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Exploring the Use of Design of Experiments in
Industrial Processes Operating Under Closed-
Loop Control
Francesca Capaci,a*† Bjarne Bergquist,a Murat Kulahcia,b and
Erik Vanhataloa

Industrial manufacturing processes often operate under closed-loop control, where automation aims to keep important
process variables at their set-points. In process industries such as pulp, paper, chemical and steel plants, it is often hard to
find production processes operating in open loop. Instead, closed-loop control systems will actively attempt to minimize
the impact of process disturbances. However, we argue that an implicit assumption in most experimental investigations is
that the studied system is open loop, allowing the experimental factors to freely affect the important system responses. This
scenario is typically not found in process industries. The purpose of this article is therefore to explore issues of experimental
design and analysis in processes operating under closed-loop control and to illustrate how Design of Experiments can help in
improving and optimizing such processes. The Tennessee Eastman challenge process simulator is used as a test-bed to
highlight two experimental scenarios. The first scenario explores the impact of experimental factors that may be considered
as disturbances in the closed-loop system. The second scenario exemplifies a screening design using the set-points of
controllers as experimental factors. We provide examples of how to analyze the two scenarios. © 2017 The Authors Quality
and Reliability Engineering International Published by John Wiley & Sons Ltd

Keywords: Design of Experiments; engineering control; feedback adjustment; simulation; Tennessee Eastman process

1. Introduction

I
ndustrial processes often involve automated control systems to reduce variation of quality characteristics or variables affecting
plant safety. Sometimes, the control relies on human intervention, such as subjective evaluation of the process state followed
by an operator’s control action. Processes operating under such control regimes are operating under some form of closed-loop

control. Experimenting in these processes will be challenging due to controllers’ continuous interference, see Box and MacGregor.1,2

Because the control action will potentially eliminate the impact of experimental factor changes, experimentation in closed-loop
systems may be seen as futile. However, we argue that well designed and properly analyzed experiments run under such conditions
can yield valuable information.

This article relates to system identification, which aims at building mathematical models of dynamic systems based on observed
data from the system, see Ljung.3 Experimental design in that sense typically concerns the selection of a proper input signal
disturbance to discover the causal relationships between the disturbance and the responses or manipulated variables. This way,
system identification allows for the estimation of model parameters to optimize a feedback controller, see, e.g. Jansson.4 Typically,
experimental design research in the system identification field studies ‘optimal’ input signals to model the system.

In this article, we are primarily concerned with factor screening, factor characterization or process improvement and optimization
rather than modeling process dynamics through factors that are already known to affect the response. Similar to system identification
experiments, allowable factor ranges are usually restricted, the experiments could be run in full-scale production and the number of
experimental runs are limited. However, compared to system identification, the experiments we consider are run for longer periods of
time and, most importantly, they have a more overarching purpose of improving or optimizing a process rather than to guarantee
stability of a control loop.
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Closed-loop environments add complexity to experimental design and analysis because the control strategy affects the choice of
experimental factors. For example, some input variables are manipulated within control loops and therefore may not be suitable as
experimental factors. Moreover, even though closed-loop operation is common, we argue that Design of Experiments (DoE) literature
typically rests on the implicit assumption that the studied system is operating in open loop, hence allowing the experimental factors
to freely affect the response(s). However, as pointed out by, e.g. Vanhatalo and Bergquist5 and Hild et al.,6 process control systems are
designed to maintain the important process variables at their set-points with low variability. Hence, control loops may counteract
deliberate changes of experimental factors and thereby displace the effect from typical responses to manipulated variables. An
analysis implication is that these manipulated variables instead may have to be used as responses to understand the experimental
factors’ impact on the system.

The purpose of this article is therefore to explore experimental design and analysis issues in processes operating under closed-loop
control and to illustrate how DoE can add value in improving or optimizing such processes. We will pursue this through the help of a
process simulator. Process simulators in general have limitations in mimicking the behavior of a real process, but they also offer the
flexibility required for methodological developments without jeopardizing plant safety or product quality.

A well-known simulator in the engineering control community is the Tennessee Eastman (TE) challenge chemical process simulator
first described by Downs and Vogel.7 The TE simulator has been primarily used in the development of different process control
strategies and for the development of statistical process monitoring methods mainly in chemometrics literature, see for example
Kruger et al.8 In this article, we run the TE process with a decentralized control strategy to simulate and illustrate experiments in a
closed-loop system.

