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Abstract  10 

Zooplankton may modify their feeding behavior in response to prey availability and presence of 11 

predators with implications to populations of both predators and prey. Optimal foraging theory 12 

predicts that such responses result in a type II functional response for passive foragers and a type III 13 

response for active foragers, with the latter response having a stabilizing effect on prey populations. 14 

Here, we test the theoretical predictions and the underlying mechanisms in pelagic copepods that 15 

are actively feeding (feeding-current feeders), passively feeding (ambushers), or that can switch 16 

between the two feeding modes. In all cases individual behaviors are consistent with the resulting 17 

functional response. Passive ambushing copepods have invariant foraging behavior and a type II 18 

functional response, as predicted. When foraging actively, the species with switching capability 19 

change its functional response from type II to III and modify its foraging effort in response to prey 20 

density and predation risk, also as predicted by theory. The obligate active feeders, however, follow 21 

a type II response inconsistent with the theoretical prediction. A survey of the literature similarly 22 

finds consistent type II response in ambush feeding copepods, but variable (II or III) responses in 23 

active feeders. We examine reasons for why observed behaviors at times deviate from predictions, 24 

and discuss the population dynamics and food web implications of the two types of functional 25 

responses and their underlying mechanisms. 26 

27 
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Introduction  28 

The functional response in feeding rate to prey concentration is the primary quantification of 29 

predator-prey interactions and it has direct implications for population dynamics and stability of 30 

both prey and predators (Holling 1965; Murdoch 1977). A type II functional response is typically 31 

described by some saturating function of prey concentration in which the parameters (maximum 32 

ingestion and prey search rates) are assumed constant. However, the assumption of constant search 33 

rate may not be true, and at both low and high prey densities it may be advantageous for the 34 

predator or grazer to reduce its food searching effort to minimize its exposure to predators and 35 

energetic costs of food acquisition (Abrams 1982, 1990; Werner and Anholt 1993; Visser 2007). At 36 

low prey densities, the costs are simply not warranted by the gains and the grazer may reduce or 37 

stop searching for prey, which may lead to a sigmoid type III functional response. At high prey 38 

densities, feeding rate is limited by digestion rather than by encounter rate and the grazer may 39 

therefore reduce its foraging effort. The presence of predators may induce a further reduction in 40 

foraging effort, particularly at high prey densities. Reduced feeding efforts at high prey densities, 41 

whether due to predation risk or energy saving, will not necessarily change the type of the 42 

functional response (i.e., a type II may remain a type II, Abrams 1990), but predator-induced 43 

changes in behaviors may cause behavioral cascading effects that are very important in shaping 44 

food webs and organism abundances, as has been demonstrated in both terrestrial  (Suraci et al. 45 

2016) and freshwater environments (Peacor and Werner 2001; Romare and Hansson 2003; Biro et 46 

al. 2005).  47 

Zooplankton, the main consumers of oceanic primary production, may also modify their foraging 48 

effort in response to prey concentration and presence of predators with important implications to 49 

their function in pelagic food webs. The significance of behavioral adaptations to fundamental 50 
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properties of pelagic food webs, such as primary production and material fluxes (Anderson et al. 51 

2010), diversity of the phytoplankton prey (Prowe et al. 2012), and the seasonal successions in 52 

plankton communities  (Visser 2007; Mariani et al. 2013; Visser and Fiksen 2013) has been 53 

demonstrated in multiple modelling studies. Yet, actual demonstrations of the behavioral 54 

adaptations to prey and predators assumed in these models are rare, particularly in marine 55 

zooplankton (Price and Paffenhöfer 1986; Saiz et al. 1993; Saiz 1994; Duren and Videler 1995; Van 56 

Duren and Videler 1996). Early zooplankton-specific models of optimal foraging (Lam and Frost 57 

1976; Lehman 1976) were consistent with more general models (Abrams 1982, 1990; Werner and 58 

Anholt 1993) in typically predicting reduced feeding effort at low prey concentration, but were 59 

based on fundamentally wrong assumptions about the feeding behavior and considered, similar to 60 

the more recent model of Pahlow and Prowe (2010), only the energetic costs of feeding, not 61 

predation. Finally, experimental studies of functional responses in zooplankton are abundant but are 62 

inconsistent in their findings, reporting both type II and type III responses (Online Appendix 1), and 63 

without the mechanistic underpinning that is important in assessing the food web effects predicted 64 

by models.  65 

Here, we test the predictions of a simple fitness optimization model through direct observations of 66 

the behavioral basis of the functional response in pelagic copepods, the dominating group of 67 

metazoan zooplankton in the oceans. We consider two contrasting foraging modes: ambush feeding, 68 

in which the copepod waits for prey to arrive, and active feeding, in which the copepod generates a 69 

feeding current or swims to encounter prey. The active foraging modes are more efficient in terms 70 

of prey encounter than the passive mode (Kiørboe 2011). We demonstrate that ambush feeders 71 

consistently have invariant foraging behavior and type II responses, while active feeders may 72 

modify their foraging effort in response to prey concentration and predation risk and have a type III 73 

response, but that the predation response is “hard-wired” and not plastic.  74 
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 75 

Material and methods 76 

Fitness optimization model  77 

We take a Holling type II functional response as a starting point: 78 

� = ����
��

���	
��
    (1) 79 

where F is the ingestion rate and Fmax the maximum ingestion rate (biomass per time), R is the prey 80 

concentration (biomass per volume), and  is the ‘instantaneous rate of prey discovery’ or 81 

maximum clearance rate (volume per time). Assume that the zooplankter feeds only a fraction of 82 

the time, p (non-dimensional foraging effort), and that p vary in response to food availability and 83 

predation risk in order to optimize the zooplankter’s fitness. The foraging effort, �, modulates the 84 

effective clearance rate (�) and the resulting functional response becomes (Werner and Anholt 85 

1993): 86 

�(�) = ����
���

����	
��
    (2) 87 

Note that if feeding rate is ultimately limited by handling of the prey during the capture process 88 

(with 1/���� being the “handling time”), as is typically assumed (Abrams 1982; Abrams 1990; 89 

Pahlow and Prowe 2010) the resulting functional response then becomes proportional to foraging 90 

effort:  91 

�(�) = �����
��

���	
��
    (3) 92 

However, in suspension feeding zooplankton and many other organisms, the handling of prey is 93 

rarely, if ever, the limiting factor (Tiselius et al. 2013). Rather, ingestion is limited by the capacity 94 

of the gut to process food, and the appropriate equation in our case is therefore (2) and not (3).  95 
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We now examine what foraging effort (p) optimizes the fitness of the zooplankter when considering 96 

the energetic cost as well as the predation risk of feeding. To estimate energetic (metabolic) 97 

expenses and mortality risk, we assume 98 

Metabolism �(�) = �� + ���        (4) 99 

Mortality  �(�) = �� + ���    (5) 100 

where m0 and µ0 are background metabolism (mass per time) and mortality (per time), and �� and 101 

�� are metabolic costs and mortality risk of feeding, respectively. There is both theoretical and 102 

experimental evidence that mortality risk increases with foraging activity in zooplankton (Tiselius 103 

et al. 1997, Kiørboe et al. 2014; Almeda et al. 2016). The interpretation of � as the fraction of time 104 

spent feeding makes it natural to assume a linear dependence of foraging metabolism and predation 105 

mortality risk on �. 106 

The optimal behavior is the one that optimizes life-time reproductive output. To avoid a full life-107 

time calculation, two different fitness proxies are frequently used: either to optimize the difference 108 

between birth (∝ net energy gain, �(�) − �(�)) and mortality rates (e.g. Abrams 1982, 1990), or 109 

the ratio between the two (behavioral optimization; e.g. Werner and Anholt 1993; Visser 2007; 110 

Gillam's rule: Gilliam and Fraser 1987). If the environment is constant, it has been demonstrated 111 

that Gillam’s rule optimizes life-time reproductive output (Sainmont et al. 2015). We therefore use 112 

Gillam’s rule as a fitness proxy. However, a special case occurs when the resource levels are 113 

insufficient to ensure a positive net energy gain, where	� − � < 0. In that case survival is limited 114 

and life-time reproductive output would be less than zero. We argue that under such adverse prey 115 

conditions the organism will adjust its behavior to maximize the time it can survive by minimizing 116 

energy losses. Thus, under low resource concentration the fitness proxy is to minimize the net 117 

energy loss. The two fitness proxies are now: 118 
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	(�) !(�)
"(�)

				for			� − � ≥ 0    119 

 (6) 120 

�(�) − �(�)	for		� − � < 0    (7) 121 

The optimal value of p is the one that maximizes the relevant fitness criterion. For the specific 122 

choices of functional response (2) and linear costs of metabolism (4) and mortality (5), the optimal 123 

foraging effort is: 124 

�∗ =
1
(
)*(� − �) − +(� − )*(( − �)(� − �)

