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                                                                                Preface 

This thesis is the result of 3½ years research, as part of the Danish program to obtain a Ph.D. 

degree. The work has been carried out at the DTU Chemistry, Technical University of Denmark, 

under the supervision of Professor Mads Hartvig Clausen. As part of the Ph.D. program three 

months of external stay was carried out at UC Berkeley, California, under the supervision of 

Professor Dean Toste.  

 

Chapter one is a brief introduction to the background of the project, including algae cell wall, 

carrageenans and their applications. Chapter two describes the synthesis strategy developed to 

afford ten targeted oligosaccharide carrageenans. Chapter three presents and discusses the results 

obtained towards the synthesis of these targets. In chapter four, work on catalysis that was carried 

out in Professor Toste’s group at UC Berkeley is described. Chapter 5 gives a general conclusion 

and Chapter 6 contains experimental protocols and compounds data. A manuscript describing the 

work presented in chapter three will be written and submitted. 
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                                                                              Abstract 

The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of 

the main targets for biotechnological research. Many of their components already have important 

industrial applications in various fields, such as in the food and biomedical industry and in biofuel 

production. Therefore, it is necessary to optimize the plant production and its utilization. This will 

require a better understanding of the cell wall structure and function at the molecular level. Most 

of the studies achieved on plant cell wall structures and their biosynthesis have been focusing on 

land plants. Only very few reports are dealing with algae. However, land plants have algae 

ancestors and getting a better knowledge of algae cell walls could help understand the evolution 

of plant cell walls. Furthermore, some components specific to algae cell walls are very valuable in 

the industry. Indeed, the polysaccharides present in the plant cell wall vary depending on the plant 

species and change during the developmental stage of the plant. This makes it very challenging to 

address the function of individual components in living cells as well as study the physical 

properties of each particular molecule. Alternatively, structurally defined oligosaccharides can be 

used as models for the more complex polysaccharide components. This would enable to investiga te 

a range of properties such as cell wall biosynthesis and protein-carbohydrate interactions, but also 

the physical properties of the pure oligosaccharides in order to optimize their applications in the 

industry. Chemical or enzymatic degradation of plant cell wall can provide some oligosacchar ides 

but extensive purification is required and only a limited range of structures has so far been isolated. 

Chemical synthesis, on the other hand, is capable of producing structurally diverse 

oligosaccharides of excellent purity and in higher quantities.  

This thesis presents the development of a synthetic strategy to produce ten different types of 

carrageenan oligosaccharides from one single precursor. These molecules are highly sulfated 

galactans, which are found in the cell wall of red algae and serve as gelling, stabilizing and viscosity-

enhancing agents in many sectors ranging from the food industry to pharmaceuticals. A modular 

approach was chosen to enable the synthesis of carrageenan oligosaccharides with different 

lengths. Different protecting group patterns were tested to synthesize the oligosacchar ide 

backbone. A protected tetrasaccharide precursor was synthesized and can be used to synthesize all 

ten carrageenan tetrasaccharides. Optimization of the deprotection steps as well as sulfation was 

done on a similar disaccharide and one disaccharide carrageenan was synthesized in the end. These 

steps were further translated successfully to the desired tetrasaccharide. 

A work dealing with the development of an intramolecular catalyzed fluoroarylation is presented 

at the end of this thesis. A range of different allyl substituted aryl boronic acids substrates were 

synthesized in order to investigate the scope of a silver catalyzed reaction and some preliminary 

results of the catalytic reaction are presented. 
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                                                                               Resumé 

Plantecellevæggen udgør næsten 50% af plantens samlede biomasse og er derfor et vigtigt emne 

inden for bioteknologisk forskning. Mange af komponenterne har allerede vigtige industrie lle 

anvendelser i diverse områder, såsom fødevare- og medicinal industrien såvel som i produktion af 

biobrændstof. Derfor er det vigtigt at optimere planteproduktionen og dets anvendelse. Dette 

kræver en bedre forståelse af plantecellevæggens struktur og funktion på et molekylært plan. De 

fleste studier omhandlende struktur og biosyntese af plantecellevægge har fokuseret på landplanter 

og kun få omhandler alger. Dog har landplanter algestamfædre og en bedre forståelse af 

algecellevægge kan hjælpe forståelsen af evolutionen af plantecellevægge. Ydermere er nogle 

specifikke komponenter af algecellevægge værdiful i industrien. Imidlertid varierer 

polysakkarider i plantecellevæggen afhængig af plantespecie og ændrer sig ydermere gennem 

plantens udviklingsstadie. Dette gør adresseringen af de enkelte komponenter i levende celler til 

en stor udfordring, hvilket studiet af de fysiske egenskaber af hvert enkelt molekyle ligeledes er. 

Alternativt kan strukturelt veldefinerede oligosakkarider fremstillet ved kemisk syntese bruges 

som model for de mere komplekse polysakkarider. Dette muliggør studier af en række egenskaber 

såsom biosyntese af cellevægge og protein-kulhydrat interaktioner, men også fysiske egenskaber 

af rene oligosakkarider for at optimere deres industrielle anvendelse. Kemisk eller enzymatisk 

nedbrydning af plantecellevægge kan give visse oligosakkarider men dette kræver omfattende 

oprensning og indtil videre er der kun isoleret et begrænset antal strukturer. Derimod muliggøre 

kemisk syntese produktionen af strukturel forskellige oligosakkarider af excellent renhed og i 

større mængder.  

Denne afhandling præsenterer udviklingen af en syntesestrategi til at producere ti forskellige typer 

af carrageenan oligosakkarider fra et enkelt udgangspunkt i form af et beskyttet oligosakkar id . 

Carrageenaner er galaktaner med et stort antal sulfatgrupper og findes i plantecellevæggen hos 

røde alger og tjener som stivelse, stabilisator og viskositetsfremmende forbindelser i mange 

sektorer, som spænder fra fødevareindustrien til medicinalbranchen. En modulær fremgangsmåde 

var valgt til syntesen af carrageenan oligosakkarider af forskellige længder. Forskellige 

beskyttelsesgruppemønstre blev testet i syntesen af oligogalaktanerne. Et beskyttet tetrasakkarid 

blev syntetiseret og kan bruges i syntesen af alle ti carrageenan tetrasakkarider. Optimeringen af 

afbeskyttelsestrinnene såvel som indførsel at sulfatgrupperne blev udført på et lignende disakkarid, 

og et carrageenan disakkarid blev til sidst syntetiseret. Disse trin blev succesfuldt overført til det 

ønskede tetrasaccharid.  

Et studium omhandlende udviklingen af en intramolekylær katalyseret fluoroarylering er 

præsenteret i sidste del af afhandlingen. En række forskellige allylsubstituerede substrater af aryl 

borsyrer blev syntetiseret for at studere potentialet af en sølv-katalyseret reaktion og nogle 

indledende resultater af den katalytiske reaktion er præsenteret.  
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Chapter 1 

                                                                    Introduction 

1.1 Structure and diversity of the plant cell walls  

 

Plant cells belong to the family of eukaryotic cells, which mainly differ from cells of other 

eukaryotic organisms by the presence of a wall surrounding the cells. Plant cell walls are highly 

sophisticated fiber composite structures, dynamic and evolved to fulfill a wide range of biologica l 

roles necessary to keep the plant alive. Hence, the wall is the outer coat that provides a strong 

protective and supportive casting of the plant cell and at the same time define the size and shape 

of the cells. Not only do cell walls have a structural role, but they also play an important role in 

the wall expansion and defense response against pathogens.1 However, cell walls display 

considerable variability in their fine structures. These differ depending on the species, but also 

within the plants, between the cell types and between cell wall microdomains.2 Despite their 

diversity, the plant cell walls share some similarities in their rough structure. Nowadays, as a 

simplified model, they are generally divided into two categories: the primary and the secondary 

cell wall. While the primary cell wall is a thin and flexible structure that allows for the growth of 

the cell, the secondary cell wall, much thicker and stronger, is deposited on some specific cells 

when they have ceased to grow.  

To understand how cell walls can perform their various functions, it is important to get an idea on 

how the different components are organized into a three dimensional functional matrix. Therefore 

several models have been proposed over the last years to explain the organization of wall 

components. Many of those models focus on understanding the organization of components in the 

primary cell walls of land plants.3–5 A schematic representation of the primary cell wall of an 

angiosperm cell is presented in Figure 1-1. Angiosperms are commonly referred to as flowering 

plants which are part of the land plants. In the extracellular matrix (ECM), cellulose microfibr ils 

are cross-linked by hemicellulose and this assembly is embedded non-covalently in a matrix of 

pectic polysaccharides. The interaction between hemicellulosic polysaccharides and cellulose 

microfibrils via hydrogen bonding are known as an important feature of the cell wall architecture.6  

However less is known about the interaction of pectic polysaccharides with the other components 

of the wall.7,8,9  In the secondary walls, the embedding material is the phenolic polymer lignin.5  

Nevertheless, one should keep in mind that this division apply to two extreme states. Indeed, every 

individual cell has its own distinct and specialized cell wall as Keegstra points out in his review of 

plant cell walls.7  
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 Figure 1-1. Schematic model of the primary cell wall of an angiosperms cell.10  

 

1.1.1 Cell walls of algae and evolution of plant cell walls 

Most models of plant cell walls fail to describe the dynamic nature of the wall, which is one of its 

most important features. Furthermore, cell walls from algae and primitive plants have only been 

studied recently: most of the previous works on structure and biosynthesis of cell walls have 

focused on angiosperms and crop plants.7 One model of brown algae cell walls (from the order 

Fucales) has been proposed by Deniaud-Bouët et al.11 (see Figure 1-2 a). In this model, cellulose 

microfibrils are sparse and with a ribbon shape. Alginates and fucose-containing sulfated 

polysaccharides (FCSPs) including sulfated fucans form the major part of the cell wall polymers. 

The structures of these polysaccharides is shown in Figure 1-2b. Cellulose is a neutral linear 

polysaccharide made of β-(1→4)-linked glucose (Glcp) with no branching.6 Alginates consist of 

a linear block co-polymer of two uronic acid epimers, β-(1→4)-D-mannuronate (M) and α-(1→4)-

L-guluronate (G).12,13 G block-rich alginates are known to increase gel strength by forming “egg-

box” junctions with calcium, bridging two antiparallel chains.14 Most of the FCSPs found in brown 

algae are fucoidans which are heteropolymers of sulfated fucans. They contain long stretches of 

disaccharide repeating unit (1→4)-α-L-fucose-2,3-disulfate-(1→3)-α-L-fucose-2-sulfate.15 

 

The FCSPs act as cross-linkers interlocking the cellulosic scaffold. However, the nature of the 

interactions between these highly charged polysaccharides and the neutral cellulosic chain remain 

elusive. It is hypothesized that hemicellulosic oligosaccharides might act as intermediates between 

the cellulose microfibrils and the FCSPs. However these hemicellulosic oligosaccharides have 

neither been isolated nor characterized yet. Some phenolic components are also found in this 

primary cell wall and likely to be associated with alginates and proteins.16 Finally, a large amount 

of iodide is present but very little is known about its interaction and role. 11 
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a)  

b)  

 

 Figure 1-2. a) Cell wall model of brown algae from the order Fucales.11 b) Repeating units of the major 
polysaccharides found in the cell wall of Fucales brown algae.  

Land plants, red algae and green algae, all belong to the Archaeplastida phylum (see Figure 1-3b). 

This phylum evolved after an eukaryotic ancestor swallowed a photosynthetic cyanobacterium in 

a primary endosymbiotic event about 1500 million years ago.17 Contrary, brown algae belong to 

a phylum (Stramenophiles), which arose only about a 1000 million years ago after a secondary 

endosymbiotic event, by which an unicellular red alga was captured by a heterotrophic protest as 

shown in Figure 1-3a.18 These brown algae are therefore part of another eukaryotic supergroup 

called Chromalveolata. The proposed phylogenetic tree of eukaryotic organisms (Figure 1-3b) can 

explain why brown algae cell walls share polysaccharides with both plant (cellulose) and animal 

(sulfated fucans) ECM’s, but also with some bacteria (alginates).13 
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Figure 1-3. a) The origin of Stramenophiles phylum.18 b) Representation of the Eukaryotic phylogenetic 

tree.19  

Stramenophiles 
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Getting a better knowledge of different algal cell walls belonging to the Archaeplastida group will 

help us understand how the plant cell walls have evolved, as land plants have algal ancestors.2,7,20 

Land plants originate from some freshwater green algae, which emerged from their aquatic habitat 

and belonged to the Charophyceae taxa.2,21,22 A scarce amount of papers have focused on algae 

and the majority of algal genomes that have been sequenced are unicellular.23 This affords limited 

information concerning cell wall biosynthesis. Recently, the genome sequencing of a multicellular 

green alga Volvox carteri,24 as well as the one of two members of the charophycean green algae 

(CGA)25 provided additional tools to elucidate cell wall evolution in green plants. However, a big 

gap in the knowledge regarding eukaryotic algal phylogenies, algal cell wall compositions, and 

the machinery employed in algal cell wall biosynthesis still remains to be filled.23 The cell wall 

components of both plants and algae are topic of intense research and several reviews give an 

overview of the occurrence of specific wall components in major plant and algal taxa.2,20,26 The 

major polymers found in the cell wall of different plant and algal taxa are  summarized in Table 

1-1.20 Even though the cell wall’s composition of red and brown algae is notably different from 

the one of CGA and land plants, the complex relationships between land plants and algae explain 

some shared cell wall components such as cellulose. One can notice the presence of many different 

sulfated polysaccharides in the Rhodophyta and Phaeophyceae taxa which are not present in most 

of the Choroplastida taxa. On the other hand, pectin is not part of these red and brown algae. Agar, 

carrageenan and porphyran are the most important sulfated polysaccharides found in the red algae 

with homofucans in brown algae.  

                Taxa 

 

 

Polysaccharide 

Chloroplastida Rodophyta 

 

(Red Algae) 

Phaeophyceae 

 

(Brown algae) 

Embryophyceae 

(Land Plant) 

Charophyceae 

(Green algae) 

Chlorophyta 

(Green Algae) 

Crystalline 

polysaccharides 
Cellulose Cellulose Cellulose 

Cellulose 

(1→4)-β-D-mannan 

(1→4)-β-D-xylan 

(1→3)-β-D-xylan 

Cellulose 

Hemicellulose 

Xyloglucan 

Mannans 

Xylans 

MLGa 

(1→3)-β-glucan 

Xyloglucan 

Mannans 

Xylans 

 

(1→3)-β-glucan 

Xyloglucan 

Mannans 

Glucuronan 

 

(1→3)-β-glucan 

Glucomannan  

 

Sulfated MLGa 

 

(1→3), (1→4)- β-D-

xylan 

Sulfated 

xylofucoglucan 

 

Sulfated 

xylofuco- 

Glucoronan 

 

(1→3)-β-glucan 

Matrix 

carboxylic 

polysaccharides 

Pectins Pectins Ulvans - Alginates 

Matrix  

sulfated 

polysaccharides 

  Ulvans 

Agars 

Carrageenans 

Porphyran 

Homofucans 

a MLG: β-(1→3),(1→4)-D-glucan 6-sulfate 

Table 1-1: Major cell wall polymers present in different plant and algal taxa.  23 
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As this thesis focus on carrageenans a more detailed description of the polysaccharidic components 

found in the cell wall of the Rhodophyta taxa will be given in the following section. 

 

1.1.2 Polysaccharidic components of the primary cell wall of red algae 

(Rhodophyta) 

The primary cell wall of marine red macrophytes consists mostly of water-soluble polysacchar ides 

mainly composed of sulfated galactans such as agars, carrageenans and porphyrans which are  

linear sulfated α-(1→3),β-(1→4)-galactans. They differ in that agars and porphyrans, contain both 

D- and L-galactose units whereas carrageenans only contain D-galactose.27 A more detailed 

description of the different types of carrageenans will follow in section Carrageenans1.1.2.1. 

 

Only a small fraction of the constituents (5% to 15% dry weight) is made of fibrillary crystalline 

polysaccharides. These are mainly composed of cellulose, β-(1→4)-D-mannan, β-(1→4)-D-xylan 

and β-(1→3)-D-xylan, where amounts and localization depend on the species and the reproductive 

stage and life cycle of the plants.28 The neutral crystalline fibers and the highly charged sulfated 

polysaccharides of the matrix are expected to be interconnected via other polysacchar ides 

classified as hemicellulose as for higher plants. However, very little is known about the nature of 

these polysaccharides in the cell wall of red algae. Turvey et al.29 characterized alkali-solub le 

β- (1→3),(1→4)-D-xylans from the cell wall of several red seaweeds. More recently, in 2000, 

Lahaye et al.28 discovered two new kinds of hemicellulose in the cell wall of the red alga 

Kappaphycus Alvarezii, identified as β-(1→4)-D-glucomannan and mixed-linkage β-

(1→3),(1→4)-D-glucan 6-sulfate (referred as sulfated MLG in Table 1-1). These hemicellulos ic 

polysaccharides represent a minor part of the polysaccharides contained in the cell wall (4% of the 

algal dry weight) and their role in the construction and function of the cell wall remain to be 

established. In order to fully understand the dynamic nature of the walls and the function of each 

component, more molecular level information is needed. 

 

1.1.2.1 Carrageenans 

As mentioned earlier, carrageenans are a family of highly sulfated galactans found in the cell walls 

of certain red seaweeds of the Rhodophyceae class. This family of polysaccharides possesses the 

ability to form thermo-reversible gels or viscous solutions when added to salt solutions. Therefo re, 

carrageenan polysaccharides serve as gelling, stabilizing and viscosity-enhancing agents in many 

sectors ranging from the food industry to pharmaceuticals.30-31 They represent one of the major 

texturizing ingredients in the food industry. Their use in pharmaceutical products continues to be 

investigated, and recent applications in drug delivery systems are summarized in a review by S. 

Liang Li et al.32 As one example owing to their physicochemical properties, carrageenans can be 

used as a matrix for preparation of extended-release tablets. Their application in polymeric 

microspheres for deliver of drugs in a rate-controlled and sometimes targeted manner is also being 

explored.33 These are only two examples among many other applications, which have a therapeutic 
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focus and have been developed or are presently under investigations.32 However, the use of 

carrageenan polysaccharides in the non-food field is limited by their high viscosity and therefore, 

it is desirable to obtain carrageenan oligosaccharides. Physical properties of carrageenans and 

especially their gelling and viscous enhancer abilities depend on the type of carrageenans. 

Carrageenan are divided into ten different types which differ mainly by their degree of sulfat ion 

and the presence or absence of 3,6-anhydrogalactose residues (Figure 1-5). Natural carrageenan is 

a mixture of non-homologous polysaccharides. This makes it challenging to produce homogenous 

oligosaccharides by chemical or enzymatic degradation of the algae cell wall. Although extensive 

studies have been conducted, only a limited range of structures is available, and the 

oligosaccharides obtained require extensive purification. On the other hand, as chemical synthes is 

can produce structurally defined oligosaccharides of excellent purity, we wished to produce well-

defined carrageenan oligosaccharide structures this way. The aim of this project was to find an 

elegant way of synthesizing all ten types of known carrageenans. 

 

1.1.2.1.1 Carrageenan structures and properties 

1.1.2.1.1.1 Structure and diversity of carrageenans 

This diverse family of polysaccharides shares a common galactan backbone of alternating 3-

linked-β-D-galactopyranose (G) and 4-linked-α-D-galactopyranose (D). The disaccharide 

repetition moieties are called carrabiose units as shown in Figure 1-4. 

 
Figure 1-4. Carrabioses unit. 

The carrabioses are classified according to the number and position of sulfate ester groups (S), as 

well as the occurrence of 3,6-anhydro-D-galactose (DA) obtained after the cyclization of the D 

units (see Figure 1-4). The nomenclature presented and used throughout this thesis was established 

by Knutsen, Myslabodski, Larsen, and Usov (1994) and integrated into the IUPAC rules.34 10 

types of idealized carrabiose units are represented in Figure 1-5. 

It has been shown that hot alkaline treatment of the D6S carrageenans (namely carrageenan having 

a 4-linked-α-D-galactopyranose residue sulfated at the 6 position) leads to cyclization to form the 

3,6- anhydro rings (see Figure 1-4).35,36 This chemical conversion can be achieved by either a solid 

state process using potassium hydroxide or in solution using calcium or sodium hydroxide below 

the melting temperature of the carrageenan.36 In the same manner, this transformation is catalyzed 

by enzymes and therefore the 5 carrabioses D6S are biosynthetic precursors of the DA carrabioses. 

The anhydro ring formation probably results from a nucleophilic attack of the hydroxyl group on 



8 
 

the 3-position on C-6 sulfate ester.37 Enzymes such as ‘‘sulfohydrolases’’38,39 or galactose-6-

sulfurylases40 which catalyzed a similar reaction have been isolated from algal cells.  

Different types of carrageenans are obtained from different species of Rhodophyta.41 Furthermore, 

carrageenan structures also vary with the extraction procedures. A second level of carrageenan 

diversity comes from the co-occurrence of ideal carrabiose units (shown in Figure 1-5) in purified 

hybrid or copolymer chains. Therefore, carrageenans are usually heterogeneous structures 

containing several types of carrabiose units where proportion and distribution reflect the 

carrageenan biosynthetic pathway.42,43  Hence, the term ‘disaccharide repeating unit’ refers to 

idealized structures. 

 
Figure 1-5. Ten types of idealized repeating units of carrageenans.44 

 

1.1.2.1.1.2 Primary structure determination of carrageenan 

Finding adequate analytical techniques to determine the amounts, the polydispersity, and the purity 

of carrageenans in food products and raw materials has been a challenge for many years and still 

remains a difficult task.41 However, the development of Nuclear Magnetic Resonance 
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spectroscopy (NMR) helped to determine the primary structure of carrageenans. This 

determination includes mainly three different parts: a composition analysis, a linkage analysis and 

a sequence analysis. The whole set of analyses confirms the alternating structure of the backbone 

and elucidate the distribution of different repeating units along the polymeric chain.27 NMR 

spectroscopy (both 1H- and 13C-NMR) is especially useful in the linkage analysis, while Infra Red 

spectroscopy (IR) is used to localize the sulfate group and anhydro group along the chain.35 To 

complete the primary structural analysis an additional sulfate content determination can be 

performed. Acidic methanolysis to hydrolyze the sulfate groups followed by precipitation of 

sulfate as barium sulfate and quantification is often the method chosen to fulfill this task. 

 

1.1.2.1.1.3 Physical properties of carrageenan 

Physical properties of carrageenan such as gel strength, gelling and gel melting temperature are 

very important characteristics in regards to their use in industry. Therefore, parameters that have 

an impact on these properties have to be determined to optimize the process conditions for 

industrial production. It has been observed that structural parameters such as the degree of sulfat ion 

and the presence of 3,6-anhydro-α-D-galactose residues play a direct role on the gelling or viscous 

enhancing properties of carrageenan.44 

In industry, seaweeds are usually extracted with alkali at elevated temperature. This treatment is 

typically called “cooking process”. Different studies have been carried out to understand how the 

parameters of this process (such as alkali concentration, cooking temperature, cooking time) 

influence the yield and properties of extracted carrageenans. Rochmadi et al.35 studied the effect 

of the concentration of potassium hydroxide during the extraction process upon properties of 

carrageenan from Eucheuma cottonii. This seaweed is known to be a good source of κ-carrageenan 

(G4S-DA), which has proved to form strong gel and therefore is highly valued in the dairy 

industry. Table 1-2 summarized the effect of KOH concentration on yield, sulfate content, gel 

strength, intrinsic viscosity, and finally molecular weight of extracted carrageenan. 

 

Carrageenan type Yield 

% 

Sulfate 

% 

Gel strength 

g/cm2 

[η] 

dL/g 

M 

g/mol 

Sigma (ref) - 18.62 223.63 34.31 14.14x105 

E.C.* in distilled water 46.43 15.80 nd nd nd 

E.C.* 0.1N KOH 44.63 16.15 69.8 26.84 10.76x105 

E.C.* 0.3N KOH 38.22 14.24 73.89 14.61 5.48x105 

E.C.* 0.5N KOH 37.02 11.45 127.3 14.88 5.59x105 

*Carrageenan extracted from Eucheuma cottonii  

  nd= not determined 

Table 1-2. Influence of KOH concentration on the sulfate content, gel strength, intrinsic viscosity and 
molecular weight of extracted carrageenan (adapted from Rochmadi et al.35). 
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Fourier Transform Infrared spectra (FTIR spectra) of the extracted compound showed that 

extracted carrageenan had essentially κ-structure (G4S-DA) as the reference sample from Sigma 
Aldrich. The gel strength can be defined as a measure of the ability of a colloidal dispersion to 

develop and retain a gel form, based on its resistance to shear. It was measured according to the 
method used previously by Flashaw on agar species.45 Sulfate content was determined by 
precipitation of the sulfates as barium sulfate. Finally, intrinsic viscosity was determined 

experimentally. To do so, viscosity of the solvent (η0) and viscosities of dilute solutions of 
carrageenan (η) at different concentrations were measured first. The specific viscosities ηsp could 

then be calculated at each concentration (c) following 𝜼𝒔𝒑 =
𝜼−𝜼𝟎

𝜼𝟎
  Equation 1-2. With this in hand, 

𝜂𝑠𝑝

𝐶
 was plot as a function of the concentration (c). As the intrinsic viscosity [η] is defined as the 

viscosity of a infinitely dilute solution of the polymer, it could be deduced by extrapolation of this 

plot at a concentration of carrageenan equal to zero (following [𝜼] = 𝐥𝐢𝐦
𝑪→𝟎

𝜼𝒔𝒑

𝑪
  Equation 1-1). 

  

[𝜼] = 𝐥𝐢𝐦
𝑪→𝟎

𝜼𝒔𝒑

𝑪
  Equation 1-1 

𝜼𝒔𝒑 =
𝜼−𝜼𝟎

𝜼𝟎
  Equation 1-2 

According to these results, the concentration of alkali influences yield and properties of extracted 

carrageenan. Thus, increasing KOH concentration in the extraction process led to carrageenan 
containing fewer sulfate groups, having a lower intrinsic viscosity and a higher gel strength. The 

decrease of intrinsic viscosity value was in accordance with a decrease of mass which indicated 
that polymer degradation occurred during extraction at higher alkali concentration. Furthermore 
the diminution of sulfate content with the increase of alkali concentration can be related to the 

transformation of D6S residues of carrageenan to their corresponding anhydro DA one. 
Optimization of cooking process parameters to produce κ-carrageenan have also been explored by 

Ding et al.46 Their experimental results showed the same trend as the one of Rochmadi et al35, 
namely a similar opposite tendency of viscosity and gel strength when increasing the concentration 
of alkali solution during the extraction. 

 

Another parameter that has been widely investigated in industrial treatment was the choice and 

influence of the counter ion used to jellify the carrageenan solution. Indeed changing counter ions 

led to variation of carrageenan gelation.47 Large cations such as K+, Rb+ and Cs+ are increasing 

the gelling properties of the molecules whereas smaller ones such as Na+  and Li+ have the opposite 

effect.48 To address this issue, Thrimawithana et al.49 conducted another study of texture and 

rheological properties of kappa and iota carrageenan (G4S-DA and G4S-DA2S respectively) in 

the presence of K+ and Ca2+ by constructing partial ternary phase diagrams using Gibbs triangle 

shown in Figure 1-6. 

 

To summarize the results presented in these phase diagrams, κ- and ι-carrageenan show different 

behavior in their responses to KCl and CaCl2·2H2O. Indeed, while κ-carrageenan responds 

promptly to K+ ( low concentration of K+ and only 0.2% (w/v) of k-carrageenan required for a sol-

gel phase change at 22 °C (Figure 1-6 A), ι-carrageenan displays this transition at low 

concentration (only 0.4% (w/v) (Figure 1-6 D)) in the presence of low concentration of Ca2+. 

Furthermore the formulation of κ-carrageenan in the presence of relatively high counter ion 
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concentration displayed syneresis whereas this phenomenon was not observed with ι-carrageenan 

formulation. Finally, when the concentration of counter ion was further increased, both systems 

showed partial gelling, resulting from an insufficient polymer concentration to form a uniform gel 

matrix. 

 

 

 
Figure 1-6. Partial ternary phase diagrams of κ-carrageenan (A and C) and ι-carrageenan (B and D) 

aqueous dispersions in the presence of KCl or CaCl2·2H2O.49 

 
To get a better understanding of these gelling properties it is important to relate them to the 

polymer gel structure and its three-dimensional network. 

 

1.1.2.1.1.4 Elucidation of the three-dimensional structure of carrageenan 

It has been shown that the conformation of carrageenan is related to their specific primary 

structure. Indeed the 3,6-anhydro residues of DA types of carrageenans (such as κ- and ι-

carrageenan for example) both inverse the chair conformation of the pyranose rings from 4C1 to 
1C4 and increases the hydrophobicity of the galactose residues. This allows the molecules to adopt 

a helical secondary structure in solution upon specific interactions with cations, such as K+ or Ca2+, 

and it has an impact on the rheological behavior of the carrageenan by increasing the gelling 

properties of that solution. 27,50,51 Contrarily, occurrence of disaccharide units without the 3,6-



12 
 

anhydro ring, thus having a 4C1-conformation, prevents the formation of any secondary structure 

such as helices by causing kinks in the primary structure.  

Nakamura et al. suggested a cation-selective bridge formation to explain the helical conformation 

of κ-carrageenan in the presence of K+ cation, (as shown in Figure 1-7).48 To clarify some kind of 

cation specificity that have been observed previously in the sol-gel phase transition of κ-

carrageenan, they suggested that this intramolecular chelation can only be formed with cations that 

have a radius big enough (K+ or Ca2+ for example).  

 

Figure 1-7. Possible mode of intramolecular, cation-selective “bridge” in the κ-carrageenan molecule in 
aqueous solution at low temperature.48 

However, the cation-specifity is related to the type of carrageenan and the possible interact ions 

involved. As a second example, Milas et al. showed that ι-carrageenan behavior can be explained 

by an electrostatic mechanism which implies a low ion selectivity and depends on the valence of 

the counter-ion, whereas in κ-carrageenan, in addition to the electrostatic long-range mechanism, 

a well-known specific role of K+ counter-ions is shown and radius of the counter-ion seems to be 

important for possible interaction with the polysaccharide.52 

 

Furthermore, temperature plays an important role in the behavior of polymer solution and the 

system can be characterized by a melting temperature corresponding to a coil-helix transition. This 

transition can be seen as the first event of gelation. The thermoreversible gelation of carrageenans 

in aqueous solution is believed to occur through a two-step process involving first an ion-induced 

helix formation followed by an association into a network. However, intermolecular interact ions 

are necessary to form a cohesive network and this remains a highly debated and controversia l 

topic. Indeed, many models have been proposed to describe the gelation process of polymers. At 

present, the “domain model” seems to be the one of choice for carrageenans and Figure 1-8 shows 

a mechanism of gelation proposed in 1979 by Morris et al.47 according to this “domain model” 

gelation process. 
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Figure 1-8. Schematic representation of the domain model of carrageenan gelation.47 

 

It is assumed that, at high temperature in solution, carrageenans exist as random coils. By cooling 

down the solution, helix formation occurs, which leads to the apparition of small independent 

domains involving a limited number of chains via intermolecular association shown as ordered 

domains on Figure 1-8. However, when cations such as K+ are incorporated, helices of different 

domains aggregate to enable long-range cross-linking and a cohesive network is formed. This 

quaternary aggregated domain structure contributes to the mechanical and rheological properties 

of the resulting gel. Different levels of chain association may be involved in the cross-link ing 

process which can give a micro heterogeneous or “domain” character to the polymer gel 

structure.47 Therefore, the microstructure of carrageenan solutions has to be analyzed to understand 

the gelation process at the molecular level. Many attempts have been done to elucidate this 

microstructure. One of them was a study achieved by Thrimawithana et al. on ι- and κ-carrageenan 

aqueous solution using cryo-scanning electron microscopy technique (cryo-SEM).49 More 

recently, Schefer et al. used atomic force microscopy (AFM) to analyze the difference of 

microstructures between ι- and λ- carrageenan (respectively G4S-DA2S and G2S-D2S6S). 53 

Figure 1-9 summarizes the results observed from the cryo-SEM analysis achieved by 

Thrimawithana and co-workers. As for the previously shown Gibbs phase diagrams in Figure 1-6, 

κ-carrageenan (E-H) and ι-carrageenan (A-D) show differences in the SEM images. ι-carrageenan 

dispersions in the absence of added cations does not display any cross-linking (A) and the 

polysaccharides are arranged as pleats. Contrarily, in the absence of added K+, κ-carrageenan 

displays some regular order or cross-linking (E). Addition of respectively Ca2+ and K+ for ι- and 

κ-carrageenan induced the appearance of cross-linked structures, with the formation of honeycomb 

like quaternary structure for ι-carrageenan (B and C) and rectangular pores for κ-carrageenan. 

However, a too high concentration of cations disrupted the cross-linking of both ι- and κ-

carrageenan (D and H). This negative impact may be attributed to saturation of cross-linking zones, 

and aggregation of polymer groups which would disrupt the cohesive quaternary structure of the 

systems. 
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increase of [Ca2+]       increase of [K+] 

 

Figure 1-9. Cryo-SEM images of ι-carrageenan dispersions (0.4%, w/v) in the absence of added cations 

(A), and in the presence of 0.06%, w/v (B), 0.12%, w/v (C) and 0.4%, w/v (D) CaCl2·2H2O and κ-

carrageenan dispersions (0.4%, w/v) in the absence of added cations (E) and in the presence of 0.06%, 
w/v (F), 0.12%, w/v (G) and 0.4%, w/v (H) of KCl (scale bars=20 μm).  49 

 

As the nature of the ordered state of carrageenan was still highly controversial, Schefer et al. 

attempted to resolve the disorder-order conformational transition in molecular solution of both λ- 

and ι-carrageenan by AFM imaging.53 The carrageenans were chosen carefully for the study to be 

structurally diverse with one being a DA (ι) type and the other one a D6S type (λ). 
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Figure 1-10. AFM height images of a–c) iota- and e–g) lambda-Na-carrageenan solutions, (a,e) as 

obtained after purification (0mm) and with insets of the idealized disaccharide repeating units of the 

polymers, (b,f) upon addition of 100mm NaCl, and (c,g) in the presence of dsDNA as internal height 

standard. The scale bars apply to all AFM images. d,h) Height histogram plots of averaged heights of 

number of chains (nc) of iota- and lambda-Na-carrageenan, respectively, extracted from the 
corresponding AFM images (c,g). 53 

First, and as expected, no conformational change and secondary structure of λ-carrageenan 

appeared while adding salt in the solution (Figure 1-10f). Contrarily, ι-carrageenan underwent 

dramatic changes (circular object coexisting with linear polymer chains) under these conditions 

(Figure 1-10b). Double-stranded DNA was then added to the salt solution as an internal standard 

to compare its height average with the one of ι-carrageenan. As the height of ι-carrageenan is 

around half the height of the double stranded DNA (see Figure 1-10c), it strongly supports that the 

ordered state of ι-carrageenan in salt solution consists of an intramolecular single-stranded helix 

conformation and not a double-stranded one as previously claimed. However, this doesn’t exclude 

a possible intermolecular dimeric double helix formation when increasing the polymer 

concentration. 

 

Thanks to a huge improvement in analytical techniques, many discoveries about the gelation 

process of carrageenan have been done throughout the last decades. Nonetheless, a lot remains to 

be done to get a better understanding of the process at the molecular level. This would lead to a 

fundamental knowledge about control of the polymer conformation transition, which would get an 

immediate application in their use, especially in pharmaceutical fields. For example, formula t ion 

of semi-solid system with requisite physical characteristics at a given temperature could become 

possible by fine-tuning carrageenan-to-cation ratio. These systems have potential applications in 

the investigation of drug delivery systems, where variation in counter ion concentration is likely 

to modify the rate of release of entrapped particles.49  
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1.1.2.1.2 Carrageenans biosynthesis 

Experimental knowledge on carrageenan biosynthetic enzymes remains very limited and therefore, 

the biosynthethic pathway of carrageenans is only based on hypothesis. Craigie et al. characterized 

a galactose-6-sulfurylase from C. crispus in 1978 which catalyzes the 3,6-anhydrogalac tose 

formation in κ-carrageenan and simultaneously release a stoichiometric amount of sulfate.38 Two 

different galactose-2,6-sulfurylases from the same algae were discovered later by Genicot-Joncour 

et al.54 In the same manner, these two enzymes catalyze the conversion of ν-carrageenan to ι-

carrageenan. Based on the structures of carrabiose moieties that co-occur in the polysacchar ide 

chains, it is usually assumed that three classes of enzymes are involved in the biosynthesis of these 

molecules: galactosyl transferases, sulfotransferases (ST) and galactose-6-sulfurylases. The latter 

is usually referred to as “sulfohydrolases” which are a novel class of enzymes so far only found in 

the red algal lineage. A coordinated activity of at least two galactosyltransferases is suggested to 

form the alternating β-1,4 and α-1,3 linkages making up the polymer backbone of carrageenan. 

Even though these reactions have been shown to take place in the Golgi apparatus, none of these 

enzymes have been isolated.54 After polymerization of the backbone, sulfurylation is suggested to 

occur in the Golgi apparatus as well by the action of specific sulfotransferases which selective ly 

introduce sulfate groups at different positions depending on the carrageenan type. These sulfated 

carrageenan precursors are then believed to be transported to the cell wall before the 

sulfohydrolases can act to cyclize the 3,6-anhydro residue. This last step remains the only one that 

has been biochemically demonstrated to date.17  

 

While neutral β-1,4-linked galactose has been identified in carrageenan,55 no neutral α-1,3-linked 

galactose moieties except from α-1,3-linked 3,6- anhydrogalactose have been found. Indeed, all 

galactans isolated from red algae contain either an α-1,3-linked 3,6-anhydrogalactose residue or 

α-1,3-linked-galactose-6-sulfate. This suggests that the presence of a 6-sulfate group on the α-1,3-

linked galactose residues is systematic in the galactan precursor chain. Thus, an alternat ive 

scenario was suggested by Ficko-Blean  et al.17 as a hypothetical biosynthetic mechanism of seven 

carrageenans as shown in Figure 1-11. Only the two enzymes marked in red have been isolated 

and characterized as explained before. In this scenario two different pathways were proposed. 

Pathway 1 relies on the synthesis of D-galactose-6-sulfate-UDP from D-galactose-UDP. D-

Galactose-6-sulfate and D-galactose are then incorporated into the growing carrageenan precursor 

in alternating α-1,3 and β-1,4-linkages by the action of specific galactosyltransferases. In pathway 

2 a neutral galactan chain is synthesized by specific α-1,3/β-1,4 galactosyltransferases and 

simultaneously processed by a sulfuryltransferase forming the D-galactose-6-sulfate residue.1 7  

These biosynthesis pathways remain mainly hypothetical. Therefore, much more work need to be 

done in the characterization of the enzymes involved in the biosynthesis of carrageenan as well as 

in the understanding of their mechanisms of action to further relate this to the red algae cell wall 

biosynthesis. The synthesis of well-defined oligosaccharide carrageenans could provide valuable 

tools to study these enzymes and hopefully get a better understanding of the whole biosynthet ic 

process. 
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Figure 1-11. Two proposed carrageenan biosynthesis pathways by Ficko-Blean et al.17 

 

1.1.2.1.3 Challenges in carrageenan chemical synthesis 

In general, the assembly of complex and well-defined glycans can be achieved by two strategies: 

enzymatically and/or via chemical synthesis. However, the enzymatic synthesis of polysaccharides 

requires the availability of the specific enzymes, and in this case, most of the enzymes remain to be 

discovered and/or isolated. Therefore, we wished to develop a chemical synthesis strategy that would 

enable us to synthesize well-defined oligocarrageenans. This requires the synthesis of an alternating 

3-linked-β-D-galactopyranose and 4-linked-α-D-galactopyranose backbone, followed by the 

sulfation of various positions depending on the targeted carrageenan.  
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1.1.3 Previous studies of β-(1→4), α-(1→3)-D-galactan synthesis 

1.1.3.1 Synthesis of alternating β(1→4), α(1→3) galactan 

The only reported synthesis of an alternating 3-linked-β-D-galactopyranose and 4-linked-α-D-

galactopyranose reached the protected trisaccharide -D-Glup-(1→4)-α-D-Galp-(1→3)--D-

Galp- OpMp (see Scheme 1-1). The latter was further used in the blockwise synthesis of a 

hexasaccharide present in the lipopolysaccharidic cell wall of Azospirillum lipoferum.56  

-(1→4),α-(1→3) linked trisaccharide 7 was synthesized from three monosaccharide building 

blocks 1, 2 and 3. First, stereoselective glycosylation of D-galactose-derived acceptor 1 and 

D- galactose thioglycoside donor 2 in the presence of N-iodosuccinimide (NIS) and 

trifluoromethanesulfonic acid (TfOH) gave the α-1,3 linked  disaccharide 4 in 80% yield. A benzyl 

protecting group (Bn) was used as non-participating protecting group on the C-2 position of the 

thioethylgalactoside donor in order to control the 1,2-cis stereoselectivity of the reaction. An 

overview of stereocontrol in glycosylations is presented later in chapter 2. Regioselective reductive 

opening of the benzylidene acetal of compound 4 afforded a new disaccharide acceptor 5 in 75% 

yield. Stereoselective 1,2-trans glycosylation of disaccharide acceptor 5 with thioglucos ide 

derivative 3 in the presence of NIS-TfOH afforded the β-1,4 linked  trisaccharide derivative 4 in 

81% yield. The stereochemical outcome of this reaction was controlled by the presence of a 

participating ester protecting group at the C-2 position of donor 3. Trisaccharide 6 was then 

quantitatively converted into trisaccharide diol acceptor 7 after removal of the acetyl groups. 

 

Scheme 1-1. Previous synthesis of -D-Glup-(1→4)-α-D-Galp-(1→3)--D-Galp-OpMp.56 

1.1.3.2 Previous studies of β-(1→4)-D-galactan synthesis 

The preparation of well-defined β-(1→4)-D-galactans has previously proved to be challenging.  
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The chemical synthesis of β-(1→4)-D-galactans is difficult because of the low reactivity of the 

axially disposed C4-OH of galactosyl acceptors. Not only are axial hydroxyl groups less accessible 

towards glycosylation compared to primary and equatorial alcohols, but the acceptor must also be 

protected on the C3-O and C6-O, thereby making the C4-OH even more sterically hindered. Before 

2016, only three groups had reported syntheses of β-(1→4)-D-galacto-oligosaccharides and two of 

them only reached the trisaccharide level (see Table 1-3).57-58 Lately a small library of 

oligogalactans including linear tetra-, penta-, hexa-, and heptasaccharides as well as five (1→6) 

branched hepta- or octasaccharides have been synthesized by Dr. Mathias Andersen in our group.59  

Table 1-3. Previous studies of β-(1→4)-D-galactan synthesis. 

