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Abstract. Measuring the depth-of-interaction (DOI) of gamma photons enables

increasing the resolution of emission imaging systems. Several design variants of

DOI-sensitive detectors have been recently introduced to improve the performance

of scanners for Positron Emission Tomography (PET). However, the accurate

characterization of the response of DOI detectors, necessary to accurately measure the

DOI, remains an unsolved problem. Numerical simulations are, at the state of the art,

imprecise, while measuring directly the characteristics of DOI detectors experimentally

is hindered by the impossibility to impose the depth-of-interaction in an experimental

set-up. In this article we introduce a machine learning approach for extracting accurate

forward models of gamma imaging devices from simple pencil-beam measurements,

using a nonlinear dimensionality reduction technique in combination with a finite

mixture model. The method is purely data-driven, not requiring simulations, and

is applicable to a wide range of detector types. The proposed method was evaluated

both in a simulation study and with data acquired using a monolithic gamma camera

designed for PET (the cMiCE detector), demonstrating the accurate recovery of

the DOI characteristics. The combination of the proposed calibration technique

with maximum-a-posteriori estimation of the coordinates of interaction provided a

depth resolution of ≈ 1.14 mm for the simulated PET detector and ≈ 1.74 mm

for the cMiCE detector. The software and experimental data are made available at

http://occiput.mgh.harvard.edu/depthembedding/.

1. Introduction

Scintillation gamma cameras are composed of one or multiple scintillator crystals

coupled to a set of photo-detectors (Fig. 1). The interaction of a gamma photon with

the scintillating material determines, through a cascade of radiative and non-radiative

processes, the emission of secondary photons. These are captured by the set of photo-

detectors, producing electrical signals that are amplified by the front-end electronics and,

in most designs, digitalized and streamed to a digital computer (Fiorini et al., 2008).
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2

Figure 1. Schematic representation of a monolithic gamma camera. The scintillator

is coupled with the array of photo-detectors indexed with d = 1, . . . , D. The forward

model of the camera is discretized in voxels indexed with (i, j, k) along the three

axis (x, y, z). The interaction of a gamma photon in (i, j, k) determines the noisy

measurement vector u = {u1, . . . , uD}. The discrete forward model of the camera is

characterized by the set of expected measurements {ldijk} in detector element d for

gamma interaction in (i, j, k).

The set of signals acquired by the photo-detectors bears information about the energy

of the gamma photon and about the location of the interaction within the scintillator

crystal. Event estimation algorithms then enable the reconstruction of the coordinates

of interaction and energy of the gamma photon from the measurement of secondary

photons.

In the original design introduced by Anger (1958), of which modern designs are

a derivation, the gamma camera was conceived as a planar imaging device, providing

information about the coordinates of interaction on a plane. Recently, there has been

increasing interest in depth-of-interaction (DOI) detectors, which provide information

about the coordinates of interaction of the gamma photon in three-dimensional space.

In particular in PET imaging, DOI sensitive detectors eliminate the degradation due

to parallax errors, promising to solve the long standing problem of the non-uniform

resolution across the scanner field-of-view (Ito et al., 2011; MacDonald and Dahlbom,

1998). With the advancement of time-of-flight (TOF) PET, the DOI information has

also shown to play a key role in the improvement of the time resolution by enabling a

more accurate measurement of the length of the lines-of-response, therefore promising

to further increase the spatial resolution of TOF PET scanners (Ito et al., 2011; Shibuya

et al., 2007).

1.1. Existing methods for the estimation of the DOI

Various designs of DOI sensitive cameras have been proposed, falling widely in two

categories: pixellated and monolithic systems. Here we focus on the monolithic design,

although our results can also be applied to pixellated detectors (see the discussion at

the end of the article in Section 5).

Several methods for estimating the DOI of photons in monolithic gamma cameras

have been proposed in the literature. A first class of methods utilizes the centroid

algorithm initially described by Anger (1958) for two-dimensional estimation. In these
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techniques, the in-plane coordinates are first reconstructed using the standard centroid

algorithm, after which the DOI is derived from a measurement of the width of the

light distribution (Lerche et al., 2005). While these techniques are computationally

efficient and can be implemented in hardware using simple resistive networks (Lerche

et al., 2005), they suffer from the bias and random errors characteristic of the centroid

method and assume an arbitrary relation (e.g., linear in Lerche et al. 2005) between the

width of the light distribution and the DOI.

A second class of methods is based on the L-nearest-neighbors (L-NN) algorithm,

introduced by Maas et al. (2009). Instead of estimating the DOI, these methods aim

at correcting for it. Three versions have been described. The first version, described in

Maas et al. 2009, is based on a calibration phase requiring the exhaustive illumination

of the detector, using pencil beams covering the entire entrance plane, at multiple

incidence angles. Such measurement requires a complex set-up, with a rotating stage

and electronic collimation, and very long acquisition times; furthermore the estimation

method requires an extremely large number of vector comparisons. To address these

limitations, a second version was proposed in van Dam et al. 2011b, where the calibration

time is reduced by acquiring photon beams only in the perpendicular direction. Such

a simplified L-NN algorithm, however does not enable the estimation of the DOI. The

third version of the algorithm, described in van Dam et al. 2011a, extends the simplified

L-NN algorithm to include an estimation of the DOI. The two-dimensional intersection

between the gamma ray and the entrance plane of the camera is first estimated using

the two-dimensional method described in van Dam et al. 2011b, after which the DOI is

estimated by comparing the measurement in the brightest photo-detector with values

stored in a lookup-table, precomputed using a Monte Carlo simulator. Since this method

relies on an accurate Monte Carlo simulation of the light transport process, it requires a

complex software set-up and may be sensitive to the parameterization of the materials,

unpredictable surface effects (such as optical coupling between the scintillator crystal

and the array of detectors), and variations in manufacturing processes.

A third class of methods is based on training neural networks to predict the two-

dimensional intersection between the gamma ray and the entrance plane of the camera

form the array of photo-detector measurements (Marone et al., 2009; Bruyndonckx et al.,

2008, 2006, 2004). While these methods lead to computationally efficient estimation

algorithms amenable to real-time execution (Wang et al., 2011), similarly to Maas et al.

2009 they currently rely on the exhaustive illumination of the detector, using pencil

beams covering the entire entrance plane of the camera, at multiple incidence angles.

Such measurement requires a complex set-up, with a rotating stage and electronic

collimation, and very long acquisition times.

A final class of DOI estimation methods, initially investigated by Gray and

Macovski (1976) and further explored by Barrett et al. (2009a), is based on statistical

models. In this approach, the estimation is posed as an inverse problem, where the

calculation of the location of interaction and the energy of the gamma photon requires

evaluating a forward problem that predicts the signals produced by the gamma camera
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for a given location of interaction and energy of the gamma photon, effectively modeling

the characteristics of the camera. While model-based statistical methods provide

optimal estimates of the coordinates of interaction and energy if the forward model

is exact (Barrett et al., 2009a), their accuracy is in practice dictated by the accuracy of

the forward model.

Various numerical simulation techniques for forward modeling of gamma cameras

have been described in the literature, including analytical approaches such as the

simple solid-angle model based on L’Huilier’s formula (Pedemonte et al., 2009; Li et al.,

2010), and methods based on Monte Carlo integration of the light transport equations

(Boschini and Fiorini, 1999). However, analytical models are too simplistic to capture

the complexity of real-world gamma cameras; whereas Monte Carlo simulations are

complex to set up and yet may not fully capture the real characteristics of the imaging

devices.

An alternative to forward modeling using numerical simulation is to measure the

characteristics of gamma imaging devices experimentally. Experimental characterization

can be accomplished by exhaustively scanning the two-dimensional entrance surface

of the detector with a perpendicular collimated pencil-beam: averaging the signals

produced for all interactions at each given position of the beam then yields a two-

dimensional estimate of the response of the camera (Barrett et al., 2009b). However,

the depth at which the gamma photons interact cannot be imposed or directly observed,

making the measurement of the response of the camera as a function of the three-

dimensional coordinates a challenging missing-data problem.