)*(� − �) − �
			for	� − � ≥ 0,						(8) 

where ( = ./�/01 is the scaled resource concentration, )* = ��/�/01	is scaled standard 125 

metabolism and � = ��/�� and � = ��/�� are scaled costs of feeding. This expression shows 126 

that foraging effort generally declines with resource concentration (the 1/(	term). Feeding is, 127 

however, limited by the condition that �∗ should be ≤ 1 (Fig 1A).  128 

The critical resource concentration .* , where gains equal losses even while feeding all the time 129 

(� = 1), is found by equating gains from eq. (2) with metabolic losses from eq. (4), �(1) = �(1): 130 

.* =
	
��3�4��56

	
�� �4 �5

7
�
		.	     (9) 131 

Below this concentration the functional response is approximately linear, � ≈ �. and, hence, the 132 

optimization problem (7) is linear. The organism will then feed continuously (� = 1) as long as the 133 

net energy loss is less the loss while not feeding, i.e., �(1) − �(1) >	−�(0) 	= 	−��: 134 

.� ≈
�5

�
.      (10) 135 

Note that this result is general, i.e., it does not rely on the cost of feeding effort being linear in � 136 

(eq. 4) since �� is the feeding cost of feeding at the maximal rate. Using these fitness measures and 137 
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depending on the magnitude of the tradeoffs, the model predicts that feeding effort (p) is highest at 138 

intermediate prey concentrations, and declines at both lower and higher concentrations (Fig. 1A), 139 

which results in a type III functional response (Fig 1C). It also predicts that the feeding effort is 140 

further reduced in the presence of predators (compare black and grey lines). Specifically, for an 141 

ambush feeder, since �� = �� = 0 we would not expect a feeding threshold but predict that p = 1 142 

and independent prey concentration and, hence, a type II functional response (dashed lines in Fig. 143 

1).  144 

Note the difference between the realized clearance rate (≠ β), which is F(p)/R, and the foraging 145 

effort, p (Fig. 1B). Both may vary with resource concentration: At low resource concentrations, they 146 

show similar dependencies on the resource (the clearance rate = F(p)/R ≈ p); at high resource 147 

concentration, the clearance rate varies with 1/R, independent of the variation in p. This follows 148 

directly from the optimization and equation (2). 149 

Parameter estimates: Based on observations in Kiørboe et al. (1985) we provide rough estimates of 150 

Fmax (0.65 µg C (µg dry body weight)
-1

d
-1

), β (1.65 mL (µg dry body weight)
-1

d
-1

), m0 (0.015 µg C 151 

(µg dry body weight)
-1

d
-1

), and mf  (0.1 µg C (µg dry body weight)
-1

d
-1

) for one of the study species, 152 

Acartia tonsa, feeding on one of the prey, Rhodomonas baltica. The two metabolic rate estimates 153 

were taken as starvation metabolism (m0) and maximum metabolism (mf) of feeding individuals, 154 

respectively. The latter includes also the cost of processing and metabolizing the food and we added 155 

also losses to defecation, which are not strictly ‘costs of feeding’. We have no estimates of mortality 156 

rates for the study species but assume µ0 = µf = 0.05 d
-1

. This implies a mortality rate of ~ 0.1 d
-1

 157 

for a small, feeding copepod in the ocean, a magnitude typical for mm-sized feeding-current feeding 158 

copepods (Hirst and Kiørboe 2002). 159 

The predictions of this model of optimal foraging, as illustrated in Fig. 1, are the hypotheses that we 160 

test experimentally here. 161 
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 162 

Experimental organisms  163 

We quantified feeding behavior and feeding rate as a function of prey concentration in the adult 164 

females of 4 species of copepods: an ambush feeder, Oithona davisae (cephalothorax length 0.3 165 

mm), a copepod that can switch between ambush and active feeding, Acartia tonsa (0.8 mm), and 166 

two species that are obligate active feeders, Temora longicornis (0.8 mm) and Centropages 167 

hamatus (1.0 mm). A. tonsa generates a feeding current when offered small prey, and acts as an 168 

ambush feeder when offered large, motile prey (Jonsson and Tiselius 1990). All copepods were 169 

taken from our continuous cultures; the two first species were from our long-term cultures (> 10 170 

years), the latter two had been in culture for < ½ year. We used three different types of prey, the 171 

flagellate Rhodomonas baltica (6.5 µm equivalent spherical diameter) and the dinoflagellates 172 

Oxyrrhis marina (16.5 µm) and Akashiwo sanguinea (42 µm), all in exponential growth. We did not 173 

do all possible predator-prey combinations, and some data were taken from our earlier work (Table 174 

1). 175 

 176 

Measures of foraging effort 177 

The active feeders beat their cephalic appendages to generate a feeding current and/or to propel 178 

themselves through the water during shorter or longer ‘feeding bouts’ (Tiselius and Jonsson 1990) 179 

and we used the fraction of time that the organism beats the appendages as the main measure of 180 

foraging effort, but note that some minimum beat-activity may be necessary to keep the copepod 181 

suspended, irrespective of feeding. Additional, but secondary measures of foraging effort are 182 

appendage beat frequency and swimming speed. The interpretation of swimming speed is not 183 

straightforward, because with a given beat frequency (~ force), a hovering copepod feeds more 184 

efficiently than one that cruises through the water, but it also produces a stronger fluid signal and 185 
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becomes more detectable to rheotactic predators (Kiørboe and Jiang 2013). The ambush feeding O. 186 

davisae only moves the cephalic appendages in connection with prey capture, but relocates 187 

occasionally in short, rapid jumps using the swimming legs (Kiørboe et al. 2009); in this species 188 

there is no foraging effort and, hence, no measure of foraging effort, but we recorded jump 189 

frequency as a measure of activity. 190 

 191 

Feeding behavior 192 

Adult females were isolated from the cultures and starved overnight. 50 individuals were then 193 

added to each observation aquaria (250 mL NUNC bottles) containing fresh food suspension and 194 

acclimated for 2 h before filming commenced. We used seven different food concentrations for 195 

each prey, including no food (Table 1), selected to yield similar prey biovolume ranges for each 196 

prey (~ 0-5 mm
3
 L

-1
).  Prey concentration was adjusted just prior to filming. We used a high-speed 197 

(200 fps), high resolution (1280 x 800 pixels) Phantom v210 camera equipped with optics to yield 198 

fields of view ranging between ca. 20x32 and 52x78 mm depending on the size of the copepods. 199 

Collimated infrared light was shined through the aquarium toward the camera. Three 27 s sequences 200 

were filmed during a 15 min period for each treatment. The water in the aquaria was then replaced 201 

with water containing fish smell (see below) and the appropriate prey concentration, and after 5 min 202 

the animals were filmed again during the subsequent ca. 15 min.  203 

Swimming trajectories were extracted from the movies using the tracking software LabTrack 204 

(DiMedia). The movies were analyzed both at 20 Hz to construct time budgets (fraction of time 205 

feeding) and estimate event durations (feeding bouts) and speeds (swimming speed), and at 33 or 67 206 

Hz to estimate jump frequencies. Between 20 and 150 tracks were analyzed per treatment; in a few 207 

cases we retrieved only 10 tracks. The output from the tracking analyses were run through an R-208 

script that distinguished between jump, sinking, and swimming events based on species-specific 209 
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thresholds that were selected to match what a manual frame-by-frame analysis would yield, but the 210 

patterns observed were very robust to choice of thresholds. We finally also estimated appendage 211 

beat-frequencies in 1-s long sequences by frame-by-frame analyses of 20 random, active animals 212 

per treatment. 213 

Exposure to predation risk  214 

Predation risk was mimicked by the addition of fish smell to the observational aquaria. Fish smell 215 

was produced by a mixture of small, coastal planktivorous fish: juveniles of corkwing (Symphosus 216 

melops), sea stickleback (Spinacia spinachia), and black goby (Gobius niger) that had all been 217 

feeding on copepods. 13 g wet weight of this costal fish assemblage were incubated in 2-L of 218 

filtered seawater for > 2 h. This water was then filtered through a GF/C filter and diluted to 50 % by 219 

adding an algal suspension of twice the nominal concentration, thus having a fish smell solution 220 

with the nominal phytoplankton concentration. Effect of fish smell was only tested with R. baltica 221 

as prey. 222 

 223 

Functional response 224 

All functional responses were measured in our laboratories, either for the purpose of this study or 225 

earlier (Table 1), and followed the same protocol: Adult females were incubated in 325-650 mL 226 

bottles at 5-6 different prey concentrations with 3 bottles with copepods and 3 controls at each 227 

concentration. The bottles were mounted on a slowly rotating wheel for ca. 24 h at ~17ºC. O. 228 

davisae were incubated at 21ºC and we had only two 72-mL bottles with copepods and two control 229 

at each concentration. We added enough copepods to get a reduction in phytoplankton 230 

concentration of ~25 % during the incubation period. Cell concentrations were measured both at 231 

start and termination of the experiments, and clearance and ingestion rates were computed as in 232 