Synthetic oligosaccharide fragment Year Reference 

-D-Galp-(1→4)--D-Galp-(1→4)--D-Galp-OMe 1987 Kováč & Taylor60 

-D-Galp-(1→4)--D-Galp-(1→4)--D-Galp-OnPr 1984 El-Shenawy & 
Schuerch57 

-D-Galp-(1→4)--D-Galp-(1→4)-D-Galp 2011 Komba et al.61 

-D-Galp-(1→4)--D-Galp-(1→4)--D-Galp-OMe 2001 Lichtenthaler et al.62 

-D-Galp-(1→4)-{-D-Galp-(1→4)}2--D-Galp-OMp 2001 Lichtenthaler et al.62 

-D-Galp-(1→4)-{-D-Galp-(1→4)}3--D-Galp-OMp 

fully protected 

2001 Lichtenthaler et al.62 

-D-Galp-(1→4)-{-D-Galp-(1→4)}4--D-Galp-OMp 2001 Lichtenthaler et al.62 

-D-Galp-(1→4)-{-D-Galp-(1→4)}5--D-Galp-SPh fully 
protected 

2002 Oberthür et al.58 

-D-Galp-(1→4)-{-D-Galp-(1→4)}3-D-Galp  2016 Andersen M. et al.59 

-D-Galp-(1→4)-{-D-Galp-(1→4)}4-D-Galp  2016 Andersen M. et al.59 

-D-Galp-(1→4)-{-D-Galp-(1→4)}5-D-Galp  2016 Andersen M. et al.59 

-D-Galp-(1→4)--D-Galp-(1→4)-[-D-Galp-(1→6)]--D-

Galp-(1→4)-{-D-Galp-(1→4)}2-D-Galp   

2016 Andersen M. et al.59 

 

-D-Galp-(1→4)--D-Galp-(1→4)-[-D-Galp-(1→6)--D-

Galp-(1→6)]--D-Galp-(1→4)-{-D-Galp-(1→4)}2-D-Galp   

2016 Andersen M. et al.59 
 

-D-Galp-(1→4)--D-Galp-(1→4)-[-D-Galp-(1→4)--D-

Galp-(1→6)]--D-Galp-(1→4)-{-D-Galp-(1→4)}2-D-Galp   

2016 Andersen M. et al.59 

L-Araf-(1→4)--D-Galp-(1→4)-{-D-Galp-(1→4)}4-D-Galp  2016 Andersen M. et al.59 

-D-Galp-(1→4)--D-Galp-(1→4)-[α-L-Araf-(1→6)]--D-

Galp-(1→4)-{-D-Galp-(1→4)}2-D-Galp 

2016 Andersen M. et al.59 
 

-D-Galp-(1→4)--D-Galp-(1→4)-[α-L-Araf-(1→5)- α-L-

Araf-(1→6)]--D-Galp-(1→4)-{-D-Galp-(1→4)}2-D-Galp  

2016 Andersen M. et al.59 
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1.1.3.2.1 First synthesis of linear β-(1→4) linked trisaccharide 

The first reported synthesis of a linear β-(1→4)–D-galactan trisaccharide was developed by 

Schuerch & El-Shenawy57 and is shown in Scheme 1-2. 

 

 
Scheme 1-2. Synthesis of protected β-(1→4)-D-galactotriose 16 by Schuerch & El-Shenawy.57 

 

Their strategy was based on reactivation by exchange of an anomeric protecting group. Therefore, 

the allyl group (All) was chosen as an exchangeable protecting group at the anomeric position of 

the key building block 8. This building block carried specific protecting groups. Hence, an acetyl 

group (Ac) was placed at the 4-position as it could selectively be removed in the presence of the 

other protecting groups. A benzoyl group (Bz) at the C-2 position would ensure neighboring group 

participation to control the stereochemical outcome of the glycosylation and form the desired β-

linkage. Finally, a benzyl group (Bn) was used as a permanent protecting group for the remaining 

free hydroxyl groups. The acceptor 11 was coupled to glycosyl bromide 10 in a silver tresylate 

(2,2,2-trifluoroethanesulfonate, OTres) catalyzed glycosylation reaction providing the 

disaccharide 12 in a reasonable yield (65%). This disaccharide was then converted into the 

corresponding glycosyl chloride 14 in four steps. First, the allyl ether was removed by 

isomerization with (PPh3)3RhCl and N,N-diisopropylethylamine (DIPEA) followed by hydrolys is 

of the enol ether with ZnO/ZnCl2 to give the lactol 13. This was converted to the corresponding 

glycosyl chloride by activation of the anomeric hydroxyl with N-phenyl isocyanate (PhNCO) 
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followed by treatment with HCl gas. A second glycosylation of the acceptor 11 with the 

disaccharide donor 14 afforded the trisaccharide 15 in 85% yield. Compound 15 was further de-

esterified in the presence of KCN in ethanol and hydrogenated with Pd/C to give the unprotected 

trisaccharide 16. However, this strategy had three main drawbacks. First of all, it was not possible 

to turn the di- and trisaccharide into acceptors, since selective acetyl deprotection of the C4-O 

could not be achieved. This would have enable to use them as building blocks to elongate the chain 

of the oligosaccharide in a fast and efficient way. Secondly, the reactivation of the anomeric group 

by three steps is both time consuming and results in low overall yield. Finally, glycosyl bromide 

10 had to be synthesized by a laborious eleven-step procedure.  

 

1.1.3.2.2 Alternative synthesis of a linear β-(1→4)-linked galactotriose by Kovác et al.  

To improve the efficiency of this galactotriose synthesis, Kovác and co-workers suggested another 

approach starting from acceptor 17, which could be easily synthesized by a one-step procedure 

from commercially available methyl β-D-galactopyranoside.60 This was in turn converted to the 

glycosyl chloride 18 in two steps: introduction of the bromoacetyl group on the C-4 position 

followed by cleavage of the methyl anomeric center with 1,1-dichloromethyl methyl ether 

(DCMME) in the presence of zinc chloride (Scheme 1-3). Coupling of acceptor 17 and donor 18 

promoted by silver trifluoromethanesulfonate (AgOTf) gave the desired disaccharide 19 in decent 

yield (62%). The bromoacetyl group was selectively removed with thiourea to give acceptor 20, 

which was once again glycosylated with glycosyl chloride 18. However, in this case, the 

glycosylation was slower and the trisaccharide 21 could only be obtained in 35% yield. Both the 

electron-withdrawing inductive effect of the ester protecting groups chosen and the size of the 

acceptor could help explain the low reactivity. Therefore, further elongation was also not feasible 

in this case. 

 
Scheme 1-3. Synthesis of β-(1→4)–D-galactriose by Kovác et al.60 
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1.1.3.2.3 Synthesis of linear β-(1→4)-linked hexasaccharide 

Lichtenthaler et al. published the first strategy by which longer β-(1→4)-linked galactans could 

be produced as shown in Scheme 1-4.62  

 

Scheme 1-4. Synthesis of β-(1→4)–D-hexagalactoside (30) by Lichtenthaler et al. 62 
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An iterative block strategy and easy interchange of donors and acceptors truly made this synthes is 

convergent. The method was also based on reactivation of donor by exchange of an anomeric 

protecting group. However, contrary to Schuerch and El-Shenawy,57 thioglycosides were used for 

glycosylation and p-methoxyphenyl as the anomeric protecting group. Furthermore, the protecting 

group pattern was judiciously designed to minimize steric hindrance around the unreactive 

galactosyl-4-OH. Hence, allyl and/or benzyl groups were chosen as protecting groups for the C3-

O and C6-O in order to enhance the accessibility as well as the nucleophilicity of the acceptor. In 

this case, the pivaloyl ester was used to protect  the C2-O and participate in the glycosylation step 

in order to control its stereochemical outcome.. The acetyl group could then be chosen as 

temporary protecting group of the C4-O as mild deacetylation under Zemplén conditions is 

possible in the presence of the more stable pivaloyl ester.63 P-methoxyphenyl can be converted to 

the corresponding thiophenylglycoside in a single step in good yield, contrary to the conversion of 

the allyl anomeric protecting in the case of Schuerch and El-Shenawy’s synthesis.57  

 

MeOTf-mediated glycosylation of thioglycoside building block 22 and acceptor 23 afforded the 

disaccharide 24 in a good yield (79%). This could then be turned both into a new disaccharide 

donor 25 by glycosylation with TMSSPh or a new disaccharide acceptor 26 by mild deacetylation 

under Zemplén conditions. Two rounds of glycosylation could then afford the hexasaccharide 29 

on a gram scale. In a later report, the toxic MeOTf was replaced by triflic anhydride (Tf2O) giving 

comparable glycosylation yields.58 In comparison to the two previous studies, this strategy 

afforded a remarkable high yield of glycosylation taking into account the low reactivity of the 

C4- OH galactosyl acceptors. However, the deprotection of the different groups, especially the 

allyl group, turned out to be challenging, and a five-step procedure was necessary to fully deprotect 

the linear hexasaccharide. Furthermore, the final product is the unnatural p-methoxyphenyl 

galactoside and a low yielding “oxidative deprotection” is required to get the reducing sugar. 

 

1.1.3.2.4 Synthesis of linear- and (1→6)-branched β-(1→4)–D-galactans.  

Dr. Mathias Andersen in our group achieved the synthesis of a small range of β-D-

galactooligosaccharides with a β-(1→4)-linked backbone and possibility of (1→6)-branching to 

mimic the structure of the galactan side-chains present in pectin. The strategy utilized a convergent 

block strategy where a pentenyl disaccharide donor 33 was prepared and used as a building block 

to get variable lengths of linear oligosaccharides. TMSOTf-mediated coupling of 

trifluoroacetimidate donor 31 and acceptor 32 afforded the key pentenyl disaccharide 33 in 83% 

yield (Scheme 1-5).59 NIS-TESOTf-mediated glycosylation of disaccharide 33 with the reducing 

end monosaccharide acceptor 34 afforded trisaccharide 35 (Scheme 1-5). Selective deprotection 

of the chloroacetyl (ClAc) under mild Zemplén conditions followed by coupling with the 

disaccharide building block 33 enabled the synthesis of both a linear penta- and a heptasaccharide 

(37 and  39, respectively) in high yields. Final de-esterification of the two oligosaccharides by 

treatment with Et4NOH followed by hydrogenolysis over Pd(OH)2/C gave the fully unprotected 

penta- and heptasaccharide targets in 78% and 75% yield, respectively (Scheme 1-6). Contrarily 
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to the strategy used by Lichtentaler et al.,62 less deprotection steps were needed to reach the fully 

unprotected targets in an overall good yield. 

 

 

Scheme 1-5. Synthesis of linear β-(1→4)–D-penta- and heptasaccharides by Andersen et al. 59 
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Scheme 1-6. Deprotection to afford linear β-(1→4)–D-penta- and heptasaccharides by Andersen et al. 59 

 

The same disaccharide donor 33 was used to prepare the branched oligosaccharides. In this case a 

branching point was installed at the fourth sugar moity by using a 2-naphthylmethyl (NAP) 

temporary protecting group on the C6-O position of this sugar, which could selectively be cleaved 

by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). The synthesis of the β-(1→4) 

linked hexasaccharide 44 is shown in Scheme 1-7. This was then used as an acceptor in 

glycosylation with different monosaccharide or disaccharide donors to reach the various reducing 

branched hepta- and octasaccharides shown in Table 1-3. 

 

 

Scheme 1-7. Synthesis of the protected 6-OH hexasaccharide (46) precursor of the various β-(1→6)-

branched  β-(1→4)–D-galactans. 59 
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1.1.3.3 Previous studies of α-(1→3)-D-galactan synthesis 

The equatorial C3-OH of D-galactose is significantly less hindered than the axial C4-OH. 

However, the higher reactivity due to increased nucleophilicity makes the glycosylation reactions 

faster and thus it becomes more difficult to control their stereochemical outcome. No 

α- (1→3)- linked oligosaccharide longer than disaccharide has been reported. A summary of the 

synthesized α-(1→3)-linked disaccharides is presented in Table 1-4 and some of the chemica l 

synthesis strategy will be discussed in the next section. Several groups have studied the synthes is 

of isoglobotriaose which is a mammalian glycosphingolipid containing a galactose unit α-

(1→3)- linked to lactose.64–69 

Table 1-4. Previous studies of α-(1→3)-D-galactan synthesis. 

Synthetic oligosaccharide 

fragment 
Year Reference 

α-D-Galp-(1→3)-α-D-Galp 2000                     Liaigre et al.70 

α-D-Galp-(1→3)-α-D-Galp-O-Me  2002            Spangenberg et al.71 

α-D-Galp-(1→3)-α-D-Galp-O-p-NO2C6H4  2002   Spangenberg et al.71 

α-D-Galp-(1→3)-β-D-Galp-(1→4)-D-Glcp 
(isoglobotriaose) 

2014 
1992 

2009 
2006 
1987 

1999 

Hsieh et al.64 
 Qiu et al.69 

Yin et al.66 
Xia et al.67 

                      Koike et al.65 

Zhang et al.68 

α-D-Galp-(1→3)-β-D-Galp-(1→4)-D-
GlcNAc  

1981 Jacquinet et al.72 

α-D-Galp-(1→3)-β-D-Galp-O-Me 1991 Sarkar et al.73  

 

1.1.3.3.1 Chemical synthesis of α-(1→3)-D-digalactoside 

Relying on the higher reactivity of the C3-OH compared to the C4-OH, Liaigre et al.70 synthes ized 

the digalactosides α-D-Galp-(1→3)-α,β-D-Galp-OAll by condensation of a trichloroacetimidoyl 

2,3,4,6-tetra-O-benzyl-β-D-galactopyranoside donor with the 3,4-unprotected allyl 2,6-di-O-

benzyl-α- or β-D-galactopyranoside acceptor. Trimethylsilyl trifluoromethanesulfona te 

(Me3SiOTf) promoted reaction of donor 45 with the β-acceptor 46 afforded the desired α-(1→3)-

linked disaccharide in a 47 decent yield (see Scheme 1-8). Furthermore, no (1→4)-linked 

regioisomer was observed in any case. The choice of a non-participating benzyl group at the C2-

O position of the donor 45 was crucial to control the stereochemical outcome of the reaction. 

Furthermore, the benzyl groups most probably increased the reactivity of both donor 45 and 

acceptor 46 via electronic effects. Finally the disaccharide was fully deprotected using palladium 

chemistry.  

https://www-reaxys-com.globalproxy.cvt.dk/reaxys/secured/paging.do?performed=true&action=get_preparations&databaseId=0&rnd=0.9003538363547021
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Scheme 1-8. Synthesis of α-(1→3)-linked disaccharide by Laigre et al.70 

 

1.1.3.3.2 Chemical synthesis of α-(1→3)-linked galactose integrated in trisaccharides 

The synthesis of isoglobotriaose requires the formation of an α-(1→3)-linkage between galactose 

and lactose. Most of the studies relied on the glycosylation between a 3’,4’-unprotected lactose 

derivative and a galactosyl donor.64–69 Here the focus is on one of the latest synthesis from 2014 

by Hsieh et al.64 This synthesis will be compared to works previously done in other groups. Among 

the previous synthesis of isoglobotriase, it has been shown that benzylated galactosyl donors 

improved the yield of the reaction over acetylated ones.64–68 However low stereoselectivity was 

observed when using both thiomethyl or trichloroacetimidate donors. Therefore, Hsieh et al. 

decided to use an O-benzyl protected iodide donor in their synthesis, formed in situ from the acetyl 

2,3,4,6-tetra-O-benzyl-β-D-galactopyranoside 49. It was possible to obtain stereo- and regioisomer  

51 in a decent yield (44%) starting from 3’,4’-di-OH lactose acceptor 50. However, a yield up to 

75% could be reached when using selectively protected 3’-OH acceptor 52. It is worth mentioning 

that both lactose acceptors 50 and 52 could be synthesized in only three and five steps respectively 

from per-TMS protected lactose. This increased the efficiency of the synthesis of isoglobotr iose 

in comparison to other synthesis previously achieved, which all required between 6 and 12 steps  

to prepare the disaccharide acceptor.64–69 

 

Scheme 1-9. Synthesis of isoglobotriaose by Hsieh et al. 64 
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1.1.4 Overview of the sulfation methods developed in organic synthesis 

In 1876, Eugen Baumann isolated a substance from horse urine, which he showed to be related to 

m- and p-phenol sulfonic acids.74 Later, this substance was identified as potassium phenyl sulfate 

and proved to have a very low toxicity in the human body. After this discovery, the biochemis try 

and chemistry of molecule containing sulfate esters gained more and more interest. Metabolicly, 

sulfation is an important mechanism mostly used to remove potentially toxic agents from our body. 

Indeed, by introducing an anionic character in the molecule, it enhances its excretion properties.7 5  

Biochemical sulfation of molecules (especially carbohydrates) catalyzed by enzymes is another 

interesting mechanism of sulfation used to generate sulfated ligands with specific receptor-binding 

activity which induce specific biological responses.76–78 Sulfate-protein interactions can be both 

specific and non-specific, via hydrogen-bonding interactions and pure electrostatic interact ions 

respectively. Hence, it became of interest to modulate these interactions by designing appropriate 

non-natural sulfated ligands.79–81 More generally, the synthesis of various sulfated scaffolds have 

proven great potential in biomedical and medical applications. Therefore, development of efficient 

sulfation methods was necessary.82  

 

However, organic synthesis of sulfated molecules remains challenging as Al-Horani et al. points 

out in their review about chemical sulfation of small molecules, as introduction of sulfate groups 

changes the chemical properties of the molecule.82 For example, sulfated molecules are mostly 

water soluble, which makes their purification more difficult. Furthermore, sulfate groups are labile 

under acidic conditions and high temperatures, and sulfated molecules are insoluble in most 

organic solvents. Therefore, few functional group manipulations can be performed after the 

introduction of sulfate esters. Polysulfation of small molecule scaffolds is another challenge. As 

the anionic crowding increases with the number of sulfate groups, repulsive forces make it difficult 

to drive the polysulfation to completion.83 

 

Several  methods of sulfation have been developed and are summarized in the review from Al-

Horani et al.82 First, sulfation used to be carried out with sulfuric acid (H2SO4) at moderate or low 

temperature. Alkenes, polyhydric alcohol and polysaccharides have been sulfated using H2SO4. A 

less reactive derivative of H2SO4, sulfamic acid (H2NSO3H), has been used later for synthesis of 

saturated monohydric alcohol sulfates and carbohydrate sulfates.84 However H2SO4-based 

sulfation leads to many side reactions such as dehydration, non-selective sulfation and degradation 

of the starting material. Another similar method using dicyclohexylcarbodiimide (DCC) in 

combination with H2SO4 was then developed by Mumma et al.85 and later on applied to 

carbohydrate derivatives for regioselective sulfation.86,87 As DCC-sulfuric acid complex is rather 

bulky, sterically hindered hydroxyl groups are unlikely to be sulfated. Therefore, it can be used as 

a good sulfating agent for regioselective sulfation of the C-6 position of unprotected sugars for 

example. Nevertheless, this reaction leads to the formation of dicyclohexylurea, which can 

complicate the isolation of the desired sulfated product. Furthermore, considering the strong 

acidity of sulfuric acid, this reagent is not suitable for sulfation of acid sensitive molecules.  
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Sulfur trioxide (SO3) amine complexes are the most widely employed reagents and can sulfate a 

variety of scaffolds containing alcoholic, phenolic, amine, thiol and other functionalities. They are 

much milder reagents than free SO3 or even H2SO4.75,88–90 Complexes of SO3 with organic bases, 

such as triethylamine, trimethylamine and pyridine (Py) as well as amides such as 

dimethylformamide (DMF), have found extensive usage, especially in sulfation of carbohydrates 

residues.91–94 For these complexes, the reactivity of the SO3 can be directly modulated by the 

choice of the complexing amine/amide base. Indeed, the stability of the complex is proportional 

to the strength of the base used and therefore its reactivity should be inversely proportional to this 

strength. For example, the basic strengths of both Et3N and Me3N make these complexes much 

stronger and therefore expected to be less reactive than the Py one as shown in Table 1-5.95 Even 

the weakest complex is a much milder reagent than free SO3.  

 

Table 1-5. Basic strengths of some amines used in SO3·complexes, expected relative stability and 
reactivity of these complexes.  

Amine pKa, H2O 

Trimethylamine 10.72 

Triethylamine 10.74 

N-Ethylmorpholine 7.70 

2,6-Dimethylpyridine 6.72 

Diethylaniline 6.56 

2-Methylpyridine 5.96 

Pyridine 5.22 

Dimethylaniline 5.06 

 

These SO3·complexes have been the reagents of choice in the different studies of heparin/heparan 

synthesis. 96–100 In their work on modular synthesis of heparan sulfate oligosaccharides Boons et 

al. proved the stability of these sulfate esters towards some common deprotection steps in 

oligosaccharides synthesis such as saponification, Zémplen deacylation, desilylation using 

fluorides agents and hydrogenolysis.96,97,100 These reagents have been successful in the synthes is 

of polysulfated scaffolds. In 2009, Chen et al. performed the simultaneous sulfation of seven 

positions using an excess of SO3·Et3N in their synthesis of idraparinux.101 Nevertheless, 

polysulfation with SO3·amine or amide complexes usually requires elevated temperature (up to 55 

°C), a large excess of the reagent (5 to 10 equiv. per free -OH) and elongated reaction time (up to 

several days).  

 

To enhance the rate of polysulfation a microwave-based protocol has been developed by 

Raghuraman et al. and the general procedure is presented in Scheme 1-10.83 However, this method 

requires high temperature and is mainly convenient for small scale synthesis (< 10 mg of the per-

sulfated products). 

 

Increased stability 

of SO3-amine 

Expected increased reactivity of 

the SO3-amine complex 
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Scheme 1-10. Microwave-assisted sulfation of polyhydroxyl substrates by Raghuraman et al.83 

 

In 2008, Krylov et al. attempted to synthesize the polysulfated tetrasaccharide 57 using SO3·Py 

complex and different solvent combination and reaction time without any success (see entry 1-5 

in Table 1-6).102 Surprisingly, they figured out that, when performing the reaction with SO3·Et3N 

and adding 1.6 equiv. of TfOH per free hydroxyl group, the desired product was obtained in 77% 

yield. Furthermore, the addition of TfOH made it possible to carry out the reaction at 0 °C and 

reduce the reaction time. It was hypothesized that TfOH could liberate free SO3 from the amine 

complex in situ, which is the most reactive sulfation agent. This is of great interest for the sulfat ion 

of substrates sensitive to high temperatures. They showed the efficiency of this TfOH promoted 

O-sulfation  protocol on other polyol substrates as well.102 

 

Table 1-6. Per-O-sulfation of tetrasaccharide 56.  

Entry Amount of TfOH 

(equiv./OH-group) 

Temp 

(°C) 

Time 

(h) 

Sulfation 

agent 

Solvent Yield  

(%) 

1 0 20 1 SO3·Py DMF - 

2 0 55 72 SO3·Py Py - 

3 0 55 72 SO3·Py DMF/Py (3/1) - 

4 0 55 72 SO3·Py DMF - 

5 0 55 72 SO3·Et3N DMF - 

6 1.6 0 24 SO3·Et3N DMF 77 

 

Sulfate esters are quite unstable towards a wide range of functional group transformations. This , 

together with their polarity, complicates the purification as well as further chemica l 

transformations of sulfated substrates. Therefore, there is an increasing interest to introduce them 
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in a masked form. In 1981, Penney et al. developed a method using phenyl chlorosulfate to 

introduce a masked sulfate in monosaccharides as shown in the example in Scheme 1-11.103 This 

phenyl chlorosulfate intermediate is expected to survive a number of chemical transformations 

including selective acid hydrolysis, acetolysis, deacetylation and fluoride-mediated removal of 

trialkylsilyl substituents, which are common deprotection steps in oligosaccharides synthes is. 

However, only a few reported synthesis have been using this opportunity until now. This must be 

explained by the low yielding deprotection step of the sulfate ester at the end as well as the high 

pressure equipment required to achieve this step.104  

 

 

Scheme 1-11. Introduction of phenyl chlorosulfate as masked sulfate intermediate.  103 

 

Other protecting groups of the sulfate ester were then investigated. Proud et al. introduced the 

2,2,2-trifluoroethyl which can be removed in high yield by tert-butoxide but requires high 

temperature.105 Later on, Taylor et al. described the use of a 2,2,2-trichloroethyl (TCE) sulfate, 

which can be readily deprotected in excellent yield under neutral conditions with Pd/C or Zinc and 

ammonium formate.106 This TCE-protected sulfate esters were first produced by reacting phenols 

with trichloroethyl chlorosulfate (TCECS), however this procedure failed in the synthesis of 

certain sulfated carbohydrates.107 Indeed, TCECS (62) reaction with diisopropylidene-D-galac tose 

61 led to the formation of the corresponding chlorosugar  64 as a major by-product (see Scheme 

1-12). It was then hypothesized that replacing the chloride group of TCECS with a non-

nucleophilic leaving group would increase the yield of the desired TCE-protected sulfate esters 

63. Transforming the TCECS into a sulfuryl imidazolium triflate (65) and reacting it with 

diisopropylidene-D-galactose 61 afforded the desired product 63 in 87% yield.107 This 

imidazolium salt 65 was reacted with a variety of other monosaccharides resulting in similar yields. 

Furthermore, the TCE-protected sulfates are stable to many of the conditions commonly 

encountered in carbohydrates chemistry such as debenzylation, acetylation, Zemplén 

deacetylation, reductive opening of benzylidene with either TfOH or dichlorophenylbo rane 

(PhBCl2) in the presence of triethylsilane (Et3SiH), acidic hydrolysis of the benzylidene using 

p- toluene sulfonic acid (TsOH) and formation of trichloroacetimidate derivative using catalytic  

amount of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU).107 Therefore these TCE esters can be 

carried through several steps of a synthesis without decomposition, before final conversion to the 

sulfate monoester by reductive elimination. 
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Scheme 1-12. TCE protection of C-6 sulfate ester on diisopropylidene-D-galactose 61. 

Finally a three-step sulfation strategy was developed by Huibers et al. 108 proceeding via sulfite-  

and sulfate diester intermediates as shown in Scheme 1-13. This protocol uses mild conditions: it 

can be carried out at 22 οC and requires near stoichiometric amounts of the reagents. The first step 

involves the formation of a diester sulfite derivative of the parent alcohol, which is then oxidized 

using sodium periodate and a catalytic amount of ruthenium (III) chloride (RuCl3) to its sulfate 

diester form. The target sulfate monoester can then be released in high yield using sodium iodide. 

Unlike the sulfate monoesters of aliphatic alcohols, their corresponding sulfite and sulfate diesters 

are apolar, stable compounds, soluble in common organic solvents which allows standard 

purification by flash chromatography. Their stability towards typical conditions for O-protective 

group interconversion was then tested. They tolerated deacetalization conditions, as well as 

acetylation, silylation and desilylation. Nevertheless other transformations like acetonide 

hydrolysis using trifluoroacetic acid (TFA) and water, benzylation under either basic conditions 

(NaH, BnBr, TBAI) or acid-mediated (TMSOTf, BnOC(NH)CCl3) led predominantly to 

decomposition. These findings demonstrate the potential of sulfite esters as sulfate precursors in 

organic sequences, but further optimization is still required to improve their compatibility with 

common reaction conditions. 
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Scheme 1-13. A three-step sulfation strategy: Sulfitylation-oxidation and release. 

To summarize, a large number of methods have been developed to achieve sulfation of small 

molecules, however none is uniformly applicable with large consistency. 
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Chapter 2 

                                                           Synthesis Strategy 

 

We propose a synthetic approach to produce all ten types of carrageenans from a single precursor 

carrying different protecting groups that can be cleaved specifically to introduce the sulfate groups 

at various positions depending on the targeted carrageenan. As shown in Figure 2-1, a blockwise 

approach was chosen for the synthesis. 

 

 

Figure 2-1. Synthetic strategy based on well-chosen protecting groups described in Table 2-1. 

The synthetic strategy relies on the synthesis of a key β-1,4 linked disaccharide carrying suitable 

protecting groups. The chemical synthesis of β-1,4-D-galactans is difficult due to the low reactivity 

of the axially disposed C4-OH of galactosyl acceptors as already discussed. Not only are axial 

hydroxyls less accessible towards glycosylations compared to primary and equatorial alcohols, but 

the acceptor must also be protected on the C3-O and C6-O, thereby making the C4-OH even more 

sterically hindered. The key β-1,4 linked disaccharide will serve as a common building block. Each 

disaccharide will be α-1,3 linked to each other to build up the backbone of carrageenans consisting 

of D-galactose with alternating -1,4 and α-1,3 glycosidic bonds. This modular approach gives a 

lot of flexibility on the length of the oligosaccharides. Thus, a hexasaccharide can be reached by 
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coupling a disaccharide to a tetrasaccharide, while an octasaccharide can result either from the 

coupling of a hexasaccharide with a disaccharide, or from the coupling between two 

tetrasaccharides. The chain could potentially be further elongated. The requirements for the 

different protecting groups are outlined in Table 2-1. 

 

 

Table 2-1. Protecting group pattern requirements. 

Protecting 

Group  

Requirements 

A - Permanent protecting group  

B - β directing group  

- Can be selectively removed 

C - Can be selectively removed  

D -  α directing  group 

-  Can be selectively removed 

R -  Stable under R’ and LG activation (see Figure 2-1) 

R1 -  Stable under R’ and LG activation (see Figure 2-1) 

R2 -  Stable under R’ and LG activation (see Figure 2-1) 

LG -  Leaving Group for a new glycosyl donor (see Figure 2-1) 

 

The permanent protecting group A would be used for positions that do not need to be sulfated at 

any point for any of the 10 targeted carrageenans. To build the D-galactose backbone of 

carrageenans with alternating -1,4 and α-1,3 bonds a good stereocontrol of the glycosylations is 

needed. In theory any glycosylation reaction can lead to two stereosisomers : the α-anomer and 

the β-anomer as shown in Scheme 2-1. Typically, activation of a glycosyl donor leads to a glycosyl 

oxocarbenium ion,109 which can then be attacked from either side by an acceptor and afford both 

α- and β-anomers. Under thermodynamic control, it has been observed that glycosylation reactions 

mostly afford the α-anomer.110 This preference of the sterically unfavored axial position over the 

equatorial position at the anomeric center is called the endo-anomeric effect.111,112 Two different 

explanations of this phenomenon are debated at present. The first one relying on a favourable 

dipole-dipole interactions for the α-anomer, while the second one proposes that the α-anomer is 
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stabilized by delocalization of an electron pair of the endocyclic oxygen atom to the periplanar 

C– X bond (X = electronegative atom) antibonding orbital.     

 

Scheme 2-1. The two possible stereochemical outcomes of a glycosylation, exemplified on a galactose 
derivative. 

Several parameters can influence the stereochemical outcome of a glycosylation. The most 

frequently employed tool to perform a 1,2-trans glycosylation is the use of participating groups on 

C-2 position, usually ester groups. This was first described by Lemieux in 1954.113 Neighboring-

group participation in sugar chemistry was later explained by Goodman et al.114 The principle is 

explained for an ester participating group in Scheme 2-2. By generating an acyloxonium ion, this 

group can stabilize the oxocarbenium cation formed during the glycosylation step after activation 

of the donor by the promoter. 

 

 

Scheme 2-2. Mechanism ester neighboring group participation. 

In our case, to achieve a high stereocontrol of the β-1,4 linkage a participating protecting group B 

is needed at the C-2’ position.  

 

On the other hand, the α-1,3 linkage requires the formation of a 1,2- cis glycoside. Recently (2015) 

Demchenko et al. published a review which addresses the challenge of stereoselective 1,2-cis 

glycosylation.115 Although , the presence of a non-participating group is required for the synthes is 

of 1,2-cis glycosides, this non-participating group alone can not ensure the stereoselectivity. Many 

other factors such as the solvent, the temperature, the type of donor used, the type of acceptor used, 

the amount and type of promoter, the protecting groups etc play an important role in the outcome 

of the glycosylation. Unfortunately, non comprehensive method is available for 1,2-cis 

glycosylation yet and refining reaction conditions for each particular glycosylation is necessary. 
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However, some guidelines are available to help choose these conditions. For example, ether-type 

solvents, i.e. Et2O, THF or dioxane, are found to have a participating effect in some glycosyla t ion 

processes leading towards the preferential formation of 1,2-cis glycosidic bonds.115 These solvents 

are thought to interact with the oxocarbenium ion to form an equatorial intermediate, which can 

then undergo an SN2-like displacement with the acceptor Scheme 2-3.115 

 

 

Scheme 2-3. Proposed mechanism for the solvent participation in a 1,2-cis glycosylation. 

Therefore, to increase the stereocontrol of the α-1,3 linkage in our strategy, a non-participa t ing 

group D is used at the C-2 position. As the C-6 position needs to be sulfated in all cases, it requires 

a protecting group C, which can be cleaved selectively. 

 

In order to establish the strategy, we aimed to synthesize the ten different type of tetrasaccharide 

carrageenans. This modular strategy could then be used to synthesize longer oligosacchar ide 

carrageenans as explain before. 
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Chapter 3 

                                                   Results and Discussion 

3.1 First protecting group strategy 

The first idea was to synthesize the two differentially protected pentenyl galactosides 66 and 67 

shown in Scheme 3-1. Employing the versatility of the pentenyl glycoside, which can be either 

used as a donor or as an acceptor, we would be able to start from the same pentenyl galactoside 

for the synthesis of both donor 66 and acceptor 67. Using an orthogonal glycosylation strategy 

pentenyl galactoside 66 could be further converted into an other galactosyl donor while the second 

one 67 would be directly used as an acceptor to form the key β-1,4 linked disaccharide 68. A ClAc 

group and a NAP group would be used as protecting groups that can be selectively deprotected 

using thiourea and an oxidative deprotection with DDQ, respectively. 

 

Scheme 3-1. Key monosaccharides 66, 67 and disaccharide 68 building blocks. 

 
Scheme 3-2. Retrosynthetic analysis of n-pentenyl glycoside-based strategy. 

The retrosynthetic analysis of the targeted protected tetrasaccharide 69 is presented in Scheme 3-2. 

The strategy takes advantage of differential reactivity of the protecting groups as well as the use 

of a non-participating NAP group in the 2-position to promote α-stereoselectivity and the 

- directing properties of the acetate in the 2’-position as explained in Chapter 2. It also takes 
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advantages of the versatility of the pentenyl group which can serve as a protecting group on the 

acceptor 67 in the first glycosylation to form the disaccharide and as a donor later on. A new 

disaccharide acceptor could be formed after hydrolysis of the pentenyl group followed by 

benzylation of the reducing end and removal of the isopropylidene protecting group, which would 

leave the 3’-position and the 4’-position unprotected. Relying on the higher reactivity of the 3- 

over the 4-position of galactose,64,70,116 this disaccharide acceptor could be further coupled to the 

pentenyl donor 68, forming an α-1,3 linkage to obtain the tetrasaccharide 69.  

 

Scheme 3-3. Deprotection and sulfation steps. 
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Prior to deprotection and sulfation steps, a Piv group can first be installed regioselectively on the 

C-3’’’-OH as selective acylation of 3,4-unprotected galactose proved to be feasible by tuning the 

reaction conditions.117 With the protected tetrasaccharide in hand, it should be possible to prepare 

the five D6S carrageenans by applying 5 to 7 additional steps including regioselective deprotection 

of specific positions followed by introduction of sulfate groups on these unprotected positions, as 

shown in Scheme 3-3. The corresponding anhydro (DA) carrageenans could be synthesized from 

their D6S precursor by treating them with a hot alkaline solution or by “galactose-6-sulfurylase ” 

enzymes to catalyze the cyclization.35,37,40,42,43 

 

 

3.1.1 Synthesis of the pentenyl galactoside monosaccharide building 

blocks  

The fully protected pentenyl glycoside 67 was prepared in seven steps from commercia l ly 

available D-galactose pentaacetate (Scheme 3-4). BF3·OEt2-mediated glycosylation of 

4- penten- 1- ol with β-D-galactose pentaacetate followed by Zemplén deacetylation afforded the 

unprotected pentenyl galactoside 70 as a 8:1 β/α-mixture. Treatment of 70 with benzaldehyde 

dimethylacetal and CSA gave the diol 71 in 88% yield. Activation of diol 71 with dibutyltin oxide 

(Bu2SnO) followed by treatment with benzyl bromide (BnBr) gave the partially protected 

glycoside 72 in 73% yield. NAP protection of the remaining hydroxyl group position using 

2- (bromomethyl)naphthalene (NAP-Br) in the presence of TBAI and sodium hydride (NaH) 

afforded the fully protected galactoside 73. The benzylidene acetal was then hydrolyzed using 

ethanethiol (EtSH) combined with a catalytic amount of para-toluenesulfonic acid (p-TSA) giving 

diol 74 in 92% yield after only two hours of reaction63 whereas standard conditions such as aq. 

AcOH resulted in moderate yields after prolonged reaction times. The C-6 position was fina lly 

regioselectively chloroacetylated by treatment of diol 74 with chloroacetic anhydride and 

triethylamine to afford acceptor 67 in 75% yield. 
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Scheme 3-4. Synthesis of pentenyl galactoside acceptor 67. 

 

The fully protected pentenyl galactoside 66 was synthesized in 3 steps from diol 71 (Scheme 3-5). 

Regioselective reductive opening of the benzylidene acetal gave compound 75 in a reasonable 

yield by treatment with AlCl3 and tetramethyldisiloxane (TMDSO)118 whereas the slow hydrolys is 

of the benzylidene acetal was observed when using more common conditions such as 

EtSi3H/TFA.119 The identity of the product 75 was verified by heteronuclear multiple bond 

correlation spectroscopy (HMBC). Acetalization of the C-3 and C-4 positions of triol 75 in the 

presence of 2,2 dimethoxypropane and CSA afforded  the cis 5-membered ring acetal 76 in 90% 

yield. Final acetylation of the remaining 2-hydroxyl group using acetic anhydride and DMAP in 

pyridine afforded the fully protected pentenyl galactoside 66 in 91% yield. 

 

Scheme 3-5. Synthesis of pentenyl galactoside 66. 
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Next, the pentenyl glycoside 66 needed to be hydrolyzed in order to be further converted into an 

orthogonal galactosyl donor. Glycosyl imidate was chosen as donor type because of its high 

reactivity and ease of synthesis. Indeed, imidates can be synthesized from reducing sugars and 

even at a late stage of a synthetic sequence. Furthermore, imidates act as strong donors in the 

presence of only catalytic amounts of Brønsted or Lewis acids.120 Contrary to glycosyl 

trichloroacetimidates that are prone to rearrange to trichloroacetamide during glycosylation prior 

to attack of the acceptor, glycosyl trifluoroacetimidate is not affected by this problem, since the 

leaving group is a poor nucleophile.120,121 Therefore, glycosyl trifluoroacetimidate seemed to be a 

suitable choice of donor.  

Table 3-1. Hydrolysis of pentenyl glycoside 66. 

Entry Conditions Yield (%) 

  77 77a 77b 77c 

1 NBS, H2O 

2,6-lutidine 

- - 74  - 

2 Br2 

3eq Ag2CO3  

acetone/water 

4/1 

28 

 

- 

 

- 

 

40 

 

3 Br2 

1.5 equiv.  Ag2CO3  

1.5 equiv. K2CO3   

acetone/water 

4/1 

50 

 

- - 50 

 

4 NIS, TESOTf, H2O - 50  - - 

5 NIS, TESOTf, H2O 

K2CO3 

52 - - - 
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The pentenyl hydrolysis turned out to be challenging due to the low reactivity of the donor 66 and 

the acid lability of the isopropylidene acetal. The optimization results are shown in Table 3-1. 

Hydrolysis with NBS/H2O (entry 1) did not occur, due to the formation of halohydrin 77b. A 

second attempt to hydrolyze the pentenyl group was to convert the pentenyl galactoside 66 into a 

galactosyl bromide by titration with bromine and hydrolyze the resulted glycosyl bromide 

afterwards. The pentenyl glycoside was thus titrated with bromine and the crude glycosyl bromide 

was treated with silver carbonate and water in acetone.122 Unfortunately, the unstable 

isopropylidene protecting group was hydrolyzed during the reaction most probably due to the 

formation of HBr in the second step and optimization of the reaction conditions such as variation 

of the temperature and number of equivalent did not lead to the desired product 77 in a satisfactory 

yield (data not included in table). A last attempt of hydrolysis was performed by activating the 

pentenyl group with NIS/TESOTf in the presence of water (entry 4 and 5), but hydrolysis of the 

isopropylidene group was still observed even in the presence of potassium carbonate and the yield 

was not significantly improved (52%). 

 

Even though the optimization of this reaction was not quite satisfying we decided to move on to 

the next step. Cyclic hemiacetal 77 was transformed into its corresponding trifluoroacetimida te 

donor by treatment with trifluoroacetimidoyl chloride and potassium carbonate leading to a 

mixture of both isomers as shown in Scheme 3-6. 

 

Scheme 3-6. Trifluoroacetimidate donor 78 synthesis. 

 

3.1.2 Towards the key β-1,4 linked disaccharide 

The freshly synthesized imidate donor 78 could then be reacted with acceptor 67 using TMSOTf 

as promoter. However, as shown in Scheme 3-7, due to both low reactivity of the acceptor and 

acid lability of the isopropylidene protecting group the reaction afforded the side product 80 after 

consuming most of the donor and 50% of the acceptor 67 was recovered after termination of the 

reaction. 



44 
 

Scheme 3-7. Attempt of glycosylation between donor 78 and acceptor 67. 

 

As the isopropylidene group had shown to be too labile it was then envisioned to replace it by a 

silylene acetal group such a di-tert-butyl silylene acetal as shown in Table 3-2. 

Unfortunately, the silylene acetal product was not stable, most probably due to high strain, and 

decomposed on silica during the purification to give the corresponding mono silyl ether protected 

product. 

 

Table 3-2. Optimization table to introduce a silylene acetal protecting group.   

Entry Sylilation agent 

(equiv.) 

Base 

(equiv.) 

Solvent Temp. 

(°C) 

Reaction 

Time (h) 

Yield 82 

(%) 

1 B 2,6-lutidine CH2Cl2 22   4 -  

2 B Et3N CH2Cl2 0 to 30 7 8 

3 A HOBt pyridine 90 20 -a 

4 A Imidazole DMF 65 5 -b 
a almost no conversion was observed 
b decomposition on silica during purification 
 

A silyl ether protecting group was then envisioned to replace the silylene acetal and 

triisopropylsilylether (TIPS) was chosen as shown in Scheme 3-8. Diol 81 was treated with an 

excess of triisopropylsilyltriflate (TIPSOTf) in the presence of 2,6- lutidine to afford the fully 

protected pentenyl galactoside 83. 
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Scheme 3-8. Silyl ether protected pentenyl donor 16 synthesis  

. 

As previously, the pentenyl group hydrolysis turned out to be difficult (see Table 3-3). It was first 

attempted to convert the pentenyl galactoside 83 into a galactosyl bromide by titration with 

bromine and then hydrolyze the resulted glycosyl bromide. The crude glycosyl bromide was 

treated with silver carbonate and water in acetone (entry 1) providing the product in 18% yield. It 

was then tried to react the crude glycosyl bromide with tert-butyl ammonium bromide (TBAB) 

and an excess of water, but this first led to migration of the acetyl group at the anomeric position 

and deprotection of one of the TIPS protecting group (entry 2). Adding 2,6-lutidine to neutralize 

the solution did not improve the yield of the reaction (entry 3). 