The remainder of this article is organized as follows: Section 2 establishes important concepts and provides a general comparison
of open loop and closed-loop systems from a DoE perspective. Section 3 provides a general description of the TE process simulator
and the chosen control strategy. Section 3 also outlines the two experimental scenarios we illustrate in closed-loop operation of the
process. The experimental scenarios are elaborated and analyzed in Sections 4 and 5, respectively. Finally, conclusions and discussion
are provided in Section 6.

2. Experiments run in open vs. closed-loop systems

Experiments imply that one or many input variables (experimental factors) are allowed to vary to affect the output (response(s)) with
the aim of revealing potential causal relationships (effects) between factors and responses, and providing estimates of these effects.
The response could be also affected by random disturbances, see Figure 1.

In a process operating under closed-loop control, unwanted variable deviations are mitigated by adjusting a manipulated variable,
see Figure 2.

From an experimental perspective, the manipulated variables involved in control loops are not potential experimental factors. In
fact, because manipulated variables are involved in control loops, the control engineers have an idea, e.g., from a past experiment,
how the manipulated variables affect the response. In relation to Figure 2, the experimental factors in a closed-loop setting should
be viewed as disturbances to the system operating under closed-loop control. The potential effects of a disturbance on the controlled
variable(s) are therefore typically masked and displaced to one or several manipulated variables if the control system is working

Figure 1. Experimental paradigm for open-loop operation. Figure inspired by Montgomery.9

Figure 2. Schematic overview of a process under closed-loop control.
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properly. This constitutes the first message we would like to convey in this article. That is, if the control action is ignored, the
experimental factor changes will likely not affect the response (the controlled variable) significantly. An erroneous conclusion from
the lack of detectable reaction would then be, depending on the effectiveness of the control action, that the factor is unimportant.
However, if the presence of the controller is suspected or known, controlled variables may be used as responses primarily to test
the presence and the effectiveness of the controllers. Manipulated variables may thus be considered as responses to study the impact
of the experimental factors on the system and its dynamics due to the displacement of the potential effects from controlled to
manipulated variables.

We classify experimental factors for processes operating under closed-loop control as (i) either a set of system inputs not involved
in any control loop (should be viewed as disturbances in Figure 2) or (ii) the actual set-point values in the control loops. In the former
scenario, both the manipulated and controlled variables can be used as experimental responses, while in the latter case more natural
responses may be overall process performance indicators such as cost and/or product quality.

3. The Tennessee Eastman process simulator

Downs and Vogel7 introduced the TE chemical process simulator for studying and developing engineering control design. The
process is open loop unstable meaning that it will deviate and stop after a certain time period without any active control. With an
appropriate control strategy, however, the process will remain stable. Several different control strategies for the TE process have been
proposed; see for example McAvoy,10 Lyman and Georgakis,11 and Ricker.12 The TE process has also been used as a test-bed for
methodological development of multivariate statistical process monitoring.8,13–16

In the remainder of this section, we will describe some of the details of the TE process to facilitate the understanding of the
experimental scenarios we use.

3.1. Process description

The TE process is a chemical process for which the components, kinetics, processing and operating conditions have been modified for
proprietary reasons, see Downs and Vogel.7 Following four irreversible and exothermic reactions, the process produces two liquid
products from four gaseous reactants. With an additional byproduct and an inert product, eight components are present in the
process. The process has five major unit operations: a reactor, a product condenser, a vapor–liquid separator, a recycle compressor
and a product stripper as shown in a simplified process overview in Figure 3. A more detailed process map is given in the original
reference.7

The physical inputs to the process consist of four gaseous streams, out of which three are fed to a reactor. After the reaction, the
product mixture flows into a condenser, in which most of the gas is condensed. Some non-condensable components remain as
vapors and the two phases are separated in the vapor–liquid separator. Vapor is partially recycled and purged together with the inert
product and the byproduct. The product stripper separates remaining reactants from the products. The reactants are recycled, and
the products exit the process from the stripper.

The TE process simulator has 12 manipulated variables (XMVs) and 41 measured variables (XMEASs). Out of 41 measured variables,
22 are measured directly while the remaining 19 variables can be calculated by the composition of the directly measured streams. In
addition to XMVs and XMEASs, operating costs, production and product quality data are also recorded.