Kiørboe et al. (1982). Cell concentrations were either measured electronically on a Coulter Counter 233 
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and in most cases also in the microscope. At low prey concentrations electronic counts were always 234 

verified by microscopic counts.  235 

We fitted functional response functions to the observed ingestion rates, either the disc equation (eq. 236 

1) or a descriptive sigmoid equation (Kiørboe et al 1982): 237 

ReF /1 ααβ −=   ,    (11) 238 

where α is the prey concentration where the clearance rate is the highest and equals β, and the 239 

maximum ingestion rate Fmax = αβe
1
. We also fitted the same functional response functions 240 

expressed as clearance rates (F/R) to the estimated clearance rates. We decided on the most 241 

appropriate description of the functional response (type II or III) based on (i) whether or not 242 

observed clearance rates decline at low prey concentrations, and (ii) which formulation yielded the 243 

best description (highest R
2
). 244 

 245 

Literature survey  246 

Expanding on the data base of Kiørboe and Hirst (2014) we compiled from the literature 247 

experimental observations of functional responses in marine suspension feeding copepods offered a 248 

variety of prey sizes (Online Appendix 1). We used the measured clearance rates to decide on the 249 

shape of the functional response type, cf. above. We also computed maximum clearance rates (β) 250 

and maximum ingestion rate (Fmax) for each data set, either by using the functional response fits in 251 

the original paper or by our own fits to the data after correcting for differences in temperature, all as 252 

described in Kiørboe and (Hirst 2014). In some cases only maximum clearance rates were reported. 253 

We finally computed the feeding and maintenance thresholds, R0 (only species with active foraging 254 

behavior) and Rc for each dataset using equation 9 and 10 and the computed maximum clearance 255 

and ingestion rates and assuming the above default values for the mass-specific metabolism (m0) 256 

and mass-specific metabolic cost of feeding (mf). We find the latter assumptions justified by the fact 257 
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that both metabolism and clearance scale approximately in proportion with body mass in 258 

zooplankton (Kiørboe and Hirst 2014), and that the metabolic cost of feeding is likely to be 259 

proportional to the clearance rate. 260 

 261 

Results 262 

Feeding behavior and functional response 263 

The behavioral responses to prey concentration varied significantly between copepod species and 264 

was also dependent on the prey type (Figs. 2-4, Table 2). The most diverse behavioral repertoire is 265 

shown by A. tonsa. This copepod beats its feeding appendages to generate a feeding current during 266 

feeding bouts each lasting between ca. 0.2-0.8 s on average (Fig. 2D); between feeding bouts it is 267 

inactive and sinks slowly. When offered the small flagellate (R. baltica) its foraging effort varied 268 

with prey concentration pretty much as predicted by the optimization model (with predation): the 269 

highest feeding effort (~80 %) is at an intermediate prey concentration and it declines at both higher 270 

and lower concentrations (Fig. 2A, 2B). There is no distinct feeding threshold and even in filtered 271 

seawater the animals are active for ~25 % of the time, probably simply to remain suspended. This is 272 

accomplished by frequent, but short-lasting feeding bouts, whereas the longer feeding bouts at 273 

intermediate concentration mainly serve the purpose of feeding (Fig. 2D). Swimming speed shows 274 

an inverse pattern with the slowest speeds at intermediate concentrations (Fig. 2E), while 275 

appendage beat frequency was independent of prey concentration and only reduced in the absence 276 

of food (Fig. 3A). The patterns in these two secondary foraging effort measures thus also suggest 277 

the most efficient and potentially most risky feeding behavior at intermediate concentrations and 278 

declining at both higher and lower concentrations. There is no significant effect on the behavior of 279 

adding fish smell (Fig. 2A, D, E). 280 
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The measured functional response in clearance rate of A. tonsa to the concentration of R. baltica 281 

showed peak clearance at an intermediate prey concentration and lower clearance at both lower and 282 

higher resource concentrations (Fig. 2C). This translates directly to a type III sigmoid functional 283 

response in ingestion rate to prey concentration (Fig. 2F), and the observed functional response is 284 

thus consistent with the observed variation in foraging effort. 285 

When A. tonsa is offered large motile prey (Ox. marina and Ak. sanguinea) it changes its behavior 286 

and functional response compared to when offered the small R. baltica prey in a way that is 287 

consistent with a change in foraging mode from feeding-current feeding to ambush feeding (Fig. 4). 288 

This is most evident with the largest prey (Ak. sanguinea): The feeding bouts are short and the 289 

foraging effort remains low, independent of prey concentration, and not different from a situation 290 

with no prey (Fig. 4B); the ‘feeding bouts’ thus mainly serve to keep the animal suspended while 291 

waiting for prey to pass within its sensory reach. With the intermediately sized prey (Ox. marina), 292 

the behavioral changes with prey concentration are intermediate between that observed with the 293 

smaller and the larger prey (Fig. 4D,E), suggesting partial active and partial passive feeding. The 294 

functional response in clearance and ingestion rates when offered the largest prey (Ak. sanguinea)  295 

is of type II (Fig. 4 C, F), and thus consistent with the observed behavior. 296 

None of the 3 other copepod species showed consistent behavioral changes with prey concentration, 297 

prey type, or presence of fish cues except that appendage beat frequencies were slightly reduced at 298 

the lowest prey concentrations (Fig. 3) and that C. hamatus jumps more frequently when offered the 299 

large prey as compared to the small prey (Table 2). In a few cases small differences in the other 300 

parameters are statistically significant, but the patterns are inconsistent (Table 2; all data are plotted 301 

in Online Appendix 2). Consistent with the concentration-independent behavior, all predator-prey 302 

combinations for the 3 species showed a type II functional response (Online Appendix 2). This was 303 

unexpected, since type II responses were a priori only predicted for the ambush feeding O. davisae. 304 
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The behavior and foraging effort of the 4 studied species are, however, very different (Table 2). T. 305 

longicornis is actively beating its feeding appendages almost constantly while cruising or hovering, 306 

whereas C. hamatus has a feeding behavior that resembles that of A. tonsa, i.e., alternating between 307 

short upwards-directed feeding bouts (~ about 50 % of the time) and sinking with occasionally 308 

longer swimming events, although in this species the pattern is invariant with prey concentration. 309 

Finally, the ambush feeding O. davisae never beats the feeding appendages but just performs 310 

relocation jumps every 2-3 s (Table 2).  311 

Comparison between modelled and observed responses 312 

For actively foraging A. tonsa the modelled pattern in foraging effort describes both qualitatively 313 

and quantitatively very well the observations, but only when predator presence is assumed (Fig. 314 

2C). This resemblance to observations is robust to at least a + 50 % variation in the magnitude of 315 

the default parameters. However, in the absence of a foraging induced predation risk the predicted 316 

foraging effort remains 100% at concentrations exceeding the feeding threshold. A decline in 317 

foraging effort with increasing prey concentration and in the absence of predators is only predicted 318 

to occur at very high prey concentrations, > 6 mm
3
L

-1
, far beyond what is examined here and 319 

typically found in the ocean, and a pattern in foraging effort that resembles the observed pattern is 320 

never achieved with any combination of parameters (Fig. 2C).  321 

For passively feeding A. tonsa (i.e. when fed Ak. sanguinea) and O. davisae the prey concentration-322 

invariant foraging behavior and type II responses are consistent with model predictions (Fig. 4 and 323 

Table 2), while the invariant foraging behavior of actively feeding T. longicornis and C. hamatus 324 

(Table 2) deviated from the expected (i.e. adaptive foraging effort and type III response).  325 

Feeding and maintenance thresholds 326 
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The predicted concentration threshold, Rc, where the net energy gain is zero, is a minimum measure 327 

of the lowest prey concentration at which the copepod is able to survive in the long run, whether or 328 

not it stops feeding at  the lower concentration R0. For ambush feeders there is no feeding threshold 329 

(R0 = 0), and for active feeders the two thresholds are related and rather similar (using default 330 

parameters, Rc = 1.4 x R0). Both thresholds were computed to be able to utilize a larger number of 331 

observations. The feeding and maintenance thresholds vary over several orders of magnitude and 332 

scatter around a phytoplankton concentration of ~ 1 mm
3
 L

-1
, corresponding to ~100 µg C L

-1
, and 333 

not very different between active and passive feeders (Fig. 5A, B). The thresholds are dependent on 334 

the size of the prey relative to the size of the copepod: with small relative prey sizes the feeding and 335 

maintenance threshold are high, and vice versa (Fig. 5 C, D) 336 

 337 

Discussion 338 

Mechanistic underpinning of the functional response  339 

Overall, there is consistency between the observed feeding behaviors and the measured functional 340 

responses for all predator-prey combinations examined here, and the former thus provides a 341 

mechanistic underpinning of the latter. We found both type II and type III functional responses 342 

among the copepods studied, partly in agreement with the predictions from the optimization model. 343 