 

Table 3-3. Attempts to hydrolyze the pentenyl moiety. 

Entry Reagents Solvents Temp. Time Yield (%) 

   (°C) (h) 85 86 or 87 

1 Ag2CO3 (3 equiv.) acetone/H2O 22 3  18  - 

2 TBAB (1 equiv.) 

H
2
O (excess) 

CH2Cl2/MeCN 0 to 22 3  - 20 

3 TBAB (0.2 equiv.) 

H
2
O (excess) 

2.6-lutidine (1.3 equiv) 

CH2Cl2/MeCN 0 to 22 3  - - 

 

In a last attempt of hydrolysis, the pentenyl group was activated with NIS/TESOTf in presence of 

H2O, which would act as acceptor, but this only led to the corresponding halohydrin product 88 as 

shown in Scheme 3-9. 
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Scheme 3-9. Failed hydrolysis of the pentenyl group using NIS/TESOTf and water.  

 

Due to the disappointing hydrolysis results we tried to use the pentenyl galactoside 83 directly as 

donor (see Scheme 3-10). 

 

Scheme 3-10. Glycosylation trial between pentenyl donor 83 and pentenyl acceptor 67 . 

 

This would follow an armed-disarmed glycosylation approach instead of the orthogonal 

glycosylation strategy that we envisioned. This concept rely on the effect of protecting groups on 

tuning chemoselectivity of glycosylation reaction. This phenomenon was  first mentioned by 

Paulsen in 1982123 and named by Fraser-Reid in 1988.124 We hoped for a higher reactivity of 

pentenyl galactoside 83 that would be selectively activated in the presence of pentenyl galactoside 

acceptor 67. This unfortunately did not lead to any successful result. 

 

As a consequence of the many problems encountered the first protecting group strategy using the 

pentenyl anomeric protecting group was abandoned at that point. Instead of planning a new 

protecting group pattern, it was possible to conduct some test glycosylation experiments with 

different kinds of donors to investigate the possibilities of a new strategy. Since the anomeric 

thioacetal is stable towards a wide range of reaction conditions applied for the introduction of 

protecting groups, a thiophenyl galactoside donor appeared to be a promising choice. The 

thiophenyl galactoside donor 90 can easily be synthesized from thiophenyl galactoside 89, 

carrying a benzoyl participating protecting group at C-2 position required for the stereoisomeric 

outcome of the first glycosylation. Thus, we decided to synthesize donor 90 and use it for test 

reactions (Scheme 3-11). 
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Scheme 3-11. Synthesis of monosaccharide building block 90.  

 

The synthesis of 90 was achieved through a one pot acetalization of the C-3 and C-4 positions 

followed by benzoylation of the remaining free C-2 and C-6 positions. However, this also afforded 

the by-product 91 characterized by NMR. 

 

The glycosylation experiments of thiophenyl galactoside donor 90 with our acceptor 67 are 

presented in Table 3-4.  

 

Table 3-4. Optimization of the glycosylation conditions between thiophenyl donor 90 and pentenyl 
acceptor 67. 

Entry A 

(equiv.) 

TTBP 

(equiv.) 

Promoter 

(equiv.) 

Temp. 

(°C) 

Time 

 

91a 92a 90a 

1 1.1 1.1 1.5 - 40  3 h - - + 

2 1.2 1.2 2.5 - 40  3 h - - + 

3 1.2 1.2 1.5 - 20  3 h  - + 

4 1.2 1.2 2.0 0  20 min - + - 

5 1.2 - 2.0 0  10 min - - - 
a indicated by TLC 

 

A specific promoter suitable for thiophenyl glycosylation that would not activate the pentenyl 

acceptor 67 had to be chosen. The standard  NIS-TESOTf  promoter system does not fit this 

requirement as it can also activate the pentenyl group. Therefore, any kind of thiophilic promoter 
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such as electrophilic organosulfur compounds (like dimethyl(methylthio)sulfonium 

trifluoromethanesulfonate (DMTST) or dimethyldisulfide-triflic anhydride (Me2S2/Tf2O)) would 

be more appropriate.125,126 To avoid the deprotection of the isopropylidene protecting group, 

2,4,6- tri- tert-butylpyrimidine (TTBP) was added to neutralize the solution. Performing the 

reaction at lower temperature than 0 °C and varying the amount of promoter did not give good 

conversion of starting material (entry 1-3). Performing the reaction at 0 °C helped the conversion 

but unfortunately, the only product formed was the 1,2-orthoester 91 (entry 4). As orthoester 

formation is more likely to happen under basic conditions, we tried the reaction under the same 

conditions but without the TTBP.  This led to full conversion of the starting materials within a few 

minutes but many by-products were formed that was related to the deprotection of the 

isopropylidene group.  
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3.2 Second protecting group strategy 
The protecting group pattern had to be changed taking into account both the problems encountered 

and some knowledge gained in the group in the since the first was devised. Table 3-5 gives an 

overview of the problems encountered during the first protecting group strategy. 

 

 

Table 3-5. Summary of the first protecting group strategy Table 2-1. 

Protecting 

Group  

Requirements First strategy Problems encoutered 

A - Permanent protecting group Bn  

B - β directing group 

- Can be selectively removed 

Ac Migration during pentenyl 

hydrolysis 

C - Can be selectively removed ClAc Reduce reactivity of 

acceptor? 

D -  α directing  group 

- Can be specifically removed 

NAP Might be difficult to 

remove on 

oligosaccharide in the 

presence of Bn groups at  

6-positions 

R -  Stable under R’ and LG activation pentenyl Hard to hydrolyze 

R1 - Stable under R’ and LG activation isopropylidene Unstable under acidic 

glycosylation conditions 

R2 - Stable under R’ and LG activation isopropylidene Unstable under acidic 

glycosylation conditions 

LG - Leaving Group for a new glycosyl 

donor 

acetimidate  

 

 

Taking the previous results into account, the two following monosaccharide building blocks were 

chosen for the new strategy (Scheme 3-12). 
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Scheme 3-12. New monosaccharide building blocks donor 93 and acceptor 94. 

 

As donor, a thiophenyl galactoside was chosen due to its stability as previously mentioned. For 

example, whereas many other types of glycosyl donors such as glycosyl halides or glycosyl 

acetimidates, are unstable under deacetylation conditions, acetylated thioglycosides can be 

deprotected without degradation. Furthermore, most of the thioglycosides can be crystallized 

which makes them easy to handle.  Activation of thioglycoside can be achieved using a wide 

variety of electrophilic promotors. The thioacetal function thus conveniently combines the role of 

an anomeric protective group and that of an efficient leaving group.126–128 In this new strategy, a 

benzoyl group would be used as a neighboring group participating in the first glycosylation to form 

the β-1,4 glycosidic linkage. Hopefully, this would result in less migration than what had been 

observed with the acetyl group in some preliminary experiments. An allyl group would be used as 

a non-participating group to promote the formation of the α-1,3 linkage. Furthermore, allyl groups 

can be selectively removed by using for example Pd(PPh3)4. 

 

Scheme 3-13 shows the new synthesis strategy starting with these two new monosacchar ide 

building blocks. The key TBDPS protected disaccharide 95 could, on one hand, be converted into 

a new disaccharide acceptor 97 after removal of the isopropylidene group under mild acidic 

conditions as for the previous strategy. On the other hand, it could also be transformed into a new 

disaccharide trifluoroacetimidate donor 96 after deprotection of TBDPS using a fluoride source. 

Following a blockwise strategy these two disaccharides 95 and 97 could then be coupled as 

previously to form an α-1,3 glycosidic linkage and reach the tetrasaccharide 98. 
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Scheme 3-13. New synthesis strategy. 

 

3.2.1 Synthesis of the monomeric building blocks  

The synthesis of thiophenyl galactoside donor 93 is shown in Scheme 3-14. BF3 ·OEt2-mediated 

glycosylation of thiophenol with β-D-galactose pentaacetate followed by Zemplén deacetylation 

afforded the unprotected thiophenyl galactoside 89. Treatment of this with benzaldehyde 

dimethylacetal and CSA gave the diol 100. Regioselective reductive opening of the benzylidene 

acetal to give compound 101 was achieved in the same manner as in the previous strategy by 

treatment of 100 with aluminium trichloride and TMDSO. Acetalization of the C-3 and C-4 

positions of 101 with 2,2 dimethoxypropane and CSA afforded  the cis 5-membered ring acetal  

102 in 90% yield. Benzoylation of the remaining hydroxy group using benzoyl chloride in pyridine 

afforded the fully protected thiogalactoside donor 93. 
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Scheme 3-14. Synthesis of thiophenylgalactoside 93. 

 

The synthesis of monosaccharide acceptor 94 followed the route shown in Scheme 3-15, starting 

with a selective anomeric deacetylation of galactose pentaacetate with hydrazine acetate in DMF 

affording hemiacetal  103 in 80% yield.129 The anomeric center was further protected with a silyl 

ether by treatment with TBDPSCl and imidazole in DMF at 0 °C to give only the kinetic product, 

namely the β-anomer 104. This time Zemplén deacetylation of the remaining acetyl groups had to 

be performed at low temperature and low concentration of sodium methoxide in methanol to avoid 

migration of the TBDPS group. As this protecting group is prone to migrate under both acidic and 

basic conditions, all the next steps had to be carried out under neutral conditions or with very low 

concentration of acid or base. Naphthylidene dimethylacetal was formed in situ by reacting 

2- naphthaldehyde with trimethylorthoformate in methanol and a catalytic amount of p-TSA. This 

was used to acetalize the C-4 and C-6 positions of 105. Unfortunately, isomerization of the starting 

material occurred during the reaction and the highest yield obtained was 62%. The presence of the 

α-anomer product 106a was confirmed by NMR. This isomerization could be explained by the 

combination of a catalytic amount of acid and the known ability of silicon to stabilize 

β- carbocations such as the one present in the oxocarbenium ion formed by ring opening. 

Activation of diol 106 with Bu2SnO followed by treatment with benzyl bromide in the presence 

TBAI gave the alcohol 107. The identity of the product 107 was verified by HMBC. 
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Scheme 3-15. Synthesis of the acceptor 94. 

 

The allylation step that followed was a bit more challenging as it had to be done under neutral 

conditions and therefore could not be performed through a standard Williamson ether synthes is. 

Instead a method developed by Sinou and co-workers derived from the well-known Tsuji-Trost 

reaction enables the introduction of allyl groups under neutral conditions with ethyl allyl carbonate 

and bis(dibenzylideneacetone)palladium(0) (Pd2(dba)3).130 A summary of the allylation reaction 

conditions tested is presented in Table 3-6. Palladium catalyzed allylation (entry 1) yielded first 

the migrated product 108a in 70% yield (characterized by NMR). This may be due to the 

production of a small amount of ethoxide during the catalytic cycle combined with the fast rate of 

migration of TBDPS. The reaction was repeated with addition of pyridinium p-toluenesulfona te 

(PPTS), used as a weak acid to neutralize the solution (entry 2). However, this time no formation 

of product was observed. Changing the allylating reagent to allyldiethylphosphate did not improve 

the outcome (entry 3). We finally decided to react 107 with silver oxide and allyl bromide and to 

our delight, this afforded the desired product 108 in 72% yield. 
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Table 3-6. Optimization conditions for the allylation. 

Entry Conditions Outcome 

  108 108a 

1 

 

- + 

2 

 

- - 

3 

 

- - 

4 

       

+ - 

 

The last step to get to the desired acceptor was a regioselective reductive opening of the 

naphthylidene group giving the NAP group on the C-6 position and the free 4-OH. This reaction 

was performed using triethylsilane (Et3SiH) and triflic acid (TfOH) to afford the desired acceptor 

94. However, hydrolysis of the naphtylidene was also observed affording diol 94a as major by 

product. (see Scheme 3-15) 
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3.2.2 Glycosylation step to get the key β-1,4 linked disaccharide 

 

The results of the conditions tested for the first glycosylation are summarized in Table 3-7.  

The glycosylation was first attempted with the NIS/TESOTf (A) promoter system which led to 

decomposition of the starting materials. As an addition of iodine to the double bond might occur, 

it was decided to switch to another thiophilic promoter. Several organosulfur-based activator 

systems are available for the “preactivation” of thioglycosides with an in situ formation of the 

reactive glycosyl triflate intermediate that can react with a wide range of acceptors.128 Dimethyl 

disulphide-triflic anhydride (Me2S2/Tf2O) promoter system (B) developed by Fügedi and co-

workers125 activates thioglycosides at low temperatures and can be prepared from non-expensive 

commercially available reagents. As the acid-lability of the isopropylidene protecting group had 

been an issue in the previous strategy, we first decided to try the reaction using 2,4,6-tri-tert-

butylpyrimidine (TTBP), a non–nucleophilic and hindered base, to neutralize the solution (entry 

2-4). Nevertheless, due to the very low reactivity of the acceptor no formation of product was 

observed until the temperature was raised to 0 °C and by-product 110a was isolated and 

characterized by NMR. This by-product comes from an intramolecular reaction of the activated 

donor forming a 1,6-anhydro sugar and has been observed before.131 It turned out that when 

omitting the TTBP the formation of this by- product was avoided. The separation by 

chromatography of the donor, acceptor and disaccharide was challenging and it was important to 

optimize the conditions to get full conversion of the donor. Finally, after varying the proportions 

of the donor, acceptor and promoter as well as the temperature and reaction time, the optimized 

conditions yielded the disaccharide 110 in 55% (entry 7), which was an acceptable yield taking 

the very poor reactivity of the acceptor into account.  
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Table 3-7. Optimization conditions for glycosylation. 

Entry TTBP 

buffer 

Donor 

(Equiv.) 

A or Ba 

(Equiv.) 

Temp. 

(°C) 

Time 

(h) 

93 

 left 

109 

 left 

Yield 110 

(%) 

Yield 110a 

(%) 

1 No 1.3 A - 20 to -10 2 - - - - 

2 Yes 1.2 B (1.5) - 40 4 + + - traces 

3 Yes 1.2 B (1.5) - 20 2 + + < 10 traces 

4 Yes 1.6 B (2.5) 0 0.5 - + 30-50 20 

5 No 1.6 B (2.5) - 40 2 + + 40-50 - 

6 No 1.6 B (2.5) - 40 to -20 2 - - - - 

7 No 1.3 B (2.5) - 40 1 - + 55 - 

 

 

Disaccharide 110 could then be converted into both a donor and an acceptor. To derivatize the 

disaccharide into a new donor, the TBDPS protecting group of the anomeric center had to be 

hydrolyzed to give a cyclic hemiacetal. A new leaving group could then be installed at this 

unprotected anomeric position. Glycosyl trifluoroacetimidate was chosen because of its high 

reactivity and ease of synthesis as explained in 3.1.1. Deprotection of the anomeric TBDPS group 

was achieved in 80% yield by reacting disaccharide 110 with a HF·pyridine complex. Cyclic 

hemiacetal 111 could then be reacted with N-phenyl trifluoroacetimidoyl chloride in the presence 

of cesium carbonate to give the desired trifluoroacetimidate donor 112 in 93% yield (see Scheme 

3-16).132 

 

Scheme 3-16. To the trifluoroacetimidate donor 112. 

a A = NIS/TESOTf; B = Me2S2/Tf2O 
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Additionally, disaccharide 110 could be transformed into a new 3-OH acceptor by hydrolyzing the 

isopropylidene acetal (Table 3-8). As the axial 4-OH is supposed to be less reactive, we envisioned 

that it could remain unprotected during the glycosylation reaction. The hydrolysis was first tried 

using standard mild acidic conditions such as 80% acetic acid in water and adding dioxane as 

co- solvent to help the solubility (entry 1). Surprisingly, this did not hydrolyze the acetal at 22 οC 

and even when increasing the temperature and reaction time full conversion was not observed 

(entry 2). The reaction proceeded better when using a 1M aqueous HCl solution in methanol and 

dioxane and afforded the new acceptor 113 in 75% yield. 

 

 

 

Table 3-8. Conditions to hydrolyze the isopropylidene acetal.  

Entry Conditions Temperature 

(
o
C) 

Time 

(h) 

Yield 

(%) 

1 AcOH/H
2
O/dioxane 

4/1/4 

22
 
 24  5  

2 AcOH/H
2
O/dioxane 

4/1/4 

60  48  56  

3 1M HCl aq./methanol/dioxane 40  2  75  

 

3.2.3 Attempt of synthesis of the key α-1,3 linked tetrasaccharide 

With the new acetimidate disaccharide donor 112 and the free 3,4-OH disaccharide acceptor 113 

in hand, a second glycosylation step could be performed. Relying on the higher reactivity of the 

equatorial 3-OH in comparison to the usually poor reactivity of the axial 4-OH of galactose, it was 

expected that the desired 3-linked regioisomer product would be favored. Furthermore, the 

stereoselectivity should be controlled by the combination of a non-participating allyl group at the 

second position of the disaccharide donor 112 and the anomeric effect enhancing α-selectivity. 

Different glycosylation conditions were screened (see  

Table 3-10) mainly affording the three isomers 114,  115 and 116 in varying proportions Scheme 

3-17. 
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Scheme 3-17. Glycosylation affording mainly the three regio- and stereoisomers 114, 115 and 116. 

 

These isomers were characterized by NMR to identify the regio- and stereochemistry of the new 

linkage formed in each case. Thus, HMBC correlation between H-3’ and C-1’’ confirmed the 1-3 

linkage formed for both product 114 and 116 while, in the case of 115, a cross peak in the HMBC 

between H-4’ and C-1’’ showed the formation of a 1-4 linkage during the glycosylation step. To 

prove the stereochemistry observed for the three products, selected chemical shifts and coupling 

constants (J) for the new anomeric centers were analyzed as shown in Table 3-9.  

 

Table 3-9. Characterization of 114, 115 and 116. 

Product δC1’’ (ppm) 

(13C NMR) 

δH1’’ (ppm) 

(1H NMR) 

1JC1’’,H1’’ (Hz) 

(from coupled 

HSQC) 

3JH1’’,H2’’ (Hz) 

(from DQF-

cosy) 

114 95.6 4.62 169 4.8 

115 104.9 4.26 160 10.5 

116 104.7 4.42 160 10.0 

 

According to Bock et al.133 the one bond 13C-1H coupling constants in pyranoses is the most 

powerful tool to determine the anomeric configuration. Thus, for D sugars in the 4C1 conformation, 

a 1JC1,H1 of around 170 Hz indicates an α-anomeric sugar configuration whereas a 1JC1,H1 of around 
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160 Hz indicates a β-anomeric sugar configuration. Furthermore, the 13C chemical shift (δC) of the 

α-anomer is normally lower than the one of the β-anomer for D-pyranoses in 4C1 conformation (in 

this case 95.6 ppm  for 114 and around 105.0 ppm for 115 and 116). Finally, the vicinal coupling 

constant between the anomeric H1 and the H2 (3JH1H2) indicates the relative orientation of the two 

protons. A smaller coupling constant is expected when these two protons are cis (corresponding 

to an α-anomeric configuration in the case of D-galactose) than trans (β-anomeric configuration in 

the case of D-galactose). The results shown in Table 3-9 match all these criteria supporting that the 

new glycosidic linkage formed in compound 114 is an α-linkage whereas the one in both 

compounds 115 and 116 are β-linkages. 

  

In some of the conditions screened for the glycosylation, the formation of other by products was 

observed. However, the by-products without the isopropylidene protecting group were not fully 

characterized as they co-eluted with the hydrolyzed donor 111. Therefore, traces of a mixture of these 
products is marked as 112b in the  

Table 3-10 summarizing attempts to optimize the reaction. 

 

 

Figure 3-1. By products found during the glycosylation. 

In all cases, TMSOTf was used as promoter. A first attempt of glycosylation was performed at -

40 °C for 15 minutes using 1.2 equiv. of donor and 0.25 equiv. of promoter and gave a mixture of 

the three tetrasaccharide isomers, some hydrolyzed donor 111 and possibly some products without 

the isopropylidene group 112b  (entry 1). As it turned out to be very challenging to separate 

isomers 114 from 115 and 115 from 116 by flash chromatography, we next tried to avoid the 

formation of regioisomer 115 by decreasing the amount of donor and promoter (entry 2) and this 

seemed to be successful. However, some hydrolyzed donor 111 was still observed and therefore, 

the next choice was to add some molecular sieves to remove any traces of water present in the 

reaction mixture and reduce this common side reaction (entries 3 to 5). The aim was then to 

increase the stereoselectivity of the reaction. Some ether-type solvents, i.e. Et2O, THF or dioxane, 

are found to have a participating effect in some glycosylation reactions leading towards the 

preferential formation of 1,2-cis glycosidic bonds as explained in Chapter 2.115 Therefore, several 

attempts were done using Et2O first, either alone or mixed with CH2Cl2 (entries 4 to 7). However, 

glycosylations in Et2O are usually much slower than in CH2Cl2. Therefore, it turned out to be 

difficult to get the reaction to go to completion and in all these cases a significant amount of donor 

was recovered even when the amount of promoter and/or the temperature were increased (entry  7).  
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Table 3-10. Glycosylation conditions screened. 

Entry Donora 

(Equiv.)  

TMSOTfa 

(Equiv.) 

Temp. 

(°C) 

4 Å 

MSb 

Solvent Time 

 

Outcome 

1 1.2 0.25 - 40 - CH2Cl2 15 

min 

114, 115, 116, 

112bd 

2 1 0.1 - 40 - CH2Cl2/Et2O 

1/1 

25 

min 

114, 116, 112b d 

3 1.2 0.25 - 40 + CH2Cl2 15 

min 

114 (10-30%) 

115 (<10%) 

116 (20%) 

4 1 0.25 - 40 + CH2Cl2/Et2O 

1/1 

15 

min 

114 (20%) 

116 (45%) 

5 1 0.25 0 + Et2O 20 

min 

114 (10%) 

116 (20%) 

112 

6 1 0.25 0 - Et2O 90 

min 

114 (10%) 

116 (20%) 

112 

112bd (20%)  

7 1 1 0-22 + Et2O 12 

hours 

114, 116, 112 

8 1 0.5 0 + toluene 30 

min 

114 (20%) 

116 (18%) 

112 

9 1 0.5 22 + dioxane 30 

min 

114 (28%) 

116 (13%) 

112, 112bd 

10 1 0.5 0 + dioxane/Et2O 

1/1 

75 

min 

114 (40%) 

116 

112, 112bd 

11c 1 0.5 0 + dioxane/Et2O 

1/1 

2 

hours 

20% <114<60%e 

116 

112 

 aMolar ratio in respect to the acceptor. bCrushed 4 Å molecular sieves . cAdd of 1 equiv. TTBP as buffer. dBy-products 

defined in Figure 3-1. eSome product sticking to the column. 



61 
 

 

One attempt was even tried without molecular sieves as they are alkaline and therefore were 

thought to attenuate the reactivity but this resulted again in formation of hydrolyzed donor and 

deprotection of the isopropylidene group (entry 6). Switching to other solvent such as toluene or 

dioxane alone did not increase the yield of the desired product 114 (entries 8 and 9). As the melting 

point of dioxane is 11 °C, Et2O was added as co-solvent to enable stirring at lower temperature 

(entries 10 and 11) and in the last attempt, TTBP was used to neutralize the reaction mixture and  

decrease the likelyness of isopropylidene deprotection. We figured out at that point that a portion 

of the products were not eluting properly from the column. After trying out different eluent systems 

without any satisfying results, we decided to move on to an easier strategy which would involve a 

4-O protected disaccharide acceptor to avoid the possible formation of the 1,4-linked regioisomer 

by product (115) and make it easier to increase the relative amount of donor used to optimize the 

reaction conditions. 

 

3.3 Third protecting group strategy 
Whereas the monosaccharide acceptor 109 could be kept the same, a new monosaccharide donor 

had to be designed in order to fulfil the new requirement of a disaccharide acceptor, with a free 3-

OH further in the synthesis (see Scheme 3-18). 

 

 

Scheme 3-18. Monosaccharide building blocks. 

The ClAc group was chosen for temporary protection of the C-3 position since it can be selective ly 

removed either with thiourea or under mild basic conditions.134 The new synthetic strategy to get 

to the fully protected tetrasaccharide 121 is shown in Scheme 3-19 and very similar to the previous 

strategy shown in Scheme 3-13. The key disaccharide 118 will be converted into a new 

disaccharide donor 119 as previously and a new disaccharide acceptor 120 by selective removal 

of the chloroacetyl group. The following glycosylation step between both will afford the 

tetrasaccharide precursor 121 ready to be deprotected and sulfated in different order to get to the 

target molecules. 
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Scheme 3-19. New synthetic strategy. 

 

3.3.1 Synthesis of building block donor 117 and key disaccharide 118 

The monosaccharide donor 117 was previously synthesized by T. Kanaya et al.135 However, when 

following the same procedures starting from diol 100, the yield of the regioselect ive 

chloroacetylation through the formation of a dibutyltin acetal intermediate was lower than 

reported. Furthermore, the benzoylation step used pyridine as solvent, which led to deprotection 

of the chloroacetyl group instead (see Scheme 3-20). 
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Scheme 3-20. First attempt to synthesize donor 117 following T. Kanaya .135 

 

A second and more successful attempt was performed as shown in Scheme 3-21. 

 

Scheme 3-21. Synthesis of building block 117. 

 

Thioglycoside 100 was regioselectively chloroacetylated via formation of the stannylene acetal 

with Bu2SnO followed by treatment with chloroacetyl chloride and 4Å MS at 0 °C.63 Benzoyla t ion 

of the remaining unprotected hydroxyl group in dichloromethane at low temperature (0 °C) and 

using a stoichiometric amount of Et3N afforded the desired fully protected thiogalactoside 117 in 

85% yield. 

 

The glycosylation between the new donor 117 and the acceptor 94 could then be performed using 

the optimized conditions previously found for the synthesis of disaccharide 110 as shown in 

Scheme 3-22, and afforded disaccharide 118 in 55% yield. 
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Scheme 3-22. Glycosylation to get the key disaccharide 118. 

 

The conversion of disaccharide 118 into the corresponding trifluoroacetimidate donor was 

straightforward and done as previously described (see Scheme 3-23). 

 

Scheme 3-23. Synthesis of trifluoroacetimidate donor 119. 

 

Unfortunately, it turned out to be much more challenging to obtain the disaccharide acceptor by 

selectively removing the chloroacetyl protecting group (see Table 3-11). 
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Table 3-11. Screening of different conditions to selectively remove the ClAc group. 

Entry   Conditions Outcomea 

  120 124 125 118 

1 Thiourea (3 equiv.), NaHCO3 (3.5 equiv.), TBAI 

(0.2  equiv.) THF, 

 55 °C, 24 h 

- 70% - + 

2 Thiourea (5 equiv.) , THF, 22 °C,(12 h) to 55 °C 

(24  h) 

- +++ - +++ 

3 Thiourea (5 equiv.), 2,6-lutidine (5 equiv.), DMF, 

70  °C, 1 h 

 

+ ++ - +++ 

4 DABCO (1 equiv. after 24 h add 12 equiv.), 

ethanol/THF 1:1, 22 °C 

- +++ - +++ 

5 L-selectride (1M in THF), CH2Cl2, 0 °C, 2 h 20% - 50% + 

6 L-selectride (1M in THF), CH2Cl2, -78 °C - - - +++ 

7 L-selectride (1M in THF), CH2Cl2, -40 °C + ++ ++ ++ 

8 0.05M NaOMe in MeOH, 0 °C + - + ++ 
a percentage indicates yield of reaction after purification by flash chromatographic while +/- indicates relative 

quantities estimated by TLC. 

 

First, the removal of chloroacetyl group was tried by using the most common conditions, thiourea, 

NaHCO3 and TBAI (entry 1).134 However, this afforded mainly the migrated product 124. An 

attempt to decrease the basicity of the solution by removing NaHCO3 did not significantly change 

the outcome of the reaction (entry 2). A small improvement was observed when following the 

procedure given by H. Tanaka et al.136 (entry 3). 1,4-Diazabicyclo[2.2.2]octane (DABCO) has 
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been previously used to cleave chloroacetyl protecting group,137 nevertheless, no reaction occurred 

before adding a large excess of the reagent which led to the formation of mainly migrated product 

124 (entry 4). Due to significant migration of the 2-O-acyl group under basic conditions, it was 

attempted to change the conditions more drastically and to remove the chloroacetyl by reduction 

(entries 5, 6 and 7). Li(sec-Bu)3BH (L-selectride) was chosen as the reducing agent as it had given 

good results in our group previously and is less dangerous to use than superhydride.138,63 Indeed, 

the corresponding borane is less volatile and therefore less likely to react with oxygen. 

Unfortunately, at 0 °C it was not possible to remove the chloroacetyl group selectively in the 

presence of the benzoyl group, resulting instead in diol 125 as the major product (entry 5). Hoping 

for higher selectivity, the temperature was lowered, but at -78 °C no reaction occurred (entry 6). 

Performing the reaction at -40 °C did not give any selectivity. A last attempt of selective 

deprotection using Zemplén conditions however modified by decreasing both the concentration of 

NaOMe and the temperature did not give satisfying result either. 

 

At this point, we decided to deprotect both acyl group under Zemplén conditions (see Scheme 

3-24). The obtained diol 125 would be used further as disaccharide acceptor in the next 

glycosylation, hoping that the 3-position would be more reactive than the more sterically hindered 

2-position and, therefore afford the right regioisomer. 

 

 

Scheme 3-24. Deprotection of acyl groups under Zemplén conditions. 

 

3.3.2 Synthesis of key the α-1,3 linked tetrasaccharide 

The glycosylation between disaccharide donor 119 and the diol disaccharide acceptor 125 could 

in principle lead to four different tetrasaccharide isomers, two regioisomers and each of them could 

be produced as two diastereoisomers (α- and β-linked). Furthermore, hexasaccharides could also 

be produced. Thus, we decided to use a small excess of acceptor 125 (1.1 equiv) to hopefully avoid 

the formation of hexasaccharides with selectivity for one regioisomer of the tetrasaccharides. We 

were dependent on one of the hydroxyl groups being more reactive than the other. The conditions 

used are presented in the Scheme 3-25 and afforded tetrasaccharide 126 in a surprisingly good 

yield (55%) taking into account the number of possible products. As previously, the stereo- and 

regiochemistry of the new glycosidic linkage were confirmed by 2D NMR experiments. Indeed, 
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HMBC correlations proved the 1-3 linkage while  both 13C and 1H chemical shifts of the new 

anomeric center and coupling constants supported the α-stereochemistry of the newly formed bond 

(see Table 3-12). 

 

Scheme 3-25. Glycosylation to get the α-1,3 linked tetrasaccharide 126. 

 

δC1’’ 

(ppm) 

δH1’’ 

(ppm) 

3JH1’’,H2’’ 

(Hz) 

1JC1’’,H1’’ 

(Hz) 

92.2 5.33 5.5 168 

Table 3-12. NMR data of the new glycosidic linkage. 

Not much time was left at that point to optimize the conditions for this glycosylation and therefore 

we decided to move on to the subsequent steps. 

 

As this glycosylation unexpectedly worked out quite well, regioselective deprotection of the C-3’ 

position of 118 was no longer required and a simpler dibenzoylated monosaccharide building 

block donor was synthesized as shown in Scheme 3-26. 

 

Scheme 3-26. Synthesis of monosaccharide donor 127. 
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Similar procedures starting from monosaccharide donor 127 and monosaccharide acceptor 94 

could then be performed to get to the new trifluoroacetimidate disaccharide 130 and disaccharide 

acceptor 125. (Scheme 3-27). A slightly better yield was obtained for the first glycosylation step 

using the new dibenzoylated thiophenylgalactoside donor (62% versus 55%). 

 

Scheme 3-27. From monosaccharide building block 127 to disaccharide donor 130 and disaccharide 
acceptor 125. 

 

Unexpectedly, the glycosylation between donor 130 and acceptor 125 did not proceed as well as 

with the previous chloroacetylated donor 119 (See Scheme 3-28). 
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Scheme 3-28. Glycosylation to get the tetrasaccharide 132. 

 

Using the identical reation conditions, only 10% of the desired α-1,3 linked tetrasaccharide 132 

was obtained, whereas the major product formed was the corresponding stereoisomer 131 (60% 

of β-1,3 linked product). This unpredictable outcome highlights the importance of protecting 

groups for glycosylation and demonstrates how, even remote, subtle differences can dramatica lly 

affect reactivity and stereoselectivity. 

 

The tetrasaccharide 126 shown in Figure 3-2 was therefore chosen as precursor for all the target 

molecules. 

 

Figure 3-2. Protected tetrasaccharide precursor 126 of all targets molecule. 
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3.3.3 Investigation of deprotection and sulfation steps 

With the protected tetrasaccharide 126 in hand it was believed to be possible to prepare the five 

D6S carrageenans by applying 6 to 9 additional steps to regioselectively deprotect some positions 

and introduce sulfate groups at these unprotected positions depending on the targeted carrageenan 

as shown in the following Scheme 3-29. The sulfation step and following deprotection were mostly 

inspired by the work of Boons et al. related to heparin synthesis.96,97 

As explained in section 0, the NAP group and allyl group were chosen for their ability to be 

selectively removed by DDQ and palladium tetrakis (Pd(PPh3)4) respectively and were placed at 

positions where sulfation was eventually required. In the same manner, the benzylidene protecting 

group can be cleaved selectively under acidic conditions. In some cases, one more protecting step 

is needed prior to sulfation. For example, the C-3’’’position of the tetrasaccharide has to be 

protected to arrive at carrageenans G2S-D2S,6S and G-D6S. Therefore, after Zemplén 

deprotection of the chloroacetyl and the benzoyl protecting groups, a regioselective benzylation of 

that position via the formation of a tin acetal could be performed. In the case of carrageenans G4S-

D6S and G4S-D2S,6S, positions C-6’ and C-6’’’ need to be protected before the sulfation step. 

Due to steric demands, trityl groups are easy to install selectively on primary alcohols in the 

presence of secondary alcohols, and therefore, this could be a wise choice of protecting group, 

which could later be removed under acidic conditions. Zemplén conditions would remove the 

remaining esters after sulfation while the last hydrogenation step would cleave the remaining 

benzyl and benzylidene protecting groups depending on the target. 
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Scheme 3-29. Deprotection and sulfation strategy. 
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3.3.3.1 Preliminary test experiments on disaccharide 125. 

To ensure that the different selective deprotection steps would work and in order to get experience 

with the sulfation reaction, we decided to first perform some experiments with disaccharide 125 

(Scheme 3-30) as it should have more or less the same reactivity and behaviour as the simila r ly 

protected tetrasaccharide 126, in theory. 

 

 

Scheme 3-30. Disaccharide 125 used as test substrate. 

 

The first idea was to synthesize the λ-carrageenan disaccharide (G2S-D2S,6S) and see if a selective 

sulfation of the C-6 position in the presence of other secondary free hydroxy groups would be 

feasible to get γ-carrageenan (G-D6S) as shown in Scheme 3-31. A selective benzylation of the 

C- 3’ position followed by deprotection of the NAP group and the allyl group would give triol 134 

ready for sulfation. Then, sulfation either of the C-6 position or of all remaining free hydroxy 

groups would afford respectively disaccharides 135 and 137 ready to be hydrogenated and give 

the desired products G2S-D2S,6S and G-D6S. 
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Scheme 3-31. Synthesis strategy to get to (G2S-D2S,6S) and (G-D6S) disaccharides. 

 

The first step of the synthesis, namely stannylene-promoted regioselective benzylation of the diol 

125, did not proceed as expected with most of the starting material recovered. It was thought that 

the stannylene acetal formation was the limiting step due to the possible presence of water in the 

reaction mixture. Therefore more attempts were done to get as dry conditions as possible by adding 

4 Å molecular sieves, changing solvent from toluene to methanol and drying the vessels more 

carefully, but none of them gave any satisfying result (Scheme 3-32). 

 

Scheme 3-32. Unsuccessful regioselective benzylation. 
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Even though the benzyl protecting group would have been the wisest choice of protecting group 

to keep the number of deprotection step at a minimum, we needed to find another protecting group. 

As regioselective acylation of this position has been performed before, we chose a benzoyl group 

as new protecting group. However, several attempts needed to be performed before getting the 

desired regioselectivity as shown in Table 3-13. 

 

 

Table 3-13. Conditions tested for the regioselective benzoylation of diol 125. 

Entry Conditions  Outcomea  

  139 125 139a 

1 BzCl (1.1 equiv.), pyridine (1.1  equiv.), 

CH2Cl2, -40 °C, 4 h 

30% 50% 20% 

2 BzCl (1.2 equiv.), Et3N (1.2  equiv.), 

CH2Cl2, -40 °C, 4 h 

+ +++ - 

3 BzCl (1.2 equiv.), Et3N (1.2  equiv.), 

CH2Cl2, 0 °C 

++ ++ + 

4 BzCl (1.2 equiv.), 

Pyridine, 0 °C, 24 h 

++ ++ - 

5 BzCl (1.1 equiv.), Et3N (1.2  equiv.), 

cat. DMAP 

CH2Cl2, -40 °C 

75% - 15% 

a percentage indicates yield of reaction after purification by flash chromatographic while +/ - indicates relative 

quantities estimated by TLC. 

 

Relying on the higher reactivity of the C-3’ position as compared to the C-2’ position, the 

regioselective benzoylation was first tried following Mandal et al.’s procedure, using pyridine as 

a base and performing the reaction in dichloromethane at -40 °C (entry 1).139 However, the 

dibenzoylated adduct 139a was formed in almost the same quantity as the desired product 139 and 

therefore some other conditions had to be screened. Finally, by adding a catalytic amount of 

DMAP and performing the reaction at low temperature in dichloromethane in the presence of a 

stoichiometric amount of triethylamine, the regioselectivity improved and the yield of the reaction 

increased to 75% (entry 5). 

 

The triol 142 precursor of the sulfation could then be synthesized as shown in Scheme 3-33. 
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Scheme 3-33. Synthesis of triol 142 from disaccharide 125. 

 

The 6-O-NAP protecting group was selectively cleaved by oxidation using DDQ in a good yield 

(90%).140 Selective removal of the allyl group using palladium tetrakis finally led to triol 142 

notably without migration of the TBDPS group or anomerization. 

 

The first sulfation attempt was done by following a procedure often used in the synthesis of 

heparan sulfate oligosaccharides by Boons et al. (see Scheme 3-34).97,141  

Scheme 3-34. First attempt of selective sulfation of the 6-position by using 4 equiv. of SO3·Py complex.  

 

A lower amount of SO3
.Py complex was used in our case in order to sulfate the C-6 position 

selectively. However, due to acid lability of the benzylidene protecting group, some by-products 

without benzylidene protecting group were isolated. The conditions needed to be optimize to 

quench any traces of acid and water present in the reaction mixture in order to avoid this side-

reaction. 

Therefore, we decided to add  4 Å MS as well as a few equivalents of pyridine to the reaction 

mixture and this afforded the monosulfated disaccharide 143 in 70% yield. (see Scheme 3-35). 

The sulfate ester at the C-6 position was identified by a downfield shift of the corresponding carbon 
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(~ 8  ppm) and protons (~ 0.5 ppm). According to previous syntheses of heparin oligosacchar ides 

a  downfield shift of ring protons H-2 and H-2’ close to 1 ppm would indicate the formation of 

sulfate ester at the C-2 positions.142,100 As the chemical shift of H-2 and H-2’ did not change, we 

concluded that sulfation at these two positions did not occur.  

 

Scheme 3-35. Optimized conditions for the selective sulfation. 

 

Sulfation of all three hydroxyl groups turned out to be much more challenging than expected. First 

of all, as the polysulfated molecules are very polar, it was difficult to follow the reaction properly. 

It was however possible to follow the disappearance of the starting material as well as the presence 

of monosulfated adduct 143. The idea was, therefore, to get full conversion of both of these before 

purifying the reaction mixture. The different conditions attempted are presented in Table 3-14. 

Several attempts were done using the same reagents as for the selective sulfation but a larger excess 

of sulfating agent (30 equiv. entry 1 and 60 equiv. entries 2 and 3 respectively). Neither adding 

more equivalents of reagent, nor increasing the temperature to 55 °C changed the amount of 

starting material and monosulfated adduct left in the reaction mixture significantly. To explain this 

observation, it was hypothesized that the C-2 positions were too sterically hindered to react with 

the sulfating agent (and especially C-2’ position). Indeed, the C-2’position had previously shown 

a very low reactivity in the glycosylation to obtain the tetrasaccharide 126 (Scheme 3-25). 

Furthermore, one of the challenges of polysulfation is the repulsive intramolecular forces created 

by the sulfate groups which can make it difficult to drive the reaction to completion as explained 

by Al-Horani et al..82 Therefore, a more reactive sulfating agent might be needed to form the 

sulfate esters on these positions and further optimization remains to be done.  
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Table 3-14. Conditions tried for the full sulfation of triol disaccharide 142.  

Entry Reagents Temp. Time Outcomea 

  (°C) (h) 142 143 

1 SO3
.Py (30 equiv.) 

pyridine (35 equiv.) 

22 24 + ++ 

2 SO3
.Py (60 equiv.) 

pyridine (65 equiv.) 

22 to 55 48 + ++ 

3 SO3
.Py (60 equiv.) 

pyridine (65 equiv.) 

DMAP (1 equiv.) 

22 to 55 48 + ++ 

a Relative quantities  estimated by TLC. 

 

To get to the desired G-D6S disaccharide 136, monosulfated disaccharide 143 could then be 

deprotected. First debenzoylation under Zemplén conditions was performed as shown in Table 

3-15. 

 

 

Table 3-15. Debenzoylation of monosulfated disaccharide 143. 

Entry Conditions 145 

(%) 

145b 

(%) 

1 1 M NaOMe/MeOH in MeOH, 22 °C, 2 h 20 60 

2 0.04 M NaOMe/MeOH in MeOH, -20 °C, 48 h 70 - 
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Due to fast migration of the TBDPS group, cleavage of the benzoyl group under standard Zemplén 

conditions afforded mostly the migrated hemiacetal product 145b. (entry 1). Repeating the reaction 

at lower concentration of sodium methoxide and lower temperature solved the problem and gave 

the desired triol 145 in 70% yield (entry 2). Optimization of the concentration to decrease the 

reaction time would be advantageous. 

 

The final step was a hydrogenation to get the unprotected monosulfated disaccharide following 

Boons’s procedure.97 A catalytic amount of acetic acid was added to decrease the reaction time 

and hopefully avoid deprotection of the sulfate group as this has been experienced in the heparin 

oligosaccharides synthesis when longer reaction times were necessary (see Scheme 3-36). 100 Both 

benzylidene and benzyl groups were successfully removed using these conditions without 

affecting the sulfate group. 

 

 

Scheme 3-36. Hydrogenation to get the unprotected monosulfated disaccharide G-D6S. 