Ling et al. (2007) proposed an algorithm for the experimental estimation of the

depth-dependent forward model for DOI estimation using perpendicular pencil-beam

measurements. The method proposed by Ling et al. estimates the depth-dependent

forward model by clustering the events at a given beam location in depth bins according

to the measurement value in the channel with the most intense signal, and averaging

the data vectors in each cluster. However this method suffers from two limitations: it

uses only the measurement of the brightest photo-detector to cluster the calibration

data points in depth bins, making inefficient use of the noisy measurements; and the

calibration data is clustered arbitrarily, without establishing a quantitative relation

between the depth-of-interaction and the depth bins. Consequently, as reported in

the experiments in Ling et al. (2007), the algorithm is in practice limited to the

discrimination of 2 or 4 levels of DOI. Another method, based on maximum likelihood

estimation and polynomial parametrization of the forward model, was proposed in

Hunter et al. (2009); however this method requires an initial estimate of the depth-

dependent forward model obtained from a Monte Carlo simulation.

1.2. Contribution of this paper

In this paper, we propose a novel, purely data-driven methodology for the estimation

of the depth-dependent forward model of gamma cameras from simple pencil-beam
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measurements, enabling the accurate estimation of the three-dimensional coordinates

of interaction and energy of gamma photons using model-based statistical estimation.

The technique that we describe does not require either the use of simulations, other

pre-computed values, or the optical and the electrical characteristics of the system,

simplifying the calibration of gamma cameras and enabling its application to a wide

variety of detector types. It enables short calibration measurements by making use

of the information from all available photo-detectors to estimate the DOI of each

photon. We test the proposed methodology on both simulated and measured data

from monolithic PET detectors and show that the method provides for accurate

depth-dependent detector characterization using pencil-beam measurements enabling

the consequent accurate estimation of the three-dimensional coordinates of interaction.

The rest of this article is organized as follows: section 2 describes the probabilistic

model of the gamma detection process and reviews the model-based methods for

estimating the coordinates of interaction and energy of the gamma photons. Section

3 presents the challenge of measuring experimentally the forward model of DOI

gamma cameras, required by such model-based methods, and introduces our new

machine learning method for estimating the forward model from simple pencil-

beam measurements. Section 4 evaluates the algorithm in simulations and real-data

experiments. Section 5 summarizes the proposed algorithm and the results of the

experiments, and presents a discussion of the method in relation to previously published

techniques for DOI estimation.

2. Review of model-based DOI estimation

We start by modeling position-sensitive gamma imaging devices in the probabilistic

framework, and by reviewing maximum-a-posteriori estimation of the coordinates of

interaction and of the energy. We emphasize that the focus of this paper is on

accurately characterizing gamma cameras, as detailed in section 3, so that these

methods can be used in practice. Reconstructing tomographic images based on the

provided coordinates of interaction is an entirely separate problem for which standard

tomographic reconstruction algorithms can be used, and falls outside the scope of this

work.

2.1. Probabilistic model of the interaction process

Let (x, y, z) be the coordinates of three-dimensional space with z being the direction

normal to the entrance plane of the camera (Fig. 1) and let ξ
[
photons
KeV

]
be the photon

yield of the scintillator. In consequence of the interaction of a gamma photon with

energy E [KeV ], the crystal emits on average Eξ secondary photons. These propagate

through the camera and are eventually detected by the photo-detectors, indexed with

d = 1, . . . , D, producing the measurement vector u = {u1, . . . , uD}. Let the geometry

and the optical characteristics of the device be expressed by the probability s̃d(x, y, z)
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that a secondary photon emitted in consequence of a gamma interaction in (x, y, z)

enters the active area of photo-detector d; and let Gd

[
V

photon

]
express the characteristics

of photo-detector d, encompassing the quantum efficiency and the gain of the charge

amplifier‡. The function of three-dimensional space l̃d(x, y, z) = ξGds̃d(x, y, z) expresses

the overall characteristics of the gamma camera, encompassing the geometry, the optical

characteristics of the scintillator and of the detectors, the quantum efficiency of the

detectors and the gain of the read-out electronics.

In order to discretize the forward model for numerical implementation, let us

partition the volume of the scintillator into a grid of (I, J,K) not necessarily cubic voxels

(Fig. 1), indexed in the three-dimensional space with (i, j, k), and assume that l̃d(x, y, z)

is constant within each voxel. Let us indicate with ldijk the discrete approximation of

l̃d(x, y, z):

L = {ldijk}. (1)

In consequence of the interaction of a gamma photon in voxel i, j, k, the signal expected

at photo-detector d is, in the discrete approximation:

ūd = Eldijk. (2)

The set of parameters L constitutes the discrete numerical representation of the

characteristics of the gamma camera, expressing the signal expected at each read-out

channel in consequence of the interaction of a gamma photon at a given location of

interaction; per unit of energy of the gamma photon. Section 3 will describe our novel

method to estimate L experimentally from pencil-beam measurements; the remainder of

this section completes the description of the probabilistic model of the photon interaction

process and reviews how L is utilized, in the model-based approach, to estimate the

coordinates of interaction and energy.

Under the assumption that the coordinates of interaction and energy of the

gamma photon are the unique cause of the measurements (e.g., no dark counts),

the measurements are conditionally independent such that the conditional probability

p(u|E, i, j, k) factorizes according to:

p(u|E, i, j, k) =
D∏
d=1

p(ud|E, i, j, k). (3)

Assuming that the uncertainty of the measurement of each ud is dominated by the

intrinsic uncertainty due to the photon counting statistics, p(ud|E, i, j, k) is expressed

by the Poisson mass function with expectation Eldijk:

p(ud|E, i, j, k) =
e−Eldijk(Eldijk)

ud

ud!
. (4)

‡ The unit measures may differ depending on the type of detector and on the characteristics of the

read-out electronics.
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0.0(B) Given direction: perpendicular(A) Beer-Lambert law in 1-D

Figure 2. The prior probability of interaction is determined by integrating the Beer-

Lambert law of absorption, depicted in panel (A) in the 1-D case, and depends on

the geometry of the camera, the characteristics of the scintillating material and of

the trajectories of the incoming gamma photons. (B) Prior probability of interaction

for parallel photons of unknown (x, y) location, utilized in the event estimation

experiments.

Equations (3) and (4) constitute the probabilistic model of the interaction process,

parameterized by the forward model L = {ldijk}.

2.2. Event estimation

While often the event estimation problem is formulated as maximum-likelihood inference

(see Barrett et al., 2009b), here we adopt maximum-a-posteriori (MAP) inference in

order to include information about the location of interaction of the gamma photon

available prior to the measurement. In general, knowledge of the geometry of the gamma

camera, of the characteristics of the scintillating material and of the trajectories of the

incoming gamma photons, determines a non-uniform prior probability distribution of the

location of interaction, which we denote with p(i, j, k). This is illustrated graphically in

Fig. 2; for the case of collimated parallel photons with unknown (x, y) location (Fig. 2.B),

we have that p(i, j, k) = 1
IJ
p(k), where p(k) will be derived from the Beer Lambert law

of absorption in section 3.1.

Under the MAP criterion, the event estimation problem is formulated as the

problem of finding the coordinates of interaction î, ĵ, k̂ and the energy Ê that maximize

the posterior probability distribution of i, j, k, E, given the photo-detector measurement

vector u:

î, ĵ, k̂, Ê = arg max
(i,j,k,E)

p (E, i, j, k|u) , (5)

with the posterior probability expressed by Bayes formula:

p(E, i, j, k|u) =
p(u|E, i, j, k)p(E, i, j, k)

p(u)
, (6)

and with the model of the interaction process p(u|E, i, j, k) expressed by Eq. (3). The

solution of (5) is given by (see Appendix A for derivation):
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î, ĵ, k̂ = arg min
i,j,k

{
ln(

D∑
d=1

ldijk)
D∑
d=1

ud −
D∑
d=1

(ud ln ldijk)− ln p(i, j, k)

}
. (7)

Ê =

∑D
d=1 ud∑D
d=1 ld̂iĵk̂

; (8)

A variety of algorithms can be utilized to maximize (7), such as simple exhaustive search

or fast adaptive grid search methods (Pedemonte et al., 2009).

