.g. the influence of precipitation and cover permeability 

on landfill gas generation and collection. Therefore, it is concluded that detailed understanding of 

the waste treatment process is necessary to ensure that the data choices are consistent with the 

boundaries of the defined goal and scope of the study. The quantification of representative 

modeling, provided in this study, is relevant for waste treatment technologies and other technical 

domains for which local conditions and technology configurations have a large influence on the 

environmental performance. 
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