Figure 3. A schematic overview of the TE process.
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The TE process has six different operating modes based on the production ratio of the two products and the production rate. Mode
1 is the most commonly used base case in research articles, which we also employ in this article. Five operating constraints need to be
fulfilled to avoid process shutdown. There is also a possibility to activate 20 pre-set process disturbances (IDVs) during process
operation. Downs and Vogel7 provide more information on manipulated and measured variables, operating constraints, disturbances
and the different operating modes.

3.2. Implemented process control strategy

A control strategy is a prerequisite for experimentation in the TE process because it is open loop unstable. Ricker12 developed a
decentralized control strategy for the TE process for improved performance, especially for the maximization of the production rate.
The decentralized approach partitions the TE plant into 19 sub-units to each of which a controller is added. Tables I and II list the
control loops, controlled variables, their set-points and manipulated variables. Note that we also provide XMV(i) and XMEAS(j); the
ith manipulated variable and the jth measured variable given in Tables III and IV of the original article by Downs and Vogel7 for ease
of comparison. The manipulated variables listed with different codes, such as Fp, r7 etc. come from the decentralized control strategy
settings given in Ricker.12

We use a Matlab/Simulink decentralized control simulator (available at: http://depts.washington.edu/control/LARRY/TE/download.
html#MATLAB_5x). In this configuration, all constraints are satisfied and the process can operate without undesired shutdowns.
Moreover, the set-point values for some controlled variables and the values of inputs (XMVs) not involved in control loops may be
varied, thereby allowing for experimentation.

The override loops 18 and 19 are exceptions to the control procedure described in Section 2. These control loops are only active
when abnormal conditions occur that require an operating strategy change. Severe disturbances such as an introduction of the feed
loss of A (IDV 6) activate the override loops. The production index Fp and the compressor recycle valve XMV(5) are not manipulated
when the process operates without disturbances. All variables that can be manipulated except for the stripper steam valve XMV(9)
and the agitator speed XMV(12) are involved in control loops in the decentralized control strategy. Consequently, XMV(9) and
XMV(12) may be varied during experimentation and should then be viewed as disturbances in Figure 2.

3.3. Chosen experimental scenarios in the TE process

Two experimental scenarios in the TE process will illustrate experimentation in a process under closed-loop control. The first scenario
will demonstrate an experiment when the system is disturbed by experimental factors. Input variables not involved in control loops
can act as such disturbances and therefore be defined as experimental factors. The second scenario will demonstrate the use of the
set-points of the control loops as experimental factors.

3.3.1. Scenario 1. The aim of this scenario is to demonstrate and visualize how experimental factor variation effects are distributed
among the controlled and manipulated variables and how these effects can be analyzed. Recall that the stripper steam valve XMV(9)

Table I. Control loops for the decentralized control strategy (Ricker12)

Loop

Controlled variable Manipulated variable

Name Code Name Code

1 A feed rate (stream 1) XMEAS(1) A feed flow XMV(3)
2 D feed rate (stream 2) XMEAS(2) D feed flow XMV(1)
3 E feed rate (stream 3) XMEAS(3) E feed flow XMV(2)
4 C feed rate (stream 4) XMEAS(4) A and C feed flow XMV(4)
5 Purge rate (stream 9) XMEAS(10) Purge valve XMV(6)
6 Separator liquid rate (stream 10) XMEAS(14) Separator pot liquid flow XMV(7)
7 Stripper liquid rate (stream 11) XMEAS(17) Stripper liquid product flow XMV(8)
8 Production rate (stream 11) XMEAS(41) Production index Fp
9 Stripper liquid level XMEAS(15) Ratio in loop 7 r7
10 Separator liquid level XMEAS(12) Ratio in loop 6 r6
11 Reactor liquid level XMEAS(8) Set-point of loop 17 s.p. 17
12 Reactor pressure XMEAS(7) Ratio in loop 5 r5
13 Mol % G (stream 11) XMEAS(40) Adjustment to the molar feed rate of E Eadj
14 Amount of A in reactor feed, yA(stream 6) XMEAS(6) Ratio in loop 1 r1
15 Amount of A + C in reactor feed, yAC (stream 6) XMEAS(6) Sum of ratio in loop 1 and 4 r1 + r4
16 Reactor temperature XMEAS(9) Reactor cooling water flow XMV(10)
17 Separator temperature XMEAS(11) Condenser cooling water flow XMV(11)
18 Maximum reactor pressure XMEAS(7) Production index Fp
19 Reactor level override XMEAS(8) Compressor recycle valve XMV(5)
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and the agitator speed XMV(12) are the only two manipulated variables not involved in control loops. Moreover, if the process is run
without introducing any of the pre-set disturbances (IDVs), the compressor recycle valve XMV(5) is not manipulated and can be
considered as another possible experimental factor. Because the TE simulator is designed the way it is, these factors not involved
in control loops can be seen as potential experimental factors (disturbances), and an experiment can be designed to evaluate their
impact on the system. We would like to note that in a real process the experimental factors need not only come from a list of numeric
input variables not involved in control loops but can rather be drawn from a variety of potential disturbances to the system, such as
different raw materials, methods of operation etc. Our choice here is convenient because XMV(5, 9, and 12) can be changed rather
easily in the simulation model.