3. Estimating the forward model using machine learning

Before the MAP estimation of the coordinates of interaction and energy of section 2 -

Eq. (7) and (8) can be performed, the forward model L of the gamma camera needs to

be known. Here we propose a new method to estimate the forward model automatically

and accurately from simple pencil-beam measurements. The method that we propose

combines two techniques from the machine learning literature: nonlinear dimensionality

reduction – which aims to simplify structured high-dimensional data by projecting it

into a lower-dimensional space – and finite mixture modeling – a statistical method for

characterizing models with unobserved, latent variables.

The schematic of an experimental set-up for estimating the characteristics of a

gamma camera L is shown in Fig. 3. A collimated beam of gamma photons with known

energy Ē, perpendicular to the (x, y) plane, is positioned at locations displaced on a

regular grid of I × J points, covering the entire entrance plane of the gamma camera.

The use of a beam perpendicular to the (x, y) plane decouples the problem of estimating

L in a set of I × J independent problems. The data acquired at each beam position ī, j̄

bears information about a subset of L: Līj̄ =
{
ld̄ij̄k

}
. In the remainder of this section,

we will concentrate on the problem of estimating the parameters Līj̄ for a given location

of the beam.

For each position of the beam (̄i, j̄), N interaction events are recorded; let us index

with n = 1, . . . , N the interaction events and indicate with U = {u1,u2, . . . ,uN} the

set of N corresponding measurements un = {u1n, u2n, . . . , uDn}. The problem of

estimating the characteristics of the gamma camera is a missing-data problem: if the

depth-of-interaction of the gamma photons were known, it would be straightforward to

compute Līj̄ by averaging the measurements associated to each discrete value of the

depth-of-interaction. However, in reality both Līj̄ and the depth-of-interaction of the

photons are unknown.

We investigate two approaches to address this missing-data problem. The first

approach poses the problem of estimating Līj̄ as a finite mixture modeling problem,

accounting for the actual noise properties of the measurement system when estimating

the forward model; however it leads to a local optimization algorithm that can be

sensitive to its initialization. The second approach addresses the problem from a
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9

Figure 3. Schematic of an experimental set-up to learn the depth-dependent response

of a monolithic gamma camera. A collimated photon beam is focused at a given

location (̄i, j̄). Though the depth-of-interaction can not be imposed in the experiment,

the depth-dependent response can be learned from the signals produced by multiple

photon interactions at (̄i, j̄).

different perspective, by resorting to the concept of nonlinear dimensionality reduction.

This leads to a globally convergent algorithm, that however does not account for photon

counting noise. In the experiments, we will demonstrate that the combination of the two

approaches provides a globally-convergent, fully-automated algorithm for the accurate

estimation of the forward model.

3.1. Prior probability distribution of depth

We first derive the expression of the prior distribution p(k) in the case of the

experimental set-up of Fig. 3, as this will be used in both the finite mixture modeling and

the nonlinear dimensionality reduction approach. With collimated photons traveling in

the direction perpendicular to the camera plane, the Beer-Lambert exponential law of

absorption expresses the probability of interaction as a function of z:

p(z) = αĒe
−αĒz, (9)

with αĒ
[
cm−1

]
being the narrow-beam attenuation coefficient of the scintillator crystal

for the gamma photons of energy Ē utilized for the experimental characterization.

Letting ∆z be the size of the voxels along direction z, the probability that a detected

gamma photon has interacted in voxel k is, integrating (9):

p(k) =

∫ k∆z

(k−1)∆z
p(z)dz

K∑
k′=1

∫ k′∆z
(k′−1)∆z

p(z)dz

=
e−αĒ(k−1)∆z − e−αĒk∆z

1− e−αĒK∆z
. (10)

This is easily calculated, given the parameter αĒ of the scintillator crystal.
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3.2. Estimating the forward model using finite mixture modeling

The missing-data problem of estimating the depth-dependent forward model can be

addressed by means of an iterative procedure: using a provisional estimate of Līj̄, one

may estimate the depth-of-interaction k of each gamma photon, and then update Līj̄ by

averaging the signals produced by interactions associated to each value of k. An iterative

algorithm of this kind indeed emerges by formulating the problem of estimating Līj̄
as maximum-likelihood estimation. The generative probabilistic model of the photon

detection process, described in section 2.1, can be utilized to express the likelihood of

the parameters Līj̄ when observing the set of N gamma interactions with known ī, j̄

location:

p(un|Līj̄, k) =
D∏
d=1

p(ud|E, ī, j̄, k),

with p(ud|E, ī, j̄, k) given by Eq. (4). Marginalizing over the depth-of-interaction k, the

probability distribution associated to the measurement vector un is a finite mixture

model:

p(un|Līj̄) =
K∑
k=1

p(k)p(udn|Līj̄, k),

Due to the independence of the N events of interaction, the probability of U conditional

to the forward model parameters is given by the product of terms p(un|Līj̄), so that

finally:

p(U|Lī,j̄) =
N∏
n=1

K∑
k=1

p(k)
D∏
d=1

e−Eldijk(Eldijk)
udn

udn!
. (11)

While there is no closed form solution for the maximizer of Eq. (11) with respect to Līj̄,

we can utilize the Expectation Maximization (EM) algorithm to update l̄ij̄k iteratively.

The EM algorithm provides a gradient-type iterative update formula with implicit line

search that guarantees an increase of the likelihood value at each new iteration. The

EM update formula consists of two steps (Bishop, 2007):

h
(q)
nk =

p(k)
∏D

d=1

[
e
−Ēl(q−1)

dīj̄k

(
Ēl

(q−1)

d̄ij̄k

)udn]
∑K

k′=1 p(k
′)
∏D

d=1

[
e
−Ēl(q−1)

dīj̄k′
(
Ēl

(q−1)

d̄ij̄k′

)udn] ,
l
(q)

d̄ij̄k
=

∑N
n=1 h

(q)
nkudn

Ē
∑N

n=1 h
(q)
nk

. (12)

At each iteration q, the weights h
(q)
nk associating each measurement n to depth k are

computed from L
(q−1)

īj̄
, and L

(q)

īj̄
is then computed, according to Eq. (12), as the sum of

the measurement vectors weighted by h
(q)
nk . Although EM guarantees an increase of the
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11

likelihood at each new iteration, it is a greedy algorithm that can get trapped in local

optima, making the solution dependent on the initialization. In the remainder of the

paper, we will refer to this first algorithm for the estimation of the depth-of-interaction

of a set of photons with the acronym MLE-EM : maximum-likelihood estimation by

means of the Expectation Maximization algorithm.

3.3. Estimating the forward model using nonlinear dimensionality reduction

In this section we present the problem of estimating the forward model from a different

perspective that leads to a globally convergent algorithm. The formulation that follows

is based on two observations:

• As depicted in Fig. 2.A, for a given position of the beam, according to the Beer-

Lambert law of absorption, the number of interactions per unit volume is maximum

at the entrance location of the beam and decreases exponentially along z.

• For a given position of the beam, two measurement vectors are expected to be

similar if they are produced by interactions at near depth locations, and less similar

if they are produced by two interactions at distant depths.

The second statement is true if the detector indeed provides information about

the depth-of-interaction. In consequence of these two considerations, amongst N

photon interaction measurements, there is an abundance of measurements produced by

interactions that have occurred near the surface and scarcity of measurements produced

by deep interactions; the latter will be similar to one another and different from the

measurements originated near the surface. Since the photons from a pencil beam have

essentially only one degree of freedom in their interaction within the crystal (depth),

we expect the D-channel beam data produced by the D photodetectors to lie near a

one-dimensional manifold (Saul and Roweis, 2003) embedded within the D-dimensional

signal space. The method that we will describe in the following utilizes concepts of

dimensionality reduction in conjunction with the observations above to determine the

depth-of-interaction of each event.