Type III responses may arise in several ways, including through prey switching in mixed diet 344 

environments (Murdoch and Oaten 1975; Elliott 2004; Leeuwen et al. 2007), but here we show that 345 

the type III is due to a change in foraging effort with prey concentration.  We are unaware of 346 

previous reports that provide a direct behavioral underpinning of the observed functional response 347 

in copepod or other zooplankton although there are a few studies that have examined how relevant 348 

components of feeding behavior vary with prey density. For example, the copepod Eucalanus 349 
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elongates spends the highest fraction of time feeding at intermediate prey concentrations, (Price and 350 

Paffenhöfer 1986) and a previous study of A. tonsa showed that, similarly to clearance rates, the 351 

time spent in long feeding bouts peaked at intermediate concentrations of a small diatom (Saiz 352 

1994), consistently with our finding. There are also reports that the copepod Temora longicornis 353 

modifies its swimming speed (Duren and Videler 1995; Van Duren and Videler 1996; Moison et al. 354 

2013) or appendage beat frequency (Gill and Poulet 1988) in response to concentration of food or 355 

presence of dissolved amino acids or predators. We are unaware of studies in other zooplankton 356 

groups. The scarcity of such evidence hampers a complete understanding of the role of zooplankton 357 

in pelagic food webs. 358 

Functional response 359 

Both type II and III functional responses have previously been reported for pelagic copepods, and a 360 

survey of ~ 120 functional response experiments reported in the literature (Online Appendix 1) 361 

reveals that ambush feeding copepods consistently show type II responses (43 experiments) as 362 

predicted, while active cruising or feeding-current feeding species either showed a type II (45 cases) 363 

or a type III response (30 cases). The latter result is consistent with the finding here of variable 364 

responses in the active feeders. For at least 21 out of the 45 reported type II responses in active 365 

feeders, prey concentrations lower than the predicted feeding threshold were not tested and 366 

consequently those experiments are inconclusive with respect to the actual type of functional 367 

response (see Online Appendix 1). Moreover, clearance measurements at low prey concentrations, 368 

where a type III response is best distinguished from a type response II, can be challenging, and 369 

some of the reports may not provide very strong evidence for the type of response.  For this reason, 370 

in our experiments we intentionally examined behaviors also at very low prey concentrations, 371 

including the absence of prey, and still found high foraging effort at low and no prey in two species. 372 

We must therefore conclude that the observed differences among species are real and that some 373 
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active feeders, contrary to our expectations, have a high resource-independent level of foraging 374 

activity and a type II functional response. 375 

What causes the deviation from prediction in some species? Swimming in active feeders is 376 

accomplished by the beating of the feeding appendages and the need to swim to areas with more 377 

food or fewer predators may override other effects, a tradeoff that has not been considered here and 378 

that may vary between species. Kinetic motility responses to prey concentration has been reported 379 

in copepods (Tiselius 1992) and other zooplankters (Buskey and Stoecker 1988; Fenchel and 380 

Jonsson 1988; Menden-Deuer and Grünbaum 2006), thus potentially explaining why several active 381 

feeders appear to have no lower feeding threshold and type II functional responses. 382 

Induced responses and phenotypic plasticity 383 

None of the three examined species showed a response to the presence of a predator cue, and the 384 

reduced foraging effort at high prey concentrations demonstrated in one species (A. tonsa) occurred 385 

both in the absence and presence of predator cues. This suggests limited behavioral plasticity and 386 

that any adaptation to predation risk is wired into the genes of A. tonsa rather than being triggered 387 

in response to the actual presence of predators.  One may argue that a copepods susceptibility to 388 

visual predators (fish) is less dependent on the feeding activity than its susceptibility to rheotactic 389 

predators, but it is well documented that feeding copepods are much more prone to visual predators 390 

than non-feeding individuals due to the elevated visual contrast that a full gut implies in an 391 

otherwise near transparent copepod (Tsuda et al. 1998; Torgersen 2003). Thus, a fish cue seems to 392 

be relevant. 393 

The lack of a response to predator cues is surprising in light of the commonly documented effect of 394 

predator kairomones in freshwater zooplankton, including induction of reduced feeding efforts in 395 

freshwater copepods (see reviews by Lass and Spaak 2003; Heuschele and Selander 2014). Our 396 
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protocol to produce chemical fish cues appear not to deviate from what is typically used in 397 

freshwater studies. One may argue that the overnight starvation of the copepods and the only 2 h 398 

acclimation to prey concentration prior to behavioral observations may lead to a more bold behavior 399 

of the copepod, where the need for food dominates over predator avoidance behavior. Indeed, 400 

starvation may result in significantly increased feeding in Acartia spp, but the effect is reduced or 401 

has disappeared  within 100 min of feeding(Tiselius 1998),  consistent with gut turnover times at 402 

the experimental temperature of just 20-25 min (Kiørboe and Tiselius 1987; Dam and Peterson 403 

1988) allowing the animals to fill their guts 5-6 times during the acclimation period. Also, predator 404 

avoidance behavior is in fact observed in A. tonsa at the high prey concentrations.  The lack of 405 

response to cues in our experiments is, however, consistent with the almost entirely lack of reports 406 

on behavioral effects of kairomones in marine zooplankton and copepods. Thus,  Buskey et al. 407 

(2012) in a review failed to find evidence of predator-induced responses for marine zooplankton, 408 

and only three studies were identified in the review by Heuschele and Selander (2014) in addition to 409 

Bjærke et al. (2014), of which only two report effects on feeding-related behavioral changes 410 

(reduced swimming speed or reduced gut fullness with predator cues (Van Duren and Videler 1996; 411 

Cieri and Stearns 1999). There is also one report that diurnal vertical behavior can be induced by 412 

the presence of fish, but the cue that elicited the response was not identified, except that it was not 413 

of chemical nature (Bollens and Frost 1989). The literature may be biased towards negative results 414 

not being reported, and therefore the scarcity of evidence may thus reflect rarity of responses at 415 

ecological time scales. Freshwater systems, in particular smaller lakes and ponds, may vary with 416 

respect to the presence of fish predators, while marine systems are all large and interconnected and, 417 

hence, always contain planktivorous fish.  Thus, adaptations to predator avoidance is commonly 418 

found among marine zooplankton, including vertical migration (Ringelberg 2010; Ohman and 419 

Romagnan 2016) and reduced feeding during daytime to reduce susceptibility to visual predators 420 
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(review by Torgersen 2003), but they are typically elicited by light intensity (Stearns 1986; Buskey 421 

et al. 1989) or some other proximate cue, not by the actual presence of predators. The apparent lack 422 

of phenotypic plasticity may simply reflect the constant need for a behavior that reduces predation 423 

risk.  424 

Ecological implications 425 

The functional response in feeding rate to prey concentration provides the fundamental description 426 

of predator-prey interactions and thus is fundamental to the understanding of population dynamics 427 

and food web structure in several ways. First, a type III functional response may stabilize prey 428 

populations due to the density-dependent prey mortality that it implies, while a type II response may 429 

drive the prey population to (local) extinction (Holling 1965). The often significant impact of the 430 

choice of functional response type in models of both simple pelagic food chains and more complex 431 

food webs has been recognized by many authors (Anderson et al. 2010) and ‘‘inappropriate choices 432 

may incorrectly quantify biologically mediated fluxes and predict spurious dynamics” (Gentleman 433 

et al. 2003). This realization warrants the search for a fundamental understanding of the 434 

mechanisms that are generating one functional response or another to allow the ‘correct’ choice. 435 

The attempt in this study to find such ‘rules’ for a very important group of phytoplankton 436 

consumers has been partly successful and has demonstrated the utility of optimal foraging theory in 437 

this endeavor. However, it has also pointed to gaps in our understanding and identified possible 438 

additional mechanisms, particularly kinetic motility responses, which may lead to more robust 439 

predictions of the functional response in copepods and other zooplankton.  440 

Secondly, the behavior that generates the functional response may have implications beyond prey 441 

mortality and grazer growth rates. Specifically, behavioral adaptations to the presence of predators 442 

(or their cues) may lead to a behavioral cascade and a ‘landscape of fear’ (Suraci et al. 2016), where 443 

grazing and growth rates are determined as much by the presence of predators as by the availability 444 
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of food, as demonstrated in freshwater zooplankton (Gliwicz and Maszczyk 2007) and many other 445 

organisms. The scarcity of predator-induced behavioral responses in copepods and other marine 446 

zooplankton suggests that ‘behavioral cascades’ are less important in controlling marine planktonic 447 

systems than what has been demonstrated for higher trophic levels in freshwater systems (Romare 448 

and Hansson 2003; Biro et al. 2005) and assumed in models (e.g., Visser 2007). 449 