 

3.3.3.2 Deprotection and sulfation steps to afford G-D6S tetrasaccharide 

As the different deprotection and sulfation steps were optimized on the model disaccharide 125 

and afforded G-D6S disaccharide in a good overall yield, these procedures were translated to the 

protected tetrasaccharide 126 to afford l-carrageenan tetrasaccharide (G-D6S). The deprotection 

steps prior to sulfation were achieved as shown in Scheme 3-37. 

 

First, deprotection of the two acyl group under Zemplén conditions afforded diol tetrasaccharide 

147. Regioselective benzoylation of the free C-3’’’ position under the conditions optimized for the 

disaccharide analogue gave the monobenzoylated adduct 148 in 76% yield. Oxidative cleavage of 

the NAP groups using DDQ, followed by deallylation with Pd(PPh3)4 afforded tetrasaccharide 150 

in excellent yield ready for the sulfation step. 
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Scheme 3-37. Deprotection steps on tetrasaccharide 126. 

 

The conditions optimized for the selective sulfation on disaccharide 142 needed to be adapted to 

enable disulfation of tetrasaccharide 150 as shown in the following Table 3-16. 

 

The first attempt was performed by starting with 5 equiv. of the SO3
.Py complex and 6 equiv. of 

pyridine (entry 1). According to TLC analysis, a lot of starting material remained after 2 hours and 

therefore the same amounts of both reagents were added. TLC did not show any significant 

improvement after additional two hours and therefore, the same was repeated one more time. The 

reaction did not go to completion and was quenched after 8 hours and purified by flash 

chromatography. Some starting material was recovered and a mixture of monosulfated adduct 

151a and the desired disulfated tetrasaccharide 151 was obtained. A second experiment was started 

by adding more reagent from the beginning (12 equiv. of SO3
.Py) and after adding 10 more equiv. 

later, the reaction went to completion. The product was obtained in 60% yield and only a small 

amount of monosulfated adduct was isolated (10%). We have not repeated yet this experiment to 

confirm its reproducibility and the final optimization remains to be done. 
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Table 3-16. Conditions tried for the selective sulfation of the C-6 positions. 

Entry Reagents Time Outcomea 

  (h) 150  151 151a 

1 SO3
.Py (15 equiv. added in 4 

times over 5 h) 

pyridine (18 equiv. added in 4 

times over 5 h) 

8 + ++ ++ 

2 SO3
.Py (22 equiv. in 2 times 

over 2 h) 

pyridine (24 equiv.in 2 times 

over 2 h) 

3 - 60% 10% 

 a percentage indicates yield of reaction after purification by flash chromatographic while +/- indicates relative 

quantities estimated by TLC. 

 

Unfortunately, due to small amount of 151 we were not able to perform the debenzoylation and 

hydrogenation on this disulfated tetrasaccharide to reach the target molecule. However we note 

that conditions appear to translate well from disaccharide to tetrasacharide. 

 

  



81 
 

3.4 Future perspectives 

After synthesizing some more of the disulfated tetrasaccharide 151, deprotection of the ester as 

well as hydrogenation following the conditions tested on disaccharide 143 remain to be done to 

get the desired G-D6S tetrasaccharide as shown in Scheme 3-38. 

 

Scheme 3-38. Synthesis of the G-D6S tetrasaccharide target. 

The formation of the 3,6-anhydro ring could then be tested on the G-D6S tetrasaccharide to 

synthesize the corresponding G-DA tetrasaccharide (β-carrageenan) either by using an alkaline 

solution or through enzymatic conversion as shown in Scheme 3-39.35,37,40,42,43  

 

 

Scheme 3-39. Cyclization of the 3,6-anhydro residue to reach G-DA tetrasaccharide. 

 

The eight other targeted carrageenans require polysulfation and sulfation of at least one secondary 

alcohol (either C-4’ or C-2/C-2’ positions  as previously shown in Scheme 3-29). Therefore, a 

method to sulfate the sterically hindered C-2 and C-2’ positions needs to be developed prior to 

synthesize the other target molecules. As explained in section 1.1.4, other sulfating agent such as 
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SO3
.NEt3 or SO3

.NMe3 have been used in the synthesis of sulfated oligosaccharides.82 The basicity 

of both triethylamine and trimethylamine make these complexes more stable than the pyridine one 

as shown in Table 1-5.95 Addition of TfOH in the reaction mixture may help sulfation carry out 

with one of those SO3·amine complexes as this previously solved the problem of polysulfation in 

the synthesis achieved by Krylov et al. 102  (see section 1.1.4). If a few more trials with these 

sulfating agents are not successful, we might have to change the conditions more drastically and 

find other non-sterically hindered sulfating agents compatible with our substrate. To help their 

purification as well as the success of subsequent deprotection steps in common organic solvent, it 

might be a good idea to introduce them as a masked formed as explained in 1.1.4. Once the 

polysulfation method is developed, the other carrageenan should be easily synthesized by 

following the deprotection/sulfation strategy showed in Scheme 3-29. 

 

A longer perspective, would be to produce longer oligosaccharides such as octasaccharides, since 

DP=8 should provide an effective binding to antibodies and enzymes and would also enable  

structural studies of the oligomers.143 Following our modular synthesis, they should be attainable 

through coupling of two tetrasaccharides building blocks as shown in Scheme 3-40. 
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Scheme 3-40. Retrosynthetic pathway to the octasaccharide precursor 154.  

The described chemistry in this section is currently ongoing.  

 

3.5 Concluding remarks 

One of the main challenge in this project was the diversity of protecting group required in order to 

synthesize one single precursor for all ten types of carrageenan oligosaccharides.  Therefore, the 

two first protecting group strategies did not succeed in the synthesis of the alternating 3-linked-β-

D-galactopyranose (G) and 4-linked-α-D-galactopyranose (D) backbone of carrageenan. This was 

mainly due to the lability of some protecting groups such as the isopropylidene group, which was 

hydrolyzed during the glycosylation reactions. Moving on to a third set of orthogonal protecting 

groups, the desired tetrasaccharide precursor 126 was finally successfully synthesized. The 

deprotection and sulfation steps were then tested on disaccharide 125. Conditions for a selective 

sulfation of the C-6 position of triol disaccharide 143 were optimized and afforded the desired 
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monosulfated disaccharide 143 in 70% yield. This one was successfully deacylated and 

hydrogenated to give the desired G-D6S disaccharide carrageenan. These promizing results were 

then translated on to tetrasaccharide 126 and the selective deprotection steps followed by 

regioselective sulfation of C-6 positions afforded disulfated tetrasaccharide 151 in an overall good 

yield. However, polysulfation of triol disaccharide 143 did not give any satisfying result yet and 

more work remains to be done in that perspective before starting the synthesis of the other target 

tetrasaccharide carrageenans. 
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Chapter 4 

                  Catalyzed Intramolecular Fluoroarylation  

Fluoroorganic compounds are eminently important in medicinal chemistry. The introduction of 

fluorine has attracted considerable attention from the synthetic community,144 however, carbon-

fluoride bond formation remains a challenging chemical transformation.145 Enantioselect ive 

fluorinations are mostly achieved through α-fluorination of ketone and aldehyde derivatives,146 –

149 or by ring-opening of strained heterocycles.150–152 Few examples of enantioselective transition-

metal-catalyzed fluorination exist.146–149,153,154 

 

Pd-mediated C-F bond formation can be achieved through two main approaches: Pd0/PdII-

mediated nucleophilic fluorination or Pd-mediated electrophilic fluorination. The latter most 

probably goes through a reductive elimination from a high-valent Pd specie but further mechanist ic 

insight about the oxidant-promoted C-F bond formation is still ongoing.155,156 The two approaches 

differ by the source of fluorine used, either being of nucleophilic or electrophilic character  

respectively. Nucleophilic fluorination using fluoride is complicated by the relatively high basicity 

of the anion. It does not tolerate reaction involving protic functional groups such as alcohols, 

primary or secondary amines, and N-H-containing amides due to the strong H-F hydrogen bonding 

resulting in bifluoride formation.157 Electrophilic fluorination on the other hand can be challenging 

with basic functional groups such as amines and sulfides due to side reactions with the electrophilic 

fluorinating reagent. Thus, the two approaches are complementary.145 

 

C-F bond formation through reductive elimination using “F+” oxidants goes through a PdII/ PdIV 

catalytic cycle. This has been studied the last decades and Selectfluor (see Figure 4-1) proved to 

be a useful “F+” oxidant reagent both in gold and palladium catalysis.156 

 

 

 
Figure 4-1. Selectfluor: a source of “F+”.158 
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4.1 Background of the project: Pd-catalyzed intermolecular 

fluoroarylation of styrenes 

This project was inspired by previous results from the Toste group involving an asymmetr ic 

palladium-catalyzed directed intermolecular fluoroarylation of styrenes.159 The reaction involved 

a three-component coupling of Selectfluor, a styrene and an aryl boronic acid. The optimized 

conditions for the regioselective Pd-catalyzed fluoroarylation of styrenes are shown in Scheme 

4-1. 

 

 

Scheme 4-1. Optimized conditions for Pd-catalyzed fluoroarylation of styrenes.159 

 

A directing group such as 8-aminoquinoline (AQ) was needed to control the regioselectivity of the 

reaction. Tert-butyl-bipyridine (dtbp) ligands had to be added to stabilize the high-valent metal 

intermediate and divert it from an oxidative Heck-type coupling reaction toward C-F bond 

formation. The electron rich character of bipyridine ligands facilitates oxidative addition of 

palladium and their steric bulk promotes reductive elimination. Furthermore, these bidentate 

ligands do not induce competing nitrogen-fluorine reductive elimination.160 Aryl boronic acids 

were used as arylating reagents since boronic acids are compatible with a variety of functiona l 

groups and competent nucleophiles for transmetalation to palladium. Additionally, fluorination of 

arylboronic acids and derivatives has already been extensively studied.161–163 The addition of water 

was important to solubilize the Selectfluor salt, and organic phosphate was added as phase transfer 

catalyst. Finally tert-butylcatechol was used as stabilizer and inhibitor of styrene polymerization.  

The yield of the reaction varied between 62% and 81%, depending on the substrates. 

 

The mechanism shown in Scheme 4-2 was suggested to explain the outcome of the reaction. The 

catalytic cycle is initiated by the formation of an N,N-ligated Pd(II) specie. Transmetalation with 

the aryl boronic acid followed by coordination and migratory insertion of the styrene substrate 

affords a β-arylated Pd(II) intermediate. Stabilization of this intermediate via coordination with 

the directing group as well as a bipyridine ligand retards the competing β-hydride elimina tion 

reaction and promote the oxidative addition of “F+” delivered by Selectfluor, affording a high-

valent Pd(IV) specie. Finally, reductive elimination affords the desired monofluorinated product 

and regenerates the catalytic complex [N-N-Pd(II)]. 
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Scheme 4-2. Proposed catalytic cycle for the directed fluoroarylation of styrene.159 

  

An enantioselective version of the reaction using chiral ligand L* (shown in Scheme 4-3) was 

further developed and optimized giving good yields (up to 83%) and ee (up to 96). 

 

 

Scheme 4-3. Enantioselective Pd-catalyzed fluoroarylation of styrenes. 159 

 

Based on these results, we envisioned that it would be possible to develop an intramolecular 

version of this catalytic reaction which would involve a simultaneous cyclization and C-F bond 

formation. 
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4.2 Development of a catalytic intramolecular fluoroarylation 

Using the optimized conditions of the intermolecular fluoroarylation shown in Scheme 4-1, a first 

attempt of intramolecular fluoroarylation was tried using the same conditions (Scheme 4-4). 

  

Scheme 4-4. First attempt of Pd-catalyzed intramolecular fluoroarylation. 

 

The two regioisomers formed (A and B) were isolated and characterized by 19F NMR. 

To optimize the regioselectivity of the reaction, some additives had to be screened. Surprisingly, 

after adding silver oxide in the reaction mixture, we figured out that this additive could catalyze 

the fluorocyclization by itself (Scheme 4-5). 

 

Scheme 4-5. Silver-catalyzed intramolecular fluoroarylation. 

 

Silver is typically used as a non-redox active Lewis acid in homogeneous catalysis, and its redox 

catalysis is not well understood yet but hypothesized to proceed through an one eletron transfer 

pathway.164 Radical fluorination has emerged during the last decade as a new tool in C(sp3)- F 

bond formation as shown by the radical deboronofluorination of alkylboronic acids or their pinacol 

ersters developed by Li et al.165 As silver oxide is an inexpensive Ag(I) source, we decided to 

explore this new kind of catalysis and try to develop a silver-catalyzed intramolecular 

fluoroarylation. 

 

This first experience gave us the hope that the regioselective outcome of the reaction could be 

controlled by changing the electronic environment of both the aryl and the allyl functionalities by 

substituting them with electron-withdrawing or electron-donating groups.  
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4.2.1 Substrates scope 

The small library of substrates shown in Scheme 4-6 and Scheme 4-7 was designed to be 

synthesized.  

Scheme 4-6. Substrate scope. 

 

The following additional substrates were synthesized at the same time by Dr. G. Schäfer. 

Scheme 4-7. Additional substrates synthesized by Dr. G. Schäfer.  

 

In principle the different substrates could be synthesized following the route shown in Scheme 

4-8. 

 
Scheme 4-8. Synthetic route for the different aryl boronic substrate derivatives.  
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Substrates 1a-h could be synthesized from commercially available 2-bromophenol starting by an 

alkylation step either through nucleophilic substitution of R’X with the phenol or using a 

Mitsunobu reaction between 2-bromophenol and R’OH (in most cases commercially availab le 

except for the substrates 1c and 1d). In either cases the boronic acid would be installed on the 

alkylated substrate (2a-l) through a lithium bromide exchange followed by borate trapping known 

as the in situ quenched method developed by Reider et al.166 For the substrates 1i-k an additiona l 

bromination step onto the corresponding R-substituted phenol would be required prior to the 

alkylation. The last substrate 1l could be synthesized through the same way but starting from 

commercially available 1-bromo-2-naphtol. 

 

4.2.1.1 Synthesis of the substrates 

The bromination of the substituted phenols 4i-k was done according to Scheme 4-9. 

Scheme 4-9. Synthesis of the brominated substituted phenol 3j-l. 

 

Substrates 3j-k were synthesized following a standard bromination procedure using bromine while 

3l was synthesized from commercially available 3,5-dimethoxyphenol at low temperature using 

the electrophilic brominating reagent NBS to avoid multiple bromination.167 

For substrates 1c and 1d, it was necessary to synthesize the alkylating reagents 5c and 5d prior to 

the alkylation reaction with 3c and 3d. Compounds 5c and 5d were prepared via a Grignard 

reaction reported in the literature as shown in Scheme 4-10.168  

Scheme 4-10. Grignard reaction affording 5c and 5d. 

The alkylation of all the substrates could then be achieved as described in Table 4-1. Substrates 

2a, 2c and 2d were synthesized via a Mitsonobu reaction between their phenol derivative 



91 
 

precursors and the required substituted unsaturated alcohol B (see path b). All the other substrates 

were obtained by nucleophilic attack of their corresponding R-substituted phenol precursors on 

the required substituted allyl-halogen reagent B (see path a). All the reactions afforded the desired 

compounds 2a-l in satisfying yields (50%-98%) except for substrates  3g and 3h. No product was 

isolated for 3g while 2h dimerized to give compound 2h’ (shown in Scheme 4-11 ) as the major 

product.   

Table 4-1. Alkylation step. 

Substrates 3 Path a/b R R1 R2 R3 Yield (%) 

3a b H Me H Me 98 

3b a H H Et H 8 

3c b H H 4-CF3C6H4 H 50 

3d b H H 4-

OMeC6H4 

H 95 

3e a H Me H H 75 

3f a H Ph H H 70 

3g a H H Cl H - 

3h a H H CH2Cl H -a 

3i a 4-OMe H Me H 76 

3j a 4-CF3 H Me H 65 

3k a 3,5-OMe H Me H 70 

3l a 3,4-(CH)4 H Me H 65 
adimerization 
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Scheme 4-11. Dimerized product 2h’ isolated.  

 

The boronic acid could then be installed on the alkylated substrates 2a-f,i-l as shown in Table 4-2. 

First, the reaction was tested on all the substrates 2a-f,i-l by using the most common procedure169 

(path a) which involves a reaction between trimethylborate and the aryllithium substrate 

previously formed by lithium-bromide exchange of the corresponding arylbromide substrate. 

However, the reaction did not give a satisfying results for substrates 2c-d and 2f-l. Furthermore, 

the yields of the reactions were all quite low (maximum 45%). It has been shown before that some 

aryllithium intermediates are intrinsically unstable and this could explain the outcomes of these 

reactions.166 Therefore, the in situ quench method (path b) developed by Reider et al.166 was tried 

on substrates 2c-d,f-l. In this case,  n-butyllithium is added to a solution of the arylbromide and 

triisopropyl borate. The mixture is then quenched under acidic conditions. The procedure afforded 

the different products in maxium 50% yield. The general low yields of the reaction might be due 

to the challenging purification of these boronic acid derivatives. 
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Table 4-2. Boronic acid formation. 

Substrates 2 Path a/b R R1 R2 R3 Yield (%) 

2a a H Me H Me 35 

2b a H H Et H 40 

2c b H H 4-CF3C6H4 H 50 

2d b H H 4-OMeC6H4 H 40 

2e a H Me H H 45 

2f b H Ph H H 50 

2i b 4-OMe H Me H 32 

2j b 4-CF3 H Me H 35 

2k b 3,5-OMe H Me H 40 

2l b 3,4-(CH)4 H Me H 35 

       

 

4.2.1.2 Catalytic reaction: preliminary results 

The boronic acids  (see Scheme 4-12) were then subjected to the silver-catalyzed intramolecular 

fluoroarylation to investigate its scope and regioselective outcome.  

 

The reaction was performed on 0.5 mmol scale except for 1i and 1j (entry 15 and 16). The  results 

are presented in Table 4-3. In almost all cases, the reaction did not go to completion (except for 

compound 1n (entry 12)). Ethyl and methyl substituents on the internal vinylic carbon seem  to 

increase the yield of the reaction as well as its regioselectivity towards the 5-membered ring 

product in most of the cases (entries 2, 8, 11, 12 and 13). As the reaction might proceed through a 

radical pathway, the carbon radical is more likely to be formed on the more substituted carbon 

which means the non-terminal vinylic carbon. This can explain the favorited 5-membered ring 

product. Alkyl substituents such as methyl and ethyl groups are electron donating group and 

indeed, they can stabilize the radical formed on the adjacent carbon and therefore increase the yield 

and regioselectivity of the reaction. According to these results, we then hypothesized that forming 

a benzylic radical would improve the yield  and regioselectivity of the reaction and therefore we 

tested the reaction on substrates 1c and 1d (entries 3 and 4). However, substitution of the allyl or 

the aryl functionalities did not give any satisfying result.  

 

No significant correlation between the addition of electron-donating (OMe) or electron-

withdrawing substituents (F, CF3) on the aryl functionality and the outcome of the catalytic 

reaction could be deduced from this set of experiments. 
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Scheme 4-12. Boronic acids subjected to the silver catalyzed fluorocyclization. 
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Table 4-3. Results of the Ag-catalyzed fluorocyclization on substrates shown in Scheme 4-12. 

Entry Substrates Temp. 

(oC) 

1a-f , i-p 

lefta 

Yield Ratio 5/6 

1 1a 22  + - - 

2 1b 22  + 70% >15:1 

3 1c 22  + - - 

4 1d 22  + - - 

5 1e 22  + - - 

6 1f 22  + - - 

7 1i 22  + - - 

8 1j 22  + 50% >15:1 

9 1k 22  + - - 

10 1l 22  + - - 

11 1m 22  + 77% >10:1 

12 1n 22  - 95% 1:1 

13 1o 22  + 59% 5:1 

14 1p 22  + 56% 1:1 

15b 1i 45  + nd nd 

16 b 1j 45  + nd nd 
a indicated by TLC 

b 0.1 mmol scale, reaction mixture not purified 

 

4.2.1.3 Concluding remarks and future perspectives 

A variety of allyl substituted aryl boronic acids was synthesized and then tested in a silver-

catalyzed intramolecular fluoroarylation. It seems like an alkyl substitution on the internal vinylic 

carbon of the allyl group can increase the yield of the reaction as well as guide it towards the 

formation of the 5-membered ring product. Contrarily, substituents on the aryl group do not seem 

to have any direct effect on the outcome of the reaction. The reaction needs more optimization and 

an additional mechanistic study could help us understand the scope of the reaction as well as 

designing suitable substrates. Furthermore, all the arylboronic substrastes synthesized could be 

tested in the palladium catalyzed reaction presented first. 
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Chapter 5 

                                                                       Conclusion 

This project aimed at developing a strategy for the synthesis of ten different types of carrageenan 

oligosaccharides from one single precursor. A modular approach relying on the synthesis of a key 

β-1,4-linked digalactoside building block carrying suitable protecting groups was chosen to enable 

the synthesis of carrageenans with different lengths. Each disaccharide would be α-1,3-linked to 

each other to build up the carrageenans backbone consisting of D-galactose with alternating -1,4 

and α-1,3 glycosidic linkages. In order to establish the strategy, our objective was to synthes ize 

ten different types of carrageenan tetrasaccharides. The strategy required the identification of a 

suitable set of protecting groups, which would enable the synthesis of the backbone of the 

carrageenans as well as the introduction of sulfate groups at various positions depending on the 

targeted carrageenan. This turned out to be the biggest challenge throughout the project and two 

protecting group strategies were unsuccessfully attempted. These strategies relied on the higher 

reactivity of the equatorial 3-OH compared to the axial 4-OH of galactose to form the 

α- 1,3- linkage. Therefore, the second glycosylation step was carried out between a 

trifluoroacetimidate disaccharide donor and a 3,4-OH disaccharide acceptor. However, the control 

of the regioselectivity and stereoselectivity of the desired α-1,3-linkage turned out to be more 

difficult than anticipated. Furthermore, the isopropylidene acetal used in these two strategies 

proved to be too labile making the first glycosylation reaction forming a β-1,4-linked disaccharide 

difficult to optimize. To our surprise, the third set of orthogonal protecting groups chosen afforded 

the desired protected tetrasaccharide by forming the regioselective α-1,3-linkage in 55% yield 

through a glycosylation between a 2,3-OH disaccharide acceptor and a trifluoroacetimida te 

disaccharide donor. The deprotection and sulfation step required to reach the different targets were 

first tested on the key disaccharide 125 giving the G-D6S disaccharide carrageenan successfully 

by a selective C-6 sulfation of triol disaccharide 142 in 70% yield followed by debenzoylation and 

hydrogenation. So far, the protecting group chosen performed well in the synthesis of the backbone 

and could be successively removed. The deprotection steps prior to the sulfation as well as the 

selective C-6 sulfation step were translated successfully to the tetrasaccharide 126. Further 

debenzoylation and hydrogenation will afford the G-D6S tetrasaccharide. More work on 

polysulfation remains to be done in order to reach the remaining four D6S targets. The chemica lly 

or enzymatically catalyzed cyclization to form the anhydro residue DA needs to be developed to 

reach the corresponding five DA carrageenans. These experiments are currently ongoing. Once 

the tetrasaccharide targets will be reached, they will serve as model compounds for structural 

analysis to help our understanding of the gelation process at a molecular level. This would lead to 

a fundamental knowledge about control of the polymer conformational transition, which would 

get an immediate application in the industry. They could also be used to help characterize enzymes 

involved in their biosynthesis and increase the knowledge about algae/plant cell wall biosynthes is. 
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Longer oligomers, with a better binding affinity, could potentially be synthesized by applying the 

same block strategy if needed.  

 

This work is a typical example of the challenges faced in oligosaccharide synthesis. The outcome 

of glycosylation reactions is hard to predict and this often makes extensive method development 

necessary. Indeed, each position in the pyranose ring has different reactivity and this is furthermore 

affected by the nature of the surrounding protecting groups. A systematic analysis of acceptor 

conformation and reactivity could result in a better understanding of chemical glycosyla t ion 

reactions. 

 

Inspired by work on catalyzed intermolecular fluoroarylation of styrene derivatives, a set of allyl 

substituted aryl boronic acids was synthesized and subjected to a similar silver-catalyzed 

intramolecular fluoroarylation reaction. It turned out that alkyl substituents on the internal vinylic 

carbon of the allyl group increased the yield of the reaction as well as guide it towards the 

formation of the 5-membered ring regioisomer product. Contrarily, substituents on the aryl group 

did not seem to have any direct effect on the outcome of the reaction. A mechanistic study could 

help understand these preliminary results and design a suitable set of substrates to improve the 

yield as well as the regioselectivity of the reaction. 

 

  



98 
 

Chapter 6 

                                                                  Experimental 

6.1 General considerations 

Starting materials, reagents and solvents were purchased from commercial suppliers and used 

without further purification.  All solvents are HPLC-grade. The anhydrous solvents were obtained 

from Innovative Technology PS-MD-7 Pure-solv solvent purification system except for pyridine , 

which was dried over 4 Å activated molecular sieves for at least 24 hours (according to standard 

procedure).170 Reactions requiring anhydrous conditions were carried out in flame-dried glassware 

under inert atmosphere. Thin-layer chromatography (TLC) was performed on Merck Aluminium 

Sheets pre-coated with silica, C-60 F254 plates. The plates were visualized under UV irradiat ions 

and/or by heating after dipping in cemol solution stain (Ce(SO4)2 (1.6 g) and (NH4)6Mo7O24 (4 g) 

in 10 % sulphuric acid (200 mL). Anysaldehyde stain (H2SO4 (10 ml) and p-anisaldehyde (10 ml) 

in EtOH 95% (200 mL)) was used instead of cemol to follow glycosylation reaction using a 

thiophenylglycosyl donor. Eluent systems are specified for each Rf-value, and ratios are given as 

volume ratios. Evaporation of solvents was performed with a VWR International Laborota 400 

under reduced pressure (in vacuo) at temperatures ranging between 35-55 °C. Traces of solvents 

were removed under reduced pressure by means of a membrane pump. Flash column 

chromatography was performed using Geduran silica gel 60 Å (35-70 µm) as the stationary phase 

by the general procedure developed by Still et al.171 Dry column vacuum chromatography (DCVC) 

was performed according to literature procedure.172  Both for flash column chromatography and 

for dry column chromatography, the eluent systems are specified under the protocol for each 

synthesis. Eluent ratios are given as volume ratios. NMR-spectras were recorded on a Bruker 

Ascend 400 spectrometer with a Prodigy cryoprobe. Chemical shifts () are reported in ppm 

downfield from TMS (δ = 0) using solvent resonance as the internal standard. The spectra were 

recorded in CDCl3 or MeOD. Coupling constants (J) are reported in Hz and the field is reported 

in each case. Multiplicities are reported as singulet (s), doublet (d), triplet (t), broad singlet (br. s), 

doublet (d), doublet of doublets (dd), doublet of doublet of doublets (ddd) , doublet of triplets (dt), 

doublet of doublet of triplets (ddt), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). 

Optical rotation was measured on a Perkin Elmer Model 241 Polarimeter (cuvette 1.0 mL, 100 

mm) using a sodium source lamp (589 nm, 20 °C). CHCl3 was used as the solvent. HRMS spectra 

were performed on an UHPLC-QTOF system (Dionex ultimate 3000 and Bruker MaXis) with an 

electrospray ionization (ESI) source and controlled using DataAnalysis 4.2 software.  Melting 

points were measured on a Stuart melting point SMP30 and reported in °C uncorrected. All 

compounds have been characterized by NMR using 1D and 2D experiments. All peaks on the 

spectra are assigned, however the protons on free hydroxyl groups are generally not assigned. The 

carbohydrate residues have been assigned from the monosaccharide in the reducing end. New 

compounds were characterized by NMR, HRMS, melting point (mp) and optical rotation.   
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6.2 Procedures  

Pent-4-enyl-β-D-galactopyranoside (70)173 

To a solution of galactose pentaacetate (50.0 g, 128.1 mmol) and pent-4-en-1-

ol (30 ml, 281.8 mmol) in CH2Cl2 (350 ml) was added BF3-OEt2 (20 ml, 153.7 mmol). The mixture 

was stirred at 22 °C under an atmosphere of nitrogen for 12 h, and then diluted with CH2Cl2 

(150  ml) and washed with saturated aq. NaHCO3 (500 ml). The organic layer was dried over 

MgSO4 and concentrated  in vacuo. The syrupy residue was dissolved in 0.04 M NaOMe in MeOH 

(430 ml) and the solution stirred for 3 h. The mixture was quenched with Amberlite IR-120(H+) 

(20 ml) and stirred for an additional 30 min. The resin was filtered off and the filtrate concentrated, 

and purified by dry column vacuum chromatography (0–20% methanol in dichloromethane – 2% 

increments MeOH/CH2Cl2) to a greasy solid. Recrystallisation from EtOAc afforded 70 (18.0 g, 

56%) as white crystals. The compound analyses were in accordance with data from the literature. 

mp 88– 90 °C. Rf 0.30 (6:1 CH2Cl2/MeOH).  
1H NMR (400 MHz, D2O) δ 5.92 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H, -CH=CH2), 5.01 (d, 1H, J = 

17.4 Hz, 0.5xCH=CH2), 4.94 (d, 1H, J = 10.2 Hz, 0.5xCH=CH2), 4.30 (d, 1H, J = 8.0 Hz, H-1), 

3.84 –3.51  (m, 7H, OCH2-CH2-, H-3, H-4, H-5, H- 6ab), 3.42 (t, 1H, J = 8.9 Hz, H-2), 2.07 (m, 

2H, -CH2-CH=CH2), 1.65 (m, 2H, -CH2-CH2-CH=CH2) ppm. 13C NMR (101MHz, D2O) δ 139.1 

(-CH=CH2), 115.0 (-CH=CH2), 103.0 (C-1), 75.3 (C-4), 73.1 (C-3), 71.0 (C-2), 70.1 (O-CH2-CH2-

), 68.9 (C-5), 61.1 (C-6), 29.6 (-CH2-CH=CH2), 28.3 (-CH2-CH2-CH=CH2) ppm.  

 

Pent-4-enyl 4,6-O-benzylidene-β-D-galactopyranoside (71)173 

To a solution of benzaldehyde dimethylacetal (12.2 ml, 81.6 mmol) and 

camphor-10-sulfonic acid (CSA) (170 mg, 0.76 mmol) in acetonitrile (340 ml) was added 70 

(13.5  g, 54.4 mmol). The flask was equipped with a distillation head and the mixture heated to 

reflux and stirred for 1.5 h during which time about 80 ml of a MeCN–MeOH mixture distilled 

off. The reaction mixture was quenched with Et3N (0.7 mL) and concentrated to a solid, which 

was recrystallised from EtOAc to give 71 as a white solid (15.5 g, 85%). The compound analyses 

were in accordance with data from the literature. 

mp 157–160 °C. Rf 0.57 (10:1 CH2Cl2/MeOH).  

1H NMR (400 MHz, CDCl3) δ 7.49 (m, 2H, ArH), 7.35 (m, 3H, ArH), 5.81 (m, 1H, CH=CH2), 

5.54 (s, 1H, PhCHO2), 5.04 (dq, J = 17.1, 1.7 Hz, 1H, CH=CH2), 4.97 (dq, J = 10.4, 1.7 Hz, 1H, 

CH=CH2), 4.32 (dd, J  = 12.5, J = 1.5 Hz, 1H, H- 6a), 4.26 (d, J = 7.3 Hz, 1H, H-1), 4.20 (dd, J = 

3.6, 1.5 Hz, 1H, H-4), 4.07 (dd, J = 12.5, 1.5 Hz, 1H, H-6b), 3.98 (dt, J = 9.7, 7.0 Hz, 1H, 

0.5xOCH2-CH2-), 3.74 (dd, J  = 9.6, 7.3 Hz, 1H, H-2), 3.69 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 3.52 



100 
 

(dt, J = 9.7, 7.0 Hz, 1H, 0.5xOCH2-CH2-), 3.46 (m, 1H, H-5), 2.24- 2.06 (m, 4H, 2-OH, 3-OH, -

CH2-CH=CH2), 1.76 (m, 2H, -CH2-CH2-CH=CH2) ppm. 13C NMR (101MHz, CDCl3) δ 138.4 (-

CH=CH2), 137.8, 129.4, 128.4 (2C),126.7 (2C) (6 ArC), 115.1 (-CH=CH2), 103.1 (C-1), 101.6 

(PhCHO2), 75.7 (C-4), 73.0 (C-3), 72.0 (C-2), 69.6 (O-CH2-CH2), 69.4 (C-6), 66.9 (C-5), 30.4 (-

CH2-CH=CH2), 28.9 (-CH2-CH2-CH=CH2) ppm. 

 

Pent-4-enyl 3-O-benzyl-4,6-O-benzylidene-β-D-galactopyranoside (72) 

Di-n-butyl tin oxide (7.25 g, 29.13 mmol) was added to a solution of 

compound 71 (7.0 g, 20.8 mmol) in dry toluene (170 mL) and stirred under refluxing temperature 

for 12 h. The temperature was adjusted to 75-80 °C, and then n-Bu4NI (11.53 g, 31.21 mmol) and 

benzyl bromide (3.71 ml, 31.21 mmol) were added in one portion; stirring was maintained at this 

temperature for 24 h. The mixture was concentrated and purified by flash chromatography (5:1 

Toluene/EtOAc) to give 72 as transparent oil. Yield: 6.5 g (73%). 

Rf 0.24 (5:1 Toluene/EtOAc).  
1H NMR (400 MHz, C6D6) δ 7.71 – 7.66 (m, 2H, ArH), 7.44 (m, 2H, ArH), 7.23 – 7.06 (m, 6H, 

ArH), 5.72 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H, -CH=CH2), 5.30 (s, 1H, PhCHO2), 5.07 – 4.93 (m, 2H, 

-CH=CH2), 4.69 (s, 2H, OCH2Ph), 4.26 – 4.19 (m, 1H, H-2), 4.14 (d, J = 7.7 Hz, 1H, H-1), 4.08 

(dd, J = 10.5, 1.4 Hz, 1H, H-4), 3.90 (dt, J = 10.5, 6.5 Hz, 1H, H- 3), 3.70 – 3.67 (m, 1H, H-6a), 

3.41 (ddd, J = 9.0, 7.3, 4.4 Hz, 2H, OCH2-CH2-), 3.30 (dd, J  =  9.6, 3.6 Hz, 1H, H-6b), 2.51 (m, 

1H, 2-OH), 2.48 (s, 1H, H-5), 2.05 (m, 2H, -CH2-CH=CH2), 1.70 – 1.55 (m, 2H, CH2-CH2-

CH=CH2) ppm. 13C NMR (101MHz, C6D6)  δ 139.7 (2C), 139.3  (2C), 138.9 (-CH=CH2), 129.3 

(2C), 129.0 (2C), 128.2 (2C), 127.2 (2C) (12 ArC), 115.3 (-CH=CH2), 104.0 (C-1), 101.6 

(PhCHO2), 79.9 (C-3), 74.1 (C-4), 72.0 (C-2), 71.1 (OCH2Ph), 69.6 (O- CH2- CH2-), 69.1 (C-6), 

67.1 (C-5), 30.9 (-CH2-CH=CH2), 29.5 (-CH2-CH2-CH=CH2) ppm. 

 

Pent-4-enyl 3-O-benzyl-4,6-O-benzylidene-2-O-(2-naphtyl)methyl-β-D-galactopyranoside 

(73) 

To a solution of 72 (11.5 g, 26.96 mmol ) in DMF (150 ml) naphthylmethyl 

bromide (8.94 g, 40.45 mmol) and n-Bu4NI (996 mg, 2.67 mmol) were added and the mixture was 

cooled down to 0 °C. Sodium hydride (1.62 g, 40.45 mmol, 60% in oil) was added and the mixture 

was stirred at 22 °C for 12 hours, before being quenched with MeOH (3 ml), partially concentrated, 

diluted with EtOAc (300 ml) and washed with water and brine. The organic phase was dried, 

concentrated, and the residue was recrystallised from EtOAc–Heptane to afford 73 as a white solid 

product (9.8 g, 65%). 
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Rf  0.17 (4:1 Hept/EtOAc).  
1H NMR (400 MHz, C6D6) δ 7.86 (m, 1H, ArH), 7.78 – 7.71 (m, 2H, ArH), 7.71 – 7.60 (m, 3H, 

ArH), 7.60 – 7.53 (m, 1H, ArH), 7.45 (m, 2H, ArH), 7.29  –  7.21 (m, 2H, ArH), 7.21 – 7.05 (m, 

6H, ArH), 5.72 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H, - CH=CH2), 5.35 (s, 1H, PhCHO2), 5.14 (d, J = 

11.7 Hz, 1H, 0.5xOCH2Naphth), 5.06 – 4.93 (m, 2H, -CH=CH2), 4.90 (d, J = 11.7 Hz, 1H, 

0.5xOCH2Naphth), 4.75 – 4.63 (m, 2H, OCH2Ph), 4.33 (d, J = 7.7 Hz, 1H, H- 1), 4.20 – 4.08 (m, 

2H, H-2, 0.5xOCH2-CH2-), 4.02 – 3.94 (m, 1H, H-6a), 3.74 (d, J = 3.4 Hz, 1H, H-4), 3.55 – 3.39 

(m, 3H, H-3, H-6b, 0.5xOCH2-CH2-), 2.55 (s, 1H, H-5), 2.10 (m, 2H, -CH2-CH=CH2), 1.77 – 1.59 

(m, 2H, -CH2-CH2-CH=CH2) ppm. 13C NMR (101 MHz, C6D6) δ 139.4, 139.0, 138.4 (-CH=CH2), 

137.6, 134.0, 133.5, 128.9, 128.6 (2C), 128.3 (2C), 128.2, 128.1 (2C), 127.9 (3C), 126.9 (2C), 

126.6, 126.5, 126.1, 125.8 (22 ArC), 115.1 (- CH=CH2), 104.1 (C-1), 101.2 (PhCHO2), 79.9 (C-

3), 79.2 (C-2), 75.5 (OCH2Naphth), 73.9 (C- 4), 71.7 (OCH2Ph), 69.2 (O-CH2-CH2-), 68.9 (C-6), 

66.6 (C-5), 30.6 (-CH2-CH=CH2), 29.4 (-CH2-CH2-CH=CH2) ppm. 

 

Pent-4-enyl 3-O-benzyl-2-O-(2-naphtyl)methyl-β-D-galactopyranoside (74)  

To a solution of compound 73 (7.35 g, 12.97 mmol) dissolved in 200 ml 

CH2Cl2 was added ethane thiol (4.68 ml, 64.85 mmol) and p-toluenesulfonic acid (247 mg, 

1.30  mmol). The reaction mixture was stirred at 22 °C for 2 hours, quenched with Et3N and 

concentrated in vacuo. The crude was purified by flash chromatography (1:1 EtOAc/Heptane) 

yielding a white solid product (5.7 g, 92%). 

Rf  0.57 (2:3 EtOAc/Hexane).  
1H NMR (400 MHz, C6D6) δ 7.85 (s, 1H, ArH), 7.70 – 7.60 (m, 3H, ArH), 7.56 (dt, J = 8.4, 4.3 

Hz, 1H, ArH), 7.31 – 7.20 (m, 4H, ArH), 7.20 – 7.04 (m, 3H, ArH), 5.73 (ddt, J = 16.9, 10.2, 6.7 

Hz, 1H, -CH=CH2), 5.18 (d, J = 11.8 Hz, 1H, 0.5xOCH2Naphth), 4.99 (m 3H, 0.5xOCH2Naphth, 

-CH=CH2), 4.48 (s, 2H, OCH2Ph), 4.27 (d, J = 7.8 Hz, 1H, H-1), 3.97  –  3.77 (m, 4H, H-6ab, H-

2, 0.5xOCH2-CH2-), 3.70 (s, 1H, H-5), 3.43 (dt, J = 9.5, 6.6 Hz, 1H, 0.5xOCH2-CH2-), 3.27 (dd, J 

= 9.4, 3.5 Hz, 1H, H-3), 3.07 (m, 1H, H-4), 2.50 (s, 1H, 6-OH), 2.10 (m, 2H, -CH2-CH=CH2), 1.96 

(s, 1H, 4-OH), 1.73 – 1.60 (m, 2H, -CH2-CH2-CH=CH2) ppm. 13C NMR (101 MHz, C6D6) δ 138.7, 

138.4 (-CH=CH2), 137.2, 134.0, 133.5, 128.7, 128.0, 127.9 (2C), 126.8 (2C), 126.5 (2C), 126.2 

(2C), 126.0 (2C) (16 ArC), 115.1 (- CH=CH2), 104.3 (C-1), 80.9 (C-3), 79.4 (C-2), 75.3 

(OCH2Naphth), 74.5 (C-4), 72.2 (OCH2Ph), 69.1 (O-CH2-CH2-), 67.3 (C-5), 62.6 (C-6), 30.6 (-

CH2-CH=CH2), 29.5 (-CH2-CH2-CH=CH2) ppm. 
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Pent-4-enyl 3-O-benzyl-6-O-chloroacetyl-2-O-(2-naphtyl)methyl-β-D-galactopyranoside 

(67)  

Diol 74 (5.7 g, 11.91 mmol) was dissolved in anhydrous CH2Cl2 (100 ml) 

and cooled in an ice bath. Et3N (2.57 ml, 10.06 mmol) was added followed by chloroacetic 

anhydride (2.24 g, 13.10 mmol). The reaction mixture was stirred at 0 °C for 2 hours and then 

warmed up to 22 °C before being diluted with CH2Cl2 (100 ml), washed with ammonium chloride 

(3 x 100 ml), dried over Na2SO4 and concentrated in vacuo. The crude was purified by flash 

chromatography (2:3 EtOAc/Heptane) to yield 67 as white solid (4.5 g, 68%). 

Rf 0.22 (1:3 EtOAc/Heptane).  
1H NMR (400 MHz, C6D6) δ 7.84 (s, 1H, ArH), 7.71 – 7.61 (m, 3H, ArH), 7.55 (m, 1H, ArH), 

7.31 – 7.20 (m, 4H, ArH), 7.19 – 7.06 (m, 3H, ArH), 5.72 (ddt, J  =  16.9, 10.2, 6.7 Hz, 1H, -

CH=CH2 ), 5.16 (d, J = 11.8 Hz, 1H, 0.5xOCH2Naphth), 5.06 – 4.93 (m, 2H, -CH=CH2), 4.91 (d, 

J = 11.8 Hz, 1H, 0.5xOCH2Naphth), 4.59 – 4.37 (m, 4H, OCH2Ph, H- 6ab), 4.22 (d, J = 7.8 Hz, 

1H, H-1), 3.97 – 3.89 (m, 1H, 0.5xOCH2-CH2-), 3.85 (dd, J = 9.3, 7.8 Hz, 1H, H-2), 3.62 (dd, J = 

3.4, 0.9 Hz, 1H, H-4), 3.50 (t, J = 3.8 Hz, 2H, CH2-Cl), 3.49 – 3.40 (m, 1H, 0.5xOCH2-CH2-), 3.30 

– 3.20 (m, 2H, H-3, H-5), 2.14 – 2.05 (m, 2H, -CH2-CH=CH2), 1.75 – 1.59 (m, 2H, -CH2-CH2-

CH=CH2) ppm. 13C NMR (101 MHz, C6D6) δ 166.9 (OAcCl), 138.6 (- CH=CH2), 138.3, 137.1, 

134.0, 133.5, 128.7 (2C), 128.0 (2C), 126.8 (2C), 126.5 (2C), 126.3 (2C), 126.0 (2C) (16 ArC), 

115.2 (-CH=CH2), 104.1 (C-1), 80.5 (C-3), 79.2 (C-2), 75.2 (OCH2Naphth), 72.4 (OCH2Ph), 72.1 

(C-5), 69.1 (O-CH2-CH2-), 67.0 (C-4), 65.4 (C-6), 40.7 (CH2Cl), 30.6 (-CH2-CH=CH2), 29.4 (-

CH2-CH2-CH=CH2) ppm. 