One degree of freedom, depth: Nonlinear dimensionality reduction algorithms

provide a low dimensional representation R = {r1, . . . , rn, . . . , rN}, rn ∈ RD′ of a dataset

of higher dimensionality, U = {u1,u2, . . . ,un, . . . ,uN}, un ∈ RD, under the assumption

that U lies on a manifold embedded in RD with intrinsic dimensionality D′ < D. We

consider here the Locally Linear Embedding (LLE) algorithm (Saul and Roweis, 2003),

which constructs a low dimensional representation with invariant self-similarity between

the data points. Let us give a self-contained description of the principles underlying the

LLE algorithm. The first step of LLE is to find a matrix of weights W that expresses

each point un as a linear combination of its η nearest neighbors in RD. This step

is performed simultaneously for every point un ∈ U by first measuring the distance

between all pairs of data points; selecting the η nearest neighbors of each point un; and

solving:
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Ŵ = arg min
W


N∑
n=1

∣∣∣∣∣un −
N∑
m=1

Wnmum

∣∣∣∣∣
2
 , (13)

subject to the two constraints that (1) each data point un is reconstructed only from

its neighbors, enforcing Wnm = 0 if um does not belong to the set of η neighbors of un;

and (2) that the rows of the weight matrix sum to one for every n:
∑

mWnm = 1. In

the implementation of LLE that we adopt here, the metric of distance for the selection

of the η neighbors is the Euclidean norm. Given such choice, the algorithm has only

one free parameter, the number of neighbors η. As described in detail in Saul and

Roweis (2003), the constrained minimization of (13) has a closed-form solution. Once

the reconstruction weights Ŵ have been computed, the LLE algorithm maps each high-

dimensional observation un to a low-dimensional vector rn, which represents the global

internal coordinate of the point on the manifold. This is done by finding the set R̂ of

D′-dimensional vectors such that, according to the weight matrix Ŵ, rn is near rm if

un is near um:

R̂ = arg min
R


N∑
n=1

∣∣∣∣∣rn −
N∑
m=1

Ŵnmrm

∣∣∣∣∣
2
 . (14)

Defining a quadratic form in the vectors rn, the embedding cost (14) is minimised

globally by solving a sparse N ×N eigenvalue problem; details are provided in Saul and

Roweis (2003).

For illustration, the scatter-plot of Fig. 4 reports the coordinates of 5000 simu-

lated interaction events, projected onto the manifold of dimensionality D′ = 3, using

η = 12 (the set-up of the simulation will be described in detail in the experiments in

section 4). Note that the choice D′ = 3 here is purely for the purpose of visualiza-

tion – a value of D′ = 1 will be used in actual computations, as detailed below. The

color of each point represents the depth-of-interaction of the gamma photon, which is

known in the simulation experiment. In Fig. 4 one observes that the structure of the

data is intrinsically 1-dimensional. Following this observation, in order to capture the

1-dimensional degree-of-freedom of the data, which appears to be associated with the

variable depth-of-interaction, we utilize the LLE algorithm with D′ = 1. The scalar

measure rn therefore denotes the location of data point n on the 1-dimensional mani-

fold. Although the manifold coordinates rn are related to the depth-of-interaction, the

exact mapping between the manifold coordinates and the depth remains at this point

unknown. In order to create a mapping between the low-dimensional representation of

the data points and depth, in the following we utilize the notion that the photon-flux is

an exponential function of depth.

Depth from manifold density:
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Figure 4. Simulated monolithic gamma camera (simulation geometry in Fig. 6-II):

scatter-plot of the data points, generated by a collimated beam, projected onto the

manifold of dimension D′ = 3. Data points are colored according to the ground-truth

depth-of-interaction label k. From this visualization of the data projected onto the

three-dimensional manifold it can be observed that the data live in a 1-dimensional

manifold. The density of data points decreases exponentially with increasing depth-

of-interaction. Fig. 5 represents the projection for D = 1.

Let us indicate with θk the cumulative mass function that expresses the probability that

the gamma photon has interacted at a depth smaller or equal to k:

θk =
k∑

k′=1

p(k′). (15)

The values of θk can be computed precisely using (10) and (15), given the narrow-

beam attenuation coefficient αĒ of the scintillating material. A mapping between

the coordinates of the manifold and the depth-of-interaction can now be found by

considering that the number of data points expected to interact at depth k is p(k)N . The

mapping between the 1-dimensional manifold and the discretized depth values can be

expressed by means of K + 1 scalar values th, h = 0, . . . , K; th ∈ R, such that th+1 > th
and such that a measurement with low dimensional representation rn is assigned to

depth k if tk−1 < rn ≤ tk, as depicted in Fig. 5.

The algorithm that we propose to compute each {tk} in turn, selects the scalar

values tk by searching through the set of low dimensional representations of the

experimental data points. The algorithm proceeds as follows: the first scalar is set
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Figure 5. Simulated monolithic gamma camera (simulation geometry in Fig. 6-II):

scatter-plot of the data points, generated by a collimated beam, projected onto the

manifold of dimension D = 1. The location of each data-point n on the manifold is

characterized by scalar rn. (I): All N training data points. (II): Close up for r near

0, corresponding to depth-of-interaction k = 1 and k = 2 voxels. th = {t0, t1, . . . , tK}
partition the manifold in K = 16 regions. In plot (A) the data points are colored

according to the value of rn (estimated depth-of-interaction). In plot (B) data points

are colored according to the true depth-of-interaction.

to the minimum value in the set: t0 = min(r1, r2, . . . ); the remaining scalar values are

chosen, for each value of k, as the minimum value in the search set for which the number

of data points such that rn ≤ tk is equal or larger to θk N . It has to be noted that the

LLE algorithm does not guarantee that increasing values of r correspond to increasing

values of z or vice versa. Therefore before searching for the values {th}, the sign of {r}
is inverted if the average distance between the η data points with the highest r values

is smaller than the average distance between the η data points with the lowest r values.

This guarantees that the region of the manifold with low values of r corresponds to the

entrance of the camera, where the density of data points is higher.

The resulting map {th} assigns each measurement n to a DOI k according to the

value rn of the low dimensional representation of the measurement vector. The forward

model ld̄ij̄k is then calculated as the average of the measurement vectors assigned to

each value of k, normalized by the energy of the gamma source. In the remainder of the

paper, we will name this second algorithm for the estimation of the depth-of-interaction

of a set of photons Depth Embedding.

4. Experiments and Results

We evaluated the algorithms presented in the previous section with two experiments:

(A) a simulation study of a monolithic PET gamma camera, replicating the Continuous

Miniature Crystal Element (cMiCE) PET detector (Miyaoka et al., 2011) developed at

the Imaging Research Laboratory at the University of Washington; and (B) a study
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based on real data acquired with the cMiCE PET detector. The simulation study

highlights the importance of accurate 3D characterization; investigates the accuracy of

the estimates of the forward model obtained with the Depth Embedding and MLE-EM

algorithms; and investigates the effect of the parameters η (the number of neighbors in

the dimensionality reduction algorithm) and N (the number of training gamma photons

per beam location). The real-data study utilizes the Depth Embedding and MLE-EM

algorithms to extract a 3-D characterization of the cMiCE camera, quantifying the

improvement of the spatial resolution obtained in comparison to 2-D estimation and to

the standard centroid method (Anger, 1958).

The algorithms were implemented in the Python programming language, using the

version of the LLE algorithm included in the scikit-learn (Pedregosa et al., 2011) machine

learning module (version 0.16). The average execution time for the computation of the

elements of the forward model for a single beam position, for the real data experiment,

was 5.3 sec (3.1 sec for Depth Embedding and 2.2 sec for MLE-EM), using an Apple

MacBook Pro with 2.7 GHz Intel Core i7 CPU and 16 GB RAM.

4.1. Simulation study

We utilized a numerical simulation to generate a ground-truth for the evaluation of

the recovery of the parameters of the forward model L. This also allowed us to

investigate the optimal selection of the parameters of the Depth Embedding algorithm

and to analyze the effect of inaccuracies of the forward model on the estimation of the

coordinates of interaction, highlighting the importance of estimating the 3-D model in

a precise fashion.