Three experimental factors are thus available in this scenario. Response variables will be the controlled variables as well as the
manipulated variables in the control loops (see Section 2). Table III presents base case values of XMV(5, 9 and 12) and their allowed
ranges in operating Mode 1 of the TE process.

Table II. Set-point values in the control loops for the decentralized control strategy (Ricker12)

Loop Controlled variable

Set-point

Base case values Units

1 A feed rate (stream 1) 0.2505 kscmh
2 D feed rate (stream 2) 3664.0 kg h�1

3 E feed rate (stream 3) 4509.3 kg h�1

4 C feed rate (stream 4) 9.3477 kscmh
5 Purge rate (stream 9) 0.3371 kscmh
6 Separator liquid rate (stream 10) 25.160 m3 h�1

7 Stripper liquid rate (stream 11) 22.949 m3 h�1

8 Production rate (stream 11) 100 %
9 Stripper liquid level 50 %
10 Separator liquid level 50 %
11 Reactor liquid level 75 %
12 Reactor pressure 2705 kPa
13 Mol % G (stream 11) 53.724 mol%
14 Amount of A in reactor feed, yA (stream 6) 54.95 %
15 Amount of A + C in reactor feed, yAC (stream 6) 58.57 %
16 Reactor temperature 120.40 °C
17 Separator temperature 80.109 °C
18 Maximum reactor pressure 2950 kPa
19 Reactor level override 95 %

Table III. Potential experimental factors in scenario 1. Input variables not involved in control loops

Variable name Code Base case value (%) Low limit (%) High limit (%)

Compressor recycle valve XMV(5) 22.210 0 100
Stripper steam valve XMV(9) 47.446 0 100
Agitator speed XMV(12) 50.000 0 100

Table IV. Potential experimental factors of the TE process: set-point values of the control loops

Loop Controlled variable Base set-point

7 Stripper liquid rate (production) 22.949 m3 h�1

9 Stripper liquid level 50%
10 Separator liquid level 50%
11 Reactor liquid level 75%
12 Reactor pressure 2705 kPa
13 Mole % G 53.724 mol%
14 Amount of A in reactor feed (yA) 54.95%
15 Amount of A + C in reactor feed (yAC) 58.57%
16 Reactor temperature 120.40 °C
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3.3.2. Scenario 2. The aim of this scenario in the TE process is to explore the set-points of the controllers to reveal their potential
impact on the process operating cost. That is, to see causal relationships between the process’ operating conditions and an important
process performance indicator. By changing the set-points, the second experimental scenario indirectly uses the levels of the
controlled variables as experimental factors. However, some of the set-points are actually controlled in a cascaded procedure based
on directives generated by other controllers. Thus, only a subset of the controlled variables may be considered potential experimental
factors. Table IV lists the controlled variables that may be used as potential experimental factors and their set-point values for
operating Mode 1.

4. Scenario 1: design and analysis

This section and Section 5 through examples illustrate the two experimental scenarios explained above. We would like to clarify that
the aim of these examples is not to show the ‘best’ experimental designs or analysis procedures but rather to illustrate issues related
to experimentation in closed-loop operation.