 

Pent-4-enyl 6-O-benzyl-β-D-galactopyranoside (75)118 

To a solution of diol 71 (8.00 g, 23.7 mmol) in CH2Cl2 (220 ml) was added 

AlCl3 (4.76 g, 35.7 mmol) and 1,1,3,3-tetramethyldisiloxane (6.30  ml, 35.7 mmol) at –78 °C. 

After stirring at 22 °C for 12 hours, the mixture was diluted with CH2Cl2, washed with 1M aqueous 

HCl and water, dried over MgSO4, and concentrated in vacuo. The crude product was then purified 

by flash chromatography (1:10 MeOH/CH2Cl2) to yield compound 75 in 71% as a white solid. 

(5.69  g) 

Rf 0.31 (1:10 MeOH/CH2Cl2).  
1H NMR (400 MHz, CDCl3) δ 7.31 – 7.18 (m, 5H, ArH), 5.73 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H, , -

CH=CH2), 5.01 – 4.83 (m, 2H, -CH=CH2 ), 4.51 (s, 2H, OCH2Ph),  4.14 (d, J = 7.6 Hz, 1H, H-1), 

3.91 (d, J = 3.1 Hz, 1H, H-3), 3.88 – 3.79 (m, 1H, H-2), 3.74 – 3.42 (m, 6H, H-6ab, OCH2-CH2-

CH2-CH=CH2, H-4, H-5), 2.76 (bs, 3H, 3xOH), 2.12 – 1.99 (m, 2H, - CH2-CH=CH2), 1.74 – 1.59 

(m, 2H, -CH2-CH2-CH=CH2) ppm. 13C NMR (101 MHz, CDCl3) δ 138.2 (-CH=CH2), 138.0, 

128.6 (2C), 128.0, 127.9 (2C) (6 ArC), 115.1 (-CH=CH2),  103.2 (C-1), 73.8 (C-5), 73.7 (C-4), 



103 
 

73.6 (CH2Ph), 72.0 (C-2), 69.6 (C-3), 69.5 (C-6), 69.3 (O-CH2-CH2-), 30.3 (- CH2-CH=CH2), 

28.86 (-CH2-CH2-CH=CH2) ppm. 

 

Pent-4-enyl 6-O-benzyl-3,4-O-isopropylidene-β-D-galactopyranoside (76) 

To a solution of 75 (8.63 g, 25.5 mmol) in anhydrous DMF (150 ml) was 

added 2,2-dimethoxypropane (9.37 ml, 76.5 mmol) and camphor sulfonic acid (1.18 g, 5.10 

mmol). The mixture was stirred at 22 °C for 2 hours. Excess reagent was quenched with (0.9 ml) 

trimethylamine, stirred for an additional 30 minutes and concentrated. The crude was purified by 

flash chromatography (1:3 EtOAc/Heptane) to yield 76 as transparent oil in 90% (8.68 g). 

Rf 0.48 (2:3 EtOAc/Heptane).  
1H NMR (400 MHz, C6D6) δ 7.32 – 7.23 (m, 2H, ArH), 7.20 – 7.13 (m, 2H, ArH), 7.12 – 7.05 (m, 

1H, ArH), 5.72 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H, -CH=CH2), 5.07  –  4.90 (m, 2H, -CH=CH2), 4.44 

and 4.36 (ABq pattern, J = 12.2 Hz, 2H, OCH2Ph), 4.05  –  3.92 (m, 2H, H-1, H-3), 3.91 – 3.66 

(m, 6H, H-2, H-4, H-6ab, OCH2-CH2-CH2-CH=CH2), 3.33 (dt, J = 9.5, 6.6 Hz, 1H, H-5), 2.43 (d, 

J = 2.4 Hz, 1H, 2-OH), 2.01 (qd, J = 7.9, 3.9 Hz, 2H, -CH2-CH=CH2), 1.64 – 1.56 (m, 2H, -CH2-

CH2-CH=CH2), 1.44 (s, 3H, CH3
isoprop), 1.22 (s, 3H, CH3

isoprop) ppm. 13C NMR (101 MHz, C6D6) 

δ 139.0, 138.5 (-CH=CH2), 128.6 (2C), 127.9, 127.8 (2C) (6 ArC), 115.0 (-CH=CH2), 109.8 

(C(CH3)2),  103.1 (C-1), 79.5 (C-2), 74.2 (2C, C-4 and C- 3), 73.6 (CH2Ph), 72.9 (C-5), 70.0 (C-

6), 69.0 (O-CH2-CH2-), 30.6 (-CH2-CH=CH2), 29.3 (-CH2-CH2-CH=CH2), 28.4 (CH3
isoprop), 26.6 

(CH3
isoprop) ppm. 

 

Pent-4-enyl 2-O-acetyl-6-O-benzyl-3,4-O-isopropylidene-β-D-galactopyranoside (66)  

A solution of 76 (5.58 g, 15.0 mmol) was dissolved in anhydrous pyridine 

(60 ml). Acetic anhydride (2.83 ml, 30.0 mmol) and 4-dimethylaminopyridine (183 mg, 1.5 mmol) 

were added and the mixture was stirred at 22 °C for 12 hours. The reaction mixture was washed 

with water and the aqueous phase was extracted with dichloromethane. The organic phase was 

dried over MgSO4 and concentrated in vacuo. The crude was purified by flash chromatography 

(1:3 EtOAc/Heptane) to yield product 66 as a transparent oil (91%, 5.74 g). 

Rf 0.26 (1:3 EtOAc/Heptane).  
1H NMR (400 MHz, C6D6) δ 7.29 (dd, J = 7.9, 1.0 Hz, 2H, ArH), 7.21 – 7.13 (m, 2H, ArH), 7.13 

– 7.06 (m, 1H, ArH), 5.69 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H, - CH=CH2), 5.46 (t, J = 8.3 Hz, 1H, H-

2), 5.03 – 4.90 (m, 2H, -CH=CH2), 4.45 and 4.38 (ABq pattern, 12.2 Hz, 2H, OCH2Ph), 4.17 (d, J 

= 8.3 Hz, 1H, H-1), 3.97 (dd, J = 7.6, 5.3 Hz, 1H, H-3), 3.90 – 3.78 (m, 4H, H-4, H-6ab, 0.5xOCH2-

CH2-), 3.72 – 3.66 (m, 1H, H-5), 3.33 (ddd, J = 18.5, 10.5, 6.1 Hz, 1H, 0.5xOCH2-CH2-), 2.07 – 

1.99 (m, 2H, -CH2-CH=CH2), 1.78 (d, J = 3.2 Hz, 3H, CH3
Ac), 1.55 (m, 5H, CH3

isoprop, -CH2-CH2-

CH=CH2), 1.20 (s, 3H, CH3
isoprop) ppm. 13C NMR (101 MHz, C6D6) δ 169.0 (OAc), 139.0, 138.4 
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(-CH=CH2), 128.6 (2C), 128.2, 127.9 (2C) (6 ArC), 115.0 (-CH=CH2), 110.5 (C(CH3)2), 100.9 

(C-1), 77.7 (C-3), 74.3 (C-4), 73.6 (CH2Ph), 73.3 (C- 2), 72.7 (C-5), 69.9 (C-6), 68.4 (O-CH2-

CH2-), 30.4 (-CH2-CH=CH2), 29.2 (-CH2-CH2-CH=CH2),  28.0 (CH3
isoprop), 26.7 (CH3

isoprop), 

20.67 (CH3
Ac) ppm. 

 

2-O-acetyl-6-O-benzyl-3,4-O-isopropylidene-D-galactopyranose (77)  

Compound 66 (500 mg, 1.19 mmol) was dissolved in CH2Cl2 (12 ml). Water (20 

μl, 1.3 mmol) was added and the mixture was cooled down to -20 °C. NIS (275 mg, 1.42 mmol), 

TESOTf (45 μl, 0.24 mmol) and K2CO3 (250 mg, 1.19 mmol) were added and the reaction was 

stirred for 1.5 hour at - 20 °C. The reaction mixture was then diluted with CH2Cl2, washed with 

Na2S2O3 and with saturated aqueous NaHCO3. The water phase was then extracted with CH2Cl2 

and the combine organic phases were dried over MgSO4 and concentrated. The crude was purified 

by flash chromatography to yield hemiacetal 77 in 52% (218 mg) (4:1 α/β). 

Rf 0.45 (1:1 EtOAc/Heptane). 

α-anomer:  
1H NMR (400 MHz, C6D6) δ 7.28 (d, J = 7.2 Hz, 2H, ArH), 7.20 – 7.12 (m, 2H, ArH), 7.09 (dt, 

J  = 7.3, 4.3 Hz, 1H, ArH), 5.49 (t, J = 3.6 Hz, 1H, H-2), 5.31 (dd, J = 8.0, 3.2 Hz, 1H, H-5), 

4.53  –  4.28 (m, 3H, OCH2Ph, 1-OH),  4.17 (d, J = 3.6 Hz, 1H, H-1), 3.93 – 3.79 (m, 2H, H-3, 

H- 4), 3.76  – 3.65 (m, 2H, H-6ab), 1.73 (s, 3H, CH3
Ac), 1.49 (s, 3H, CH3

isoprop), 1.15 (s, 3H, 

CH3
isoprop) ppm. 13C NMR (101 MHz, C6D6) δ 170.3 (OAc), 138.5, 128.7 (2C), 128.2 (2C), 127.9 

(6 ArC), 109.7 (C(CH3)2), 90.9 (C-1), 74.2 (C-3), 73.9 (C-4), 73.6 (OCH2Ph), 72.6 (C-2), 70.2 

(C- 5), 67.1 (C-6), 28.1 (CH3
isoprop), 26.5 (CH3

isoprop), 20.6(CH3
Ac) ppm. 

 

β-anomer: 
1H NMR (400 MHz, C6D6) δ 7.28 (d, J = 7.2 Hz, 2H, ArH), 7.20 – 7.12 (m, 2H, ArH), 7.09 (dt, 

J  = 7.3, 4.3 Hz, 1H, ArH), 5.31 (dd, J = 8.0, 3.2 Hz, 1H, H-5), 5.22 (t, J = 7.8 Hz, 1H, H-2), 

4.53  –  4.28 (m, 3H, OCH2Ph, 1-OH), 3.93 – 3.79 (m, 3H, H-3, H-4, H-1), 3.76 – 3.65 (m, 2H, 

H- 6ab), 1.73 (s, 3H, CH3
Ac), 1.49 (s, 3H, CH3

isoprop), 1.15 (s, 3H, CH3
isoprop) ppm. 13C NMR 

(101  MHz, C6D6) δ 170.6 (OAc), 138.7, 128.6 (2C), 128.2 (2C), 127.9 (6ArC), 110.4 (C(CH3)2), 

95.5 (C-1), 77.0 (C-3), 75.3 (C-4), 74.3 (OCH2Ph), 73.6 (C-2), 72.5 (C-5), 69.8 (C-6), 28.0 

(CH3
isoprop), 26.4 (CH3

isoprop), 23.1 (CH3
Ac) ppm. 

 

 

 

 

2-O-acetyl-6-O-benzyl-3,4-O-isopropylidene-D-galactopyranose N-phenyl 

trifluoroacetimidate (78) 
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Hemiacetal 77 (600 mg, 1.70 mmol) was dissolved in CH2Cl2 (10 ml) and 

cooled to 0 °C. N-phenyl trifluoroacetimidoyl chloride (0.55 ml, 3.41 mmol) and cesium carbonate 

(1.11g, 3.41 mmol) were added and the reaction mixture was stirred at 0 °C for 3 hours. The 

reaction mixture was then filtered through celite and concentrated in vacuo. The crude was purified 

by flash chromatography (1:4 EtOAc/Heptane) to yield a white solid (578 mg, 65%). 

Rf 0.45 (1:3 EtOAc/Heptane).  

1H NMR (400 MHz, C6D6) δ 7.30 – 6.93 (m, 7H, ArH), 6.93 – 6.80 (m, 1H, ArH), 6.80 – 6.72 (m, 

2H, ArH), 5.64 (t, J = 7.3 Hz, 1H, H-2), 4.40 and 4.32 (ABq, J  =  12.0 Hz, 2H, OCH2Ph), 3.90 (t, 

J = 6.8 Hz, 1H, H-4), 3.78 (dt, J = 12.9, 4.2 Hz, 4H, H-3, H- 5, H-6ab), 1.70 (s, 3H, CH3
Ac), 1.53 

(s, 3H, CH3
isoprop), 1.14 (s, 3H, CH3

isoprop) (no signal for H- 1) ppm. 13C NMR (101 MHz, C6D6) δ 

169.6 (OAc), 144.0 (Cipso, NPh), 138.8, 129.3 (2C), 129.1 (2C), 128.6 (2C), 127.9 (2C), 124.6 

(10 ArC), 119.7 (ArC, NPh), 110.1 (C(CH3)2), 93.62 (C-1), 73.6, 73.2, 73.1, 70.6, 69.4 (C-5), 69.4 

(C-6), 27.6 (CH3
isoprop), 26.1 (CH3

isoprop), 20.2 (CH3
Ac) ppm (no signals for CF3 and C=NPh).  

 

Pent-4-enyl 2-O-acetyl-6-O-benzyl-3,4-O-isopropylidene-β-D-galactopyranosyl-(1→4)-3-O-

benzyl-6-O-chloroacetyl-2-O-(2-naphtyl)methyl-β-D-galactopyranoside (79) 

A mixture of donor 78 (100 mg, 0.19 mmol) and acceptor 67 (127 

mg, 0.23 mmol) was co-evaporated with toluene and subjected to high vacuum overnight. The 

mixture was dissolved in CH2Cl2 (4 ml) and cooled down to - 40 °C. TMSOTf (1.81 μl, 0.01 mmol) 

was added and the reaction was stirred at - 40 °C until TLC showed full conversion of the donor 

(6 hours). The reaction was quenched by addition of trimethylamine (0.02 ml) concentrated in 

vacuo and purified by flash chromatography (10:1 EtOAc/Toluene) to yield disaccharide 79 in 

24% (40 mg). 

Rf 0.62 (1:4 EtOAc/Toluene).  

1H NMR (400 MHz, C6D6) δ 7.84 (m, 1H, ArH), 7.68 – 7.60 (m, 3H, ArH), 7.57 – 7.51 (m, 1H, 

ArH), 7.37 (m, 3H, ArH), 7.30 – 7.17 (m, 6H, ArH), 7.18 – 7.08 (m, 3H, ArH), 5.71 (ddt, J = 16.9, 

10.2, 6.7 Hz, 1H, -CH=CH2), 5.42 – 5.31 (t, J = 8.0 Hz, 1H, H- 2’), 5.23 (dd, J = 11.7, 5.9 Hz, 1H, 

0.5xOCH2Naphth), 5.08 – 5.00 (m, 1H, 0.5x-CH=CH2), 5.00 – 4.90 (m, 2H, 0.5xOCH2Naphth, 

0.5x-CH=CH2), 4.73 (d, J = 8.0 Hz, 1H, H-1’), 4.65 (m, 2H, OCH2Ph’), 4.55 (m, 1H, H-6a), 4.53 

– 4.45 (m, 2H, OCH2Ph), 4.41 (d, J = 12.0 Hz, 1H, H-1), 4.29 – 4.23 (m, 1H, H-6b), 4.00 – 3.81 

(m, 5H, H-3, H-3’, H-6ab’, H-4), 3.80 – 3.66 (m, 3H, H-2, H-5’, H-4’), 3.53 (d, J = 5.6 Hz, 2H, 

O-CH2-CH2-), 3.51 – 3.43 (m, 2H, CH2Cl), 3.32 (dt, J = 8.9, 4.4 Hz, 1H, H-5), 3.26 (dd, J = 9.7, 
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2.9 Hz, 1H, H-3), 2.10 – 2.01 (m, 2H, -CH2-CH=CH2), 1.80  –  1.73 (m, 3H, CH3
Ac), 1.70 – 1.58 

(m, 2H, -CH2-CH2-CH=CH2), 1.51 (d, J = 9.4 Hz, 3H, CH3
isoprop), 1.24 – 1.03 (m, 3H, CH3

isoprop) 

ppm. 13C NMR (101 MHz, C6D6) δ 169.2 (OAc), 166.9 (OAcCl), 139.1 , 138.9, 138.4 (-CH=CH2), 

137.2, 134.0, 133.5, 128.7 (4C), 128.5, 128.1 (4C), 128.0, 127.9 (2C), 127.7, 126.7, 126.4, 126.3, 

126.0 (22 ArC), 115.1 (-CH=CH2), 110.5 (C(CH3)2) 104.1 (C-1’), 101.3 (C-1), 81.7 (C-3), 79.6 

(C-2), 77.2 (C-3’), 75.3 (OCH2Naphth), 74.1 (C-4’), 73.8 (2C, OCH2Ph’, C-4), 73.5 (C-5), 73.2 

(C-2’), 72.7 (OCH2Ph), 72.2 (C-5’), 70.1 (C-6’) , 68.8 (O-CH2-CH2-), 66.3 (C-6), 40.8 (CH2Cl), 

30.6 (-CH2-CH=CH2), 29.4 (-CH2-CH2-CH=CH2), 27.9 (CH3
isoprop), 26.5 (CH3

isoprop), 20.8 (CH3
Ac) 

ppm. 

 

Pent-4-enyl 2-O-acetyl-6-O-benzyl-β-D-galactopyranoside (81) 

66 (4.64 g, 11.03 mmol) was dissolved in 80 % AcOH in water (100 ml) and 

stirred at 22 °C for 24 hours. The reaction mixture was extracted with dichloromethane and the 

organic phase washed with saturated aqueous NaHCO3 and water, dried over MgSO4 and 

concentrated in vacuo. The crude was purified by flash chromatography (1:1 EtOAc/Heptane) to 

give 81 in 90% yield (3.77 g).  

Rf 0.20 (1:1 EtOAc/Heptane).  
1H NMR (400 MHz, C6D6) δ 7.26 (dd, J = 7.9, 1.0 Hz, 2H, ArH), 7.21 – 7.14 (m, 2H, ArH), 7.10 

(m, 1H, ArH), 5.70 (ddt, J = 17.1, 10.2, 6.7 Hz, 1H, -CH=CH2), 5.36 (t, J = 8.0 Hz, 1H, H-2), 5.00 

(ddd, J = 17.1, 3.6, 1.2 Hz, 1H, 0.5x-CH=CH2), 4.94 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H, 0.5x-

CH=CH2), 4.34 (s, 2H, OCH2Ph), 4.21 (d, J = 8.0 Hz, 1H, H-1), 3.88  –  3.79 (m, 1H, 0.5xOCH2-

CH2-), 3.77 (t, J = 4.3 Hz, 1H, H-5), 3.64 (m, J = 10.0, 5.6 Hz, 2H, H-6ab), 3.35 (dt, J = 9.6, 6.6 

Hz, 1H, 0.5xOCH2-CH2-), 3.16 (d, J = 8.0 Hz, 1H, H-3), 2.87 (d, J = 4.3 Hz, 1H, H-4), 2.07 – 1.99 

(m, 2H, -CH2-CH=CH2), 1.80 (d, J = 4.0 Hz, 3H, CH3
Ac  ), 1.64  – 1.49 (m, 2H, -CH2-CH2-

CH=CH2) ppm. 13C NMR (101 MHz, C6D6) δ 170.9 (OAc), 138.7 (2C), 138.4 (-CH=CH2), 128.7 

(2C), 127.9, 127.9 (2C) (6 ArC), 115.1(-CH=CH2), 101.4 (C- 1), 73.8 (C-4), 73.7 (C-3), 73.6 

(OCH2Ph), 73.2 (C-2), 70.0 (C-5), 69.8 (C-6), 68.6 (O-CH2-CH2-), 30.4 (-CH2-CH=CH2), 29.3 (-

CH2-CH2-CH=CH2), 20.8 (CH3
Ac) ppm. 

 

Pent-4-enyl 2-O-acetyl-6-O-benzyl-3,4-O-ditriisopropylsilyl-β-D-galactopyranoside (83) 

Diol 81 (2 g, 5.26 mmol) was dissolved in CH2Cl2 (50 ml) and 4-

dimethylaminopyridine (450 mg, 3.68 mmol) and 2,6-lutidine (1.69 g, 15.78 mmol) were added. 

The solution was cooled down to 0 °C and triisopropylsilyl trifluoromethanesulfonate (3.81 ml, 

14.20 mmol) was added. The reaction mixture was stirred at 0 °C for 1 hour and 2 hours more at 

22 °C before being quenched with methanol and concentrated in vacuo. The crude was purified by 

flash chromatography (1:6 EtOAc/Heptane) to yield 83 in 82% (3.0 g) 
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Rf 0.55 (1:3 EtOAc/Heptane).  

1H NMR (400 MHz, C6D6) δ 7.29 (d, J = 7.1 Hz, 2H, ArH), 7.18 (m, 2H, ArH), 7.12 – 7.06 (m, 

1H, ArH), 5.71 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H, - CH=CH2), 5.57 (dd, J = 9.4, 8.0 Hz, 1H, H-2), 

5.00 (ddd, J = 16.9, 3.4, 1.6 Hz, 1H, 0.5x- CH=CH2), 4.97 – 4.92 (m, 1H, 0.5x-CH=CH2), 4.41 (s, 

2H, OCH2Ph), 4.25 (d, J = 8.0 Hz, 1H, H-1), 3.97 – 3.80 (m, 4H, H-6ab, H-3, H-4), 3.53 (t, J = 

6.1 Hz, 1H, H-5), 3.43 – 3.35 (m, 2H, OCH2-CH2-), 2.05 (q, J  =  7.3  Hz, 2H, , -CH2-CH=CH2), 

1.91 – 1.87 (s, 3H, CH3
Ac), 1.67 – 1.47 (m, 2H, -CH2-CH2-CH=CH2), 1.13 – 0.99 (m, 18H, 

9xCH3
isoprop) ppm. 13C NMR (101 MHz, C6D6) δ 168.8 (OAc), 139.0, 138.5 (-CH=CH2), 128.6 

(2C), 128.2, 127.9 (2C) (6 ArC), 115.0 (-CH=CH2), 101.7 (C-1), 74.0 (C-5), 73.9 (C-3), 73.7 

(OCH2Ph), 72.4 (C-2), 70.1 (C-4), 69.5 (C-6), 68.2 (O-CH2-CH2-), 30.4 (-CH2-CH=CH2), 29.3 (-

CH2-CH2-CH=CH2), 21.0 (CH3
Ac), 18.2 (2C, CqTIPS), 18.1 (2C, CH3

TIPS), 18.1 (2C, CH3
TIPS), 18.0 

(2C, CH3
TIPS) ppm. 

 

Phenyl 2,6-di-O-benzoyl-3,4-O-isopropylidene-1-thio-β-D-galactopyranoside174 (90) 

 To a solution of phenyl 1-thio-β-D-galactopyranoside 89 (1.0 g, 3.68 mmol) 

in anhydrous dimethylformamide (40 ml) were added 2,2-dimethoxypropane (0.68 ml, 5.51 mmol) 

and camphor sulfonic acid (172 mg, 0.74 mmol). The reaction mixture was stirred at 22 °C for 

12  hours. The reaction was then quenched with 0.5 ml triethylamine, diluted with EtOAc, washed 

with ammonium chloride, dried over MgSO4 and concentrated in vacuo. The crude product was 

dissolved in 25 ml of anhydrous pyridine, cooled down to 0 °C and benzoyl chloride (1.71 ml, 

14.6 mmol) was slowly added. The reaction mixture was then warmed up to 22 °C and stirred for 

12 hours. Water was then added to the mixture and the compound was extracted with diethyl ether. 

The organic phase was further washed with ammonium chloride, dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by flash chromatography (1:4 

EtOAc/Heptane) yielding 90 as a white crystalline solid (1.2 g, 62%). The compound analyses 

were in accordance with data from the literature. 

mp 129-.131 °C. Rf  0.55 (1:2 EtOAc/Hept).  
1H NMR (400 MHz, C6D6) δ 8.20 (ddt, J = 9.7, 6.5, 1.8 Hz, 4H ArH), 8.10 (dt, J = 8.5, 1.6 Hz, 

1H, ArH), 7.52 – 7.47 (m, 2H, ArH), 7.16 – 7.04 (m, 3H, ArH), 7.02 – 6.96 (m, 2H, ArH), 6.92 – 

6.81 (m, 3H, ArH), 5.72 (dd, J = 10.1, 7.3 Hz, 1H, H- 2), 4.75 (dd, J = 11.8, 3.4 Hz, 1H, H-6a), 

4.66 (dd, J = 11.8, 8.4 Hz, 1H, H-6b), 4.56 (d, J = 10.1 Hz, 1H, H-1), 4.07 (dd, J = 7.2, 5.4 Hz, 

1H, H-3), 3.78 (dd, J = 5.4, 2.2 Hz, 1H, H-4), 3.76  –  3.70 (m, 1H, H-5), 1.51 (s, 3H, CH3
isoprop.), 

1.16 (s, 3H, CH3
isoprop.) ppm. 13C NMR (101 MHz, C6D6) δ 166.2 (OBz), 165.5 (OBz), 133.7, 

133.2, 132.2 (2C), 130.5 (2C), 130.2 (2C), 130.1 (2C), 129.0 (2C), 128.7 (2C), 128.6 (2C), 127.9, 

127.6 (18 ArC), 111.1 (C(CH3)2), 86.1 (C-1), 77.6 (C- 3), 74.7 (C-5), 74.1 (C-4), 72.3 (C-2), 64.5 

(C-6), 27.8 (CH3
isoprop), 26.5 (CH3

isoprop) ppm. 
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6-O-benzoyl-3,4-O-isopropylidene-1,2-(Phenyl 3-O-benzyl-6-O-chloroactyl-2-O-

(2- naphtyl)methyl-β-D-galactopyranosidepent-4-enyl Orthoacetate) (92)  

Preparation of 1 mL 1M Me2S2/Tf2O in dichloromethane: Me2S2 

(0.1 mL) was diluted in anhydrous dichloromethane (1 mL) and cooled down to 0 °C. Triflic 

anhydride (0.17 mL) was added and the mixture was stirred for 30 minutes at 0 °C. 

Thiophenyl galactoside 90 (169 mg, 0.32 mmol) and acceptor 67 (150 mg, 0.27 mmol) were co-

evaporated with toluene three times and subjected to high vacuum overnight. The mixture was 

dissolved in dichloromethane (6 ml) and stirred with 4 Å MS for 30 minutes. The reaction mixture 

was cooled down to - 40 °C, 1M Me2S2/Tf2O in dichloromethane (0.54 mL) and TTBP (80.6 mg, 

0.32 mmol) were added. The mixture was stirred for 20 minutes until TLC showed full conversion 

of the donor. The reaction was then quenched with triethylamine (0.3 mL). The mixture was 

diluted with dichloromethane, filtered through celite, washed with NaHCO3. The organic phase 

was dried over MgSO4, concentrated in vacuo and the crude product was purified by flash 

chromatography (1:40 EtOAc/Toluene) to yield the orthoester product 92 in 18% yield (46 mg). 

Rf 0.60 (1:5 EtOAc/Toluene).  
1H NMR (400 MHz, C6D6) δ 8.35 – 8.04 (m, 3H, ArH), 7.82 (dd, J  = 14.2, 8.0 Hz, 2H, ArH), 

7.76 (s, 1H, ArH), 7.74 – 7.58 (m, 3H, ArH), 7.50 – 6.93 (m, 13H, ArH), 5.92 (d, J = 5.1 Hz, 1H, 

H-1’), 5.79 – 5.62 (m, 1H, -CH=CH2), 5.06 – 4.74 (m, 5H, H-2’, OCH2Naphth, -CH=CH2), 4.72 

– 4.25 (m, 6H, H-1, OCH2Ph, H-6ab’, H-6a), 4.25 – 4.05 (m, 2H, H-3’, H-6b), 4.05 – 3.89 (m, 2H, 

0.5xO-CH2-CH2-, H-4), 3.89 – 3.65 (m, 2H, H-5’, H-2), 3.61  –  3.42 (m, 4H, CH2Cl, 0.5xO-CH2-

CH2-, H-4’), 3.42 – 3.32 (m, 1H, H-5), 3.32 – 3.19 (m, 1H, H-3), 2.15 – 2.02 (m, 2H, -CH2-

CH=CH2), 1.76 – 1.57 (m, 2H, -CH2-CH2-CH=CH2), 1.41  –  1.28 (s, 3H, CH3
isoprop), 1.09 – 0.98 

(s, 3H , CH3
isoprop) ppm. 13C NMR (101 MHz, C6D6) δ 166.6 (OAcCl), 165.9 (OBz), 139.0, 138.4 

(-CH=CH2),  137.4, 136.9, 133.9, 133.5, 132.9, 130.9, 130.2, 130.1, 129.5, 129.3, 128.9, 128.7 

(2C), 128.6 (3C), 128.5, 128.4, 128.2 (2C), 127.9, 126.9, 126.8, 126.5, 126.2, 126.0, 125.7 (28 

ArC), 121.7 (PhCO2), 115.1 (-CH=CH2), 109.7 (C(CH3)2), 103.7 (C-1), 97.9 (C-1’), 80.2 (C-3), 

78.5 (C-2), 74.9 (OCH2Naphth), 72.5 (OCH2Ph), 72.4 (C-5), 71.6 (C-2’), 71.0 (C-4’), 70.7 (C-3’), 

69.0 (O-CH2-CH2-), 68.6 (C-4), 68.1 (C-5’), 65.8 (C-6), 64.4 (C-6’), 40.6 (CH2Cl), 30.6 (-CH2-

CH=CH2), 29.4 (-CH2-CH2-CH=CH2), 26.1( CH3
isoprop), 24.3 (CH3

isoprop) ppm.  

 

 

 

Phenyl 1-thio-β-D-galactopyranoside175 (89) 
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To a solution of galactose pentaacetate (30.0 g, 76.9 mmol) and thiophenol (8.75 

mL, 85.8 mmol) in CH2Cl2 (250 mL) was added boron trifluoride diethyl etherate (9.75 mL, 

76.9  mmol). The reaction mixture was stirred at 22 °C for 12 hours. The mixture was diluted with 

CH2Cl2 (100 mL) and washed with sat. aq. NaHCO3 (300 mL). The organic phase was dried over 

MgSO4, filtered and concentrated in vacuo. Without further purification, the peracetylated 

thioglycoside was deacetylated. Na (1.28 g, 55.5 mmol) was dissolved in MeOH (130 mL) and the 

NaOMe/MeOH solution was slowly added to a solution of the peracetylated sugar in MeOH (100 

mL). The reaction mixture was stirred at 22 °C until TLC showed full conversion (12 h). The 

reaction was quenched with Amberlite IR-120 H+ (50 mL) and stirred for 1 h. The ion-exchange 

resin was filtered off, washed with MeOH and the filtrate was concentrated in vacuo. The product 

was recrystallized from EtOAc to give 89 as colorless crystals. Yield (over two steps) 19.0 g 

(91%). Its analytical data matched with those reported.175 

mp 98 °C. Rf  0.48 (1:1 EtOAc/Acetone).  
1H NMR (400 MHz, DMSO) δ 7.42 (d, J = 7.4 Hz, 2H, ArH), 7.27 (t, J = 7.4 Hz, 2H, ArH), 7.17 

(d, J = 7.4 Hz, 1H, ArH), 4.84 (d, J = 13.0 Hz, 1H, H- 1), 4.06 (d, J= 3.2 Hz, 1H, H-4), 3.85-3.75 

(m, 4H, H-3, H-5, H-6ab), 3.70 (m, 1H, H-2) ppm. 13C NMR   (101 MHz, DMSO) δ 136.3 (ipso-

C, Ar), 129.8 (2C, ortho-C, Ar), 129.5 (2C, meta-C, Ar), 126.7 (para-C, Ar), 88.4 (C-1), 79.8 (C-

5), 75.3 (C-2), 69.9 (C-3), 69.0 (C-4), 61.2 (C-6) ppm. 

 

Phenyl 4,6-O-benzylidene-1-thio-β-D-galactopyranoside176 (100) 

To a solution of benzaldehyde dimethyl acetal (12.6 mL, 83.8 mmol) and 

camphor sulphonic acid (0.13 g, 0.56 mmol) in MeCN (350 mL) was added 89 (15.22 g, 55.9 

mmol). The flask was equipped with a distillation unit and the mixture was heated to reflux for 

1.5  hour. During this period approximately 100 mL of MeCN-MeOH was distilled off. The 

distillation unit was replaced with a condenser and the reaction mixture was heated to reflux until 

TLC showed full conversion (1 h). The residue was then recrystallized from EtOAc yielding the 

desired product in 80% (16.12 g). Its analytical data matched with those reported. 

mp: 148-150 °C. Rf 0.25 (19:1 CH2Cl2/MeOH).  
1H NMR (300 MHz, CDCl3) δ 7.76 – 7.65 (m, 2H, ArH), 7.45 – 7.23 (m, 8H, ArH), 5.51 (s, 1H, 

PhCHO2), 4.51 (d, J = 8.0 Hz, 1H, H-1), 4.38 (d, J = 12.5 Hz, 1H, H-6a), 4.21 (d, J = 1.3 Hz, 1H, 

H-3), 4.03 (d, J = 12.5 Hz, 1H, H-6b), 3.76  –  3.63 (m, 2H, H-5, H-4), 3.56 (s, 1H, H-2), 2.30 (s, 

2H, 2-OH, 3-OH) ppm. 13C NMR   (75  MHz, CDCl3) δ 137.8 , 133.9 (2C), 131.0, 129.6, 129.1 

(2C), 128.5 (2C),  128.4, 126.8 (2C) (12 ArC), 101.6 (PhCHO2) 87.1 (C-1), 75.6 (C-4), 73.9 (C-

3), 70.2 (C-5), 69.5(C-6), 68.9 (C-2) ppm.  
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Phenyl 6-O-benzyl-1-thio-β-D-galactopyranoside118 (101) 

Diol 100 (14.38 g, 39.9 mmol) was co-evaporated three times with toluene and 

subjected to high vacuum for 2 hours. The compound was then dissolved in CH2Cl2 (330 ml) and 

AlCl3 (7.89 g, 59.85 mmol) and 1,1,3,3-tetramethyldisiloxane (10.58 mL, 59.85 mmol) were added 

at –78 °C. After stirring at 22 °C for 12 hours, the mixture was diluted with CH2Cl2, washed with 

1M aqueous HCl and water, dried over MgSO4, and concentrated in vacuo. The crude product was 

then purified by flash chromatography (1:15 MeOH/CH2Cl2) to yield compound 101 in 71% as a 

white solid (10.3 g). The compound analyses were in accordance with data from the literature.177 

mp: 123-125 °C. Rf 0.62 (1:6 MeOH/CH2Cl2).  
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.46 (m, 2H, ArH), 7.30 – 7.15 (m, 8H, ArH), 4.49 (m, 3H, 

H-1 and OCH2Ph), 3.99 (d, J = 2.8 Hz, 1H, H- 3), 3.75 – 3.71 (m, 2H, H-6ab), 3.71 – 3.64 (m, 1H, 

H-2), 3.60 (dd, J = 11.4, 6.1 Hz, 1H, H-5), 3.55 (m, 2H, H-4 and 4-OH), 3.23 (d, J = 2.7 Hz, 1H, 

2-OH), 3.20 (d, J = 4.1 Hz, 1H, 3-OH) ppm. 13C NMR (101 MHz, CDCl3) δ 137.9, 132.9, 132.3 

(2C), 129.1 (2C), 128.6 (2C), 128.0, 127.9,  127.8 (2C), 88.8 (C-1), 77.5 (C-5), 75.0 (C-4), 73.8 

(OCH2Ph), 70.1 (C-2), 69.9 (C-6), 69.6 (C-3) ppm. 

 

Phenyl 6-O-benzyl-3,4-O-isopropylidene-1-thio-β-D-galactopyranoside178 (102) 

To a solution of 101 (9.74 g, 26.87mmol) in anhydrous dimethylformamide 

(150 mL) were added 2,2-dimethoxypropane (9.8 mL, 80.62 mmol) and camphor sulfonic acid 

(1.25 g, 5.37 mmol). The mixture was stirred at 22 °C for 3 hours. The acid was quenched with 

triethylamine (1.5 mL) and stirred for 30 additional minutes. The mixture was then concentrated 

in vacuo and the crude product was purified by flash chromatography (1:3 EtOAc/Heptane) 

yielding a white solid product in 90% (9.73 g). The compound analyses were in accordance with 

data from the literature.178 

Rf  0.41 (2:3 EtOAc/Heptane).  
1H NMR (400 MHz, CDCl3) δ 7.51 – 7.46 (m, 2H, ArH), 7.26 (t, J = 4.7 Hz, 4H, ArH), 7.25 – 

7.16 (m, 4H, ArH), 4.60 – 4.46 (m, 2H, OCH2Ph), 4.39 (d, J  =  9.9  Hz, 1H, H-1), 4.13 (dd, J = 

5.5, 2.1 Hz, 1H, H-4), 4.00 (dd, J = 7.1, 5.5 Hz, 1H, H-3), 3.90 (ddd, J = 6.7, 5.4, 2.1 Hz, 1H, H-

5), 3.78 – 3.69 (m, 2H, H-6ab), 3.49 (dd, J = 9.9, 7.1 Hz, 1H, H-2), 2.44 (d, J = 1.0 Hz, 1H, 2-

OH), 1.36 (d, J = 8.4 Hz, 3H, CH3
isoprop), 1.26 (s, 3H, CH3

isoprop) ppm. 13C NMR (101 MHz, CDCl3) 

δ 138.3, 132.6, 132.4, 129.1 (2C), 128.5 (2C), 128.1, 127.8, 127.7 (2C), 110.4 (C(CH3)2), 88.10 

(C-1), 79.1 (C-5), 76.2 (C-4), 73.9 (OCH2Ph), 73.7 (C-3), 71.7 (C-2), 69.7 (C-6), 28.19 (CH3
isoprop), 

26.5 (CH3
isoprop) ppm. 

 

Phenyl 2-O-benzoyl-6-O-benzyl-3,4-O-isopropylidene-1-thio-β-D-galactopyranoside (93) 
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To a solution of alcohol 102 (12.7 g, 31.55 mmol) in anhydrous pyridine 

(200  mL) was added benzoyl chloride (7.3 mL, 63.11 mmol) dropwise at 0 °C. The reaction was 

stirred at 20 °C for 12 hours. Water (200 mL) was added and the product was extracted with diethyl 

ether (3x100 mL). The combined organic phases were washed three times with saturated aqueous 

NH4Cl (3 x 200 mL) before being dried over MgSO4 and concentrated in vacuo. The residue was 

purified by flash chromatography (1:3 EtOAc/Heptane) affording the product as a white solid in 

96% yield (15.4 g). 

mp = 102-105 °C. Rf  0.51 (1:2 EtOAc/Heptane). [𝜶]𝑫
𝟐𝟎= 18.0° (c 1.0, CDCl3).   

1H NMR (400 MHz, C6D6) δ 8.21 – 8.17 (m, 2H, ArH), 7.59 – 7.55 (m, 2H, ArH), 7.30 (d, J = 7.3 

Hz, 2H, ArH), 7.22 – 7.15 (m, 2H, ArH), 7.14 – 6.91 (m, 7H, ArH), 5.74 (dd, J = 10.0, 7.2 Hz, 

1H, H-2), 4.68 (d, J = 10.0 Hz, 1H, H-1), 4.43 and 4.35 (ABq pattern, J = 12.0 Hz, 2H, OCH2Ph), 

4.07 (dd, J = 7.2, 5.4 Hz, 1H, H-3), 3.91  –  3.84 (m, 2H, H-4, H-5), 3.79 – 3.70 (m, 2H, H-6ab), 

1.54 (s, 3H, CH3
isoprop), 1.19 (s, 3H, CH3

isoprop) ppm. 13C NMR (101 MHz, C6D6) δ 165.4 (OBz) , 

139.0, 134.6 (2C), 133.1 (2C), 132.3 (2C), 130.7 (2C), 130.2 (2C), 129.1 (2C), 128.6, 127.9 (2C), 

127.6 (2C) (18 ArC), 110.7 (C(CH3)2), 86.1 (C-1), 77.6 (C-5), 76.2 (C-4), 74.3 (OCH2Ph), 73.6 

(C-3), 72.5 (C-2), 70.0 (C-6), 27.9 (CH3
isoprop), 26.57 (CH3

isoprop) ppm. HRMS (ESI-TOF) m/z: 

[M+Na]+ calcd for C29H30NaO6S 529.1655; found 529.1657. 

 

2,3,4,6-O-tetraacetyl-D-galactopyranose129 (103) 

Galactose pentaacetate (70.0 g, 179.36 mmol) was dissolved in anhydrous DMF 

(300 mL) at 55 °C, hydrazine acetate (18.5 g, 200.91 mmol) was added and the mixture was stirred 

at 55 °C for 20 min. After cooling, 50% sat. aq. NaHCO3 (1000 mL) was added and the suspension 

was extracted with EtOAc (4 x 200 mL). The combined organic phase was washed with sat. aq. 

NaHCO3 (400 mL) and H2O (400 mL), evaporated on celite and purified by dry column vacuum 

chromatography (0–100% EtOAc in Toluene – 5% increments EtOAc/Toluene) to afford 103 as a 

white foam. Yield 50.0 g (80%) The compound analyses were in accordance with data from the 

literature. 

Rf 0.55 (1:1/ EtOAc/Hexane).  
1H NMR (400 MHz, CDCl3) δ 5.50 (d, J  = 3.6 Hz, 1H, H-1), 5.47 (d, J  = 10.7 Hz, J = 3.6 Hz, 

1H, H-2), 5.40 (d, J = 3.3 Hz,1H, H-4), 5.15 (dd, J = 10.7 Hz, J   = 3.3Hz, 1H, H-3), 4.48 (t, J = 

6.6 Hz, 1H, H-5), 4.38 (s, 1H, 1-OH), 4.11 (dd, J = 1.8 Hz, 1H, H-6b), 4.09 (m, 1H, H-6a), 2.15 

(s, 3H, CH3
Ac), 2.10 (s, 3H, CH3

Ac), 2.05 (s, 3H, CH3
Ac), 1.99 (s, 3H, CH3

Ac) ppm. 13C NMR (101 

MHz, CDCl3) δ 170.5, 170.4, 170.2, 170.0 (4 OAc), 90.5 (C-1), 68.4 (C-5), 68.2 (C-2), 67.2 (C-

3), 65.9 (C-4), 61.7 (C-6), 20.7, 20.5 (3C) (4 CH3
Ac).  

 
tert-butyldiphenylsilyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (104)  
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Hemiacetal 103 (55.0 g, 157.9 mmol) was dissolved in DMF (250 mL) 

and cooled down to 0 °C. To the solution were added tert-butyl diphenylsilyl chloride (51.3 mL, 

197.4 mmol) and imidazole (26.9 g, 394.8 mmol). The reaction mixture was stirred at 0 °C for 

1  hour and then at 22 °C for 18 hours. The mixture was diluted with Et2O (500 mL) and washed 

with water (4 x 500 mL). The organic phase was dried over MgSO4, filtered, concentrated in vacuo 

and purified by dry column vacuum chromatography (0–100% EtOAc in Heptane – 5% increments 

EtOAc/Heptane) to give 104 as a white solid in 92% yield. (85.3 g)  

Rf 0.65 (2:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= 2.1° (c 1.0, CDCl3).  