Simulated forward model: We simulated a monolithic scintillation gamma camera

using the SimSET photon-tracking software (Harrison and Lewellen, 2012). The

simulation parameters were set to replicate the characteristics of the cMiCE PET

detector, which consists of a 50 × 50 × 15 mm3 LYSO crystal (α511KeV = 0.83 [cm−1],

ξ = 25 photons
KeV

) coupled to a 8× 8 (64-channel) array of photo-detectors. Photons were

generated from a single point source 40mm from the entrance face of the LYSO crystal.

SimSET was utilized to sample the trajectories of the gamma photons. Collimation was

simulated by emitting photons in a right circular cone so that the circular base of the

cone is a 1mm diameter circle on the entrance face of the crystal. This results in the cone

having a diameter of ∼ 1.4mm at the photosensor plane and incident photons that are

parallel to within 0.1◦. This is similar to our real-data experimental setup of the cMiCE

PET camera (section 4.2). Realistic photon scatter was simulated within the crystal, and

the position and energy of each gamma photon interaction by photoelectric absorption

and scatter was recorded. Transport of the secondary photons was then modeled with

two components in order to simulate a perfectly reflective crystal entrance face and

perfectly absorbent side faces: the solid angle from the point of the gamma photon

interaction to each element of the photosensor and the reflection on the entrance face of

the crystal, which was obtained by computing a second solid angle from a virtual point
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source that is the reflection of the original point source through the entrance face. The

photodetectors were considered noiseless and were each assigned a quantum efficiency

of 0.35 , to replicate the average characteristics of the detector modules of the CMiCE

camera, resulting in an average of ≈ 5000 photons per event of interaction; noise in

the detection of the secondary photons was obtained using a Poisson noise generator.

The simulator was utilized to generate both the ground truth forward model and the

simulated events of interaction. The ground truth forward model L[true] was generated

by averaging the noiseless signals produced by the non-scattered interactions.

Characterization: The set-up described in section 3 for the characterization of the

gamma camera was replicated in the simulation: the pencil-beam, perpendicular to

the (x, y) plane, was positioned on a grid of (I = 48 × J = 48) points with stride

1 mm × 1 mm. For each position, N = 40000 events were simulated and an energy

window was applied to reject scatter, resulting in approximately 10000 qualified events

per beam position. The energy window was set adaptively with a lower threshold of 5/6

of the photo-peak, halfway to the Compton edge and an upper threshold of 1.25 times

the full width at tenth max of the photo-peak (the value of the thresholds depends on

the energy resolution of the detector at each beam location; the average values of the

two thresholds were 426KeV and 550KeV ). Once the measurements U were simulated

this way, we aimed to estimate the characteristics of the gamma camera L with the

three following methods:

(i) 2-D characterization;

(ii) 3-D characterization with Depth Embedding ;

(iii) 3-D characterization with MLE-EM.

The 2-D characterization (method (i)), which we will indicate in the remainder using

L[2D] =
{
l
[2D]
dij

}
, was obtained simply by averaging all the signals acquired for a given

position of the beam, disregarding the depth-of-interaction: l
[2D]

d̄ij̄
= 1

ĒN

∑N
n=1 udn, for

U = {udn} acquired at position īj̄. It was found that the MLE-EM algorithm (method

(iii)), which is a greedy optimizer that can get trapped in local optima, fails to converge

to a meaningful solution when initialized randomly. In the following we therefore present

the results of the MLE-EM algorithm initialized with the model produced by the Depth

Embedding algorithm (method (ii)), along with the results obtained using the Depth

Embedding algorithm alone.

In order to determine the optimal number of neighbors for the Depth Embedding

algorithm (method (ii)), the algorithm was first utilized to reconstruct N = 5000 events

per beam position and executed multiple times, with η ranging between 5 and 20; the

number of depth bins was set to K = 16, determining a voxels thickness of 0.94mm. For

each value of η, the estimated model L̂ = {l̂dijk} was compared with the ground-truth

model L[true] = {l[true]dijk } by measuring the mean percentage error:
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Figure 6. Simulation of a monolithic gamma camera consisting of a 50× 50× 15 mm

scintillator crystal coupled with an array of D = 64 photo-detectors of size 6.25× 6.25

mm each. (I) Representative position of the beam i = 2, j = 32. (II) 2-D forward

model for i = 2, j = 32, estimated by simple averaging; N = 5000. (III) Ground truth

3-D forward model for beam location i = 2, j = 32 and depth k = 1, 6, 11, 16. (IV) 3-D

forward model for estimated with Depth Embedding; η = 12, N = 5000; i = 2, j = 32,

k = 1, 6, 11, 16.

MPE =
100%

DIJK

DIJK∑
dijk

∣∣∣∣∣ l
[true]
dijk − l̂dijk + δ

l
[true]
dijk + δ

∣∣∣∣∣ , (16)

with δ = 10−9 to avoid division by zero. The MPE of the estimated parameters, reported

in the plot in Fig. 7.I, was found to have a minimum of 6.18% for η = 11 and to present

a plateau in the range of η comprised between 7 and 17; in subsequent experiments,

the number of neighbors was set to the value at the center of the plateau: η = 12.

Fig. 4, to which we have previously referred in section 3-B to describe the rationale of

the Depth Embedding algorithm, shows the scatter-plot of the data points projected,

onto the three-dimensional manifold, depicting the variable density of data points along

the manifold. The projection of the data into the three-dimensional manifold is for

visualization purpose only. Fig. 5 reports the scatter-plot of the data points projected

on the manifold of dimension D′ = 1, colored according to the true depth-of-interaction

and to the depth-of-interaction estimated using the Depth Embedding algorithm. The

images in Fig. 6.III and 6.IV display, respectively, the ground-truth and the parameters

of the forward model estimated with the Depth Embedding algorithm (method (ii)) for

a representative position of the beam i = 2, j = 32, depicted in Fig. 6.I, and for four

representative depths k = 1, 6, 11, 16, visually confirming that the algorithm correctly

captures the depth-dependent response. For visual comparison, Fig. 6.II displays the

2-D forward model obtained with method (i), i.e., averaging the measurement vectors.

In order to evaluate the effect of the MLE-EM refinement (method (iii)) and to
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Figure 7. Accuracy of the forward model estimates in the simulation of a monolithic

gamma camera. (I) Mean percentage error of the forward model estimated with Depth

Embedding, with multiple settings of the parameter η; N = 5000. (II) Mean percentage

error, with variable number of data points N, of the forward model estimated using

Depth Embedding and of the forward model refined with MLE-EM.

determine the sensitivity of the parameter N , the characterization experiment was then

repeated for 15 values of N, equally spaced between N = 200 and N = 10000; for each

value of N , the forward model was first estimated using Depth Embedding (method (ii))

and then refined using MLE-EM. MLE-EM was executed until convergence (in average

15 iterations). The MPE for the models produced by Depth Embedding alone and for

the models refined using MLE-EM is reported in Fig. 7.II. In both cases, the MPE

decreases with increasing N , stabilizing for N ' 1500. Values of N larger than 1500

are therefore advisable to minimize the error of the model estimates. The MLE-EM

algorithm was found to consistently reduce the MPE, reducing the MPE to 2.82% (from

the initial value of 6.18% produced by Depth Embedding), in the case of N = 5000.

The forward models estimated with the methods (ii) and (iii) were up-sampled on

a grid I = 200× J = 200×K = 60 and the forward model estimated with method (i)

was up-sampled on a grid I = 200× J = 200 using tri-linear interpolation.

Event estimation: Once the three forward models were estimated with the methods

(i), (ii) and (iii) described in the previous section and up-sampled, a second simulation

was set up to evaluate and compare the effect of the forward models on the estimation

of the coordinates of interaction. The detector was flooded using 25 pencil-beams,

displaced on a regular grid with stride 12.0 mm × 12.0 mm. The interaction of

N = 5000 photons per beam location was simulated. The coordinates of interaction of

each simulated photon were then reconstructed using five different methods:

(A) The centroid method described in Anger (1958);

(B) MAP with the 2-D forward model;

(C) MAP with the Depth Embedding 3-D forward model;

(D) MAP with the MLE-EM 3-D forward model;

(E) MAP with the 3-D ground-truth forward model.