4.1. A two-level factorial design

Scenario 1 involves a 22 randomized factorial design with three replicates with the aim of estimating location effects (main effects and
interaction) of the stripper steam valve XMV(9) and of the agitator speed XMV(12) on controlled variables and associated manipulated
variables. Control loops 9, 10, 11, 12 and 16 (see Table I) include constraints implemented for securing plant safety and adequate
control actions to avoid shutdown.

The run-order of the experiments and the averages of the controlled and manipulated variables are given in Table V. The TE
process was run for 36 h under normal operating conditions, i.e., the base case values for operating Mode 1, before starting the first
experimental run. This ‘warm-up phase’ allows for the process to reach a steady-state condition before the manipulated variables are
changed. Thereafter, every run lasted 50 h, and all 12 runs were run in sequence during continuous operation of the process. We did
not apply any of the possible pre-set disturbances (IDVs) during experimentation. Including the warm-up phase, the entire experiment
contained 636 h of simulated operation (real simulation time is only 115 s on a computer using an Intel® Core™ i5-4310 U processor
running at 2.0 GHz with 16 GB of RAM.) The controlled and manipulated variables were sampled every 12 min.

Due to the process’ continuous nature, the experimental factors and responses need to be viewed as time series. For example,
Figure 4 illustrates the impact of the experimental factors on the controlled and manipulated variables in Loop 16 which controls
the reactor temperature, XMEAS(9), by adjusting the reactor cooling water flow, XMV(10).

As seen in Figure 4, the experiment has a substantial impact on the manipulated variable – reactor cooling water flow, XMV(10).
However, even though the levels of the experimental factors are changing, the controlled reactor temperature XMEAS(9) exhibits a
random variation around its set-point value, indicating that the impact on this controlled variable is small or non-existent. A similar
behavior has been observed also for loops 9, 10 and 11.

4.2. Statistical analysis

In the first scenario, the manipulated variables of loops 9, 10, 11, 12 and 16 are considered as the main response variables. A simple
but reasonable way to analyze the experiments with time series responses is to ignore the time series aspect of the responses and to
calculate the average value for each run in Table V, see Vanhatalo et al.17. Vanhatalo et al.18 recommend removing apparent dynamic
behavior at the beginning of each run. However, the initial observations are here included to investigate if the control loops are
effective because the control action may not succeed to remove the impact on the controlled variable instantly. The run averages
can be used to perform analysis of variance (ANOVA). Table VI presents a summary of the ANOVA based on the averages in
Table V. The analysis was performed using the software Design-Expert® version 9.

Based on the high p-values for the controlled variables in Loops 11, 12 and 16, the results do not indicate that the experimental
factors affect their related controlled variables. However, as revealed by the low p-values for the manipulated variables in Loops 12
and 16 in Table VI, the experimental factors affect process phenomena controlled by these loops. Furthermore, Loops 9 and 10 fail
to remove the full impact of the experimental factor variation on the controlled variables as indicated by the low p-values on the
controlled variables. There is no evidence that the experimental factors are affecting process phenomena controlled by Loop 12.
Furthermore, the low p-value of the main effect of the stripper steam valve XMV(9) on the stripper liquid level in Loop 9, XMEAS(15),
is explained by the inclusion of the transition time. The run averages are affected because the control action of Loop 9 is delayed.

4.3. Concluding remarks for scenario 1

When experimenting in a closed-loop system, the analyst should expect that the impact of the experimental factors could be partly or
completely displaced from the controlled variables to manipulated variables. This is true despite using inputs not involved in control
loops as experimental factors, if the experimental factors affect the phenomena controlled in the loops. However, as illustrated, the
analysis may reveal potential ineffectiveness of the controllers to completely or instantly remove disturbances acting on controlled
variables. We therefore recommend viewing the responses as two important and closely related groups: [1] controlled variables
and [2] manipulated variables when analyzing an experiment in a closed-loop system as illustrated above.
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5. Scenario 2: design and analysis

The second scenario illustrates a different way of running experiments in closed-loop controlled processes. Now, we consider the set-
points of the control loops as experimental factors. Our major concern is no longer to reveal cause and effect relationships between
inputs and important measured variables in the process. These should have been identified already in the engineering control design
phase. Instead, we are exploring the set-points of the controllers to see causal relationships between the process operating conditions
and process performance indicators with the aim of optimizing the process.