1H NMR (400 MHz, CDCl3) δ 7.67  –  7.59 (m, 2H, ArH), 7.59 – 7.53 (m, 2H, ArH), 7.41 – 7.25 

(m, 6H, ArH), 5.29 – 5.19 (m, 2H, H-3, H-4), 4.79 (dd, J = 8.5, J = 3.5 Hz, 1H, H-2), 4.55 (d, J = 

8.5 Hz, 1H, H-1), 3.93 (m, 2H, H-6ab), 3.55 (dt, J = J = 6.6, J = 1.2 Hz, 1H, H-5), 2.10 (s, 3H, 

CH3
Ac), 1.89 (s, 3H, CH3

Ac), 1.88 – 1.85 (m, 6H, 2x CH3
Ac), 1.00 (s, 9H, 3xCH3

TBDPS) ppm. 13C 

NMR   (101 MHz, CDCl3) δ 170.5, 170.4, 170.3, 169.6 (4 OAc), 136.0 (2C), 135.8 (2C), 132.8, 

132.7, 130.1 (2C), 127.8 (2C), 127.6 (2C) (12 ArC), 96.1 (C-1), 71.1 (C-5), 70.8 (C-2), 70.7 (C-

3), 67.4 (C-4), 61.5 (C-6), 26.8 (3C, tert-butyl), 20.9, 20.8, 20.7 (2C) (4 CH3
Ac), 19.2 (tert-butyl) 

ppm. HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C30H38NaO10Si 609.2126; found 609.2123. 

 
tert-butyldiphenylsilyl β-D-galactopyranoside (105) 

To a solution of 104 (80.0 g, 136.35 mmol) in MeOH (200 mL) at -20 °C 

was added a freshly prepared 0.04M NaOMe solution in methanol (200 mL). The reaction mixture 

was stirred at -20 °C for 12 hours, quenched with Amberlite 120-H+ ion-exchange resin, filtered 

and concentrated in vacuo. The residue was purified by dry column vacuum chromatography 

(0– 100% EtOAc in Toluene – 7% increments EtOAc/Toluene) to give 105 as an transparent oil 

in 79% (50.7  g).  

Rf 0.06 (2:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= 12.9° (c 1.0, CDCl3).  

1H NMR (400 MHz, CDCl3) δ 7.62 (m, 4H, ArH), 7.41 – 7.20 (m, 6H, ArH), 4.37 (d, J = 7.4 Hz, 

1H, H-1), 4.17 (d, J = 5.6 Hz, 1H, 3- OH), 3.85 (d, J = 4.5 Hz, 1H, 4-OH), 3.79 – 3.72 (m, 1H, H-

4), 3.62 (ddd, J = 9.4, J = 7.4, J  =  3.4 Hz, 1H, H-2), 3.56 – 3.40 (m, 3H, H-6a, H-6b, 2-OH), 3.31 

(ddd, J = 9.4, J = 5.6, J = 3.4   Hz, 1H, H-3), 3.01 (t, J = J = 6.0 Hz, 1H, H-5), 2.43 – 2.34 (m, 1H, 

6-OH), 0.99 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 135.9 (2C), 135.8 (2C), 

133.4, 132.9, 130.0, 129.9, 127.7 (2C), 127.5 (2C) (12 ArC), 97.9 (C-1), 74.2 (C-5), 73.4 (C-2), 

73.4 (C- 3), 69.0 (C- 4), 61.5 (C-6), 27.0 (3C, tert-butyl), 19.2 (tert-butyl) ppm. HRMS (ESI-TOF) 

m/z: [M+Na]+ calcd for C22H30NaO6Si 441.1703; found 441.1704. 

 

tert-butyldiphenylsilyl 4,6-O-(2-naphthyl)methylene-β-D-galactopyranoside (106) 
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Naphthaldehyde (21.7 g, 139.4 mmol) was suspended in 140 mL methano l 

before trimethyl orthoformate (24.64 g, 232.3 mmol) and p-toluenesulfonic acid mono hydrate 

(1.77 g, 9.29 mmol) were added at 22 °C. After 2 hours TLC showed full conversion of the starting 

material and the resulted mixture was concentrated in vacuo, dissolved in 100 mL anhydrous 

acetonitrile and added to a suspension of 105 (38.9 g, 92.9 mmol) in anhydrous acetonitrile 

(900  mL). The resulted mixture was heated to 60 °C and stirred for 8 hours. The acid was then 

neutralized with 10 mL Et3N. The mixture was concentrated in vacuo and purified by flash 

chromatography (1:4 to 1:1 EtOAc/Toluene) to afford 106 as transparent crystals in 62% yield 

(32.1 g). 

mp 85.1 °C. Rf 0.55 (1:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= -36.6° (c 1.0, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H, ArH), 7.83 – 7.70 (m, 5H, ArH), 7.65 (dd, J = 7.5, 6.1 

Hz, 2H, ArH), 7.56 (dd, J = 8.5, 1.5 Hz, 1H, ArH), 7.45 – 7.38 (m, 2H, ArH), 7.38 – 7.25 (m, 1H, 

ArH), 7.17 (dd, J = 10.2, 4.6 Hz, 2H, ArH), 7.08 (dd, J = 10.2, 7.7 Hz, 2H, ArH), 5.54 (s, 1H, 

NaphthCHO2), 4.41 (d, J = 7.5 Hz, 1H, H-1), 3.98 (m, 2H, H-6a, H-4), 3.83 (d, J = 12.3 Hz, 1H, 

H-6b), 3.77 (dd, J = 9.6, 7.5 Hz, 1H, H-2) 3.45 (d, J  =  7.5 Hz, 1H, H-3), 2.98 (s, 1H, H-5), 2.59 

– 2.32 (m, 2H, 2-OH, 3-OH), 1.05 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 

136.2, 135.9, 135.3, 133.9, 133.4, 133.0, 129.9, 129.8, 129.2, 128.5, 128.4, 128.3, 127.9, 127.7 

(2C), 127.5 (2C), 126.6, 126.3, 126.0, 125.4, 124.1 (22 ArC), 101.5 (NaphthCHO2), 97.8 (C-1), 

75.5 (C-3), 74.0 (C-4), 72.7 (C-2), 69.1 (C-6), 66.6 (C-5), 27.1 (3C, tert-butyl), 19.4 (tert-butyl) 

ppm. HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C33H36NaO6Si 579.2173; found 579.2173. 

 

 

 tert-butyldiphenylsilyl 4,6-O-(2-naphthyl)methylene-α-D-galactopyranos ide 

106a was isolated in 20% yield as main by product of the reaction. 

Rf 0.65 (1:1 Toluene/EtOAc).  
1H NMR (400 MHz, CDCl3) δ 7.81 (s, 1H ArH), 7.76 – 7.49 (m, 7H, ArH), 7.48 – 7.40 (m, 1H, 

ArH), 7.40 – 7.19 (m, 5H, ArH), 7.19 – 6.99 (m, 3H, ArH), 5.49 (s, 1H, NaphthCHO2), 5.40 (d, J 

= 3.2 Hz, 1H, H-1), 4.12 (m, 1H, H-4), 3.96 (m, 1H, H-5), 3.88  –  3.74 (m, 3H, H-6ab, H-2), 3.65 

(s, 1H, H-3), 2.52 (d, J = 8.7 Hz, 1H ,3-OH), 2.03 (d, J  =  7.6 Hz, 1H, 2-OH), 1.03 (s, 9H, 

3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 136.0 (2C), 136.0 (2C), 135.0, 133.8, 132.9, 

132.7, 130.2, 130.1, 128.5, 128.2, 127.9 (2C), 127.8 (2C), 127.8, 126.5, 126.3, 125.8, 125.4, 123.9 

(22 ArC), 101.3 (NaphthCHO2), 94.6 (C-1), 76.1 (C-3), 70.7 (C-4), 70.0 (C-2), 69.3 (C-6), 63.1 
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(C-5), 27.1 (3C, tert-butyl), 19.5 (tert-butyl) ppm. 

 

tert-butyldiphenylsilyl 3-O-benzyl-4,6-O-(2-naphthyl)methylene-β-D-galactopyranoside 
(107)  

Di-n-butyl tin oxide (15.81 g, 63.50 mmol) was added to a solution of 

compound 106 (32.14 g, 57.73 mmol) in dry toluene (500 mL) and stirred under refluxing 

temperature for 12 h. The temperature was adjusted to 75-80 °C, and then n-Bu4NI (32.0 g, 86.59 

mmol) and benzyl bromide (10.3 mL, 86.59 mmol) were added in one portion; stirring was 

maintained at this temperature for 24 h. The mixture was then washed with saturated sodium 

thiosulfate and the organic phase was then dried over MgSO4, concentrated in vacuo and purified 

by flash chromatography (25:1 Toluene/EtOAc) to give 107 as colorless oil. Yield: 28.7 g (70%).  

Rf 0.80 (2:1 Toluene/EtOAc).  ). [𝜶]𝑫
𝟐𝟎= 28.4° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 7.7 Hz, 1H, ArH), 7.80  – 7.68 (m, 5H, ArH), 7.67 – 

7.62 (m, 2H, ArH), 7.58 – 7.54 (m, 1H, ArH), 7.41 – 7.35 (m, 2H, ArH), 7.33 – 7.02 (m, 11H, 

ArH), 5.45 (s, 1H, NaphthCHO2), 4.67 – 4.57 (m, 2H, OCH2Ph), 4.41 (d, J = 6.6 Hz, 1H, H-1), 

4.04 – 3.80 (m, 4H, H-6ab, H-4, H-2), 3.28 (dd, J = 9.7, 3.6 Hz, 1H, H-3), 2.93 (s, 1H, H-5), 2.26 

(s, 1H, 2-OH), 1.06 (s, 9H, 3xCH3
TBDPS ) ppm. 13C NMR (101 MHz, CDCl3) δ 138.3, 136.2, 136.0, 

135.6, 133.9, 133.6, 133.5, 133.1, 129.8 (2C), 129.2, 128.5, 128.4 (2C), 128.1, 128.0 (2C), 127.9, 

127.8, 127.7 (2C), 127.5 (2C), 126.4, 126.1, 126.0 , 125.4, 124.3 (28 ArC), 101.2 (NaphthCHO2), 

98.0 (C-1), 79.3 (C- 3), 73.4 (C-4), 72.3 (C-2), 71.6 (OCH2Ph), 69.3 (C-6), 66.6 (C-5), 27.1 (3C, 

tert-butyl), 19.5 (tert-butyl) ppm. HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C40H42NaO6Si 

669.2642; found 669.2643. 

 

tert-butyldiphenylsilyl 2-O-allyl-3-O-benzyl-4,6-O-(2-naphthyl)methylene-β-D-

galactopyranoside (108) 

 Compound 107 (20 g, 31.0 mmol) was dissolved in dichloromethane 

(200  mL) and stirred with 4 Å MS (20 g) for 30 minutes at 22 °C. Allyl bromide (18 ml, 

216  mmol) was added and the mixture was stirred for 30 minutes more at 22 °C. The flask was 

then wrapped in aluminum foil, silver oxide (36 g, 155 mmol) was added and the reaction mixture 

was stirred for 24 h at 22 °C. The mixture was then filtered through a celite pad, concentrated in 

vacuo and the crude product was purified by flash chromatography (1:50 EtOAc/Toluene) to 

afford 108 as a transparent oil in 84% yield (17.9 g). 

Rf 0.75 (10:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= 11.2° (c 0.5, CDCl3). 



115 
 

1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H, ArH), 7.82 – 7.57 (m, 8H, ArH), 7.41 – 7.35 (m, 2H, 

ArH), 7.33 – 7.01 (m, 11H, ArH), 5.91 (ddd, J = 22.8, 10.7, 5.7 Hz, 1H, -CH=CH2), 5.47 – 5.42 

(s, 1H, NaphthCHO2), 5.20 (dd, J = 17.2, 1.7 Hz, 1H, CH2=CHtrans), 5.07 (dd, J = 10.7, 1.7 Hz, 

1H, CH2=CHcis), 4.67 – 4.58 (m, 2H, OCH2Ph), 4.48 (d, J = 7.5 Hz, 1H, H- 1), 4.35 (ddd, J = 39.8, 

12.2, 5.7 Hz, 2H, OCH2-CH=CH2), 3.91 (d, J = 3.4 Hz, 1H, H-4), 3.82  –  3.68 (m, 3H, H-6ab, H-

2), 3.31 (dd, J = 9.7, 3.4 Hz, 1H, H-3), 2.78 (s, 1H, H-5), 1.05 (s, 9H, 3xCH3
TBDPS) ppm.  13C NMR 

(101 MHz, CDCl3) δ 138.7, 136.3 (2C), 136.0 (2C), 135.7, 135.5 (-CH=CH2), 134.0, 133.9, 133.7, 

133.1, 129.7, 129.6, 129.2, 128.5, 128.4 (3C), 127.8 (3C), 127.7, 127.5 (2C), 127.3 (2C), 126.3, 

126.1, 124.4 (28 ArC), 116.6 (-CH=CH2), 101.4 (NaphthCHO2), 98.0 (C-1), 80.0 (C- 3), 79.4 (C-

2), 74.3 (C-4), 74.2 (OCH2CH=CH2), 72.1 (OCH2Ph), 69.1 (C-6), 66.3 (C-5), 27.1 (3C, tert-butyl), 

19.4 (tert-butyl) ppm. HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C43H46NaO6Si 709.2955; found 

709.2955. 

 

tert-butyldiphenylsilyl 2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside 

(94) 

To a solution of fully protected galactoside 108 (16.1 g, 23.44 mmol) 

dissolved in 300 mL dichloromethane was added triethylsilane (18.8 mL, 117.2 mmol) and the 

mixture was cooled down to 0 °C. Triflic acid (8.98 mL, 117.2 mmol) was then added dropwise 

over 1 hour and the mixture was stirred at 22 °C for 3.5 hours. The reaction mixture was then 

diluted with dichloromethane and the organic phase was washed with NaHCO3 and dried over 

MgSO4 before being concentrated in vacuo. The crude product was purified by flash 

chromatography (1:30 EtOAc/Toluene) to yield the product as a transparent oil in 65% yield 

(10.5  g). 

Rf 0.55 (20:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= 6.4° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.78 – 7.54 (m, 9H, ArH), 7.43  –  7.35 (m, 2H, ArH), 7.34 – 7.07 

(m, 17H, ArH), 5.94 – 5.82 (m, 1H, -CH=CH2), 5.18 (dd, J = 17.2, 1.7 Hz, 1H, CH2=CHtrans), 5.08 

(dd, J = 10.4, 1.7 Hz, 1H, CH2=CHcis), 4.60 (s, 2H, OCH2Ph), 4.53 – 4.40 (m, 3H, OCH2Naphth, 

H-1), 4.40 – 4.20 (m, 2H, OCH2-CH=CH2), 3.86 (d, J = 3.0 Hz, 1H, H-4), 3.62 – 3.49 (m, 2H, H-

2, H-6a), 3.38 (dt, J = 10.3, 5.7 Hz, 1H, H-6b), 3.27 (dd, J = 9.4, 3.0 Hz, 1H, H-3), 3.14 (t, J = 5.7 

Hz, 1H, H-5), 1.01 (d, J = 6.3 Hz, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 138.1, 

136.2 (2C), 136.0 (2C), 135.7, 135.3 (-CH=CH2), 133.7, 133.4, 133.3, 133.1, 129.8, 129.7, 128.6 

(2C), 128.2, 128.0 (2C), 127.9 (2C), 127.8, 127.6 (2C), 127.4 (2C), 126.6, 126.2, 126.0, 125.9 (28 

ArC), 116.8 (-CH=CH2), 98.1 (C-1), 81.0 (C-3), 80.3 (C-2), 74.3 (OCH2CH=CH2), 73.8 

(OCH2Naphth), 73.1 (C-5), 72.5 (OCH2Ph), 69.1 (C-6), 67.2 (C-4), 27.0 (3C, tert-butyl), 19.3 

(tert-butyl) ppm. HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C43H48NaO6Si 711.3112; found 

711.3114. 
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The main by-product was characterized as tert-butyldiphenylsilyl 2-O-allyl-3-O-benzyl-β-D-

galactopyranoside (94a) 

  

Rf 0.25 (20:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= 30.8° (c 1.0, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.67 (ddt, J = 13.9, 6.7, 1.5 Hz, 4H, ArH), 7.41  –  7.14 (m, 11H, 

ArH), 5.94 (ddt, J = 17.3, 10.7, 5.6 Hz, 1H, -CH=CH2), 5.24 (dt, J  =  17.3, 1.7 Hz, 1H, 

CH2=CHtrans), 5.12 (dt, J = 10.4, 1.7 Hz, 1H, CH2=CHcis), 4.61 (q, J  =  11.7  Hz, 2H, OCH2Ph), 

4.54 (d, J = 7.5 Hz, 1H, H-1), 4.44 (ddt, J = 12.3, 5.7, 1.5 Hz, 1H, 0.5xOCH2-CH=CH2), 4.28 (ddt, 

J = 12.3, 5.7, 1.5 Hz, 1H, 0.5xOCH2-CH=CH2), 3.70 (d, J  =  3.4  Hz, 1H, H-4), 3.61  –  3.50 (m, 

2H, H-2, H-6a), 3.34 (m, 1H, H-6b), 3.29 (dd, J = 9.4, 3.4 Hz, 1H, H-3), 2.98 (m, H-5), 1.03 (s, 

9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 138.0, 136.0 (2C), 135.9 (2C), 135.2 (-

CH=CH2), 134.1, 133.1, 129.9 (2C), 128.6 (2C), 128.1, 127.9 (2C), 127.8, 127.6 (2C), 127.5 (18 

ArC), 116.9 (-CH=CH2), 98.2 (C-1), 80.7 (C-3), 80.4 (C- 2), 74.6 (C-5), 74.4 (OCH2CH=CH2), 

72.7 (OCH2Ph), 67.5 (C-4), 62.4 (C-6), 27.01 (3C, tert-butyl), 19.2 (tert-butyl) ppm. HRMS (ESI-

TOF) m/z: [M+Na]+ calcd for C32H40NaO6Si 571.2486; found 571.2487. 

 

tert-butyldiphenylsilyl 2-O-benzoyl-6-O-benzyl-3,4-O-isopropylidene-β-D-galactopyranosyl-

(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside (110) 

Preparation of 20 mL 1M Me2S2/Tf2O in dichloromethane : 

Me2S2 (2 mL) was diluted in anhydrous CH2Cl2 (20 mL) and cooled to 0 °C. Triflic anhydride 

(3.4  mL) was added and the mixture was stirred for 30 minutes at 0 °C. 

Thiophenyl galactoside 93 (3.15 g, 6.21 mmol) and acceptor 94 (3.29 g, 4.78 mmol) were co-

evaporated with toluene three times and subjected to high vacuum overnight. The mixture was 

dissolved in CH2Cl2 (120 ml) and stirred with 4 Å MS (6 g) for 30 minutes. The reaction mixture 

was cooled down to - 40 °C, 1M Me2S2/Tf2O in CH2Cl2 (15.5 mL) was added and it was stirred 

for 1 hour until TLC showed full conversion of the donor. The reaction was then quenched with 

Et3N (8 mL). The mixture was diluted with dichloromethane, filtered through celite, washed with 

NaHCO3. The organic phase was then dried over MgSO4, concentrated in vacuo and the crude 

product was purified by flash chromatography (1:50 EtOAc/Toluene) to yield the product in 55% 

(2.85 g). 

Rf 0.60 (10:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= -9.0° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 7.6, 6.4 Hz, 2H, ArH), 7.77 – 7.63 (m, 3H, ArH), 7.63 

– 7.51 (m, 5H, ArH), 7.44 – 7.34 (m, 3H, ArH), 7.31 – 7.04 (m, 19H, ArH), 5.62 (dq, J = 10.7, 5.6 

Hz, 1H, -CH=CH2), 5.23 (t, J = 8.0 Hz, 1H, H-2’), 4.99 – 4.90 (m, 2H, -CH=CH2), 4.87 (d, J = 8.0 
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Hz, 1H, H-1’), 4.61 – 4.45 (m, 2H, OCH2Ph), 4.39 – 4.27 (m, 5H, H-1, OCH2Naphth, OCH2Ph’), 

4.17 (m, 2H, H-3’, H-4’), 3.97 (dd, J = 8.3, 1.7 Hz, 1H, H-3), 3.80 (tt, J = 6.0, 3.0 Hz, 1H, H-5’), 

3.78 – 3.53 (m, 4H, H-6b, 0.5xOCH2-CH=CH2, H-6ab’), 3.39  –  3.30 (m, 2H, H-6a, 0.5xOCH2-

CH=CH2 ), 3.21 – 3.10 (m, 3H, H-2, H-4, H-5), 1.61 (s, 3H, CH3
isoprop.), 1.29 (s, 3H, CH3

isoprop. ), 

0.92 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 165.4 (OBz), 138.8, 138.2, 136.3 

(3C), 136.0 (2C), 135.3 (-CH=CH2), 134.0, 133.4, 133.3, 133.0, 132.9, 130.4, 130.2 (2C), 129.6, 

129.4, 128.5 (2C), 128.5 (2C), 128.4, 128.0, 127.8 (4C), 127.7 (2C), 127.5 (4C), 127.2 (2C), 126.2, 

126.0, 125.9, 125.8, 125.4 (40 ArC), 116.0 (- CH=CH2), 110.6 (C(CH3)2), 100.5 (C-1’), 97.8 (C-

1), 81.8 (C-3), 81.3 (C-2), 77.2 (C-3’), 74.1 (C-4’), 73.8 (2C, C- 2’, OCH2CH=CH2), 73.6 

(OCH2Ph’), 73.6 (OCH2Naphth), 73.5 (C-5), 73.2 (OCH2Ph), 72.7 (C-4), 72.3 (C-5’), 70.0 (C-6), 

69.4 (C-6’), 28.0 (CH3
isoprop), 26.9 (3C, tert-butyl), 26.5 (CH3

isoprop), 19.2 (tert-butyl) ppm. 

 

2-O-benzoyl-6-O-benzyl-3,4-O-isopropylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-

benzyl-6-O-(2-naphthyl)methyl-D-galactopyranose (111) 

In a plastic container, disaccharide 110 (1.8 g, 1.66 mmol) was 

dissolved in THF (17 mL) and the solution was cooled to 0 °C. 20% HF-pyridine complex (4 mL) 

was added slowly while the temperature was maintained below 5 °C. The reaction mixture was 

then slowly heated to 22 °C and stirred for 4 hours. The mixture was cooled to 0 °C and quenched 

by adding dropwise sat. aq. NaHCO3 (20 mL). The mixture was then poured into 150 mL sat. aq. 

NaHCO3. and extracted with EtOAc (3x50 mL). The combined organic phases was dried over 

MgSO4, filtered and concentrated in vacuo. The crude was purified by flash chromatography (1:5 

EtOAc/Toluene) to afford hemiacetal 111 in 80% yield (1.12 g) (5:1 α/β). 

Rf 0.20 (1:6 EtOAc/ Toluene).  

 

2-O-benzoyl-6-O-benzyl-3,4-O-isopropylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-

benzyl-6-O-(2-naphthyl)methyl-D-galactopyranose N-phenyl trifluoroacetimidate  

Hemiacetal 111 (600 mg, 0.71 mmol) was dissolved in 

dichloromethane (8 mL) and cooled to 0 °C. Cesium carbonate (463 mg, 1.42 mmol) was added 

followed by addition of N-phenyl trifluoroacetimidoyl chloride (0.23 mL, 1.42 mmol). The ice 

bath was removed and the reaction stirred at 22 °C for 2 hours. The mixture was then filtered 
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through celite and concentrated in vacuo. The crude was purified by flash chromatography (1:30 

EtOAc/Toluene) to yield the product in 93% as a white solid (670 mg). 

Rf 0.70 (1:4 EtOAc/ Toluene). 1H NMR (400 MHz, CDCl3) δ 7.97 – 7.03 (m, 24H, ArH), 7.01 – 

6.89 (m, 1H, ArH), 6.65 (d, J = 7.7 Hz, 2H, ArH), 5.66 – 5.47 (m, 1H, -CH=CH2), 5.16 (t, J = 7.9 

Hz, 1H, H- 2’), 4.93 (d, J = 1.6 Hz, 1H, 0.5x-CH=CH2), 4.89 (d, J = 1.6 Hz, 1H, 0.5x-CH=CH2), 

4.79 (d, J = 7.9 Hz, 1H, H-1’), 4.70 – 4.44 (m, 4H, OCH2Ph’, OCH2Ph), 4.36 (s, 2H, 

OCH2Naphth), 4.21 (dd, J = 7.2, 5.4 Hz, 1H, H-4’), 4.18 – 4.11 (m, 1H, H-3’), 4.01 (d, J = 2.2 Hz, 

1H, H-4), 3.91– 3.48 (m, 7H, 0.5xOCH2CH=CH2, H6ab, H6ab’, H-5’, H-5) 3.31 (m, 3H, H-3, 

H- 2, 0.5xOCH2CH=CH2), 1.56 (s, 3H, CH3
isopro), 1.27 (s, 3H, CH3

isopro) ppm (no signal for H-1). 
13C NMR (101 MHz, CDCl3) δ 165.3 (OBz), 143.7 (Cipso, NPh), 138.4, 138.1, 136.1, 134.6 

(- CH=CH2), 133.4, 133.1, 133.0, 130.3, 130.2, 129.5, 129.2, 128.7, 128.5 (2C), 128.4, 128.3, 

128.2, 128.1, 128.0, 127.9 (3C), 127.8 (3C), 127.7 (2C), 126.4, 126.1, 125.9 (2C), 125.4, 124.2 

(32 ArC), 119.4 (ArC, NPh), 116.7 (-CH=CH2), 110.6 (C(CH3)2), 101.1 (C-1’), 97.1 (br., C-1), 

81.2 (C-3), 78.3 (C-2), 77.4 (C-3’),  75.0 (C-5), 74.0 (C-2’), 73.9 (OCH2CH=CH2), 73.8 (C- 4’), 

73.7 (OCH2Ph), 73.6 (OCH2Ph’), 73.4 (OCH2Naphth), 73.2 (C-4), 72.3 (C-5’), 69.7 (C-6), 69.4 

(C-6’), 27.9 (CH3
isoprop), 26.5 (CH3

isoprop) ppm (no signals for CF3 and C=NPh). 

 

tert-butyldiphenylsilyl 6-O-benzyl-2-O-benzoyl-β-D-galactopyranosyl-(1→4)-2-Oallyl-3-O-

benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside (113) 

To a solution of disaccharide 110 (1.0 g, 0.92 mmol) in methano l 

(5 mL) and dioxane (5 mL) was added 1 mL of 1M aqueous HCl. The reaction mixture was heated 

to 50 °C and stirred for 3 hours. The mixture was then diluted with CH2Cl2, washed with sat. aq. 

NaHCO3 and the organic phase was dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by flash chromatography (1:5 EtOAc/ Toluene) to afford diol 113 in 75% 

yield (721 mg). 

Rf 0.25 (1:5 EtOAc/ Toluene). [𝜶]𝑫
𝟐𝟎= -12.0° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.08 – 8.02 (m, 2H, ArH), 7.81  –  7.67 (m, 3H, ArH), 7.67 – 7.56 

(m, 5H, ArH), 7.48 – 7.38 (m, 3H, ArH), 7.37 – 7.11 (m, 19H, ArH), 5.70 (dq, J = 10.7, 5.6 Hz, 

1H, -CH=CH2), 5.24 (dd, J = 9.6, 8.0 Hz, 1H, H-2’), 5.08  –  4.94 (m, 3H, H-1’, -CH=CH2), 4.62 

and 4.52 (ABq pattern, J = 12.0 Hz, 2H, OCH2Ph), 4.44 – 4.25 (m, 5H, H-1, OCH2Naphth, 

OCH2Ph’), 4.08 (s, 1H , H-4), 4.04 (d, J = 3.4 Hz, 1H, H- 4’), 3.90 (dd, J  =  12.2, 5.6 Hz, 1H, 

0.5xOCH2CH=CH2), 3.75 – 3.65 (m, 3H, H-6a’, H-6a, H- 3’), 3.60 – 3.48 (m, 3H, H-6b’, 

0.5xOCH2CH=CH2, H-5’), 3.39 – 3.32 (m, 1H, H-6b), 3.32  –  3.24 (m, 2H, H-2, H-3), 3.21 (m, 

1H, H-5), 0.97 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101  MHz, CDCl3) δ 167.27 (OBz), 138.7, 

137.8, 136.2 (3C), 136.0 (2C), 135.3 (- CH=CH2), 133.9, 133.4, 133.3, 133.2, 133.0, 130.4, 129.9, 

129.6, 129.5, 129.2, 128.6 (2C), 128.5 (2C), 128.3 (3C), 128.0 (4C), 127.9, 127.8 (2C), 127.7 (2C), 
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127.5 (2C), 127.2 (2C), 126.1 (2C), 125.8 (40 ArC), 116.1 (-CH=CH2), 100.9 (C-1’), 98.0 (C-1), 

82.0 (C-3), 81.3 (C-2), 74.4 (C-2’), 73.8 (OCH2CH=CH2), 73.7 (OCH2Ph’), 73.6 (OCH2Ph), 73.5 

(2C, OCH2Naphth, C-5), 73.2 (C-5’), 73.1 (C-3’), 72.8 (C-4), 69.7 (C-6), 69.6 (C-4’), 69.3 (C-6’), 

26.9 (3C, tert-butyl), 19.2 (tert-butyl) ppm. 

 

Phenyl 4,6-O-benzylidene-3-O-chloroacetyl-β-D-galactopyranoside135 (122) 

 Di-n-butyl tin oxide (10.8 g, 43.7 mmol) was added to a solution of 

compound 100 (15.0 g, 41.6 mmol) in dry toluene (400 mL) and stirred under refluxing 

temperature for 12 h. The reaction mixture was cooled to 0 °C, and freshly activated 4Å MS (15  g) 

were added. After 30 min chloroacetyl chloride (3.41 mL, 42.87 mmol) was added dropwise and 

stirring was maintained at this temperature for 1 hour. The reaction was quenched by addition of 

MeOH, filtered through a pad of celite and concentrated in vacuo. The crude product was purified 

by flash chromatography (10:1 to 5:1 Toluene/EtOAc) to give 122 as white crystals. Yield: 14.8 g 

(82%). The compound analyses were in accordance with data from the literature.135 

Rf 0.55 (1:2 EtOAc/ Toluene).  

1H NMR (400 MHz, CDCl3) δ 7.59 – 7.53 (m, 2H, ArH), 7.32  –  7.10 (m, 8H, ArH), 5.36 (s, 1H, 

PhCHO2), 4.86 (dd, J = 9.8, 3.4 Hz, 1H, H-3), 4.47 (d, J  = 9.5 Hz, 1H, H-1), 4.32 – 4.24 (m, 2H, 

H-4, H-6a), 4.03 – 3.94 (m, 2H, CH2-Cl), 3.91 (dd, J  =  12.5, 1.7 Hz, 1H, H-6b), 3.86 (m, 1H, H-

2), 3.50 (m, 1H, H-5) ppm. 13C NMR (101 MHz, CDCl3) δ 167.4 (OAcCl), 137.7, 133.8 (2C), 

130.2, 129.3, 129.2 (2C), 128.6, 128.3 (2C), 126.5 (2C) (12 ArC), 101.1 (PhCHO2), 87.6 (C-1), 

76.6 (C-3), 73.5 (C-4), 69.9 (C-5), 69.2 (C-6), 65.6 (C-2), 41.0 (CH2Cl) ppm. 

 

Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-galactopyranoside135 (117)  

 To a solution of alcohol 122 (14.8 g, 33.9 mmol) in CH2Cl2 (220 mL) was 

added Et3N (9.5 ml, 67.8 mmol). The mixture was cooled down to 0 °C and benzoyl chloride (9.8 

mL, 84. 7 mmol) was added dropwise. After stirring for 4 hours at 0 °C, the reaction was quenched 

by adding 10 ml of MeOH, diluted with 200 mL CH2Cl2 and washed with water. The organic phase 

was dried over Na2SO4, concentrated in vacuo and the crude product was purified by flash 

chromatography (1:15 EtOAc/Toluene) to afford fully protected monosaccharide 117 in 82% yield 

(15.2 g). The compound analyses were in accordance with data from the literature.135 

Rf 0.65 (1:2 EtOAc/ Toluene).  
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1H NMR (400 MHz, CDCl3) δ 7.89 – 7.84 (m, 2H, ArH), 7.58  –  7.51 (m, 2H, ArH), 7.47 – 7.41 

(m, 1H, ArH), 7.33 – 7.14 (m, 10H, ArH), 5.50 (t, J  =  9.8  Hz, 1H, H-2), 5.39 (s, 1H, PhCHO2), 

5.15 (dd, J = 9.8, 3.4 Hz, 1H, H-3), 4.72 (d, J  =   9.8  Hz, 1H, H-1), 4.46 (dd, J = 3.4, 1.0 Hz, 1H, 

H-4), 4.32 (dd, J = 12.5, 1.7 Hz, 1H, H-6a), 4.00 – 3.84 (m, 3H, H-6b, CH2-Cl), 3.61 (m, 1H, H-

5) ppm. 13C NMR (101 MHz, CDCl3) δ 166.1 (OAcCl), 165.9 (OBz), 137.6, 134.0 (2C), 133.7, 

130.7, 130.1 (2C), 129.2, 129.0 (3C), 128.7 (2C), 128.5, 128.2 (2C), 126.5 (2C) (18 ArC), 101.0 

(PhCHO2), 84.7 (C-1), 73.8 (C-3), 73.6 (C-4), 70.0 (C-5), 69.2 (C-6), 68.4 (C-2), 40.7 (CH2Cl) 

ppm. 

 

tert-butyldiphenylsilyl 2-O-benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-

galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-

galactopyranoside (118) 

 Preparation of 10 mL 1M Me2S2/Tf2O in dichloromethane : 

Me2S2 (1 mL) was diluted in anhydrous CH2Cl2 (10 mL) and cooled to 0 °C. Triflic anhydride 

(1.7  mL) was added and the mixture was stirred for 30 minutes at 0 °C. 

Thiophenyl galactoside 117 (1.68 g, 3.10 mmol) and acceptor 94 (1.64 g, 2.39 mmol) were co-

evaporated with toluene three times and subjected to high vacuum for two hours. The mixture was 

dissolved in CH2Cl2 (65 ml) and stirred with 4 Å MS (3 g) for 30 minutes. The reaction mixture 

was cooled down to - 40 °C, 1M Me2S2/Tf2O in CH2Cl2 (5.98 mL) was added and it was stirred 

for 30 min at - 40 °C until TLC showed full conversion of the donor. The reaction was then 

quenched with Et3N (1.5 mL). The mixture was diluted with CH2Cl2, filtered through celite, and 

concentrated in vacuo. The crude product was purified by flash chromatography (1:70 to 1:5  

EtOAc/Toluene) to yield the product in 55% (1.48 g). 

Rf 0.40 (1:5 EtOAc/ Toluene). [𝜶]𝑫
𝟐𝟎= 26.8° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.94 (m, 2H, ArH), 7.74 – 7.56 (m, 8H, ArH), 7.54 – 7.44 (m, 2H, 

ArH), 7.43 – 7.02 (m, 20H, ArH), 5.87 (ddt, J = 17.4, 10.7, 5.6 Hz, 1H, -CH=CH2), 5.55 (dd, J 

=  10.4, 7.7 Hz, 1H, H-2’), 5.38 (s, 1H, PhCHO2), 5.19 (dq, J = 17.4, 1.7 Hz, 1H, CH2=CHtrans), 

5.06 (m, 2H, CH2=CHcis, H-3’), 4.85 (d, J = 7.7 Hz, 1H, H-1’), 4.66 and 4.54 (ABq pattern, J = 

12.2 Hz, 2H, OCH2Ph), 4.50 – 4.33 (m, 5H, H-4’,OCH2Naphth, H-1, 0.5xOCH2CH=CH2), 4.19 

(ddt, J = 12.4, 5.6, 1.5 Hz, 1H, 0.5xOCH2CH=CH2), 4.06 – 3.96 (m, 2H, H-4, H-6a’), 3.87 – 3.76 

(m, 2H, H-6b’, 0.5xCH2-Cl), 3.73 (s, 1H, 0.5xCH2-Cl), 3.71 – 3.64 (m, 1H, H-6a), 3.47 – 3.39 (m, 

1H, H-2), 3.32 – 3.24 (m, 2H, H-3, H-5’), 3.21 (dd, J = 9.4, 5.1 Hz, 1H, H-6b), 3.13 (dd, J = 6.9, 

5.1 Hz, 1H, H-5), 0.99 (s, 9H, 3xCH3
 TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 166.3 (OAcCl), 

166.2 (OBz), 138.5, 138.0, 137.8 (2C), 136.2 (2C), 136.1, 136.0 (2C), 135.4 (-CH=CH2), 133.8, 
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133.7, 133.5, 133.4, 133.0, 130.1, 129.7 (2C), 129.5, 129.3, 129.2, 128.7 (3C), 128.6, 128.4, 128.3 

(3C), 128.0, 127.8, 127.5, 127.3, 126.5 (2C), 126.3, 126.0, 125.9, 125.8, 125.4 (2C) (40 ArC), 

116.6 (-CH=CH2), 101.1 (PhCHO2), 101.0 (C-1’), 98.3 (C-1), 82.0 (C-3), 81.2 (C-2), 74.3 

(OCH2CH=CH2), 73.7 (OCH2Naphth), 73.6 (OCH2Ph), 73.5 (2C, C-4’, C- 4), 73.2 (C-5), 72.6 (C-

3’), 71.1 (C-2’), 68.9 (C-6), 68.8 (C-6’), 66.3 (C-5’), 40.8 (CH2Cl), 27.1 (3C, tert-butyl), 19.3 

(tert-butyl) ppm. 

 

2-O-benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-

O-benzyl-6-O-(2-naphthyl)methyl-D-galactopyranose (123) 

 To a solution of 118 (3.0 g, 2.68 mmol) in THF (30 mL) at 0 °C 

was added TBAF (2.68 mL, 1.0 M in THF). The resulting mixture was warmed up gradually to 

22  °C and was stirred for  3 hours. The reaction was diluted with CH2Cl2 , washed with sat. aq. 

NH4Cl. The organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The resulting 

residue was purified by flash chromatography (6:1 to 2:1 Toluene/EtOAc) to afford 123 as a 

transparent oil. Yield: 1.86 g (76%). 

Rf 0.30 (5:1 Toluene/EtOAc). HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C49H49NaClO13 

903.2753; found 903.2748. 

 

α-anomer: 
1H NMR (400 MHz, CDCl3) δ 7.94 – 7.87 (m, 2H, ArH), 7.66 (m, 5H, ArH), 7.49 – 7.02 (m, 

15H), 5.92 – 5.75 (m, 1H, -CH=CH2), 5.47 (m, 1H, H-2’), 5.39 (s, 1H, PhCHO2), 5.35 – 5.17 (m, 

2H, H-1, CH2=CHtrans), 5.11 – 4.99 (m, 2H, CH2=CHcis, H-3’), 4.73 – 4.59 (m, 4H, OCH2Ph, 

0.5xOCH2CH=CH2, H-1’), 4.54 – 4.50 (m, 1H, 0.5xOCH2CH=CH2), 4.36 – 4.30 (m, 1H, H- 4’), 

4.17 – 4.01 (m, 3H, OCH2Naphth, H-5), 4.00 – 3.68 (m, 6H, H-3, H-4, H-6ab, H-6ab’), 3.68 – 

3.48 (m, 4H, CH2-Cl, H-2, H-5’) ppm. 13C NMR (101 MHz, CDCl3) δ 166.3 (OAcCl), 166.3 

(OBz), 138.5, 138.3, 138.0, 137.8 (2C), 135.9, 134.8, 133.7 (-CH=CH2), 133.3, 130.1, 129.2, 

129.1, 128.7 (2C), 128.3 (2C), 128.2, 128.0, 127.9, 127.7, 126.8, 126.7 (2C), 126.5, 126.3, 126.1 

(2C), 125.9, 125.4 (28 ArC), 117.5 (-CH=CH2), 101.9 (C-1’), 101.2 (PhCHO2), 91.7 (C-1), 77.7 

(C-3), 77.36 (C-2), 76.4 (C-4), 73.6 (OCH2Naphth), 73.3 (OCH2CH=CH2), 72.5 (C-4’), 72.5 

(OCH2Ph), 72.4 (C-3’), 71.0 (C-2’), 69.4 (C-6), 69.2 (C-5), 68.7 (C-6’), 66.1 (C-5’), 40.7 (CH2Cl) 

ppm. 

 

 

β-anomer: 
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1H NMR (400 MHz, CDCl3) δ 7.94 – 7.87 (m, 2H, ArH), 7.66 (m, 5H, ArH), 7.49 – 7.02 (m, 

15H), 5.92 – 5.75 (m, 1H, -CH=CH2), 5.47 (m, 1H, H-2’), 5.39 (s, 1H, PhCHO2), 5.35 – 5.17 (m, 

1H, CH2=CHtrans), 5.11 – 4.99 (m, 2H, CH2=CHcis, H-3’), 4.73 – 4.59 (m, 4H, OCH2Ph, 

0.5xOCH2CH=CH2, H-1’), 4.54 – 4.50 (m, 2H, 0.5xOCH2CH=CH2, H-1), 4.36 – 4.30 (m, 1H, 

H- 4’), 4.17 – 4.01 (m, 3H, OCH2Naphth, H-5), 4.00 – 3.68 (m, 6H, H-3, H-4, H-6ab, H-6ab’), 

3.68 – 3.48 (m, 4H, CH2-Cl, H-2, H-5’) ppm. 13C NMR (101 MHz, CDCl3) δ 166.3 (OAcCl), 

166.3 (OBz), 138.5, 138.3, 138.0, 137.8 (2C), 135.9, 134.8, 133.7 (-CH=CH2), 133.3, 130.1, 129.2, 

129.1, 128.7 (2C), 128.3 (2C), 128.2, 128.0, 127.9, 127.7, 126.8, 126.7 (2C), 126.5, 126.3, 126.1 

(2C), 125.9, 125.4 (28 ArC), 117.5 (-CH=CH2), 101.9 (C-1’), 101.2 (PhCHO2), 97.8 (C-1), 77.7 

(C-3), 77.36 (C-2), 76.4 (C-4), 73.6 (OCH2Naphth), 73.3 (OCH2CH=CH2), 72.5 (C-4’), 72.5 

(OCH2Ph), 72.4 (C-3’), 71.0 (C-2’), 69.4 (C-6), 69.2 (C-5), 68.7 (C-6’), 66.1 (C-5’), 40.7 (CH2Cl) 

ppm. 