The 2-D event estimation (B) was performed using a 2-D version of Eq. (7):

î, ĵ = arg min
i,j

{
D∑
d=1

ud −
D∑
d=1

(
ud ln l

[2D]
dij

)}
. (17)
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(A)

CENTROID

(B) 

MAP, 2-D

(C) 

MAP, 3-D DEPTH EMBEDDING

(D) 

MAP, 3-D MLE-EM

(E) 

MAP, 3-D GROUND-TRUTH Counts

0

50K

25K

Figure 8. Estimation of simulated events of interaction for the set-up of Fig. 6-II.

The images report the 2-D histogram of the estimations of 37500 events of interaction

uniformly distributed across 25 discrete locations (for the 3-D estimation methods, the

histograms are obtained by disregarding the depth information). (A) Estimation with

the centroid algorithm (Anger, 1958); (B) MAP estimation with the 2-D forward model

obtained by experimental characterization; (C) MAP estimation with the 3-D forward

model obtained with the Depth Embedding algorithm; (D) MAP estimation with the

3-D forward model obtained with the Depth Embedding algorithm and refined with

MLE-EM; (E) MAP estimation using the ground-truth 3-D forward model.

The 3-D MAP event estimation (C)(D)(E) were performed using Eq. (7) with uniform

prior probability of i, j and probability of k given by Eq. (10), parameterized with the

parameter α511Kev of the simulated scintillator crystal (Fig. 2.B):

p(i, j, k) =
1

IJ

e−α511Kev(k−1)∆z − e−α511Kevk∆z

1− e−α511KevK∆z
, (18)

with K = 60 and ∆z = 0.25 mm. For all the MAP methods (B)(C)(D)(E), simple

exhaustive search was used to solve (8), (7) and (17).

The results of the estimations are reported in Fig. 8, where the intensity of the

images is proportional to the number of events associated to each of the 200×200 pixels

on the (x, y) plane of the camera (in the case of 3-D estimation, the depth was simply

discarded when creating these 2-D histograms). Fig. 8.E reports the best achievable

result, obtained by reconstructing the events using MAP estimation with the ground-

truth forward model (method (E)); here the events are, on average, correctly positioned

near the beam locations. Note that even in this idealized scenario, which provides an

upper bound on the achievable performance in practice, the errors are distributed in

a slightly anisotropic way near the edges of the device: this is because the detector

geometry intrinsically provides less information about the location of interaction in

directions perpendicular to the edge orientation there. The 2-D estimation using

the centroid method (Fig. 8.A) was found to introduce large systematic errors in the

peripheral regions of the camera, a problem known as barrel effect. MAP estimation

using the estimated 2-D forward model (Fig. 8.B) was also found to mis-locate the

events of interaction in the (x, y) plane, introducing a systematic error, visible at all

beam locations, due to the lack of depth information. The estimations obtained with

the two estimated 3-D forward models (Fig. 8.C-8.D)) are visually undistinguishable

from the results obtained using the ground-truth forward model, appearing to eliminate
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Table 1. Estimation of simulated events of interaction for the set-up of Fig. 6-II:

mean bias (Eq.(19)) and standard deviation (Eq.(20)) of the reconstructed (x, y) beam

locations and root mean squared error of the reconstructed DOI (Eq.(21)) for the five

methods described in the simulation study section.

xyBIAS [mm] 3.16 0.88 0.36 0.32

(A) (B) (C) (D)
CENTROID 2-D MAP DEPTH-EMB MLE-EM

0.33

(E)
TRUE

xySTD [mm]

zError [mm]

xymax(BIAS ) [mm]

xymax(STD ) [mm]

zmax(Error ) [mm]

1.80 1.34 1.13 1.10 1.05

6.69 2.62 1.36 1.27 1.24

2.95 2.05 1.66 1.62 1.57

1.57 1.52 1.48

1.16 1.14 1.13

Figure 9. Depth-dependence of STDxy and of Errorz in the ideal case of MAP

estimation with known forward model (E) for a representative beam position near the

edge of the detector.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

xy

z [mm]

STD Errorz

0 2 4 6 8 10 12 14 16

[mm]

the bias observed in the 2-D estimations.

In order to assess quantitatively the accuracy of the estimations, we measured the

bias (systematic error) and standard deviation (random error) of the reconstructed (x, y)

beam locations and the root mean squared error of the depth-of-interaction estimates:

BIAS[p]
xy =

[(
x[T,p] − x̄[R,p]

)2
+
(
y[T,p] − ȳ[R,p]

)2
] 1

2
, (19)

STD[p]
xy =

[
1

N

N∑
n=1

(
x[R,p]
n − x̄[R,p]

)2
+
(
y[R,p]
n − ȳ[R,p]

)2

] 1
2

, (20)

Error[p]
z =

[
1

N

N∑
n=1

(
z[T,p]
n − z[R,p]

n

)2

] 1
2

, (21)

with x[T,p] and y[T,p] indicating the true locations of the beam in position p; z
[T,p]
n

indicating the true depth of the n-th interaction; x
[R,p]
n , y

[R,p]
n and z

[R,p]
n indicating

the coordinates of interaction reconstructed with each method in turn; and with
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x̄[R,p] = 1
N

∑N
n=1 x

[R,p]
n , ȳ[R,p] = 1

N

∑N
n=1 y

[R,p]
n . The mean bias and deviation of the

beam and the mean error of the depth estimates across the entire camera surface were

then computed by averaging over the 25 beam locations: BIASxy = 1
25

∑25
p=1 BIAS

[p]
xy ;

STDxy = 1
25

∑25
p=1 STD

[p]
xy; Errorz = 1

25

∑25
p=1 Error

[p]
z to characterize globally the

systematic and random error of the beam coordinates and the error of the measurement

of depth. The maximum values were also recorded in order to observe the characteristics

of the camera in the regions with the lowest performance. The numerical values are

reported in Table 1. Fig. 9 provides an insight of the depth-dependence of STDxy

and Errorz by plotting their values as a function of the depth-of-interaction for the

case of ideal estimation with known forward model. One can notice that, due to the

intrinsic characteristics of the camera, the (x, y) error is larger near the surface, which

the error in estimating z is larger near the detectors. The 3-D estimation using the

forward model estimated with the Depth Embedding algorithm produced a considerable

reduction of the systematic errors of the beam positions and of the random errors, when

compared to the standard centroid method and to 2-D MAP estimation. The bias

of the beam positions, in particular, is virtually eliminated (BIASxy = 0.36 mm),

producing therefore a more uniform effective resolution across the (x, y) plane. The

MLE-EM refinement improved the depth resolution, reducing the depth error (from

Errorz = 1.16 mm to Errorz = 1.14 mm) and producing a further slight reduction

of the bias (BIASxy = 0.32 mm) and deviation of the beam (from STDXY = 1.13

mm to STDXY = 1.10 mm). The resulting bias, beam deviation and depth errors are

virtually identical to the optimal values obtained using the ground-truth 3-D forward

model: BIASxy = 0.33 mm; STDXY = 1.05 mm, ; Errorz = 1.13 mm.

4.2. Characterization of the cMiCE PET camera

The Depth Embedding and MLE-EM algorithms were applied to data collected from the

Continuous Miniature Crystal Element (cMiCE) PET detector (Miyaoka et al., 2011),

which consists of a 50 × 50 × 15 mm3 LYSO crystal (α511KeV = 0.83 [cm−1]) coupled

to a 8 × 8 (64-channel) position-sensitive photomultiplier tube (H8500, Hamamatsu

Photonics K.K., Japan).