5.1. A screening experiment

In this case, we focus on the process operating cost as an important response. We have nine possible set-points to change (see
Table IV), and we wish to test their impact on the process operating cost using a two-step sequential experiment. The starting point

Figure 4. Overview of experimental factors’ impact on variables related to control loop 16. The manipulated variable, XMV(10), is given in the top chart and controlled
variable, XMEAS(9), in the bottom chart. The levels, in coded units, of the experimental factors XMV(9) and XMV(12) are superimposed on the plots. The duration of each

experiment is 50 h.
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is a 29�5
III fully randomized fractional factorial design with four additional center points. This resolution III design is then followed by a

full fold-over in a new block to entangle some aliased effects. The final design, i.e., the original plus the fold-over, is of resolution IV.
Some factor setting combinations will invoke a process shutdown and some shutdown limits are also given in the Downs and

Vogel7 paper. The base case value of each factor (rounded to the nearest integer) was chosen as either the low or high factor level
in the design. The other level of each variable was defined by trial and error by either adding to or subtracting from the base case
value while trying to keep the process from shutting down. Table VII provides the low and high levels of each experimental factor
(set-point) used in the experiment.

Furthermore, we chose to keep XMVs (5, 9 and 12) fixed at their base case values given in Table III during the experiment because
they are not involved in the loops but do affect the process behavior.

A ‘warm-up phase’ of 36 h was once again used before the start of the first run of the experiment. During this phase, the
experimental factors (set-points) were fixed to their base case values for operating Mode 1. The 40 runs of the experiment are given
in Table VIII. Each experimental run lasted 50 h. Including the warm-up phase, the entire experiment contained 2036 h of operation
(simulation time was 147 s for all runs). From the TE simulator, the process operating cost ($/h) can be extracted, and we have the
operating cost for every 12 min. Figure 5 illustrates the impact of the experimental factors on the process operating cost during
the first three experiments in run order.

Table VII. Low and high level of the set-points used as experimental factors

Loop Controlled variable Base set-point Low level High level

7 Stripper liquid rate (production) 22.949 m3 h�1 21 m3 h�1 23 m3 h�1

9 Stripper liquid level 50% 50% 60%
10 Separator liquid level 50% 35% 50%
11 Reactor liquid level 75% 70% 75%
12 Reactor pressure 2705 kPa 2600 kPa 2705 kPa
13 Mole % G 53.724 mol% 54 mol% 62 mol%
14 Amount of A in reactor feed (yA) 54.95% 55% 65%
15 Amount of A + C in reactor feed (yAC) 58.57% 50% 59%
16 Reactor temperature 120.40 °C 120 °C 127 °C

Table VIII. Run order, standard order of the runs and average operating cost both before and after removal of transition time at
the beginning of each run

Block 1: 29�5
III experimental design Block 2: Full fold-over

Run
order

Standard
order

Operating
cost ($/h)

Operating cost ($/h)
(after removing
transition time)

Run
order

Standard
order

Operating
cost ($/h)

Operating cost ($/h)
(after removing
transition time)

1 14 201.11 201.68 21 38 139.46 130.84
2 2 156.51 154.51 22 26 130.55 131.72
3 9 148.60 143.56 23 34 152.75 146.08
4 4 127.37 140.00 24 27 156.25 157.61
5 6 185.37 172.01 25 35 182.89 170.58
6 20 124.19 129.89 26 22 125.28 126.76
7 1 139.87 141.24 27 30 175.37 157.19
8 17 133.27 131.09 28 39 120.70 131.02
9 11 123.56 129.74 29 33 151.78 150.66
10 12 255.76 215.15 30 24 166.46 155.20
11 8 175.52 187.61 31 29 129.43 142.91
12 16 164.44 160.05 32 31 186.93 167.84
13 18 127.84 130.15 33 28 166.30 167.94
14 15 147.23 142.59 34 36 164.98 165.41
15 19 130.64 132.81 35 37 128.14 132.72
16 5 104.70 109.27 36 21 145.67 140.70
17 13 181.27 161.61 37 32 104.34 115.46
18 3 128.85 127.87 38 23 174.01 166.69
19 7 182.26 177.45 39 25 213.02 198.88
20 10 117.49 127.62 40 40 127.23 135.06
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5.2. Statistical analysis

The aim of the experiment is to find set-points which reduce the long-term operating cost. In contrast to scenario 1, it makes sense to
remove transition time from the runs and then use the remaining observations to calculate run averages. To keep the observations
during the transition time in the calculation of run averages will lead to an underestimation of the location effect of the factors and
interactions, see Vanhatalo et al.17 The process operating cost exhibits some transition time before reaching the steady state as
illustrated in Figure 5. A visual inspection of the operating cost reveals that 24 h can be considered as a reasonable transition time
(grey shaded area in Figure 5), and thus the observations obtained during the first 24 h of all runs were removed before calculating
the run averages, see Table VIII.