Finally, the dependency of the maintenance resource concentration on the prey:predator size ratio, 450 

which is a function of the copepod prey size spectra (Kiørboe 2016), suggests that environmental 451 

food conditions may put predictable constraints on the size distribution and biogeography of 452 

copepods. Thus, the smaller the relative size of the prey, the higher the required prey concentration, 453 

and therefore large copepods are constrained to regions with high concentration of large 454 

(phytoplankton) prey. This prediction accords well with observed body-size biogeographies of 455 

copepods, where the larger species occur in polar and temperate regions characterized by seasonal 456 

high concentrations of large diatoms; and smaller species dominate in tropical and subtropical 457 

regions, characterized by lower biomasses of small phytoplankton (Brun et al. 2016). Because 458 

maximum clearance rates and metabolic rates scale approximately in proportion to body mass when 459 

considered over the entire range of pelagic organisms in the ocean (Makarieva et al. 2008; Kiørboe 460 

and Hirst 2014), and assuming that the cost of clearing water for food is proportional to the volume 461 

cleared, this prediction may be generalized to zooplankton in general, not just copepods. 462 

  463 
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FIGURE LEGENDS  639 

Fig 1. Foraging patterns as a function of scaled resource concentration. Three cases are shown: 640 

foraging constant with � = 1 (dashed); optimal foraging under no predation risk (µf = 0, µ0 = 0.05 641 

d
-1

,  grey); optimal foraging under a predation risk (µf = µ0 =0.05 d
-1

, black full line). A) Foraging 642 

effort, �. B) Realized clearance rate normalized by maximum clearance rate. C) The functional 643 

response in ingestion rate normalized by the maximum ingestion rate (Fmax). 644 

Fig. 2. Acartia tonsa feeding on Rhodomonas baltica as a function of cell density in the presence 645 

and absence of fish cues. A. Foraging effort (% time swimming); D. Feeding bout duration; C. 646 

Modelled foraging effort at various values of predator induced mortality risk and metabolic costs of 647 

feeding. The black line is for the default parameters estimated from (Kiørboe et al. 1985); E. 648 

Swimming speed; C and F. Observed clearance and ingestion rates, from Kiørboe et al. (1985); The 649 

curves are fits of a type III functional response model to the data with α = 0.58+0.04, β = 12.4+0.6, 650 

and R
2
 = 0.83 (panel B), and α = 0.561+0.04, β = 12.1+0.6, and R

2
 = 0.98 (Panel F) (estimates of 651 

coefficients with standard error). Experimental values are given as averages + 95 % Confidence 652 

limits. 653 

Fig. 3. Beating frequencies (average + 95 % confidence limits) of feeding appendages as a function 654 

of prey concentration in 3 species of copepods. A. A. tonsa feeding on R. baltica. B. C. hamatus 655 

feeding on R. baltica; C. C. hamatus feeding on Ak. sanguinea. D. T. longicornis feeding on R. 656 

baltica. Averages + 95 % confidence limits. 657 

Fig. 4. Acartia tonsa feeding on and Akashiwo sanguinea (A-C, F) and Oxyrrhis marina (B, D) as a 658 

function of prey density. A and D: Foraging effort (% time swimming); B and E: Duration of 659 

individual feeding bouts; E and F: Observed clearance and ingestion rates and (curves) Hollings 660 

disk equation fitted to the data, with Fmax = 22.3+12.8, β =23.5+4.6, and R
2 

= 0.30 (panel C), and 661 
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Fmax = 11.6 + 2.4, β =46.6+32.7, and R
2 

= 0.28 (panel F). Values of behavioral parameters are given 662 

as averages + 95 % Confidence limits; clearance and ingestion rates are individual values (grey) and 663 

averages (black).  664 

Fig. 5. Feeding thresholds (R0) and maintenance threshold (Rc) estimated for pelagic copepods with 665 

a ‘active’ (black symbols) and ‘passive’ (grey symbols) feeding strategies. Maximum clearance (β) 666 

and ingestion (Fmax) rates were estimated from literature data on functional responses (see Online 667 

Appendix 1), and we assumed body mass specific metabolic cost of feeding of (mf  = 0.1 µg C (mg 668 

dry body weight)
-1

d
-1

)  ~ 0.01 µg C ( mg body C)
-1

 h
-1

) identical to that estimated for A. tonsa. A: 669 

Frequency distribution of feeding thresholds threshold for active feeders; B: Frequency distribution 670 

of maintenance thresholds for active and passive feeders; C: Feeding threshold as a function of the 671 

prey:predator carbon-mass ratio for active feeders; the regression line is log (R0) = -1.1 – 0.22 Log 672 

(prey:predator mass ratio); R
2
 = 0.35, n = 182; D: Maintenance thresholds as a function of the 673 

prey:predator carbon-mass ratio for active and passive feeders; the regression line is log (R0) = -1.0 674 

– 0.18 Log (prey:predator mass ratio); R
2
 = 0.19, n = 209. 675 

 676 

  677 
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  678 

Species of 

grazer\prey 

Rhodomonas baltica Oxyrrhis marina Akashiwo sanguinea 

Prey size, Equivalent 

spherical diameter, 

µm
 

6.5 16.5 42 

Acartia tonsa Behavior: this study 

Functional response: 

Kiørboe et al. (1985) 

Behavior: this study 

 

Behavior: this study 

Functional response: 

This study 

Temora longicornis Behavior: this study 

Functional response: 

Gonçalves et al. 

(2014) 

  

Centropages hamatus Behavior: this study 

Functional response: 

Sommeren-Greve et 

al. unpublished  

 Behavior: this study 

Functional response: 

Sommeren-Greve et 

al. unpublished 

Oithona davisae  Behavior: this study 

Functional response: 

Saiz et al. (2003) 

 

Table 1: Predator-prey combinations examined for feeding behavior and functional responses. 679 

  680 
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 681 

 682 

Predator-Prey # 

tracks 

Total time, 

s 

% Active Swim 

speed, mm 

s
-1 

Bout 

duration, s 

Jump 

frequency, s
-1 

Acartia-Oxyrrhis 292 3052 Fig. 3 1.4 + 0.1 Fig. 3 0.68 + 0.09 

Acartia-Akashiwo   Fig. 3 1.7 + 0.1 Fig. 3 0.75 + 0.07 

Temora-

Rhodomonas 

163 1235 96 + 1.7 1.7 + 0.1 3.3+ 0.5 0.12 + 0.05 

Temora-

Rhodomonas +Fish 

206 1116 94 + 1.2 1.9 + 0.2 2.6 + 0.3 0.16 + 0.06 

Centropages-

Rhodomonas 

442 2263 50 + 2.5 3.0 + 0.1 0.6 + 0.1 0.01 + 0.01 

Centropages-

Rhodomonas  

+ Fish 

482 2235 48 + 2.5 3.1 + 0.1 0.6+ 0.1 0.00 + 0.00 

Centropages-

Akashiwo 

809 4654 43 + 1.3 3.8 + 0.1 0.3 + 0.02 0.11+ 0.03 

Oithona davisae 163 

 
2101 0 - - 0.39 + 0.07 

 683 

Table 2. Summary statistics of behaviors for copepod-prey (+ Fish) combinations where behavior is 684 

(near) independent on prey concentration and prey type. Values given are averages + 95 % 685 

Confidence limits. All the data have been plotted in Online Appendix 2. 686 

 687 
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Online Appendix I 

Species Prey type Feeding 
mode 

FR Temp Body 
mass 

Fmax β prey 
mass/cop 
mass 

R0 Rc Source 

    C µgC µg C h-1 ml h-1 µgC(µgC)-1 mm3 L-1 mm3 L-1  

Acartia grani naupl Heterocapsa sp Ambush II 20 0.040 0.00137 0.0094 0.0047  0.143 (Henriksen et al. 
2007) 

Acartia grani naupl Thalassiosira weisflogii Ambush II 20 0.040 0.00108 0.0072 0.0055  0.185 (Henriksen et al. 
2007) 

Acartia tonsa  Strombidium sulcatum Ambush II 18 3.000 0.10638 5.6141 0.00028  0.018 (Saiz and Kiørboe 
1995) 

Corycaeus angelicus Acartia clausi male Ambush II 11 2.400  0.2412 0.9375   (Landry et al. 
1985) 

Oithona davisae Isochrysis galbana Ambush II 18 0.390 0.00106 0.0150 0.00002  0.871 (Saiz et al. 2014) 