 

2-O-benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-

O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranose N-phenyl trifluoroacetimidate (119) 

 Hemiacetal 118 (1.80 g, 2.04 mmol) was dissolved in 

dichloromethane (30 mL) and cooled to 0 °C. Cesium carbonate (1.33 g, 4.08 mmol) was added 

followed by addition of N-phenyl trifluoroacetimidoyl chloride (0.66mL, 4.08 mmol). The ice bath 

was removed and the reaction stirred at 22 °C for 3 hours. The mixture was then filtered through 

celite and concentrated in vacuo. The crude was purified by flash chromatography (1:15 to 1:3 

EtOAc/Toluene) to yield the product in 93% as a white solid (2.1 g). 

Rf 0.60 (4:1 Toluene/EtOAc).  

1H NMR (400 MHz, CDCl3) δ 7.94 – 7.86 (m, 2H, ArH), 7.72  –  7.51 (m, 5H, ArH), 7.47 – 7.18 

(m, 11H, ArH), 7.17 – 6.99 (m, 6H, ArH), 6.97 – 6.90 (m, 1H, ArH), 6.67 (d, J = 7.8 Hz, 2H, 

ArH), 5.83 (m, 1H, - CH=CH2), 5.50 (m, 1H, H-2’), 5.37 (s, 1H, PhCHO2), 5.22 – 5.17 (m, 1H, 

CH2=CHtrans), 5.11 – 5.06 (m, 2H, H-3’, CH2=CHcis), 5.04 (m, 1H, H-1), 4.79 (d, J = 7.8 Hz, 1H, 

H-1’), 4.74 – 4.52 (m, 4H, OCH2Ph, OCH2Naphth,), 4.40 – 4.33 (m, 1H, H-4’), 4.24 – 3.95 (m, 

4H, OCH2CH=CH2, H-4, H-6a’), 3.94 – 3.25 (m, 9H, H-6b’, H6ab, H-2, H-3, H-5, H-5’, CH2-Cl) 

ppm. 13C NMR (101 MHz, CDCl3) δ 166.3 (OAcCl), 166.1 (OBz), 143.7 (Cipso, NPh), 138.0, 

138.0, 137.7, 136.0, 134.8, 133.7, 133.4, 133.1, 130.1 (3C), 129.2, 129.1, 128.8 (2C), 128.7 (2C), 

128.4, 128.3 (2C), 128.2, 128.1, 127.9, 127.8, 126.5 (3C), 126.1, 125.9 (2C), 125.4, 124.3 (32 

ArC), 119.5 (ArC, NPh), 117.2 (-CH=CH2), 101.4 (C-1’), 101.2 (PhCHO2), 97.4 (C-1), 81.5 (C-

3), 78.2 (C-2), 77.4 (C-4), 74.4 (OCH2CH=CH2), 73.9 (OCH2Naphth), 73.6 (OCH2Ph), 73.4 (C-
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4’), 72.5 (C-3’), 71.1 (2C, C-2’ and C-6), 68.7 (C-6’), 66.7 (C-5), 66.4 (C-5’), 40.6 (CH2Cl) ppm 

(no signals for CF3 and C=NPh). 

 

Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-galactopyranoside179 (127)  

Diol 100 (19.0 g, 52.7 mmol)  was dissolved in 300 mL pyridine and cooled 

down to 0 °C. Benzoyl chloride ( 18.4 mL, 158,2 mmol) was added dropwise and the mixture was 

stirred at 22 °C for 12 hours. The mixture was diluted with Et2O (200 mL) and washed with water 

(3 x 200 mL) and NH4Cl (3 x 200 mL). The organic phase was dried over MgSO4, concentrated 

in vacuo and the crude product was purified by flash chromatography (1:50 EtOAc/Toluene) to 

yield the product as a white solid in 85% yield (25 g). 
 Rf 0.70 (1:2 EtOAc/Toluene).  
1H NMR (400 MHz, CDCl3) δ 7.85 (m, 4H, ArH), 7.55 – 7.45 (m, 2H, ArH), 7.45 – 7.09 (m, 14H, 

ArH), 5.70 (t, J = 9.9 Hz, 1H, H-2), 5.41 (s, 1H, PhCHO2), 5.26 (dd, J = 9.9, 3.4 Hz, 1H, H-3), 

4.86 (d, J = 9.9 Hz, 1H, H-1), 4.49 (dd, J = 3.4, 0.9 Hz, 1H, H-4), 4.34 (dd, J = 12.4, 1.6 Hz, 1H, 

H-6a), 3.99 (dd, J = 12.4, 1.6 Hz, 1H, H-6b), 3.66 (s, 1H, H-5) ppm. 13C NMR (101 MHz, CDCl3) 

δ 166.3 (OBz), 165.1 (OBz), 137.7, 134.0 (2C), 133.5, 133.3, 131.2, 130.1 (2C), 129.9 (2C), 129.8 

(2C), 129.2 (3C) 128.9, 128.5, 128.4 (2C), 128.2 (2C), 126.6 (2C) (24 ArC), 101.0 (PhCHO2), 

85.4 (C-1), 74.2 (C-3), 73.8 (C-4), 70.0 (C-5), 69.3 (C-6), 67.2 (C-2) ppm. 

 

tert-butyldiphenylsilyl 2,3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-

allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside (128) 

 Preparation of 10 mL 1M Me2S2/Tf2O in dichloromethane : 

Me2S2 (1 mL) was diluted in anhydrous CH2Cl2 (10 mL) and cooled to 0 °C. Triflic anhydride 

(1.7  mL) was added and the mixture was stirred for 30 minutes at 0 °C. 

Thiophenyl galactoside 127 (1.93 g, 3.40 mmol) and acceptor 94 (1.56 g, 2.26 mmol) were co-

evaporated with toluene three times and subjected to high vacuum for two hours. The mixture was 

dissolved in CH2Cl2 (50 ml) and stirred with 4 Å MS (3 g) for 30 minutes. The reaction mixture 

was cooled down to - 40 °C, 1M Me2S2/Tf2O in CH2Cl2 (5.98 mL) was added and it was stirred 

for 30 min until TLC showed full conversion of the donor. The reaction was then quenched with 

Et3N (2 mL). The mixture was diluted with CH2Cl2, filtered through celite and concentrated in 
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vacuo. The crude product was purified by flash chromatography (1:50 to 1:10 EtOAc/Toluene) to 

afford the product in 62% yield (1.60 g). 

Rf 0.40 (1:20 EtOAc/Toluene). [𝜶]𝑫
𝟐𝟎= 138.0° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.93 – 7.88 (m, 4H, ArH), 7.72  –  7.47 (m, 9H, ArH), 7.46 – 7.39 

(m, 2H, ArH), 7.39 – 6.99 (m, 22H, ArH), 5.80 (dd, J  =  10.5, 7.9  Hz, 1H, H-2’), 5.54 (ddt, J = 

17.2, 10.7, 5.6 Hz, 1H, -CH=CH2), 5.40 (s, 1H, PhCHO2), 5.16 (dd, J = 10.5, 3.6 Hz, 1H, H-3’), 

5.10 (d, J  =  7.9  Hz, 1H, H-1’), 4.91 – 4.82 (m, 2H, -CH=CH2), 4.61 – 4.46 (m, 3H, 

0.5xOCH2Naphth, OCH2Ph), 4.45 – 4.41 (m, 1H, H-4’), 4.36 (d, J = 12.2 Hz, 1H, 

0.5xOCH2Naphth), 4.31 (d, J = 7.2  Hz, 1H, H-1), 4.09 – 4.02 (m, 2H, H-4, H-6a’), 3.86 (dd, J = 

12.4, 1.7 Hz, 1H, H-6b’), 3.71 – 3.62 (m, 2H, 0.5xOCH2CH=CH2, H-6a), 3.35 (s, 1H, H-5’), 3.25 

– 3.14 (m, 3H, 0.5xOCH2CH=CH2, H-6b. H-3), 3.14  – 3.05 (m, 2H, H-2, H-5), 0.89 (s, 9H, 

3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 166.5 (OBz), 165.1 (OBz), 138.9, 138.0, 137.9, 

136.4, 136.2 (2C), 136.0 (2C), 135.3 (-CH=CH2), 133.9, 133.5, 133.4 (2C), 133.0, 132.9, 130.2 

(2C), 130.1, 129.6, 129.5, 129.4, 129.2 (2C), 129.1, 128.6 (2C), 128.5, 128.4 (2C), 128.3 (2C), 

128.0, 127.9 (2C), 127.7, 127.5 (2C), 127.4, 127.2, 126.5 (2C), 126.3, 125.9 (2C), 125.7, 125.4 

(2C) (46 ArC), 116.0 (-CH=CH2) , 101.0 (PhCHO2), 100.9 (C- 1’), 97.8 (C-1), 82.0 (C-3), 81.5 

(C-2), 73.7 (OCH2Naphth), 73.6 (OCH2CH=CH2), 73.4 (2C, OCH2Ph, C-4’), 73.1 (C-5), 73.0 (C-

3’), 72.0 (C-4), 69.7 (C-2’), 68.8 (C-6’), 68.7 (C-6), 66.3 (C-5’), 27.0 (3C, tert-butyl), 19.2 (tert-

butyl)  ppm. 

 

tert-butyldiphenylsilyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-

benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside (125) 

Dibenzoylated disaccharide 128 (2.43 g, 2.10 mmol) was 

dissolved in methanol (14 mL) and THF (10 mL) and 1.25 mL of freshly prepared 1M NaOMe in 

MeOH were added. The reaction mixture was stirred at 22 °C for 3 hours, quenched with Amberlite 

IR-120 (H+), filtered and concentrated in vacuo. The crude product was purified by flash 

chromatography (4:1 to 2:1 Toluene/EtOAc) to afford diol 125 in 86% yield (1.7 g). 

Rf 0.15 (1:5 EtOAc/ Toluene). [𝜶]𝑫
𝟐𝟎= -19.2° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 7.83 – 7.66 (m, 8H, ArH), 7.62 – 7.58 (m, 1H, ArH), 7.54 – 7.49 

(m, 2H, ArH), 7.48 – 7.42 (m, 2H, ArH), 7.41 – 7.20 (m, 8H, ArH), 7.19 – 7.11 (m, 6H, ArH), 

5.93 (ddt, J = 17.3, 10.4, 5.7 Hz, 1H, -CH=CH2), 5.58 (s, 1H, PhCHO2), 5.31 – 5.12 (m, 2H, -

CH=CH2), 4.85 – 4.67 (ABq pattern, J = 12.2 Hz, 2H, OCH2Ph), 4.61 – 4.39 (m, 4H, 

0.5xOCH2Naphth, OCH2-CH=CH2, H-1), 4.34 – 4.22 (m, 2H, H-1’, 0.5xOCH2Naphth), 4.11-3.98 

(m, 2H, H-3’, H-6a’), 3.89 – 3.78 (m, 4H, H-6b’, H-2’, H-6a, H-4), 3.69 (dd, J = 9.7, 7.5 Hz, 1H, 

H-2) 3.61 – 3.52 (m, 1H, H-4’), 3.39 (dd, J = 9.7, 3.2 Hz, 1H, H-3), 3.31 (dd, J = 9.0, 5.1 Hz, 1H, 
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H-6b), 3.22 – 3.08 (m, 2H, H-5, H-5’), 1.08 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101  MHz, 

CDCl3) δ 138.0, 137.8, 137.7, 136.2 (2C), 136.1 (2C), 136.0, 135.1 (-CH=CH2), 133.6, 133.4, 

133.0, 129.7 (3C), 129.3, 129.2 (2C), 128.6, 128.4 (3C), 128.3, 128.2, 127.9, 127.8, 127.6, 127.4, 

126.5 (2C), 126.3, 126.1, 126.0, 125.5, 125.4 (34 ArC), 117.1 (-CH=CH2), 105.8 (C-1’), 101.4 

(PhCHO2), 98.2 (C-1), 80.9 (C-3), 80.8 (C-2), 77.8 (C-2’), 75.3 (C-3’), 74.3 (OCH2Naphth), 74.1 

(OCH2Ph), 73.4 (C-4’), 73.3 (OCH2CH=CH2), 72.8 (C-5), 72.5 (C-4), 69.2 (C-6’), 68.3 (C- 6), 

66.9 (C-5’), 27.1 (3C tert-butyl), 19.3 (tert-butyl) ppm. 

 

2,3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-

naphthyl)methyl-D-galactopyranose (129) 

 To a solution of 128 (700 mg, 0.61 mmol) in THF (10 mL) at 0 °C 

was added TBAF (0.61 mL, 1.0 M in THF). The resulting mixture was warmed gradually to 22 °C 

and was stirred for 2 h. The reaction was diluted with CH2Cl2 , washed with sat. aq. NH4Cl. The 

organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The resulting residue 

was purified by flash chromatography (4:1 to 2:1 Toluene/EtOAc) to afford 129 as a transparent 

oil. Yield: 437 mg (80%). 

Rf 0.24 (5:1 Toluene/EtOAc).  

1H NMR (400 MHz, , CDCl3) δ 7.97 – 7.80 (m, 6H, ArH), 7.74 – 7.62 (m, 6H, ArH), 7.53 – 7.02 

(m, 15H, ArH), 5.79 – 5.71 (m, 1H, H-2’), 5.51 – 5.41 (m, 2H, PhCHO2, -CH=CH2), 5.21 – 5.09 

(m, 1.8H, H- 3’, H-1α), 5.03 – 4.94 (m, 1H, H-1’), 4.92 – 4.51 (m, 7H, OCH2Ph, OCH2Naphth), 

4.50 – 4.44 (m, 1.2H, H-4’, H-1β), 4.16 – 4.03 (m, 3H, H-6a’,H-4, H-5), 3.95 – 3.85 (m, 1H, H-

6b’), 3.82 – 3.56 (m, 4H, H-6ab, H-3, ), 3.54 – 3.28 (m, 4H, H-5’, H-2, OCH2-CH=CH2) ppm. 
13C  NMR (101 MHz, CDCl3) δ 166.5 (OBz), 165.2 (OBz), 138.8, 138.1, 136.0, 135.1, 134.7 

(- CH=CH2), 134.1, 133.6, 133.5, 133.1, 133.0, 130.2, 130.1, 130.0, 129.9 (3C), 129.4, 129.2, 

128.7, 128.6 (2C), 128.5, 128.4 (2C), 128.3 (2C), 128.2, 127.9, 127.8, 127.7, 126.8, 126.6, 126.2, 

126.0, 125.9 (34 ArC), 116.7 (-CH=CH2), 101.4 (C-1’), 101.1 (PhCHO2), 97.6 (C-1β), 91.9 (C-

1α), 77.9 (C-3), 77.0 (C-2), 74.4 (C-4), 73.5 (2C, OCH2Naphth and OCH2Ph), 73.5 (C-4’), 73.1 

(C-3’), 72.3 (OCH2CH=CH2) , 69.6 (2C, C-2’ and C-5), 69.3 (C-6), 68.8 (C-6’), 66.2 (C-5’) ppm. 

 

 

 

2,3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-

naphthyl)methyl-β-D-galactopyranose N-phenyl trifluoroacetimidate (130) 
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 Hemiacetal 129 (400 mg, 0.45 mmol) was dissolved in 

dichloromethane (6 mL) and cooled to 0 °C. Cesium carbonate (290 mg, 0.89 mmol) was added 

followed by addition of N-phenyl trifluoroacetimidoyl chloride (0.14 mL, 0.89 mmol). The ice 

bath was removed and the reaction stirred at 22 °C for 3 hours. The mixture was then filtered 

through celite and concentrated. The crude was purified by flash chromatography (1:15 to 1:3 

EtOAc/Toluene) to yield the product in 98% as a white solid (470 mg). The product was not further 

characterized and used directly in the next step. 

 

tert-butyldiphenylsilyl 2,3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-

allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranosyl-(1→3)-4,6-O-benzylidene-β-

D-galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-

galactopyranoside (131) 

 Trifluoroacetimidate donor 130 (100 mg, 

0.094 mmol) and disaccharide acceptor 125 (72.8 mg, 0.078 mmol) were co-evaporated with 

toluene three times and subjected to high vacuum for two hours. The mixture was dissolved in 

CH2Cl2 (4 ml) and stirred with 4 Å MS for 30 minutes. The reaction mixture was cooled down to 

- 40 °C, and TMSOTf (3.53 μL, 0.019 mmol) was added. The mixture was stirred at -40 °C for 

1  hour, quenched with 0.1 mL of triethylamine, diluted with CH2Cl2, filtered and concentrated in 

vacuo. The crude product was purified by flash chromatography (1:10 to 1:5 EtOAc/Toluene) to 

yield tetrasaccharide 131 in 60% (91 mg). 

Rf 0.55 (1:3 EtOAc/ Toluene). 

1H NMR (400 MHz, CDCl3) δ 7.98 (ddd, J = 46.1, 8.3, 1.3 Hz, 5H, ArH), 7.87 – 7.67 (m, 12H, 

ArH), 7.65 – 7.07 (m, 37H, ArH), 6.01 – 5.88 (m, 2H, H-2’’’, -CH=CH2), 5.70 – 5.52 (m, 3H, 

PhCHO2, PhCHO2’’, -CH=CH2’’), 5.32 – 5.14 (m, 4H, H-1’’’, H- 3’’’, -CH=CH2), 4.99 – 4.74 

(m, 7H, H-1’’, OCH2Naphth’’, OCH2Naphth, -CH=CH2’’), 4.70  –  4.38 (m, 8H, H-1, H-4’’’, 

OCH2Ph, 0.5-CH2-CH=CH2’’, OCH2Ph’’, 0.5x-CH2-CH=CH2), 4.36  – 4.22 (m, 4H, H-1’, H-
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6a’’’, H- 4’’, 0.5x-CH2-CH=CH2), 4.15 (d, J = 3.6  Hz, 1H, H-4’), 4.10  –  3.95 (m, 4H, H-6a’, H-

6b’’’, H- 2’, 0.5x-CH2-CH=CH2’’), 3.93 – 3.76 (m, 4H, H-6ab, H- 6b’, H-5), 3.73 – 3.55 (m, 5H, 

H-5’’’, H-6a’’, H-5’’, H-3’, H-2), 3.51 – 3.28 (m, 3H, H- 6b’’, H-3, H-3’’), 3.26 – 3.08 (m, 4H, 

H-5’, H- 2’’, 0.5x-CH2-CH=CH2’’, H-4), 1.09 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, 

CDCl3) δ 166.5 (OBz), 165.3 (OBz), 139.2, 138.6, 138.1, 137.8, 136.2 (2C), 136.1, 136.0 (2C), 

135.5 (-CH=CH2’’), 135.2 (-CH=CH2), 133.6, 133.4 (2C), 133.3, 133.0 (2C), 132.8, 130.1 (2C), 

130.0, 129.7, 129.6, 129.4, 129.2, 129.1, 128.6, 128.5 (3C), 128.4, 128.3 (4C), 128.2, 128.1 (3C), 

128.0 (4C), 127.7 (2C), 127.6 (3C), 127.5 (4C), 127.3, 126.9, 126.5  (4C), 126.4 (4C), 126.2, 126.1 

(4C), 125.9, 125.7, 125.4 (68 ArC), 116.7 (-CH=CH2), 116.1 (- CH=CH2’’), 105.5 (C-1’), 103.4 

(C-1’’), 101.5 (C-1’’’), 101.0 (PhCHO2’’’), 100.5 (PhCHO2’), 98.1 (C-1), 81.4 (C-3’’), 81.1 

(C- 3), 81.0 (C-2), 79.8 (C-4), 77.0 (C- 3’), 76.6 (C-5), 75.7 (C-4’), 74.3 (OCH2CH=CH2’’), 74.0 

(OCH2Ph’’), 73.7 (OCH2Naphth, OCH2Naphth’’), 73.6 (C-4’’’), 73.5 (OCH2CH=CH2), 73.3 

(OCH2Ph), 73.2 (C-5’’), 73.2 (C-3’’’), 73.1 (C-4’’), 73.0 (C-2’’), 72.0 (C-2’), 69.6 (C- 2’’’), 69.0 

(C-6’’’), 68.9 (C-6’), 68.6 (C-6), 68.5 (C-6’’), 67.0 (C-5’), 66.3 (C-5’’’), 27.0 (3C tert-butyl), 19.3 

(tert-butyl) ppm. 

 

tert-butyldiphenylsilyl 2-O-benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-

galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-

galactopyranosyl-(1→3)-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-

benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside (126) 

 Trifluoroacetimidate donor 119 (1.72 g, 

1.64 mmol) and disaccharide acceptor 125 (1.40 g, 1.49 mmol) were co-evaporated with toluene 

three times and subjected to high vacuum for two hours. The mixture was dissolved in CH2Cl2 (50 

ml) and stirred with 4 Å MS for 30 minutes. The reaction mixture was cooled down to - 40  °C, 

and TMSOTf (67 μL, 0.37 mmol) was added. The mixture was stirred at -40 °C for 1 hour, 

quenched with 3 mL of triethylamine, diluted with CH2Cl2, filtered and concentrated  in vacuo. 

The crude product was purified by flash chromatography (1:12 to 1:5 EtOAc/Toluene) to yield 

tetrasaccharide 126 as a white solid in 55% (1.56 g). 

mp 75.2 °C. Rf 0.40 (1:4 EtOAc/ Toluene). [𝜶]𝑫
𝟐𝟎= 41.4° (c 0.5, CDCl3).  

1H NMR (400 MHz, CDCl3) δ 8.05 – 7.97 (m, 3H, ArH), 7.85  –  7.63 (m, 14H, ArH), 7.63 – 7.11 

(m, 32H, ArH), 5.93 (ddt, J = 16.3, 10.8, 5.6 Hz, 1H, -CH=CH2), 5.74 – 5.58 (m, 2H, H-2’’’, 
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- CH=CH2’’), 5.50 – 5.46 (m, 2H, PhCHO2’, PhCHO2’’’), 5.31 – 5.26 (m, 2H, H-1’’, 0.5x-

CH=CH2’’), 5.25 – 5.01 (m, 3H, 0.5x-CH=CH2’’, 0.5x-CH=CH2, H-3’’’), 4.94 (d, J = 10.4 Hz, 

1H, 0.5x-CH=CH2), 4.91 – 4.58  (m, 9H, H-1’’’, OCH2Ph’’, OCH2Ph, -CH2-CH=CH2’’, 

OCH2Naphth), 4.57 – 4.26 (m, 6H, H-1, H-1’, H-5’’, H-4’’’, OCH2Naphth’’), 4.24 (d, J = 3.6 Hz, 

1H, H-4’), 4.19 (d, J = 3.0 Hz, 1H, H-4’’), 4.14 – 3.97 (m, 4H, H-3’’, H-2’, - CH2-CH=CH2), 3.96 

– 3.58 (m, 13H, H-3’, H-4, H-2’’, H-2, CH2Cl, H-6ab’’’, H-6ab’’, H-6ab’, H- 6a), 3.44 – 3.29 (m, 

3H, H-5’’’, H-6b, H-3), 3.16 (dd, J = 7.4, 5.3 Hz, 1H, H-5), 3.06 (s, 1H, H-5’), 1.10 (s, 9H, 

3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 166.5 (OAcCl), 166.3 (OBz), 139.0, 138.00 

(2C), 137.9, 137.8, 136.5, 136.2, 136.0, 135.2 (-CH=CH2), 135.1(-CH=CH2
’’), 133.7, 133.6, 133.5, 

133.4, 133.3, 133.0, 132.9, 130.1, 129.6, 129.2, 129.1, 129.0, 128.6, 128.5 (2C), 128.4, 128.3, 

128.3, 128.3 (2C), 128.1, 128.0 (2C), 127.9, 127.8, 127.8, 127.7 (2C), 127.5 (2C), 127.3 (2C), 

126.6 (2C), 126.5 (2C), 126.2, 126.2, 126.1 (2C), 125.9, 125.8, 125.6, 125.4 (49 ArC), 116.8 

(- CH=CH2
’’), 116.3 (-CH=CH2), 106.2 (C-1’), 101.9 (C-1’’’), 101.3 (PhCHO2

’), 101.1 

(PhCHO2
’’’), 98.1 (C-1), 92.3 (C-1’’), 81.0 (C-2), 80.9 (C-3), 77.8 (C-3’’), 77.6 (C-4), 76.5 

(C- 2’’), 76.4 (C-4’’), 74.5 (C-3’), 74.3 (OCH2Naphth’’), 74.0 (OCH2Ph’’), 73.6 

(OCH2CH=CH2’’), 73.4 (OCH2Naphth), 73.3 (OCH2Ph), 73.2 (C-4’’’), 72.9 (C-5), 72.6 (C-3’’’), 

71.3 (C-4’), 71.0 (OCH2CH=CH2), 70.9 (C-2’’’), 70.1 (C-2’), 69.7 (C-6’), 69.4 (C-6’’), 69.0 

(C- 6’’’), 68.8 (C-5’’), 68.5 (C-6), 66.7 (C-5’), 66.1 (C-5’’’), 40.7  (CH2Cl), 27.1 (3C tert-butyl), 

19.3 (tert-butyl) ppm. 

 

tert-butyldiphenylsilyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-

benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranosyl-(1→3)-4,6-O-benzylidene-β-D-

galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-

galactopyranoside (147) 

52 μl of 4.6 M NaOMe in MeOH was added to 

a solution of tetrasaccharide 126 (647 mg, 0.34 mmol) in methanol (3 mL) and THF (2 mL). The 

reaction mixture was stirred at 22 °C for 3 hours, quenched with Amberlite IR-120 (H+), filtered 

and concentrated in vacuo. The crude product was purified by flash chromatography (4:1 to 2:1 

Toluene/EtOAc) to afford diol 147 in 89% yield (490 mg). 

Rf 0.15 (1:2 EtOAc/Toluene). [𝜶]𝑫
𝟐𝟎= 11.2° (c 0.5, CDCl3). 
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 1H NMR (400 MHz, CDCl3) δ 7.90 – 7.64 (m, 11H, ArH), 7.64 – 7.10 (m, 33H, ArH), 5.92 (ddt, 

J = 16.2, 10.7, 5.6 Hz, 1H, -CH=CH2’’), 5.69 (ddt, J = 17.5, 10.7, 5.6 Hz, 1H, -CH=CH2), 5.48 (s, 

2H, PhCHO2’, PhCHO2’’’), 5.26 (d, J = 3.2 Hz, 1H, H-1’’), 5.23  –  5.02 (m, 2H, ,-CH=CH2), 

5.02  – 4.91 (m, 2H, ,-CH=CH2’’), 4.79 – 4.61 (m, 6H, OCH2Naphth, OCH2Ph, OCH2Ph’’), 

4.59  –  4.38 (m, 5H, H-1, -CH2-CH=CH2, OCH2Naphth’’), 4.35 (m, 2H,  H-1’, H-1’’’), 4.32 – 

4.25 (m, 1H, H- 2’’’), 4.21 (d, J = 3.6 Hz, 1H, H-5), 4.17 – 3.62 (m, 18H, H-4’, H-4’’’, H-2’, H- 3’, 

H-2’’, H- 4’’, H-3’’, H-4, H-2, H-6a, H-6ab’’, H-6ab’, H-6ab’’’, -CH2-CH=CH2’’), 3.54 (dd, 

J  =  9.6, 3.7 Hz, 1H, H-3’’’), 3.37 (dd, J = 9.7, 3.2 Hz, 1H, H-3), 3.33  –   3.28 (m, 1H, H-6b), 

3.21 – 3.03 (m, 3H, H-5’, H-5’’, H-5’’’), 1.09 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, 

CDCl3) δ 138.1, 138.0 (2C), 137.9, 137.8, 136.2 (2C), 136.0 (4C) 135.1 (- CH=CH2’’), 134.9 (-

CH=CH2), 133.6, 133.4 (2C), 133.3, 133.0, 132.9, 129.3, 129.2 (3C), 129.0, 128.7, 128.6 (2C), 

128.5 (2C), 128.4 (2C), 128.3 (2C), 128.2, 128.1, 128.0 (2C), 127.9 (2C), 127.8 (2C), 127.6, 127.5 

(2C), 127.3 (2C), 126.6 (2C), 126.5 (3C), 126.3, 126.2, 126.1, 126.0, 125.9, 125.6, 125.4 (56 ArC), 

117.0 (-CH=CH2’’),, 116.8(-CH=CH2), 106.0 (C-1’’’), 105.8 (C-1’), 101.4 (PhCHO2
’/PhCHO2

’’’), 

101.2 (PhCHO2
’/PhCHO2

’’’), 98.1 (C-1), 92.9 (C-1’’), 81.0 (C-2), 80.9 (C-3), 79.3 (C-4), 77.6 

(C- 3’’), 77.36 (C-4’’), 76.4 (C-2’’), 75.3 (C-3’), 75.1 (C-2’), 74.5 (OCH2Ph’’), 74.3 

(OCH2CH=CH2) 73.7 (OCH2Ph), 73.4 (C-3’’’), 73.3 (2C, OCH2Naphth and OCH2Naphth’’), 72.9 

(C-5’’), 72.5 (C-2’’’), 71.6 (C-5), 71.3 (C-4’’’), 70.1 (C-4’), 69.35 (OCH2CH=CH2’’), 69.1 

(C- 6’’’), 69.0 (C-6’), 68.5 (C- 6’’), 68.4 (C-6), 66.9 (C-5’’’), 66.8 (C-5’), 27.1 (3C tert-butyl), 

19.3 (tert-butyl) ppm. 

 

tert-butyldiphenylsilyl 3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-

allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranosyl-(1→3)-4,6-O-benzylidene-β-

D-galactopyranosyl-(1→4)-2-O-allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-

galactopyranoside (148) 

 To a solution of triol 147 (680 mg, 0.42 

mmol) in 15 mL of CH2Cl2 was added triethylamine (64 μL, 0.46 mmol). The solution was then 

cooled down to -40 °C, benzoyl chloride (54 μL, 0.46 mmol) and DMAP (15 mg, 0.13 mmol) were 

added. The reaction mixture was stirred at -40 °C for 3 hours until TLC indicated full conversion 

of the starting material. The mixture was then diluted with CH2Cl2 and washed with 1M HCl. The 

organic phase was further washed with sat. aq. NaHCO3, dried over MgSO4 and concentrated in 
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vacuo. The crude product was purified by flash chromatography ((1:15 EtOAc/Toluene) to afford 

the product in 76% yield (550 mg). 

Rf 0.50 (1:3 EtOAc/Toluene). [𝜶]𝑫
𝟐𝟎= 57.8° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.13 – 8.04 (m, 2H, ArH), 7.85 – 7.63 (m, 13H, ArH), 7.62 – 7.12 

(m, 34H, ArH), 5.92 (ddt, J = 17.2, 10.7, 5.6 Hz, 1H, -CH=CH2), 5.67 (ddd, J = 17.3, 10.6, 5.3 Hz, 

1H, -CH=CH2
’’), 5.47 (s, 1H, PhCHO2’/PhCHO2’’’), 5.43 (s, 1H, PhCHO2’/PhCHO2’’’), 5.29 – 

5.12 (m, 3H, H-1’’,-CH=CH2), 5.06 (dq, J = 17.3, 1.6 Hz, 1H, 0.5x-CH=CH2
’’), 5.01 – 4.93 (m, 

3H, H-3’’’, 0.5xOCH2Ph’’, 0.5x-CH=CH2
’’), 4.91 (s, 1H, 0.5xOCH2Ph), 4.79 – 4.61 (m, 4H, 

0.5xOCH2Ph, H-6ab’/H-6ab’’’, 0.5xOCH2Ph’’), 4.58 – 4.36 (m, 8H, H-1, H-1’’’, H-4’’’, H- 5’’, 

- CH2-CH=CH2, H-6ab’/H-6ab’’’), 4.34 (d, J = 7.6 Hz, 1H, H-1’), 4.32 – 4.16 (m, 4H, H-2’’’, 

H- 4’, OCH2Naphth), 4.16 – 3.99 (m, 7H, H-4’’, H-3’’, H-2’, - CH2-CH=CH2’’, OCH2Naphth’’), 

3.99 – 3.62 (m, 7H, H-2, H-4, H-6a, H-3’, H-2’’, H-6ab’’), 3.37 (dd, J = 9.7, 3.2 Hz, 1H, H-3), 

3.33 – 3.24 (m, 2H, H-6b, H-5’/H-5’’’), 3.16 (dd, J = 7.5, 5.3 Hz, 1H, H-5), 3.08 (d, J = 2.0 Hz, 

1H, H-5’/H-5’’’), 1.09 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 166.7 (OBz), 

138.1, 138.0, 137.8, 136.2 (3C), 136.1, 136.0 (2C), 135.1 (-CH=CH2), 134.9 (-CH=CH2
’’), 134.6, 

133.7, 133.5, 133.4, 133.3, 133.2, 133.0, 132.1, 130.1 (2C), 129.9, 129.8, 129.6, 129.2 (2C), 129.1, 

129.0, 128.9, 128.8, 128.6 (2C), 128.5 (2C), 128.4 (4C), 128.3 (2C), 128.2, 128.2 (3C), 128.1, 

128.0 (2C), 127.9, 127.8, 127.7, 127.5 (2C), 127.3 (2C), 126.5, 126.4, 126.3, 126.2, 126.1, 126.0, 

125.9, 125.6, 125.4 (62 ArC), 116.8 (2C, -CH=CH2 and -CH=CH2’’), 106.1 (2C, C-1’and C-1’’’), 

101.2 (PhCHO2
’/PhCHO2

’’’), 100.8 (PhCHO2
’/PhCHO2

’’’), 98.1 (C-1), 92.96 (C-1’’), 81.0 (C-2), 

80.9 (C-3), 79.7 (C-4’’), 77.6 (C- 3’’), 77.4 (C-4), 76.6 (C-2’’), 75.2 (C-3’’’), 75.1 (C-3’), 74.5 

(OCH2Ph), 74.3 (-CH2-CH=CH2), 73.7 (2C, OCH2Ph’’, OCH2Naphth), 73.4 (2C, OCH2Naphth’’ 

, C-4’’’), 73.3 (2C, C- 6’ and C- 6’’’), 72.9 (C-5), 71.6 (C-4’), 71.4 (-CH2-CH=CH2’’), 70.1 (C-

2’), 69.4 (C- 2’’’), 69.0 (C- 6’’), 68.5 (C-5’’), 68.4 (C-6), 66.7 (2C, C-5’ and C-5’’’), 27.1 (3C 

tert-butyl), 19.3 (tert-butyl) ppm. 

 

tert-butyldiphenylsilyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-allyl-3-O-

benzyl-β-D-galactopyranosyl-(1→3)-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-

allyl-3-O-benzyl-β-D-galactopyranoside (149) 

 To a solution of 148 (482 mg, 0.28 mmol) in 

CH2Cl2 (10 mL) and water (1 mL) was added DDQ (190 mg, 0.84 mmol). The mixture was stirred 
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for 1 hour at 22 °C in the dark, diluted with CH2Cl2 (30 mL), filtered through a high pad of celite 

and washed with sat. aq. NaHCO3. The organic phase was dried over MgSO4, filtered and the 

filtrate was concentrated in vacuo. Purification of the residue by flash chromatography (2:1 

Toluene/EtOAc) afforded 149 in 97% yield (394 mg). 

Rf 0.15 (1:1 EtOAc/Toluene). [𝜶]𝑫
𝟐𝟎= 80.8° (c 0.5, CDCl3). 

 1H NMR (400 MHz, CDCl3) δ 8.04 – 7.99 (m, 2H, ArH), 7.69  –  7.60 (m 5H, ArH), 7.50 – 7.15 

(m, 28H, ArH), 5.89 (ddt, J = 17.2, 10.4, 5.6 Hz, 1H, - CH=CH2), 5.62 (ddt, J = 17.4, 10.8, 5.5  Hz, 

1H, - CH=CH2’’), 5.40 (m, 2H, PhCHO2’, PhCHO2’’’), 5.24 (d, J = 1.7 Hz, 1H, 

0.5x- CH=CH2/0.5x-CH=CH2’’), 5.19 (d, J = 1.7 Hz, 1H, 0.5x-CH=CH2/0.5x-CH=CH2’’), 5.13 

(d, J = 3.6 Hz, 1H, H-1’’), 5.10 (d, J = 1.7 Hz, 1H, 0.5x-CH=CH2/0.5x-CH=CH2’’), 5.04 (d, J = 

1.7 Hz, 1H, .5x-CH=CH2/0.5x-CH=CH2’’), 4.97 – 4.89 (m, 2H, H-4’’, 0.5x-CH=CH2/ 

0.5x- CH=CH2’’), 4.80 – 4.56 (m, 4H, OCH2Ph, OCH2Ph’’), 4.50 (d, J = 7.7 Hz, 1H, H-1’’’), 

4.47  – 4.37 (m, 3H, H- 1, H-4’’’, 0.5x-CH2-CH=CH2), 4.34 (d, J = 7.7 Hz, 1H, H-1’), 4.27 – 4.05 

(m, 4H, 0.5x-CH2-CH=CH2, H-2’’’, H-5, H-4’), 4.04 – 3.91 (m, 9H, H-3’’’, H-3’’, -

CH2- CH=CH2’’, H-6ab’, H- 6ab’’’, H- 2’), 3.85 – 3.64 (m, 4H, H-2’’, H-4, H-6ab), 3.62 – 3.45 

(m, 4H, H-6a’’, H-5’’’, H- 2, H-3’), 3.33 (m, 2H, H-6b’’, H-3), 3.26 (d, J = 2.0 Hz, 1H, H-5’), 

3.05 – 2.98 (m, 1H, H-5’’), 1.02 (s, 9H, 3xCH3
TBDPS) ppm.13C NMR (101 MHz, CDCl3) δ 166.63 

(OBz), 138.0 (2C), 137.9, 137.8, 137.7, 136.1 (3C), 135.9 (2C), 135.11 (-CH=CH2), 134.8 

(- CH=CH2
’’), 133.7, 133.4, 133.3, 130.1 (2C), 129.9, 129.8 (2C), 129.2, 129.1, 128.7 (2C), 128.5 

(2C), 128.4 (4C), 128.3 (2C), 128.2 (3C), 128.1, 127.7, 127.6, 127.5 (3C), 126.4 (3C) (42 ArC), 

116.9 (2C,-CH=CH2 and -CH=CH2’’), 105.8 (C-1’’’), 105.4 (C-1’), 101.4 (PhCHO2’), 101.0 

(PhCHO2’’’), 98.0 (C-1), 93.6 (C-1’’), 81.0 (C-2), 80.7 (C-3), 79.4 (C-3’’’), 77.4 (C-3’’) 76.5 

(C- 2’’), 75.9 (C-4), 75.6 (C-3’), 75.0 (C-4’’), 74.5 (OCH2Ph’’), 74.3 (O-CH2-CH=CH2), 74.2 

(OCH2Ph) 73.6 (C-5’’), 73.2 (C-4’’’), 71.6 (C-4’), 71.4 (O-CH2-CH=CH2’’), 69.6 (C-2’), 69.2 

(C- 6’), 69.1 (C-5), 69.0 (C-2’’’), 68.9 (C-6’’’), 66.9 (2C, C-5’ and C-5’’’), 61.3 (C-6), 60.2 (C-

6’’), 27.1 (3C tert-butyl), 19.3 (tert-butyl)  ppm. 
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tert-butyldiphenylsilyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-benzyl-β-D-

galactopyranosyl-(1→3)-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-benzyl-β-D-

galactopyranoside (150) 

 To a solution 149 (350 mg, 0.24 mmol) in 

5  mL glacial acetic acid was added Pd(PPh3)4 (280 mg, 0.24 mmol). The mixture was degassed 

and stirred under nitrogen at 22 °C for 48 hours. The residue was co-evaporated three times with 

toluene and purified by flash chromatography (1:10 to 1:2 EtOAc/Toluene) to afford the desired 

compound in 76% yield (250 mg). 

Rf 0.15 (1:1 EtOAc/Toluene). [𝜶]𝑫
𝟐𝟎= 29.8° (c 1.0, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.04 – 7.98 (m, 2H, ArH), 7.70  –  7.55 (m, 9H, ArH), 7.52 – 7.05 

(m, 24H, ArH), 5.44 (s, 1H PhCHO2’), 5.38 (s, 1H, PhCHO2’’’), 4.98 (d, J = 3.9 Hz, 1H, H-1’’), 

4.95 (dd, J = 10.1, 3.5 Hz, 1H, H-3’’’), 4.83 – 4.71 (m, 2H, OCH2Ph), 4.64 – 4.56 (m, 2H, 

OCH2Ph’’), 4.47 (d, J = 7.7 Hz, 1H, H-1’’’), 4.39 (dd, J = 3.5, 1.0  Hz, 1H, H-4’’’), 4.35 (m, 2H, 

H-1, H-1’), 4.20 – 4.01 (m, 4H, H-6a’’’, H-5, H-4’, H-2’’’), 4.00  –  3.89 (m, 5H, H-6b’’’, H-6ab’ 

H-2’’, H-4’’), 3.87 (dd, J = 3.4, 1.4 Hz, 1H, H-4), 3.84 – 3.57 (m, 7H, H-6a’’, H-6ab, H-2’, H-2, 

H-3’, H-3’’), 3.50 – 3.42 (m, 2H, H-5’’’, H-6b’’), 3.31 (dd, J = 9.7, 3.4 Hz, 1H, H-3), 3.23 (s, 1H, 

H-5’), 3.15 (t, J = 7.4 Hz, 1H, H-5’’), 1.02 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) 

δ 166.6 (OBz), 138.0, 137.8 (2C), 137.6, 137.5, 136.0 (2C), 135.9 (2C), 134.7, 133.3, 133.2, 133.0, 

132.3, 132.2 (2C), 132.1 (3C), 132.0, 130.1, 130.0 (2C), 129.9, 129.4, 129.1 (2C), 128.8, 128.7 

(2C), 128.6 (2C), 128.5 (2C), 128.3 (2C), 128.1, 127.8, 127.6, 126.4, 126.3, 125.4 (42 ArC), 105.7 

(C- 1’’’), 105.0 (C-1’), 101.3 (PhCHO2’), 101,0 (PhCHO2’’’) 97.9 (C-1), 96.4 (C-1’’), 80.7 (C-3), 

78.5 (C-4’’), 78.1 (C-3’’), 76.7(C-3’), 75.3 (C-4), 74.8 (C-3’’’), 74.0 (C-2), 73.9 (OCH2Ph), 73.8 

(OCH2Ph’’), 73.7 (C-5’’), 73.2 (C-4’’’), 72.0 (C-4’), 69.9 (C-2’’), 69.8 (C-5), 69.5 (C-2’), 69.0 

(2C, C- 2’’’ and C-6’’’), 68.9 (C-6’), 66.8 (C-5’’’), 66.7 (C-5’), 61.2 (C-6), 60.2 (C-6’’), 27.0 (3C 

tert-butyl), 19.3 (tert-butyl) ppm. 
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tert-butyldiphenylsilyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-benzyl-6-O-

sulfonate-β-D-galactopyranosyl-(1→3)-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-

benzyl-6-O-sulfonate-β-D-galactopyranoside (151) 

 Tetrasaccharide 150 (122 mg, 0.09 mmol) 

was dissolved in 5 mL anh. DMF. The mixture was stirred at 22 °C for 30 min after pyridine (0.17 

mL, 2.11 mmol) and 4 Å MS were added. SO3·Py complex (311 mg, 1.95 mmol) was added in 

two times over 2 h and the reaction mixture was stirred 2 h at 22 °C  until TLC showed full 

conversion of the starting material. The reaction was then quenched by addition of 1 mL of 

pyridine and 2 mL of methanol, diluted with CH2Cl2 and the molecular sieves were filtered off 

through celite. The filtrate was concentrated in vacuo and the crude product was purified by flash 

chromatography (gradient of 1 % MeOH in CH2Cl2). The fractions containing the product were 

stirred with Amberlite IR 120 (Na+) resins for 15 minutes, the resin was filtered off and the 

fractions concentrated to yield disulfated product 151 in 60% (84  mg). 