Table IX presents an ANOVA table of the 40-run experimental design in Table VIII based on a significance level of 5%. We have also
repeated the analysis including the transition time. The results of that analysis are not reported in this article, but with the transition
time included, the same main effects turn out to be active, but the significant interaction effects differ. As seen in Table IX, seven main
effects and eight two-factor interaction alias strings are active (interactions of order three or higher are ignored). It is perhaps not
surprising that most factors affect the operating cost because control loops aim to control important process phenomena which tend
to affect the production cost. Moreover, the interconnectedness of the different control loops is demonstrated by the many
significant interactions.

Note that the curvature test is significant and that the model exhibits significant lack of fit, suggesting that a higher order model is
appropriate. The fitted model in Table IX is thus ill-suited for optimization and prediction but provides a starting point for future
response surface experimentation. The many significant two-factor interaction alias strings would need further investigation to decide
which among the aliases are actually active. However, as we mentioned earlier, the main purpose of this article is not necessarily to
provide an optimization procedure on a simulated process but rather to draw attention to possibilities and pitfalls in experimentation
under closed-loop operation. Hence, for demonstration purposes, we simply assume that the first interactions of the interaction
strings in Table IX are the important ones, ignoring the interactions in brackets. We proceed to use the estimated model to provide
suggested factor settings for the lowest operating cost within the experimental region. In this case, the lowest cost will be at a corner
point on the multidimensional hyperplane. The settings of the factors and the predicted operating cost at this point (104.5 $/h) are
provided in Table X. The significant curvature, the lack of fit tests and the R2 for prediction indicate that the predictive ability of the
model is poor. A confirmation run in the TE process simulator using the suggested factors settings gives the long-term average
operating cost 109.1 $/h. The 4.6 $/h discrepancy between the predicted cost and the confirmation run is likely due to the models’
poor predictive ability. Nevertheless, this rough analysis provides a significant improvement of the process operating cost. A
simulation of the process keeping the factors settings at the base set-points values given in Table VII gives a long-term average
operating cost of 170.2 $/h. Hence, running the process at the suggested factors settings leads to a substantial cost reduction of
61.1 $/h. Further reduction of the operating cost is likely possible but outside the scope of this article.

5.3. Concluding remarks for scenario 2

The second scenario illustrates how designed experiments can be used to improve process performance indicators using the set-
points of variables controlled in closed-loop. This scenario also exemplifies the importance of considering, and here removing, the
transition time during analysis. We want to point out that the set-points of the controllers in this example and in real life in general
affect important process operating conditions. The experimenter should therefore expect that improper choices of factor levels of the

Figure 5. The operating cost during the first three runs of the experiment. Note the dynamic behavior of the response during the first part of each run. The shaded areas
highlight the removed observations before calculating the run averages. The duration of each experiment is 50 h.
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set-points may lead to unexpected process behavior or even shutdown. Special care should be taken in choosing the levels because
the window of operability may be irregular or unknown.

6. Conclusion and discussion

This article explores important issues in designing and analyzing experiments in the presence of engineering process control. The
closed-loop operation increases process complexity and influences the strategy of experimentation. Two experimental scenarios

Table X. Suggested settings of the set-points of the control loops to provide the lowest operating cost of the estimated model
within the experimental region

Loop Set-point Suggested setting

7 Stripper liquid rate (production) 21 m3 h�1

9 Stripper liquid level Not in model, use base case
10 Separator liquid level Not in model, use base case
11 Reactor liquid level 70%
12 Reactor pressure 2705 kPa
13 Mole % G 62 mol%
14 Amount of A in reactor feed (yA) 65%
15 Amount of A + C in reactor feed (yAC) 50%
16 Reactor temperature 120 °C