Characterization: In order to speed-up the acquisition, the single beam described in

the previous sections was replaced with a 4× 4 array of collimated beams formed using

16 22Na point sources with activity between 15 and 20 µCi (Fig. 11.I). Each beam had

a FWHM of 0.52 mm at the crystal entrance face. The beam array was utilized to scan

the surface of the detector on a 12×12 square grid with stride 1 mm × 1 mm, producing

in total I = 48 × J = 48 beam positions over the entire surface of the camera. For

each detected photon, the source beam was then recovered using an initial estimate of

the coordinates of interaction based on the centroid algorithm (Anger, 1958). In order

to discard scattered photons, the events were filtered using an energy window and a

likelihood-based filter. The energy windowing procedure was identical to the one used

in the simulation experiments (see section 4.1); after applying it, approximately 2000
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Figure 10. cMiCE PET camera: scatter-plot of the data points projected onto the

manifold of dimension D′ = 3 for a representative beam position.

interactions per beam position were registered. The second filter discarded events with

abnormal light distribution by first computing the 2-D forward model by averaging all

the events at a given location of interaction, and then selecting N ≈ 1500 events with

the highest likelihood associated to the 2-D forward model (expressed by the formula

in the curly brackets in Eq. (17)). This second filter is a heuristic aimed at further

removing scattered photons when constructing the forward model, motivated by the

idea that non-scattered events at all depths are expected to be closer than scattered

events to the mean of the non-scattered events - this is obtained by averaging all the

measurements at one location, under the assumption that non-scattered events dominate

when computing the mean. The decision to further remove 1
4

of the events at all beam

locations was motivated by the aim of removing as many scattered photons as possible,

while guaranteeing a sufficient number of events. The acquisition experiment was

performed twice, in order to generate two separate data sets: one for the characterization

of the camera and one to test the estimation of the coordinates of interaction using the

estimated forward model.

The forward model L was estimated by applying the Depth Embedding algorithm

and the MLE-EM algorithm to the first data set. The number of neighbors for Depth

Embedding was set to the value found in the simulation experiment (η = 12) and the

number of points of the 3-D grid for the model estimation was set to I = 48, J = 48, K =

16, with voxel size 1.00× 1.00× 0.94 mm. The MLE-EM algorithm was initialized with
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FORWARD MODEL DEPTH EMBEDDING with MLE-EM refinement i=20  j=34

(I)

(III)

(II) (IV)

k=1 k=7

k=13 k=19

k=3 k=5 k=9

k=11 k=17k=15

2-D MODEL i=20 j=34

BEAM i=20 j=34

BEAM ARRAY
1.00 mm

5
0
 m

m

50 mm

BEAM POSITIONS DETECTOR
0.0

1.0

Signal

Figure 11. Characterization of the cMiCE PET camera. (I) Measurement set-up: in

order to speed up the acquisition, an array of 4×4 beams was used to scan exhaustively

the camera surface. The beam position was then recovered using an initial estimation

based on the centroid algorithm. (II) A representative beam position i = 20, j = 34.

(III) 2-D forward model computed by averaging the measurement vectors, displayed

for i = 20, j = 34; N = 1822. (IV) 3-D forward model obtained with the Depth

Embedding algorithm with MLE-EM refinement; i = 20, j = 34; η = 12, N = 1412.

the forward model produced by the Depth Embedding algorithm and iterated until

convergence (in average 18 iterations).

The low dimensional visualization (D′ = 3) of the data acquired for a representative

beam location (i=20, j=34) is reported in Fig. 10, with color labels representing the

estimated depth-of-interaction. At visual inspection, the 3-D forward model recovered

using the Depth Embedding algorithm, displayed in Fig. 11.IV for the representative

beam location displayed in Fig. 11.II, presents a more peaked response for large values

of k; indicating that the depth information is correctly captured. The forward model

obtained with the MLE-EM refinement did not present visible differences from the

model obtained with Depth Embedding alone. The 2-D forward model obtained by

simple averaging is reported in Fig. 11.III for visual comparison.

Event estimation: In the case of real data, the true characteristics of the camera L

are unknown; the accuracy of the estimates of the 3-D forward model of the camera can

therefore not be quantified directly. However, the photon beam measurements provide

an indirect form of ground-truth: the (x, y) locations of interaction are known. As we

have observed in the previous experiment, the lack of 3-D information determines a

mis-location of the coordinates of interaction in the (x, y) plane; utilizing the photon-

beam measurements, we therefore quantified the systematic and random errors of the

measured beam positions in order to assess indirectly the accuracy of the forward model.

The test data set was acquired with the same set-up utilized for the characterization

of the camera, described in the previous section. For each event of interaction in the

test data set, the coordinates of interaction were reconstructed using the four methods

described in the simulation experiment section:

(A) The centroid method described in (Anger, 1958);

(B) MAP with the 2-D forward model;
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(C) MAP with the Depth Embedding 3-D forward model;

(D) MAP with the MLE-EM 3-D forward model.

Prior to the estimation, the forward models were up-sampled to a grid of 200×200×60

by tri-linear interpolation. As in the simulation experiments, the MAP estimations were

performed by exhaustive search of the coordinates of interaction.

For visual assessment, a 2-D histogram of the reconstructed events was formed

by selecting events emitted from a subset of the beam locations displaced on a 5 × 5

grid. Fig. 12.I reports the 2-D histogram for each estimation method and displays, for

reference, the 5× 5 beam locations (Fig. 12-left). Both the centroid method (Fig. 12.A)

and 2-D MAP estimation (Fig. 12.B) were found to introduce visible errors in the

estimated (x, y) coordinates of interaction; the errors appear reduced in both the cases

of 3-D estimation using Depth Embedding alone (Fig. 12.C) and in the case of Depth

Embedding with the MLE-EM refinement (Fig. 12.D).

For each estimation method, the accuracy of the reconstructed coordinates of

interaction was quantified by the bias (systematic error) and standard deviation (random

error) of the (x, y) coordinates of the beams. The bias and standard deviation were

computed according to Eq. (19) and Eq. (20) for each beam position (̄i = 1, 2, . . . 48,

j̄ = 1, 2, . . . 48). Table 2 reports their means, representing a global measure of bias

and of deviation of the beams, and their maximum values. The 3-D estimation

methods were found to reduce considerably the systematic errors, producing a small

bias across the surface of the gamma camera: BIASxy = 0.64 mm in the case of

Depth Embedding and BIASxy = 0.62 mm in the case of Depth Embedding and

MLE-EM refinement, compared to BIASxy = 3.16 mm in the case of the centroid

algorithm and BIASxy = 0.72 in the case of 2-D estimation. The standard deviation

of the (x, y) coordinates decreased from STDxy = 2.85 mm for the centroid algorithm

and STDxy = 2.90 mm for the 2-D estimation to STDxy = 2.54 mm for the Depth

Embedding algorithm alone and STDxy = 2.51 mm for Depth Embedding with the

MLE-EM refinement.

In order to evaluate the recovery of the DOI, histograms of the reconstructed DOI

values were computed form the reconstructed coordinates of interaction, utilizing the

events from all beam locations. The visual comparison with the true distribution of

the DOI, reported in Fig. 13, indicates the correctness of the forward models and the

accurate recovery of depth.

For further evaluation of the recovery of the DOI, the camera was illuminated with

a beam incident at 45 degrees (45 degrees rotation of the calibration beam around the

x axis). N = 12412 events were recorded after applying the energy threshold. Fig. 14

reports the (y, z) histogram of the reconstructed coordinates of interaction and the full-

width at half-maximum (FWHM) of the reconstructed beam. The FWHM, calculated

at three levels of depth (near the entrance surface, at the center of the crystal and near

the detector plane) with the methodology described in the caption of Fig. 14, did not

present large variations as a function of depth. The low value of the FWHM (1.76 mm
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Figure 12. Estimation of events of interaction measured with the cMiCE PET camera.

(I) Left: Positions of the beams. (B) Estimation with the centroid algorithm. (C)

MAP estimation with 2-D forward model obtained by experimental characterization

of the camera. (D) MAP estimation with the 3-D forward model obtained with

Depth Embedding. (E) MAP estimation with the 3-D forward model obtained with

Depth Embedding and refined with the MLE-EM algorithm. (II) Mean bias and mean

standard deviation of the reconstructed (x, y) beam positions.