Oithona davisae Tetraselmis chuii Ambush II 18 0.384 0.00557 0.0130 0.00012  0.987 (Saiz et al. 2014) 

Oithona davisae Heterocapsa sp. Ambush II 18 0.368 0.01813 0.0303 0.00047  0.405 (Saiz et al. 2014) 

Oithona davisae Prorocentrum minimum Ambush II 18 0.375 0.01417 0.0218 0.00046  0.575 (Saiz et al. 2014) 

Oithona davisae Oxyrrhis marina Ambush II 18 0.336 0.01928 0.1416 0.00138  0.079 (Saiz et al. 2014) 

Oithona davisae Scrippsiella trochoidea Ambush II 18 0.389  0.0452 0.00192   (Saiz et al. 2014) 

Oithona davisae Prorocentrum micans Ambush II 18 0.383  0.0653 0.00338   (Saiz et al. 2014) 
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Oithona davisae Strombidium sulcatum Ambush II 18 0.351 0.02597 0.3593 0.00522  0.033 (Saiz et al. 2014) 

Oithona davisae Strombidium sulcatum Ambush II 18 0.390  0.2940 0.0052   (Saiz et al. 2014) 

Oithona davisae Akashiwo sanguinea Ambush II 18 0.393 0.01268 0.0112 0.01097  1.166 (Saiz et al. 2014) 

Oithona davisae Paracartia grani nauplii Ambush II 18 0.369 0.00241 0.0310 0.07429  0.397 (Saiz et al. 2014) 

Oithona davisae Thalassiosira weissflogii Ambush II 18 0.348  0.0278 0.00029   (Saiz et al. 2014) 

Oithona davisae  Oxhyrris marina Ambush II 21 0.250 0.00494 0.1078 0.00106  0.077 (Saiz et al. 2003) 

Oithona davisae male Oxhyrris marina Ambush II 22 0.188 0.00253 0.0477 0.00142  0.131 (Kiørboe 2008) 

Oithona davisae naupl Heterocapsa sp Ambush II 20 0.032 0.00060 0.0047 0.00585  0.229 (Henriksen et al. 
2007) 

Oithona davisae naupl Isochrysis galbana Ambush II 18 0.051 0.00020 0.0016 0.00017  1.042 (Saiz et al. 2014) 

Oithona davisae naupl Tetraselmis chuii Ambush II 18 0.056 0.00090 0.0053 0.00097  0.351 (Saiz et al. 2014) 

Oithona davisae naupl Heterocapsa sp. Ambush II 18 0.055 0.00137 0.0071 0.00349  0.256 (Saiz et al. 2014) 

Oithona davisae naupl Oxyrrhis marina Ambush II 18 0.059 0.00221 0.0477 0.00615  0.041 (Saiz et al. 2014) 

Oithona davisae naupl Thalassiosira weissflogii Ambush II 18 0.058  0.0045 0.00173   (Saiz et al. 2014) 

Oithona davisae, CII-III Oxyrrhis marina Ambush II 20.5 0.233 0.00325 0.0263 0.00114  0.296 (Almeda et al. 
2010) 

Oithona davisae Oxyrrhis marina Ambush II 18 0.250 0.00600 0.2233 0.00106  0.037 (Zamora-Terol 
and Saiz 2013) 
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Oithona davisae, NI-II Oxyrrhis marina Ambush II 20.5 0.089 0.00074 0.0090 0.00298  0.332 (Almeda et al. 
2010) 

Oithona davisae, NI-II Oxyrrhis marina Ambush II 20.5 0.092 0.00088 0.0092 0.00288  0.334 (Almeda et al. 
2010) 

Oithona davisae, NII-III Oxyrrhis marina Ambush II 20.5 0.101 0.00099 0.0109 0.00263  0.310 (Almeda et al. 
2010) 

Oithona davisae, NV-VI Oxyrrhis marina Ambush II 20.5 0.147 0.00186 0.0135 0.00181  0.364 (Almeda et al. 
2010) 

Oithona nana  Acartia nauplii Ambush II 10 0.230 0.00192 0.6226 0.12609  0.012 (Lampitt 1978) 

Oithona nana  Isochysis galbana Ambush II 10 0.230 0.00064 0.0119 0.00001  0.650 (Lampitt and 
Gamble 1982) 

Oithona nana male Acartia nauplii Ambush II 10 0.210 0.00673 0.7197 0.13810  0.010 (Lampitt 1978) 

Oithona nana male Dunaliella euchlora Ambush II 10 0.230 0.00293 0.0112 0.00012  0.688 (Lampitt and 
Gamble 1982) 

Oithona nana male Chricosphaera elongata Ambush II 10 0.230 0.00359 0.0467 0.00048  0.164 (Lampitt and 
Gamble 1982) 

Oithona nana male Thalassiosira weisflogii Ambush II 10 0.230 0.00146 0.0077 0.00018  1.002 (Lampitt and 
Gamble 1982) 

Oithona nana male Prorocentrum micans Ambush II 10 0.230 0.00128 0.0202 0.00282  0.380 (Lampitt and 
Gamble 1982) 

Oithona nana male Acartia clausi NI Ambush II 10 0.230 0.00603 0.7195 0.12609  0.011 (Lampitt and 

Page 43 of 64 Limnology and Oceanography



For Review Only

Gamble 1982) 

Oithona nana male Calanus finmarchicus NI Ambush II 10 0.230 0.00530 0.2106 0.86957  0.036 (Lampitt and 
Gamble 1982) 

Oithona nana male Calanus finmarchicus NII Ambush II 10 0.230 0.00006 0.0906 1.73913  0.090 (Lampitt and 
Gamble 1982) 

Oithona similis  Prorocentrum micans Ambush II 8.5 0.360 0.00931 0.1369 0.00321  0.088 Drits & Semenova 
1984 

Oithona similis  Peridinium trochoideum Ambush II 8.5 0.360 0.01051 0.1665 0.00193  0.072 Drits & Semenova 
1984 

Oithona similis  Platymonas viridis Ambush II 8.5 0.360 0.01250 0.1543 0.00009  0.078 Drits & Semenova 
1984 

            
Acartia clausi Rhodomonas baltica Active (II) 15 5.000 0.23000 0.3335 0.00001 1.499251 1.728 (Dutz 1998) 

Acartia clausi Alexandrium lusitanicum Active (II) 15 5.000 0.27000 0.6244 0.00020 0.800818 0.923 (Dutz 1998) 

Acartia Erythraea Chattonella antiqua Active II 20 4.580 0.14462 0.7889 0.00033 0.580591 0.670 Uye 1986 

Acartia hudsonica Thalassiosira constricta Active III 4.5 6.790 0.38937 2.7416 0.00003 0.247669 0.285 (Durbin and 
Durbin 1992) 

Acartia hudsonica Thalassiosira constricta Active III 8 5.940 0.18246 1.7887 0.00003 0.332091 0.383 (Durbin and 
Durbin 1992) 

Acartia hudsonica Thalassiosira constricta Active III 12 4.420 0.18159 1.3619 0.00003 0.324545 0.374 (Durbin and 
Durbin 1992) 
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Acartia hudsonica Thalassiosira constricta Active III 16 3.880 0.15750 0.8751 0.00004 0.44338 0.511 (Durbin and 
Durbin 1992) 

Acartia tonsa Thalassiosira weisflogii Active III 20 3.710  3.3586 0.00003 0.110463  (Durbinl and 
Durbinl 1990) 

Acartia tonsa  Thalassiosira weisflogii Active (II) 18 3.000 0.09545 5.8007 0.00009 0.051718 0.060 (Saiz and Kiørboe 
1995)  

Acartia tonsa  Isochrysis galbana Active III 18 2.484 0.40385 0.1247 0.00001 1.99254 2.293 (Støttrup and 
Jensen 1990) 

Acartia tonsa  Dunaliella tertiolecta Active III 18 2.484 0.14685 0.4004 0.00001 0.620434 0.715 (Støttrup and 
Jensen 1990) 

Acartia tonsa  Rhodomonas baltica Active III 18 2.484 0.19825 0.3750 0.00001 0.662394 0.763 (Støttrup and 
Jensen 1990) 

Acartia tonsa  Thalassiosira weifsflogii Active III 18 2.484 0.17622 1.0415 0.00007 0.238507 0.275 (Støttrup and 
Jensen 1990) 

Acartia tonsa  Ditylum brightwellii Active III 18 2.484 0.14685 0.7210 0.00033 0.344499 0.397 (Støttrup and 
Jensen 1990) 

Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 0.898  0.0619 0.00001 1.451902  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 1.239  0.1341 0.00001 0.923956  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 0.555  0.1827 0.00002 0.303728  (Berggreen et al. 
1988) 
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Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 0.448  0.2132 0.00002 0.210038  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 0.898  0.3391 0.00001 0.26493  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 1.174  0.3221 0.00001 0.364585  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Pavlova lutheri Active  17 3.248  0.5679 0.00000 0.571992  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 0.555  0.0378 0.00005 1.466256  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 0.448  0.0620 0.00006 0.722605  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 1.535  0.0731 0.00002 2.100661  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 1.174  0.1015 0.00002 1.156698  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 1.239  0.1335 0.00002 0.927744  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 0.852  0.1756 0.00003 0.48483  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 1.901  0.1335 0.00001 1.423884  (Berggreen et al. 
1988) 
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Acartia tonsa, 
copepodites 

Isochrysis galbana Active  17 3.615  0.3210 0.00001 1.126139  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Dunaliella tertiolecta Active  17 0.852  0.0748 0.00004 1.137956  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 0.420  0.0316 0.00011 1.331749  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 0.551  0.0339 0.00009 1.624873  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 0.850  0.0696 0.00006 1.220547  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 1.056  0.0864 0.00004 1.221581  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 1.114  0.1331 0.00004 0.837436  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 1.628  0.4208 0.00003 0.386952  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 3.477  0.1907 0.00001 1.823137  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Rhodomonas baltica Active  17 2.022  0.0561 0.00002 3.60392  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 0.425  0.0561 0.00025 0.757912  (Berggreen et al. 
1988) 
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Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 0.554  0.0477 0.00019 1.161111  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 1.163  0.1016 0.00009 1.144427  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 1.515  0.1132 0.00007 1.338614  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 0.803  0.1482 0.00013 0.541509  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 1.103  0.1565 0.00010 0.704854  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 1.776  0.2990 0.00006 0.593945  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Amphidinium carterae Active  17 3.352  0.7090 0.00003 0.472724  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 0.439  0.1289 0.00061 0.340893  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 0.611  0.3083 0.00044 0.198051  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 0.947  0.5316 0.00028 0.17806  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 1.245  0.7786 0.00021 0.159932  (Berggreen et al. 
1988) 
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Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 1.245  1.0225 0.00021 0.121784  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 1.638  0.9169 0.00016 0.178639  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 2.040  0.8222 0.00013 0.248057  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Thalassiosira weisflogii Active  17 3.529  2.7270 0.00008 0.129401  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Scripsiella faroense Active  17 0.555  0.0399 0.00144 1.390723  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Scripsiella faroense Active  17 0.425  0.0949 0.00189 0.447189  (Berggreen et al. 
1988) 

Acartia tonsa, 
copepodites 

Scripsiella faroense Active  17 0.852  0.2385 0.00094 0.357122  (Berggreen et al. 
1988) 

Aetideus divergens  Thallasiosira fluviatilis Active II 12 21.2  0.4903 0.00001 4.332161  (Robertson and 
Frost 1977) 

Aetideus divergens  Coscinodiscus angstii Active II 12 21.2  4.6032 0.00012 0.461414  (Robertson and 
Frost 1977) 

Aetideus divergens  Coscinodiscus angstii Active (II) 12 21.2  9.4789 0.00055 0.224077  (Robertson and 
Frost 1977) 

Aetideus divergens  Artemaia nauplii Active (II) 12 21.2  16.4053 0.03578 0.12947  (Robertson and 
Frost 1977) 
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Calanus finmarchicus 
CV + female 

Emiliania huxley Active  13 104.3  0.2156 0.00000 48.39151  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Emiliania huxley Active  13 104.3  0.5658 0.00000 18.43486  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Emiliania huxley Active  13 104.3  1.4280 0.00000 7.304379  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Prymnesium patelliferum Active  13 104.3  0.6467 0.00000 16.1305  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Thallasiosira 
nordenskioeldii 

Active  13 104.3  6.4127 0.00000 1.626605  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Thallasiosira 
nordenskioeldii 

Active  13 104.3  9.0533 0.00000 1.152179  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Chaetoceros calcitrans Active  13 104.3  0.8622 0.00000 12.09788  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Pavlova lutheri Active  13 104.3  0.4311 0.00000 24.19576  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Rhodomonas baltica Active  13 104.3  3.1525 0.00000 3.308821  (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Rhodomonas baltica Active II 13 104.3 1.27473 3.4418 0.00000 3.030697 3.518 (Nejstgaard et al. 
1995) 

Calanus finmarchicus 
CV + female 

Emiliania huxley Active III 13 104.3 0.92661 1.4826 0.00000 7.035695 8.197 (Nejstgaard et al. 
1995) 
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Calanus pacificus C I Chlamydomonas sp Active III 15 1.506 0.04001 0.1480 0.00012 1.01725 1.175 (Fernandez 1979) 

Calanus pacificus C I Thallasiosira weisflogii Active III 15 1.506 0.08810 0.3612 0.00006 0.416952 0.480 (Fernandez 1979) 

Calanus pacificus C I Lauderia borealis Active (II) 15 1.506 0.06943 1.2289 0.00032 0.122549 0.141 (Fernandez 1979) 

Calanus pacificus C I Gymnodinium splendens Active III 15 1.506 0.07824 0.5320 0.00150 0.28306 0.326 (Fernandez 1979) 

Calanus pacificus  Coscinodiscus angstii Active III 12.5 76.5 1.59109 11.7792 0.00001 0.649451 0.751 (Frost 1972) 

Calanus pacificus  Coscinodiscus 
eccentricus 

Active III 12.5 76.5 1.31944 17.0348 0.00002 0.44908 0.520 (Frost 1972) 

Calanus pacificus  Centric diatiom Active II/III 12.5 76.5 1.50054 22.4979 0.00004 0.340031 0.393 (Frost 1972) 

Calanus pacificus N V Isochrysis galbana Active III 15 0.823 0.00460 0.0322 0.00002 2.558218 3.004 (Fernandez 1979) 

Calanus pacificus N V Chlamydomonas sp Active III 15 0.823  0.0645 0.00023 1.27531  (Fernandez 1979) 

Calanus pacificus N V Thallasiosira weisflogii Active III 15 0.823 0.03795 0.3985 0.00011 0.206537 0.238 (Fernandez 1979) 

Calanus pacificus N V Peridinium trochoideum Active (II) 15 0.823 0.04748 0.1329 0.00061 0.619123 0.713 (Fernandez 1979) 

Calanus pacificus N V Lauderia borealis Active III 15 0.823 0.04690 0.7083 0.00059 0.116201 0.134 (Fernandez 1979) 

Calanus pacificus N V Gymnodinium splendens Active III 15 0.823 0.04364 0.4582 0.00274 0.179601 0.207 (Fernandez 1979) 

Calanus pacificus N V Gonyaulax polyedra Active (II) 15 0.823 0.03708 0.3670 0.00373 0.224225 0.259 (Fernandez 1979) 

Calanus pacificus N VI Isochrysis galbana Active II 15 1.168 0.01823 0.0091 0.00001 12.80731 14.838 (Fernandez 1979) 

Calanus pacificus N VI Chlamydomonas sp Active (II) 15 1.168 0.04971 0.0795 0.00016 1.468064 1.693 (Fernandez 1979) 
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Calanus pacificus N VI Thallasiosira weisflogii Active III 15 1.168 0.05757 0.3685 0.00008 0.316892 0.365 (Fernandez 1979) 

Calanus pacificus N VI Lauderia borealis Active III 15 1.168 0.07000 0.7490 0.00041 0.155879 0.180 (Fernandez 1979) 

Calanus pacificus N VI Gymnodinium splendens Active III 15 1.168 0.06206 0.6641 0.00193 0.175825 0.203 (Fernandez 1979) 

Calanus pacificus NIII Thallasiosira weisflogii Active III 15 0.384 0.02096 0.0629 0.00025 0.610736 0.704 (Fernandez 1979) 

Calanus pacificus NIII Gymnodinium splendens Active (II) 15 0.384 0.02478 0.0644 0.00587 0.596034 0.687 (Fernandez 1979) 

Calanus pacificus NIII Gonyaulax polyedra Active (II) 15 0.384 0.02096 0.0629 0.00799 0.610736 0.704 (Fernandez 1979) 

Calanus pacificus NIV Chlamydomonas sp Active III 15 0.479 0.01494 0.0777 0.00039 0.616672 0.712 (Fernandez 1979) 

Calanus pacificus NIV Thallasiosira weisflogii Active III 15 0.479 0.02374 0.1377 0.00020 0.347915 0.401 (Fernandez 1979) 

Calanus pacificus NIV Peridinium trochoideum Active (II) 15 0.479 0.01998 0.2218 0.00105 0.215946 0.249 (Fernandez 1979) 

Calanus pacificus NIV Lauderia borealis Active III 15 0.479 0.05403 0.2539 0.00101 0.188644 0.217 (Fernandez 1979) 

Calanus pacificus NIV Gymnodinium splendens Active III 15 0.479 0.03342 0.1704 0.00471 0.281062 0.324 (Fernandez 1979) 