Rf 0.35 (1:8 MeOH/ CH2Cl2). [𝜶]𝑫
𝟐𝟎= 123.2° (c 0.5, CDCl3). 

1H NMR (400 MHz, MeOD) δ 8.09 – 8.04 (m, 2H, ArH), 7.89 – 7.78 (m, 5H, ArH), 7.64 – 7.54 

(m, 4H, ArH), 7.53 – 7.24 (m, 24H, ArH), 5.63 (s, 1H, PhCHO2’), 5.54 (s, 1H, PhCHO2’’’), 5.22 

(d, J = 3.8 Hz, 1H, H-1’’), 5.12 (dd, J = 10.1, 3.8 Hz, 1H, H-3’’’), 4.85 – 4.69 (m, 5H, H-1’’’, 

OCH2Ph, OCH2Ph’’), 4.59 (d, J = 7.7 Hz, 1H, H-1’), 4.54 – 4.23 (m, 10H, H-4’’’, H-4’’, H-4’ H-

1, H-5’, H-6a, H-6a’’, H-6ab’’’, H-6a’), 4.17 – 4.07 (m, 5H, H-2’’, H- 6b, H-6b’’, H-4, H-6b’), 

4.02 (dd, J = 10.1, 7.7 Hz, 1H, H-2’’’), 3.97 (dd, J = 9.9, 2.9 Hz, 1H, H-3’’), 3.92 – 3.85 (m, 2H, 

H-2, H-3’), 3.80 (dd, J = 9.9, 7.7 Hz, 1H, H-2’), 3.67 (d, J = 1.3 Hz, 1H, H-5/H-5’’), 3.58 – 3.52 

(m, 1H, H-5’’’), 3.50 (q, J = 1.6 Hz, 1H, H-5/H-5’’), 3.45 (dd, J = 9.8, 3.0 Hz, 1H, H-3), 1.12 (s, 

9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, MeOD) δ 167.6 (OBz), 139.7, 139.6, 139.4, 139.1, 

137.2 (2C), 137.1 (2C), 134.7, 134.3, 134.2, 131.3, 130.8 (2C), 130.7, 129.9, 129.8, 129.7, 129.6 

(2C), 129.5 (4C), 129.3 (2C), 129.1 (4C), 129.0 (3C), 128.9 (2C), 128.6 (2C), 128.5, 127.6 (2C), 

127.3 (2C) (42 ArC), 106.1 (C-1’’’), 106.0 (C-1’), 102.2 (PhCHO2’), 101.9 (PhCHO2’’’), 99.6 (C-

1), 96.2 (C-1’’), 82.9 (C-3), 79.7 (C-3’’), 78.9 (C-4’’), 77.7 (C-4), 76.7 (C-3’), 76.0 (C-3’’’), 75.0 

(C-4’’’), 74.6 (2C, OCH2Ph and OCH2Ph’’), 74.2 (C-2), 73.8 (C-5’’’), 73.2 (C-5’), 71.3 (C-2’), 

70.9 (C-2’’’), 70.5 (C-2’’), 70.3 (C-6 or C-6’’), 70.1 (2C, C-4’ and C-6 or C-6’’), 68.2 (C-5 or C-

5’’), 68.1(C-5 or C-5’’), 67.8 (C-6’), 67.7 (C-6’’’) 27.4 (3C tert-butyl), 20.2 (tert-butyl)  ppm. 
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tert-butyldiphenylsilyl 3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-

allyl-3-O-benzyl-6-O-(2-naphthyl)methyl-β-D-galactopyranoside (140) 

To a solution of diol 125 (1.12 g, 1.19 mmol) in 30 mL of 

CH2Cl2 was added triethylamine (0.20 mL, 1.43 mmol). The solution was then cooled down to 

- 40 °C, benzoyl chloride (0.16 mL, 1.43 mmol) and DMAP (44 mg, 0.36 mmol) were added. The 

reaction mixture was stirred at -40 °C for 2 hours until TLC indicated full conversion of the starting 

material. The mixture was then diluted with CH2Cl2, washed with 1M HCl. The organic phase was 

further washed with sat. aq. NaHCO3, dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by flash chromatography (1:30 to 1:10 EtOAc/Toluene) to afford the product 

in 75% yield (920 mg). 

Rf 0.65 (1:3 EtOAc/Toluene). [𝜶]𝑫
𝟐𝟎= 14.4° (c 1.0, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.17 – 8.10 (m, 2H, ArH), 7.89 – 7.13 (m, 30H, ArH), 5.95 (ddt, 

J  = 16.2, 10.7, 5.7 Hz, 1H, -CH=CH2), 5.47 (s, 1H, PhCHO2), 5.27 (dq, J = 17.2, 1.7 Hz, 1H, 

0.5x-CH=CH2), 5.18 (dt, J = 10.4, 1.5 Hz, 1H, 0.5x-CH=CH2), 5.05 (dd, J = 10.1, 3.7 Hz, 1H, 

H- 3’), 4.86 – 4.69 (ABq pattern, J = 12.2 Hz, 2H, OCH2Ph), 4.64 – 4.38 (m, 5H, H-1, H-1’, H-4’, 

H-2’, 0.5xOCH2CH=CH2), 4.36 – 4.26 (m, 1H, 0.5xOCH2CH=CH2,), 4.09 (dd, J = 12.5, 1.5 Hz, 

1H, H- 6b), 3.96 – 3.81 (m, 3H, H-6a’, H-6a, H-4), 3.70 (dd, J = 9.7, 7.4 Hz, 1H, H-2), 3.42 (dd, 

J  =  9.7, 3.2 Hz, 1H, H-3), 3.31 (m, 2H, H-6b’, H-5), 3.20 (dd, J = 7.8, 5.2 Hz, 1H, H-5’), 1.10 (s, 

9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 166.7 (OBz), 138.0, 137.6, 136.2 (3C), 

136.0 (3C), 135.1 (-CH=CH2), 133.6 (2C), 133.4, 133.3, 133.0, 130.1 (3C), 129.7, 129.6, 129.2 

(2C), 129.0, 128.7 (2C), 128.5 (2C), 128.4 (3C), 128.3 (2C), 128.2, 128.0, 127.8, 127.6, 127.4, 

126.3 (2C), 126.1, 126.0, 125.5, 125.4 (40 ArC), 116.9 (-CH=CH2), 106.1 (C-1’), 100.8 

(PhCHO2), 98.1 (C-1), 81.0 (C-2), 80.8 (C-3), 78.2 (C-4), 75.2 (C-3’), 74.4 (OCH2CH=CH2), 74.0 

(OCH2Ph), 73.4 (OCH2Naphth), 73.3 (C-4’), 72.8 (C-5’), 69.4 (C-2’), 69.1 (C-6), 68.3 (C-6’), 66.8 

(C-5), 27.1 (3C tert-butyl), 19.3 (tert-butyl) ppm. 
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tert-butyldiphenylsilyl 3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-2-O-

allyl-3-O-benzyl-β-D-galactopyranoside (141) 

 To a solution of 140 (872 mg, 0.85 mmol) in CH2Cl2 (25 mL) 

and water (2.5 mL) was added DDQ (290 mg, 1.28 mmol). The mixture was stirred for 1 hour at 

22 °C in the dark, diluted with CH2Cl2 (30 mL), filtered through a high pad of celite and washed 

with sat. aq. NaHCO3. The organic phase was dried (MgSO4), filtered and the filtrate was 

concentrated in vacuo. Purification of the residue by flash chromatography (4:1 to 2:1 Tol/EtOAc) 

afforded 141 as a white solid in 90% yield (697 mg). 

 Rf 0.25 (3:1 Tol/EtOAc). [𝜶]𝑫
𝟐𝟎= 43.2° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.06 – 8.00 (m, 2H, ArH), 7.63 (m, 5H, ArH), 7.52 – 7.44 (m, 1H, 

ArH), 7.41 – 7.04 (m, 17H, ArH), 5.86 (ddt, J = 17.2, 10.4, 5.7 Hz, 1H, -CH=CH2), 5.38 (s, 1H, 

PhCHO2), 5.19 (dq, J = 17.2, 1.7 Hz, 1H, 0.5x-CH=CH2), 5.09 (dq, J =  10.4, 1.4 Hz, 1H, 

0.5x- CH=CH2), 4.96 (dd, J = 10.1, 3.5 Hz, 1H, H-3’), 4.76 – 4.59 (ABq pattern, J = 12.2 Hz, 2H, 

OCH2Ph), 4.42 – 4.36 (m, 4H, H-1, H-1’, H-4’, 0.5xOCH2CH=CH2), 4.25 – 4.17 (m, 2H, 

0.5xOCH2CH=CH2, H-2’), 4.13 – 4.04 (m, 1H, H-6a’), 3.99 – 3.91 (m, 1H, H-6b’), 3.71 (m, 2H, 

H-4, 2’-OH), 3.59 – 3.47 (m, 2H, H-2, H-6a), 3.40 (d, J = 1.3 Hz, 1H, H-5’), 3.34 (m, 3H, H-3, 

H- 6b, 6-OH), 3.01 (m, 1H, H-5), 1.01 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 

166.7 (OBz), 137.8, 137.6, 136.1, 136.0, 135.1 (-CH=CH2), 133.7, 133.4, 133.3, 130.1, 129.9 (2C), 

129.8, 129.2, 129.1, 128.8, 128.6, 128.5, 128.4 (3C), 128.3 (2C), 127.7 (3C), 127.5 (3C), 126.3 

(2C), 125.4 (30 ArC), 117.0 (-CH=CH2), 105.7 (C-1’), 100.9 (PhCHO2), 98.0 (C-1), 80.9 (C-2), 

80.4 (C-3), 77.4 (C-4), 74.9 (C-3’), 74.3 (2C, OCH2Ph and OCH2CH=CH2), 73.5 (C-5), 73.3 

(C- 4’), 69.0 (C-2’), 68.8 (C-6’), 66.9 (C-5’), 60.3 (C-6), 27.1 (3C tert-butyl),19.3 (tert-butyl) ppm. 

 

tert-butyldiphenylsilyl 3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-

benzyl-β-D-galactopyranoside (142) 

To a solution of diol 141 (679 mg, 0.75 mmol) in 6 mL glacial 

acetic acid was added Pd(PPh3)4 (434 mg, 0.37 mmol). The mixture was degassed and stirred under 

nitrogen at 22 °C for 12 hours. The residue was coevaporated three times with toluene and purified 
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by flash chromatography (1:10 to 1:2 EtOAc/Toluene) to afford the desired compound in 93% 

yield (608 mg). 

Rf 0.25 (3:1 Toluene/EtOAc). [𝜶]𝑫
𝟐𝟎= 34.0° (c 0.5, CDCl3). 

1H NMR (400 MHz, CDCl3) δ 8.06 – 7.99 (m, 2H, ArH), 7.68 – 7.58 (m, 4H, ArH), 7.51 – 7.44 

(m, 1H, ArH), 7.42 – 7.22 (m, 10H, ArH), 7.21 – 7.03 (m, 8H, ArH), 5.38 (s, 1H, PhCHO2), 4.96 

(dd, J = 10.2, 3.7 Hz, 1H, H-3’), 4.76 – 4.59 (ABq pattern, J = 12.2 Hz, 2H, OCH2Ph), 4.45 (d, 

J  = 7.7 Hz, 1H, H-1’), 4.38 (d, J = 3.6 Hz, 1H, H-4’), 4.35 (d, J = 7.5 Hz, 1H, H-1), 4.17 (dd, 

J  =  10.2, 7.7 Hz, 1H, H-2’), 4.00 (m, 2H, H-6ab’) 3.87 – 3.79 (m, 2H, H-4, H-2), 3.68 (m, 1H, 

H-6b), 3.48 (m, 1H, H-6a), 3.40 (s, 1H, H-5’), 3.31 (dd, J = 9.7, 3.4 Hz, 1H, H-3), 3.14 (s, 1H, 

H- 5), 2.76 (bs, 1H, OH), 1.02 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, CDCl3) δ 166.6 

(OBz), 138.0, 137.8, 137.7, 137.6, 136.0 (2C), 135.8 (2C), 133.4, 133.3, 133.2, 130.1, 130.0 (2C), 

129.9, 129.2 (2C), 129.1, 128.8 (2C), 128.5, 128.4 (2C), 128. (2C), 128.2, 127.8, 127.6, 126.3, 

125.4 (30 ArC), 105.4 (C-1’), 100.9 (PhCHO2), 97.9 (C-1), 80.3 (C-3), 75.9 (C-4), 74.7 (C-3’), 

74.1 (C-2), 73.9 (OCH2Ph), 73.8 (C-5), 73.2 (C-4’), 68.9 (C-2’), 68.8 (C-6’), 66.8 (C-5’), 60.2 

(C- 6), 27.0 (3C tert-butyl), 19.3 (tert-butyl)  ppm. 

 

tert-butyldiphenylsilyl 3-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-

benzyl-6-O-sulfonate-β-D-galactopyranoside  (143) 

Triol 142 (200 mg, 0.23 mmol) was dissolved in 14 mL anh. 

DMF. The mixture was stirred at 22 °C for 30 min after pyridine (0.23 mL, 2.76 mmol) and 4 Å 

MS were added. SO3.Py complex (369 mg, 2.30 mmol) was added and the reaction mixture was 

stirred 1 h at 22 °C until TLC showed full conversion of the starting material. The reaction was 

then quenched by addition of 1 mL of pyridine and 2 mL of methanol, diluted with CH2Cl2 and 

the molecular sieves were filtered off through celite. The crude product was purified by flash 

chromatography (gradient of 1 % MeOH in CH2Cl2). The fractions containing the product were 

stirred with Amberlite IR 120 (Na+) resin for 15 minutes, the resin was filtered off and the product 

concentrated to yield monosulfated product 143 in 70% (155 mg). 

Rf 0.40 (1:9 MeOH/CH2Cl2). [𝜶]𝑫
𝟐𝟎= 1.6° (c 0.5, CDCl3). 

1H NMR (400 MHz, MeOD) δ 8.10 – 8.05 (m, 2H, ArH), 7.83 (m, 4H, ArH), 7.65 – 7.58 (m, 1H, 

ArH), 7.53 – 7.24 (m, 18H, ArH), 5.55 (s, 1H, PhCHO2), 5.10 (dd, J = 10.1, 3.8 Hz, 1H, H-3’), 

4.80 (s, 2H, OCH2Ph), 4.72 (d, J = 7.8 Hz, 1H, H-1’), 4.56 – 4.48 (m, 2H, H-4’, H-1), 4.48 – 4.38 

(m, 2H, H-6a’, H-6a), 4.24 (d, J = 3.0 Hz, 1H, H-4), 4.14 – 4.03 (m, 3H, H-6b’, H6b, H-2’), 3.91 
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(dd, J = 9.8, 7.5 Hz, 1H, H-2), 3.61 – 3.54 (m, 2H, H-5, H-5’), 3.47 (dd, J = 9.9, 3.0 Hz, 1H, H- 3), 

1.12 (s, 9H, 3xCH3
TBDPS) ppm. 13C NMR (101 MHz, MeOD) δ 168.2 (OBz), 140.3 , 139.9, 137.9 

(2C), 137.8 (2C), 135.3, 134.9, 134.9, 131.9, 131.4 (4C), 131.3, 130.3 (2C), 130.1 (2C), 130.0 

(2C), 129.6 (2C), 129.5, 129.2 (2C), 129.1 (2C), 128.0 (2C) (30 ArC), 106.7 (C-1’), 102.6 

(PhCHO2), 100.3 (C-1), 83.7 (C-3), 78.2 (C-4), 76.6 (C-3’), 75.7 (C-4’), 75.2 (OCH2Ph), 74.9 (C-

2), 74.3 (C-2’), 71.3 (C-5), 70.7 (C-6’), 68.8 (C-5’), 68.2 (C-6), 28.0 (3C tert-butyl), 20.8 (tert-

butyl) ppm. 

 

tert-butyldiphenylsilyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→4)-3-O-benzyl-6-O-

sulfonate-β-D-galactopyranoside (145) 

Monosulfated diol 143 (127 mg, 0.13 mmol) was dissolved in 

MeOH (1 mL) and the solution was cooled down to -20 °C. 1 mL of 0.04 M NaOMe in MeOH 

was added and the reaction was stirred at -20 °C for 24 hours. After addition of Amberlite IR 120 

(H+), the mixture was stirred 30 minutes at -20 °C before the resin was filtered off. The reaction 

mixture was then stirred with Amberlite IR 120 (Na+) for an additional 15 minutes and 

concentrated after filtering off the sodium resin. The crude product was purified by flash 

chromatography (gradient of 3 % MeOH in CH2Cl2) to afford triol 145 in 70% yield (77 mg). 

Rf 0.30 (1:8 MeOH/CH2Cl2). 

1H NMR (400 MHz, MeOD) δ 7.86 – 7.80 (m, 4H ArH), 7.59 – 7.56 (m, 2H, ArH), 7.49 – 7.27 

(m, 14H, ArH), 5.58 (s, 1H, PhCHO2), 4.79 (s, 2H, OCH2Ph), 4.53 (dd, J = 7.6, 1.8 Hz, 2H, H-1, 

H-1’), 4.45 (dd, J = 10.5, 6.5 Hz, 1H, H-6a), 4.37 (m, 1H, H-6a’), 4.20 – 4.14 (m, 2H, H-4, H-4’), 

4.07 (m, 2H, H-6b’, H-6b ), 3.90 (dd, J = 9.8, 7.5 Hz, 1H, H-2), 3.72 (dd, J = 9.9, 7.6 Hz, 1H, 

H- 2’), 3.60 (m, 1H, H-3’), 3.54 (t, J = 6.4 Hz, 1H, H-5), 3.47-3.43 (m, 2H, H-3, H-5’), 1.12 (s, 

9H, 3xCH3
TBDPS). 13C NMR (101 MHz, MeOD) δ 139.72, 139.29, 137.21 (2C), 137.12 (2C), 

134.6, 134.2, 130.8, 130.7, 129.8, 129.4 (2C), 129.3 (2C), 129.0 (2C), 128.9, 128.6 (2C), 128.5 

(2C), 127.7 (2C), (24 ArC), 106.4 (C-1’), 102.4 (PhCHO2), 99.7 (C-1), 83.1 (C-3), 77.8 (C-4), 

77.4 (C-4’), 74.6 (OCH2Ph), 74.3 (C-2), 73.8 (C-3’), 73.7 (C-5), 73.2 (C-2’), 70.3 (C-6’), 68.4 

(C- 5’), 67.6 (C-6), 27.4 (3C tert-butyl), 20.2 (tert-butyl) ppm.  
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tert-butyldiphenylsilyl β-D-galactopyranosyl-(1→4)-6-O-sulfonate-β-D-galactopyranos ide  

(146) 

 Triol 145 (60 mg, 0.07 mmol) was dissolved in distilled water 

(10 mL) and acetic acid (0.05 mL). 20% palladium hydroxide on carbon (90 mg) was added and 

the resulting mixture was placed under an atmosphere of hydrogen and stirred for 12 h at 22 °C. 

The mixture was then filtered through a celite pad and the filtrate was freeze dried to provide the 

compound 146  in 70% yield (32 mg). 97,100 

1H NMR (400 MHz, MeOD) δ 7.78 (dd, J = 14.9, 6.5 Hz, 4H, ArH), 7.37 (d, J = 17.4 Hz, 6H, 

ArH), 4.55 – 4.29 (m, 3H, H-1, H-1’, H-6a), 4.21 – 3.93 (m, 2H, H-6b, H-2), 3.92 –3.39 (m, 9H, 

H-6a’, H-6b’, H-3, H-4, H-5, H-2’, H-3’, H-4’, H-5’), 1.04 (s, 9H, 3xCH3
TBDPS) ppm.13C NMR 

(101 MHz, MeOD) δ 137.2 ( 2C), 137.1 (2C), 134.6, 134.3, 130.8, 130.7, 128.6 (2C), 128.5 (2C) 

(12 ArC) , 107.0 (C-1’), 99.5 (C-1), 80.4 (C-2), 77.1 (C-4), 75.2 (C-3), 75.2 (C-2’), 75.1 (C-4’), 

73.6 (2C, C-5 and C-3’), 70.9 (C-5’), 67.4 (C-6), 62.9 (C-6’), 27.4 (3C tert-butyl), 20.1 (tert-butyl) 

ppm.  
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6.3 Procedures for the substrates synthesis 

2-bromo-4-methoxyphenol (3i)180 

Para-methoxyphenol (2.48 g ,20 mmol) was dissolved in 75 ml CH2Cl2 and 

cooled down to 0 oC. Bromine (1.13 ml, 22 mmol) was added dropwise and the reaction mixture 

was stirred at 22 οC for 12 hours. The reaction was then quenched with 30 ml of sat. aq. Na2S2O3 

and water (15 ml) and stirred 30 minute. The mixture was washed with water, dried over Na2SO4 

and concentrated in vacuo. The crude product was purified by flash chromatography (9:1 Hexane/ 

EtOAc) affording the product as a grey solid. Yield 3.20 g (79%).180 

Rf 0.42 (1:7 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 2.9 Hz, 1H), 6.95 (d, 

J  =  8.9  Hz, 1H), 6.80 (dd, J = 8.9, 2.9 Hz, 1H), 5.23 (s, 1H), 3.76 (s, 3H) ppm. 

 

2-bromo-4-(trifluoromethyl)phenol (3j)180  

To a solution of meta-trifluoromethylphenol (1.62 g, 10 mmol) in 10 ml CH2Cl2  

was added bromine (0.54 ml, 10.5 mmol) dropwise at 0 0C. The mixture was warmed to 40 °C and 

stirred for 12 hours. The reaction was then quenched with 15 ml of sat. aq. Na2S2O3 and water (15 

ml) and an additional stirred 30 minutes. The mixture was extracted with CH2Cl2, the organic 

phase was dried over Na2SO4 and concentrated in vacuo and the crude product was purified by 

flash chromatography (4:1 Hexane/ EtOAc) to afford the product in quantitative yield. Rf0.25 (1:4 

EtOAc/Hex).  The crude product was used without any further purification  
1H NMR (400 MHz, CDCl3) δ  7.76 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 

6.16 – 5.71 (bs, 1H) ppm. 

 

2-bromo-3,5-dimethoxyphenol (3k) 167 

To a solution of 3,5-dimethoxyphenol (1.54 g, 10 mmol) in 100 ml CH2Cl2 was 

added NBS ( 1.77g, 10 mmol) at -78 °C. The reaction was stirred at -78 °C for 5 hours, quenched 

with 10 % aqueous K2CO3  and warmed up to 22 οC. The mixture was then diluted with water and 

extracted with CH2Cl2. The organic phase was dried over MgSO4 concentrated in vacuo and 

purified by flash chromatography (6:1 Hexane/ EtOAc) to afford the product in 60% yield. (1.34 

g). 
1H NMR (400 MHz, CDCl3) δ 6.26 (d, J = 2.6 Hz, 1H), 6.10 (d, J = 2.6 Hz, 1H), 5.67 (s, 1H), 

3.85 (s, 3H), 3.77 (s, 3H) ppm. 
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2-(4-(trifluoromethyl)phenyl)prop-2-en-1ol (5c)168  

Magnesium turnings (912 mg, 37.5mmol ; flame dried and cooled under N2 

atmosphere) were immersed in 15 ml Et2O. Two drops of dibromoethane were added followed by 

1/20 of the 4-bromobenzotrifluoride (2.63 ml ; 18.75 mmol) solution in Et2O (3.5 ml) until the 

reaction started. The reaction mixture was immersed in a water bath and the rest of the 4-

bromobenzotrifluoride solution was added over 30 minutes via syringe pump at 22 οC. The reaction 

mixture was stirred for an additional hour at 22 οC. The Grignard solution was then added dropwise 

to a solution of propargyl alcohol (0.43 ml, 7.5 mmol) and CuI (143 mg, 0.75 mmol) in 15 ml Et2O 

over 30 minutes at -5 °C. The reaction mixture was stirred under reflux for 15 hours before being 

cooled down to 0 °C and quenched with saturated aqueous NH4Cl (12ml). The aqueous phase was 

further extracted with Et2O (2 x 15 ml) and the combined organic phases were washed with water, 

dried over Na2SO4 and concentrated in vacuo. The crude product was purified by flash 

chromatography to afford the desired product in 52% yield (789 mg) as yellow oil.  
1H NMR (400 MHz, CDCl3) δ 7.58 (dd, J = 20.7, 8.4 Hz, 4H), 5.55 (s, 1H), 5.46 (s, 1H), 4.55 (s, 

2H), 1.97 (bs, 1H) ppm.  

 

2-(4-(methoxyphenyl)prop-2-en-1-ol (5d)  

Magnesium turnings (1.23 g, 50mmol ; flame dried and cooled under N2 

atmosphere) were immersed in 20 ml THF. Two drops of dibromoethane were added followed by 

1/20 of the 4-bromoanisole (3.07 ml, 25.0 mmol) solution in THF (5 ml) until the reaction started. 

The reaction mixture was immersed in a water bath and the rest of the 4-bromoanisole solution 

was added over 30 minutes via syringe pump at 22 οC. The reaction mixture was stirred for an 

additional hour at 22 οC. The Grignard solution was then added dropwise to a solution of propargyl 

alcohol (0.57 ml, 10.0  mmol) and CuI (191 mg, 0.10 mmol) in 20 ml THF over 30 minutes at -5 

°C. The reaction mixture was stirred under reflux for 15 hours before being cooled down to 0 °C 

and quenched with saturated aqueous NH4Cl (15ml). The aqueous phase was further extracted 

with Et2O (2 x 20 ml) and the combined organic phases were washed with water, dried over 

Na2SO4 and concentrated in vacuo. The crude was purified by flash chromatography to afford the 

product in 62 % yield (1,02 g).  

1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.7 Hz, 2H), 6.88 (d, J = 7.7 Hz, 2H), 5.38 (s, 1H), 

5.25 (s, 1H), 4.50 (s, 3H), 3.80 (s, 2H), 1.88 (bs, 1H) ppm. 
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General procedure for alkylation of substituted 2-bromophenol A 

 

Bromophenol a (1.0 equiv.) was dissolved in acetone (0.2M) and potassium carbonate (2.5 equiv.) 

was added followed by allyl halide b (1.5 equiv.). The reaction mixture was stirred under reflux 

for 12 hours.  Potassium carbonate was filtered off and the filtrate concentrated in vacuo and 

purified by flash chromatography. 

 

General procedure for alkylation of substituted 2-bromophenol B 

 
Bromophenol a (1.00 eq) and triphenylphosphine (1.2 equiv.) were dissolved in THF (0.3M). 

Allyl-alcohol b (1.1 equiv.) was added and the reaction mixture was cooled to 0 °C. 

Diethylazodicarboxylate (DEAD) (40 % in toluene, 1.7 equiv.) was added dropwise. The reaction 

mixture was stirred at 22 οC until TLC revealed full conversion. The reaction was quenched with 

40 ml of water, extracted with washed with 2M NaOH, washed with brine and dried over MgSO4. 

The crude was concentrated in vacuo and purified by flash chromatography (Hex/Et2O) 

 

1-bromo-2-((3methylbut-2-en-1-yl)oxy)benzene (2b) 

Compound 2b was synthesized according to procedure B. to afford the product 

as transparent oil. Yield 1.19 g (98%). 

Rf 0.72 (1:19 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 7.8 Hz, 1H), 7.16 (t, J 

= 7.8 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 5.44 (t, J = 5.8 Hz, 1H), 4.53 (d, 

J = 6.5 Hz, 2H), 1.72 (s, 3H), 1.68 (s, 3H) ppm. 
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2-bromo-4-methoxy-1-((2-methylallyl)oxy)benzene (2i) 

 Compound 2i was synthesized according to procedure A. The crude was 

purified by flash chromatography (20:1 Hexane/ EtOAc) to afford a slightly yellow liquid. Yield 

740 mg (76%). 

Rf 0.65 (1:6 EtOAc/Hexane).1H NMR (400 MHz, CDCl3) δ 7.11 (t, J = 5.2 Hz, 1H), 6.80 (dt, J = 

9.0, 5.9 Hz, 2H), 5.14 (s, 1H), 5.00 (s, 1H), 4.43 (s, 2H), 3.75 (s, 3H), 1.85 (s, 3H). 

 

2-bromo-1,5-dimethoxy-3-((2-methylallyl)oxy)benzene (2k) 

Compound 2k was synthesized according to procedure A. The crude was 

purified by flash chromatography (30:1 Hexane/EtOAc) to afford 2k in 70% yield (1.00 g).  

Rf 0.25 (1:30 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 6.16 (s, 2H), 5.17 (s, 1H), 5.01 (s, 

1H), 4.47 (s, 2H), 3.87 (s, 3H), 3.79 (s, 3H), 1.85 (s, 3H). 

 

2-bromo-1-((2-methylallyloxy)-4-(trifluoromethyl)benzene (2j)  

 Compound 2j was synthesized according to procedure A. The crude was 

purified by flash chromatography (40:1 Hexane/EtOAc) to afford 2j in 65% yield (850 mg).  

Rf 0.50 (1:20 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 1.0 Hz, 1H), 7.52 (d, J 

= 8.6 Hz, 1H), 6.96 (dd, J = 19.4, 8.9 Hz, 1H), 5.17 (s, 1H), 5.06 (s, 1H), 4.56 (s, 2H), 1.87 (s, 3H) 

ppm. 19F NMR(50 MHz, CDCl3) δ -60.59 (s) ppm. 

 

(E)-1-bromo-2(but-2en-1-yloxy)benzene (2e)  

Compound 2e was synthesized according to procedure A using crotyl chloride. 

The crude was purified by flash chromatography (40:1 Hexane/EtOAc) to afford 2e in 70% yield 

(1.58 g). 

Rf 0.65 (1:20 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 7.9, 1.4 Hz, 1H), 7.24 

(dd, J  = 11.8, 4.4 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.01 – 5.67 (m, 2H), 

4.54 (d, J  = 5.7 Hz, 2H), 1.77 (dd, J = 9.0, 3.3 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 

155.0, 133.3, 128.8, 128.3, 125.5, 121.8, 113.6, 112.2, 69.7, 17.9 ppm. 
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1-bromo-2(cinnamyloxy)benzene (2f) 

Compound 2f was synthesized according to procedure A using cynnamyl 

bromide as reagent. The crude was purified by flash chromatography (40:1 Hexane/EtOAc) to 

afford 2f in 75% yield (2.16 g).  

Rf 0.65 (1:20 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.8 Hz, 1H), 7.45 (d, J 

= 7.6 Hz, 2H), 7.42 – 7.33 (t, 2H), 7.33 – 7.24 (m, 2H), 6.98 (d, J = 8.2 Hz, 1H), 6.88 (t, J = 7.6 

Hz, 1H), 6.82 (d, J = 16.0 Hz, 1H), 6.46 (dt, J = 16.0, 5.5 Hz, 1H), 4.80 (d, J = 5.5 Hz, 2H) ppm.  

13C NMR (101 MHz, CDCl3) δ 155.0, 136.4, 133.5, 133.0, 128.6, 128.5 (2C), 127.9, 126.6 (2C), 

123.9, 122.1, 113.8, 112.4, 69.7 ppm. 

 

1-bromo-2-((2-(4-/trifluoromethyl)phenyl)allyl)oxy)benzene (2c) 

Compound 2c was synthesized according to procedure B using previously 

synthesized 5c as alkylating reagent. The crude was purified by flash chromatography (40:1 

Hexane/EtOAc) to afford 2c in 50% yield (650 mg).  

Rf 0.65 (1:20 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.63 (s, 3H), 7.57 (dd, J = 7.9, 1.6 

Hz, 1H), 7.38 – 7.24 (m, 2H), 6.96 (dd, J = 8.2, 1.3 Hz, 1H), 6.88 (td, J = 7.7, 1.4 Hz, 1H), 5.71 

(d, J = 6.7 Hz, 2H), 4.96 (s, 2H) ppm.  

 

1-bromo-2-((2-(4-methoxyphenyl)allyl)oxy)benzene (2d) 

Compound 2d was synthesized according to procedure B using previous ly 

synthesized 5d as alkylating reagent. The crude was purified by flash chromatography (40:1 

Hexane/EtOAc) to afford 2d in 95% yield (1.70 g)).  

Rf 0.56 (1:20 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.57 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 

–7.42 (m, 1H), 7.31 – 7.22 (m, 1H), 6.97 (dd, J = 8.2, 1.0 Hz, 1H), 6.94 – 6.89 (m, 2H), 6.87 (td, 

J = 7.7, 1.2  Hz, 1H), 5.56 (s, 1H), 5.51 (d, J = 10.4 Hz, 1H), 5.31 (s, 1H), 4.94 (s, 2H), 3.84 (s, 

3H) ppm. 13C NMR (101  MHz, CDCl3) δ 159.5, 154.9, 141.6, 133.4, 130.7, 128.3, 127.2 (2C), 

122.1, 113.8 (2C), 113.7, 113.1, 112.4, 70.6, 55.3 ppm. 
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1-bromo-2-((2-methylallyl)oxy)naphthalene (2l) 

Compound 2l was synthesized according to procedure A starting from 1-

bromo-2-naphtol. The crude was purified by flash chromatography (40:1 Hexane/EtOAc) to afford 

2l in 63% yield (1.73 g). 

Rf 0.65 (1:20 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 5.9 Hz, 1H), 8.01 – 7.67 

(d, 2H), 7.61 – 7.55 (m, 1H), 7.44 – 7.38 (m, 1H), 7.30 – 7.22 (m, 1H), 5.22 (d, J = 5.7 Hz, 1H), 

5.05 (d, J = 5.9 Hz, 1H), 4.66 (d, J = 4.1 Hz, 2H), 1.91 (d, J = 5.8 Hz, 3H) ppm. 

 

General procedure for synthesis of aryl boronic acid 1  

 
1 equiv. of A was dissolved in THF (0.2 M) under N2 atmosphere and cooled down to -78 °C. 

nBuLi (1.1 equiv.; 2.5 M in hexane) was added dropwise over 10 minutes and the reaction mixture 

was stirred 30 min at -78 °C. 1.2 equiv. of trimethylborate was added in one portion and the 

reaction mixture was warmed to 22 οC and stirred an additional hour before being quenched with 

1M aqueous HCl. The mixture was then stirred 15 minutes more and extracted with EtOAc. The 

organic phase was washed with brine and dried over Na2SO4. The crude was concentrated in vacuo 

and purified by flash chromatography. The purified product was washed several times with hexane 

and filtered off. 

 

General procedure for synthesis of aryl boronic acid 2(in situ quench method)166 

 

1 equiv. of A and 1.2 equiv. of triisopropylborate were dissolved in a mixture of 0.2 M 

Toluene/THF (4:1). The solution was cooled down to -78 °C and 1 equiv. of nBuLi was added via 

syringe pump over 30 min. The reaction mixture was stirred 30 minutes at -78 °C and 1 hour at 22 

οC. The reaction was quenched with 1 M aqueous HCl. The mixture was then stirred 15 minutes 

more and extracted with EtOAc. The organic phase was washed with brine and dried over Na2SO4. 

The crude was concentrated in vacuo and purified by flash chromatography. The purified product 

was washed several times with hexane and filtered off. 
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(2-3-methylbut-2-en-1-yl)oxy)phenyl)boronic acid (1a)  

1a was synthesized according to the procedure 1 and starting from 5.0 mmol of 

1- bromo-2-((3-mtehylbut-2-en-2-yl)oxy)benzene 2a The crude was purified by flash 

chromatography (7:1 to 4:1 Hexane/ EtOAc) to afford a white solid. Yield 240 mg (35%). 

Rf 0.54 (1:4 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.87 (dd, J = 7.3, 1.6 Hz, 1H), 7.49 

– 7.39 (m, 1H), 7.04 (t, J = 7.3 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.54 – 6.38 (m, 2H), 5.52 (ddd, 

J = 6.8, 5.6, 1.3 Hz, 1H), 4.60 (d, J = 6.8 Hz, 2H), 1.83 (s, 3H), 1.77 (s, 3H) ppm. 

 

(2-(2-methylenebutoxy)phenyl)boronic acid (1b) 

1b was synthesized according to the procedure 1. The crude was purified by flash 

chromatography (9:1 to 5:1 Hexane/ EtOAc) Rf0.26 (1:7 EtOAc/Hex). Yield 240 mg (40%).  
1H NMR (400 MHz, CDCl3) δ 8.63 (dd, J = 7.3, 1.6 Hz, 1H), 8.20 – 8.14 (m, 1H), 7.79 (t, J = 7.1 

Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 5.90 (s, 1H), 5.83 (s, 1H), 5.34 (s, 2H), 2.94 (q, J = 7.7 Hz, 2H), 

1.88 (td, J = 7.4, 2.8 Hz, 3H) ppm. 

 

(5-methoxy-2-((2-methylallyl)oxy)phenyl)boronic acid (1i) 

Boronic acid 1i was synthesized according to the in situ quench procedure 

2 and starting with 2.5 mmol of the corresponding aryl bromide. The crude was purified by flash 

chromatography (6:1 to 2:1 Petroleum ether/ EtOAc) to afford the product in 32% yield (160 mg).  

Rf 0.26 (1:5 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.44 (dd, J = 33.5, 3.2 Hz, 1H), 6.96 

(dd, J = 8.9, 3.0 Hz, 1H), 6.85 (d, J = 9.0 Hz, 1H), 6.57 (s, 2H), 5.10 (s, 1H), 5.05 (s, 1H), 4.51 (s, 

2H), 3.81 (s, 3H), 1.85 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 157.9, 153.8, 140.1, 120.4, 

118.7 (2C), 114.0, 112.6, 72.8, 55.7, 19.6 ppm. 

 

(5-trifluoro-2-((2-methylallyl)oxy)phenyl)boronic acid (1j)  

Boronic acid 1j was synthesized according to the in situ quench procedure 

2. The crude was purified by flash chromatography (6:1 to 2:1 Petroleum ether/EtOAc) to afford 

the product in 35% yield (250 mg). 
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Rf 0.26 (1:5 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 1.6 Hz, 1H), 7.66 (dd, J 

= 8.7, 1.9 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 6.10 (s, 2H), 5.11 (d, J = 5.4 Hz, 2H), 4.61 (s, 2H), 

1.87 (s, 3H), 1.69 (d, J = 17.6 Hz, 2H) ppm. 19F NMR (50 MHz, CDCl3) δ -60.94 ppm. 

 

(2,4-dimethoxy-6-((2-methylallyl)oxy)phenyl)boronic acid (1k) 

 Boronic acid 1k was synthesized according to the in situ quench procedure 

2 The crude was purified by flash chromatography (Petroleum ether/EtOAc 6:1 to 2:1) to afford 

the product in 40% yield (353 mg) 

Rf0.23 (1:5 EtOAc/Hex). 1H NMR (400 MHz, CDCl3) δ 7.09 (s, 2H), 6.13 (d, J = 23.1 Hz, 2H), 

5.04 (d, J = 23.4 Hz, 2H), 4.52 (s, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 1.84 (s, 3H) ppm.  

 

(E)-(2-(but-2-en-1-yloxy)phenyl)boronic acid (1e)  

1e was synthesized according to the procedure 1. The crude was purified by 

flash chromatography (Hex/ EtOAc 9:1 to 5:1) to afford the product in 45% yield (601 mg) 

Rf 0.26 (1:7 EtOAc/Hexane). 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 7.2 Hz, 1H), 7.44 (dd, J 

= 13.9, 6.8 Hz, 1H), 7.10 – 6.97 (m, 1H), 6.97 – 6.86 (m, 1H), 6.41 (s, 2H), 6.02 – 5.67 (m, 2H), 

4.56 (d, J = 6.1 Hz, 2H), 1.78 (t, J = 7.4 Hz, 3H) ppm.  

 

(2-(cinnamyloxy)phenyl)boronic acid (1f) 

Boronic acid 1f was synthesized according to the in situ quench procedure 

2 The crude was purified by flash chromatography (Hexane/EtOAc) to afford the product in 50% 

yield (930 mg). 

 

(2-((2-methylallyl)oxy)naphthalen-1-yl)boronic acid (1l) 

Boronic acid 1l was synthesized according to the in situ quench procedure 2 

and starting with the corresponding aryl bromide. The crude was purified by flash chromatography 

(6:1 to 2:1 Hexane/ Petroleum ether) to afford yield 35% (212 mg) 
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(2-((2-(4-methoxyphenyl)allyl)oxy)phenyl)boronic acid (1d)  

Boronic acid 1d was synthesized according to the in situ quench procedure. The 

crude was purified by flash chromatography (6:1 to 2:1 Hexane/ Petroleum ether) to afford the 

product in 40% yield (284 mg) 
1H NMR (400 MHz, CDCl3) δ 7.95 – 7.71 (m, 1H), 7.57 – 7.32 (m, 3H), 7.04 (dd, J = 15.5, 8.2 

Hz, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 8.7 Hz, 2H), 5.71 (s, 2H), 5.55 (s, 1H), 5.36 (s, 1H), 

4.98 (s, 2H), 3.83 (s, 3H) ppm. 

 

(2-((2-(4-(trifluoromethyl)phenyl)allyl)oxy)phenyl)boronic acid (1c) 

 Boronic acid 1c was synthesized according to the in situ quench procedure. The 

crude was purified by flash chromatography (6:1 to 2:1 Hexane/ Petroleum ether) to afford the 

product in 50% yield (350 mg) 
1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 1.8 Hz, 1H), 7.67 (dd, J = 8.7, 2.1 Hz, 1H), 6.97 (d, J 

= 8.7 Hz, 1H), 6.23 (s, 2H), 5.11 (d, J = 4.9 Hz, 2H), 4.62 (s, 2H), 1.87 (s, 3H) ppm 
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