Table 2. Estimation of events of interaction measured with the cMiCE PET camera:

mean bias and mean standard deviation of the reconstructed (x, y) beam positions.

3.16 0.72 0.64 0.62

2.85 2.90 2.54 2.51

(A) (B) (C) (D)
CENTROID 2-D MAP DEPTH-EMB MLE-EM

6.32 1.72 1.70 1.69

3.92 3.62 3.12 3.09

BIAS    [mm]xy

STD    [mm]xy

max(BIAS   ) [mm]xy

max(STD   ) [mm]xy

Figure 13. cMiCE PET camera, perpendicular beams: Beer-Lambert prior depth

probability (green); histogram of the reconstructed DOI using Depth Embedding (red)

and Depth Embedding with MLE-EM refinement (blue).
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Figure 14. cMiCE PET camera: estimation of a pencil beam incident at 45 degrees.

The images in the top row display the integral sum of the 3-D histogram along the x-axis

for the estimations obtained using Depth Embedding (left) and Depth Embedding with

MLE-EM refinement (right). The two images report the full-width-at-half-maximum

(FWHM) of the reconstructed beam, computed by rotating the 3-D histogram by 45

degrees by bi-linear interpolation, by averaging the rotated histogram over three 5-mm

slabs, depicted by the dotted lines, and fitting three Gaussian functions to the resulting

1-dimensional histograms (reported in the bottom row). The FWHM of the 45 degrees

beam represents an indirect approximate measurement of the DOI resolution.

for Depth Embedding and 1.74 mm for Depth Embedding with MLE-EM refinement

at the center of the crystal) and the absence of distortions demonstrate the accurate

estimation of the depth-of-interaction. A previous publication reported a DOI resolution

of the cMiCE detector with the 15 mm crystal of 4.8 mm (Miyaoka et al., 2009).

5. Discussion and conclusion

In this paper we have addressed the problem of estimating the depth-dependent forward

model of gamma cameras from simple pencil-beam measurements. We have introduced

two complementary methods based on machine learning. The first method, which we

named MLE-EM, is based on finite mixture modeling. It accounts for the Poisson

noise characteristics of the detection process, but yields an iterative algorithm that is

sensitive to initialization. The second method, which we named Depth Embedding, is

based on nonlinear dimensionality reduction. It yields a robust algorithm suitable for

fully automated use, but does not take into account the Poisson noise characteristics.

In order to combine the best of both worlds, we proposed to run the two algorithms in

tandem, initializing the MLE-EM algorithm with the solution obtained with the Depth

Embedding method.

The proposed algorithms were tested with simulated data of a compact monolithic

gamma camera, and with data produced by the Continuous Miniature Crystal Element

(cMiCE) PET detector (Miyaoka et al., 2011) developed at the Imaging Research

Laboratory, University of Washington. It was found that the use of the Depth

Embedding method alone to estimate the 3-D characteristics of a camera enables the
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accurate estimation of the depth-of-interaction and improves the in-plane estimation

accuracy when compared to 2-D estimation and to the standard centroid method,

eliminating systematic errors, such as the barrel effect, and reducing random errors.

The refinement of the 3-D model using the MLE-EM algorithm produces a further

improvement of the estimation accuracy.

In contrast to previously proposed methods, which required acquisition of

calibration data at multiple angles (Maas et al., 2009; Wang et al., 2011; Marone et al.,

2009; Bruyndonckx et al., 2008, 2006, 2004) or the use of a simulator (Hunter et al.,

2009; van Dam et al., 2011b), the method that we introduced enables the estimation of

the depth-dependent forward model of gamma imaging devices from pencil-beam data

acquired in a single direction without the need for a simulator or of heuristics specific

to a camera geometry. The method is purely data-driven, not only circumventing the

imprecision of simulations, but also greatly simplifying the use of the algorithm, which

can be applied to a new device without any modeling effort.

By enabling simple, fast and accurate estimation of the depth-dependent forward

model of gamma cameras, the method presented here makes it possible to fully

exploit the advantages offered by model-based estimation. First, the estimation of the

coordinates of interaction and energy are optimal, producing the minimum achievable

bias and random errors (Barrett et al., 2009a). Second, the model-based approach

is orders of magnitude more computationally efficient than nearest neighbor methods

(Maas et al., 2009; van Dam et al., 2011b,a), requiring a single vector comparison per

location of interaction, instead of thousands. Efficient implementations of the model-

based MAP estimation algorithm achieve millions of events per second on commodity

hardware (Pedemonte et al. (2009), https://sourceforge.net/projects/oree/).

The calibration procedure that we described, conversely to methods based on neural

networks (Wang et al., 2011; Marone et al., 2009; Bruyndonckx et al., 2008, 2006, 2004)

and to the original L-NN method (Maas et al., 2009), does not require coincidence

information. Therefore the set-up for the calibration is simpler and the method is

amenable for use, without modification, in applications other than PET, such as for the

calibration of detectors for Single Photon Emission Computed Tomography (SPECT).

Although in this paper we have focused, for simplicity of exposure, on monolithic

detectors alone, we believe our results translate directly to pixellated detectors and

hybrid designs (Huber et al., 2001). Although in pixellated systems, the DOI is often

computed in hardware, model-based estimation can be utilized to estimate the DOI

in pixellated systems. For instance, the simple ratio between the measurements at

opposite sides of the crystal in pixellated cameras with two layers of photo-detectors

(Du et al., 2008) can be replaced with model-based estimation. We expect that the

calibration procedure that we describe here will enable the accurate recovery of the

depth-of-interaction in a variety of detector designs using simple calibration procedures,

including the pixellated detector types described in Huber et al. (2001); Du et al. (2008,

2009); Orita et al. (2005).

The source code of the algorithms and the data of the experiments are
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made publicly available under BSD licence at - http://occiput.mgh.harvard.edu/

depthembedding/.
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Appendix A. Model-based event estimation with Poisson model

Here we derive the maximum-a-posteriori (MAP) estimation algorithm for the

coordinates of interaction and energy i, j, k, E of gamma photons under the assumption

of Poisson noise. The maximum-a-posteriori (MAP) estimates of i, j, k, E maximize the

posterior probability (6), or equivalently minimize its negative logarithm.

Although the energy E and the location of interaction i, j, k are a-priori mutually

dependent due to Beer-Lambert law, in practical scenarios they can be considered

approximately independent a priori; therefore we use p(E, i, j, k) = p(E)p(i, j, k).

We further consider the prior probability distribution associated to the energy p(E)

uninformative (i.e., uniform within a sufficiently wide range). Dropping the constants

ln p(u) and ln p(E):

ln p(E, i, j, k|u) = E
D∑
d=1

ldijk −
D∑
d=1

ud ln ldijk − ln(E)
D∑
d=1

ud +
D∑
d=1

ln(ud!)− ln p(i, j, k).

(A.1)

Minimizing the expression with respect to E, we obtain:

∂

∂E
ln p(E, i, j, k|u) = −

D∑
d=1

ldijk +

∑D
d=1 ud
E

= 0. (A.2)

This has a closed-form solution that depends on the location of interaction î, ĵ, k̂:

Ê =

∑D
d=1 ud∑D
d=1 ld̂iĵk̂

. (A.3)

The minimum of ln p(E, i, j, k|u) with respect to i, j, k, does not have a closed-form

solution. By replacing (A.3) in (A.1), one observes that the MAP estimate of the

location of interaction does not depend on the energy:

î, ĵ, k̂ = arg min
i,j,k

{
ln(

D∑
d=1

ldijk)
D∑
d=1

ud −
D∑
d=1

(ud ln ldijk)− ln p(i, j, k)

}
; (A.4)

therefore the estimation consists in first finding the location of interaction by maximizing

(A.4) and then computing the energy in closed-form using (A.3). A variety of

algorithms can be utilized to maximize (A.4), such as simple exhaustive search or more

computationally-efficient adaptive grid search methods (Pedemonte et al., 2009).
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