Calanus sinicus Alexandrium tamarense 
ARC101 

Active II 18 30.2 0.68654 2.5333 0.00002 1.190136 1.376 (Liu and Wang 
2002) 

Calanus sinicus Alexandrium tamarense 
CCMP1771 

Active II 18 30.2 0.50077 1.2966 0.00004 2.325241 2.693 (Liu and Wang 
2002) 

Calanus sinicus Thallasiosira weissflogii Active  18 30.2  1.2850 0.00000 2.346371  (Liu and Wang 
2002) 

Calanus sinicus Chattonella antiqua Active II 20 51.8 0.75228 3.4303 0.00003 1.510069 1.750 (Uye 1986) 
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Centropages yamadaiu Chattonella antiqua Active II 20 9.6 0.22960 1.6255 0.00016 0.590584 0.682 (Uye 1986) 

Euchaete elongata Pseudocalanus sp Active II 8 637 8.53215 117.8054 0.00890 0.540722 0.627 (Yen 1985) 

Euchaete elongata Acartia clausii Active II 8 637 6.80516 72.9859 0.00396 0.872771 1.015 (Yen 1985) 

Euchaete norvegica Larval cod Active II 7.5 1350 13.00897 224.0314 0.01667 0.602594 0.701 (Yen 1985) 

Paracalanus crassirostris Alexandrium tamarense 
ARC101 

Active II 18 4.19 0.08371 0.4338 0.00014 0.964658 1.116 (Liu and Wang 
2002) 

Paracalanus crassirostris Alexandrium tamarense 
CCMP1771 

Active II 18 4.19 0.08077 0.4124 0.00027 1.014834 1.174 (Liu and Wang 
2002) 

Paracalanus crassirostris Thallasiosira weissflogii Active  18 4.19  0.4773 0.00001 0.876858  (Liu and Wang 
2002) 

Paracalanus parvus Chattonella antiqua Active II 20 2.70 0.07225 0.5001 0.00056 0.53991 0.624 (Uye 1986) 

Pseudocalanus marinus Chattonella antiqua Active II 20 4.62 0.10231 0.6747 0.00032 0.684742 0.792 (Uye 1986) 

Tortanus dextrilobatus Oithona davisae Active II 14 24.4 0.15518 6.9186 0.00983 0.352963 0.413 (Hooff and 
Bollens 2004) 

Tortanus dextrilobatus Oithona davisae Active II 19 18.7 0.11979 2.9947 0.01070 0.6241 0.731 (Hooff and 
Bollens 2004 

Tortanus dextrilobatus Acartia sp Active II 14 24.4 1.94713 22.2983 0.12244 0.109515 0.126 (Hooff and 
Bollens 2004 

Tortanus dextrilobatus Acartia sp Active II 19 18.7 0.97222 16.7483 0.12734 0.111593 0.129 (Hooff and 
Bollens 2004 
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Tortanus discaudatus Calanus pacificus NIII Active II 12.5 18.1 0.66554 56.5936 0.01626 0.031949 0.037 (Ambler and Frost 
1974)  

Tortanus discaudatus Calanus pacificus NV Active II 12.5 18.1 0.92772 86.5515 0.03794 0.02089 0.024 (Ambler and Frost 
1974) 

Tortanus forcipatus Pseuodiaptomus nauplii Active II 21 6.28 0.04241 3.1810 0.01273 0.197555 0.231 (Uye and Kayano 
1994a) 

Tortanus forcipatus Oithona davisae Active II 21 6.28 0.08626 4.3132 0.03819 0.145697 0.169 (Uye and Kayano 
1994a) 

Tortanus forcipatus Artemia nauplii Active II 21 6.16 0.34308 4.5468 0.13473 0.135488 0.156 (Uye and Kayano 
1994a) 

Tortanus spp CI-III Oithona davisae CV-VI Active (II) 25 1.10 0.01637 0.9673 0.20000 0.113723 0.132 (Uye and Kayano 
1994b) 

Tortanus spp CI-III Oithona davisae CV-VI Active (II) 20 1.10 0.02739 0.8715 0.20000 0.126216 0.146 (Uye and Kayano 
1994b) 

Tortanus spp CVIF Oithona davisae CV-VI Active (II) 25 5.62 0.06515 3.2574 0.03915 0.172528 0.200 (Uye and Kayano 
1994b) 

Tortanus spp CVIF Oithona davisae CV-VI Active (II) 20 5.62 0.07669 3.4861 0.03915 0.161212 0.187 (Uye and Kayano 
1994b) 

Tortanus spp IV-V Oithona davisae CV-VI Active (II) 25 2.23 0.02848 1.5536 0.09865 0.14354 0.167 (Uye and Kayano 
1994b) 

Tortanus spp IV-V Oithona davisae CV-VI Active (II) 20 2.23 0.03944 1.9721 0.09865 0.113076 0.131 (Uye and Kayano 
1994b) 
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Appendix Table 1. Summary of functional response experiments reported in the literature, mainly compiled by Kiørboe and Hirst (2014). The 
copepods are adult females, unless otherwise noted (N = nauplii, C = copepodites). Feeding mode differentiates between ‘passive’ ambush 
feeders and ‘active’ cruise and feeding-current feeders. Maximum ingestion rates (Fmax) and maximum clearance rates (β) were estimated from 
fitted functional response curves to observational data and temperature corrected  to 15 0C as described in Kiørboe and Hirst (2014). FR refers to 
functional response type II or III evaluated from the observational data, preferentially plots of clearance rate versus prey concentration. 
Functional response (II) reported in parentheses are experiments where the lowest concentration used was larger than the threshold concentration 
and, thus, inconclusive with respect to functional response type. R0 and Rc are the threshold concentrations for feeding and maintenance, 
respectively, computed from the data using equations 9 and 10, as explained in the main text. 
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Online Appendix II  

Here, all data reported as averages in Table 2 of the main paper are plotted  

 

Appendix Fig. 1. Centropages hamatus feeding on Akashiwo sanguinea. All values are averages + 
95 % confidence limits. 
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Appendix Fig. 2. Centropages hamatus feeding on Rhodomonas baltica. All values are averages + 
95 % confidence limits. 
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Appendix Fig. 3. Temora longicornis feeding on Rhodomonas baltica. All values are averages + 95 
% confidence limits. 
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Appendix Fig. 4. Acartia tonsa feeding on Oxyrrhis marina (A,B) and Akashiwo sanguienea (C, D). 
All values are averages + 95 % confidence limits. 
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Appendix Figure 5. Functional response in clearance rate and ingestion rate for the copepod-prey 
combinations examined here. All observations are for adult females. Plots of clearance rates offer 
the best way to distinguish between a functional response type II and III. Most data are taken from 
our previous work: C. hamatus feeding on R. baltica (A,B) and A. sanguinea (C,D) (Sommeren 
Gréve, Almeda, Kiørboe unpublished);  A. tonsa feeding on R. baltica (E, F) (Kiørboe et al. 1985). 
A. tonsa feeding on A. sanguinea is from the present work (G, H); T. longicornis feeding on R. 
baltica (I, J) (Gonçalves et al. 2014), O. davisae feeding on O. marina (K, L) (Saiz et al. 2003). The 
curves represent fits of type II or type III functional response models to the data, see appendix Table 
1 for parameters. 
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Appendix Table 1. Parameter estimates for curve fits in Appendix figure 5 

Copepod Prey Clearance Ingestion 
Centropages hamatus Rhodomonas baltica Fmax = 8.3+4.9 

β = 2.5+0.4 
R2 = 0.68 

Fmax = 4.9+0.65 
β = 3.7+0.8 
R2 = 0.97 

Centropages hamatus Akashiwo sanguinea Fmax = 22.2+3.1 
β = 162+13 
R2 = 0.96 

Fmax = 13.7+1.0 
β = 290+79 
R2 = 0.67 

Acartia tonsa Rhodomonas baltica α = 0.58+0.04 
β = 12.4+0.62 
R2 = 0.83 

α = 0.61+0.04 
β = 12.1+0.60 
R2 = 0.98 

Acartia tonsa Akashiwo sanguinea Fmax = 10.7+2.7 
β = 9.7+1.1 
R2 = 0.90 

Fmax = 10.1+1.1 
β = 10.3+1.9 
R2 = 0.97 

Temora longicornis Rhodomonas baltica Fmax = 2.6+0.6 
β = 5.7+0.4 
R2 = 0.91 

Fmax = 2.7+0.3 
β = 5.5+0.7 
R2 = 0.99 

Oithona davisae Oxyrrhis marina Fmax = 19.6+10.0 
β = 23.4+3.9 
R2 = 0.81 

Fmax = 19.6+10.0 
β = 23.4+3.9 
R2 = 0.81 
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