Resulting predicted process operating cost: 104.5 $/h

Table IX. ANOVA and estimated effects based on the averages of the response after removing the transition time. The model
includes only terms significant at 5% level. Aliased two-factor interaction aliases that based on the heredity principle are less likely
given in italic text within brackets. The control loop numbers are indicated by (#) in the factor names

Source
Sum of
squares df

Mean
square F value Prob > F

Estimated standardized
effects

Block 15.11 1 15.11
Model 18 431.18 15 1228.75 83.97 <0.0001
A: #7—Production 3946.30 1 3946.30 269.68 <0.0001 11.11
D: #11—Reactor level 321.10 1 321.10 21.94 0.0001 3.17
E: #12—Reactor
pressure

3131.68 1 3131.68 214.01 <0.0001 �9.89

F: #13—Mole %G 4085.75 1 4085.75 279.21 <0.0001 �11.30
G: #14—yA 443.48 1 443.48 30.31 <0.0001 �3.72
H: #15—yAC 2444.72 1 2444.72 167.07 <0.0001 8.74
J: #16—Reactor temp 126.25 1 126.25 8.63 0.0076 �1.99
AD (BH CG FG) 124.36 1 124.36 8.50 0.0080 1.97
AF (BG CH DE) 207.73 1 207.73 14.20 0.0011 �2.55
AG (BF CD EH) 78.98 1 78.98 5.40 0.0298 �1.57
AH (BD CF EG) 151.98 1 151.98 10.39 0.0039 �2.18
AJ 532.42 1 532.42 36.38 <0.0001 �4.08
FJ 282.93 1 282.93 19.34 0.0002 2.97
GJ 619.92 1 619.92 42.36 <0.0001 4.40
HJ 1933.59 1 1933.59 132.14 <0.0001 7.77
Curvature 3415.43 1 3415.43 233.40 <0.0001
Residual 321.93 22 14.63
Lack of Fit 305.16 16 19.07 6.82 0.0129
Pure Error 16.77 6 2.80
Cor Total 22 183.66 39

R2 83.1%
Adjusted R2 72.1%
R2 prediction 67.2%

F. CAPACI ET AL.

© 2017 The Authors Quality and Reliability Engineering International Published
by John Wiley & Sons Ltd

Qual. Reliab. Engng. Int. 2017, 33 1601–1614

1
6
1
2



based on the TE process simulator are used to answer the questions why and how to conduct and analyze experiments in closed-loop
systems.

Even though we have prior experience with experiments lasting several weeks in continuous processes, the 2038 h of
experimentation we use in our examples may admittedly be considered unrealistically long in practice. This is, however, beside the
point because the examples we provide are for demonstration purposes, and we did not necessarily focus on shortening the duration
of the experiments.

The first experimental scenario illustrates how the experimental factors not directly involved in control loops impact the closed-
loop system and how the controllers affect the analysis. The controllers adjust manipulated variables to limit or eliminate the
experimental factor effects on the controlled variable(s). We note that this will only occur if the experimental factors affect
phenomena/variables governed by the closed-loop system. The effect on the controlled variables is partly or fully transferred to
the manipulated variables depending on the effectiveness of the controllers. Hence, both the controlled and manipulated variables
should be used as responses. Analyzing the effects of experimental factors on controlled variables may give important information
about the effectiveness of the engineering process control. The effects on the manipulated variables instead reveal whether the
experimental factors affect important process behavior.

In the second scenario, the experimental factors are the set-points of the controlled variables. The set-points are target values for
the controlled variables and are typically closely tied to important process operating conditions. A level change of the set-points can
therefore be considered equivalent to shifting the location of the process. Overall process performance indicators such as operating
cost or product quality may then be suitable responses.

Using two scenarios we have illustrated that DoE can generate knowledge and aid process improvement in closed-loop systems.
More specifically, DoE can be used to study:

• if the engineering process control is efficient and cost effective;
• if experimental factors affect important process phenomena; and
• how controlled variable set-points affect important process performance indicators.

We believe simulation software like the TE process offer great opportunities for methodology development in experimentation in
closed-loop systems. In this article, we simply provide some basic ideas and approaches, but more research is needed for further
development of experimentation and analysis methods for better process understanding and optimization in closed-loop systems.
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