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Abstract

Presence of an ultra high molecular weight (UHMw) fraction in �owing polymer melts,

is known to facilitate formation of oriented crystalline structures signi�cantly. The

UHMw fraction manifests itself as a minor tail in the molar mass distribution and is

hardly detectable in the canonical characterization methods. In this study, alterna-

tively, we demonstrate how the nonlinear extensional rheology reveals to be a very
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sensitive characterization tool for investigating the e�ect of the UHMw-tail on the

structural ordering mechanism. Samples containing an UHMw-tail relative to samples

without, exhibit a clear increase in extensional stress that is directly correlated with

the crystalline orientation of the quenched samples. Extensional rheology, particularly,

in combination with linear creep measurements, thus enables the conformational evolu-

tion of the UHMw-tail to be studied and linked to the enhanced formation of oriented

structures.

The morphology of semicrystalline polymeric products varies greatly depending on the

imposed �ow conditions during melt processing and on the molecular chain architecture.1,2

The combination of �ow and chain architecture determines the degree of chain stretch and

hence the structure into which, the polymer crystallizes.3,4 The morphology is important for

the mechanical properties of the �nal product. Especially the creation of oriented crystal

structures (shish-kebabs) rather than isotropic structures (spherulites) is key to enhancement

of directional mechanical strength.5�8

One way to obtain shish-kebabs from a molten, relaxed polymer melt is by application

of �ow. A su�ciently strong �ow will result in stretching of the chains.9,10 Under the right

thermal conditions, the stretched chains form rodlike nuclei that grows into long �brils

(shish) on which subsequent overgrowth of oriented lamellae (kebabs) perpendicular to the

shish occurs11�13 .

Formation of shish-kebabs is enhanced by the presence of a small fraction of chains having

a molar mass considerably higher than the rest of the melt - " an ultra high molecular

weight tail (UHMw-tail)".14�21 Even when the concentration of UHMw chains is so low

that they hardly a�ect most other properties of the melt, such as the viscosity measured

in the conventionally used frequency range, thermal properties and quiescent crystallization

kinetics, they signi�cantly enhance the formation of shish-kebabs.14

One property that has not been investigated for semicrystalline polymers containing an

nearly invisible high molecular weight tail is their response in controlled uniaxial extensional
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�ow. Inherently, extensional �ows are considered strong �ows whereby their ability to stretch

the polymer molecules is much greater than shear �ow.22,23 Furthermore the extensional

response of the liquid is extremely sensitive to stretching of the chains. Due to experimental

di�culties, the number of studies connecting crystallization and rheology in extension is

quite limited.24�31 Studies on semicrystalline systems of known molecular composition are

still to be studied in controlled uniaxial extension.

In this work we investigate the role of the high molecular weight tail in controlled uniaxial

extension as well as the morphology obtained after quenching of the melt. We compare a

blend of 1% UHMw polyethylene (UHMwPE)(Mw = 4000 kg/mol) in a matrix of commercial

HDPE - high density polyethylene (632-D1 from Dow, Mw = 156 kg/mol) - with the pure

matrix, referred to as the "UH-blend" and the "matrix", respectively. The molecular weight

Figure 1: Molecular weight distribution obtained via GT-GPC (detection by refractive index)
of the UH-blend (blue) and the matrix (red). The inset shows a magni�cation of the UHMw-
fraction.

distribution (MWD) (Figure 1), number, weight and z-average molar masses (Mn, Mw and

Mz respectively) as well as Tm (see Table 1) are nearly identical for the two samples. We

study the rheological behavior in the linear regime using small-amplitude oscillatory shear

(SAOS), at temperatures between 140 and 190 ◦C in combination with creep at 150 ◦C. The
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creep compliance data is converted into dynamic compliance and then to dynamic moduli

by Fourier transformations. In this way we obtained the linear viscoelastic response over a

broad range of frequencies at a reference temperature of 140 ◦C. The nonlinear behvior is

studied in controlled uniaxial extension at 140 ◦C. Here we measure the extensional stress

σzz − σrr during deformations of constant Hencky strain rates ε̇. All samples are quenched

to room temperature at a Hencky strain of ε = 5.5 and small angle X-ray scattering (SAXS)

patterns for the quenched samples, are collected ex-situ.

Table 1: Material characteristics for the UH-blend and the matrix. solutions.

Sample φ (w frac) Mn (kg/mol) Mw (kg/mol) Mz (kg/mol) Tm(◦C)
Matrix - 40 156 495 138.4 ±0.5
UH-blend 0.01 40 156 550 138.9 ±0.5

We use Herman's orientation factor FH extracted from SAXS patterns as a measure for

the average degree of crystalline orientation in the quenched samples. FH is given by the

second Legendre polynomial:

FH =
3 〈cos2 φ〉 − 1

2
(1)

Where 〈cos2 φ〉 is the average cosine squared of the angle φ given as the angle between

the normal of a plane in the crystalline domains and a given macroscopic direction. We

determine FH from SAXS patterns using scattering between kebabs growing perpendicular

to the shish aligned along the �ow direction. φ is de�ned as the angle between the normal

of the kebab-planes and the macroscopic direction set to be the stretching direction1 (see

Supporting Information).

Figure 2 shows the SAXS patterns along with Herman's orientation factor versus the

Hencky strain rate during stretching. While both samples show a systematic increase with

extension rate, the orientation factor for the UH-blend is clearly higher relative to the matrix

especially at high rates. The enhanced formation of oriented structures upon addition of

just small amounts of UHMw-component is thus con�rmed for extensional �ows, which is in

agreement with previous studies showing same e�ect for shear �ows.14
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Figure 2: Oritentation of quenched �laments. Top: SAXS patterns (vertical stretching
direction). Bottom: Herman's orientation factor for the UH-blend (blue symbols) and the
matrix (red symbols).
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The linear and nonlinear extensional rheological response of the two samples are shown

in Figures 3a and b, respectively. The linear responses (Figure 3a) are modelled using a

multi mode Maxwell spectrum, a discrete spectrum of relaxation times τi with corresponding

moduli gi (see Supporting Information). Both data and corresponding �ts for the two samples

are identical in the high frequency region that corresponds to relaxation on length scales

shorter than the entire length of the UHMw-tail. A signi�cant di�erence in behavior is

detected only in the region just before entering the terminal regime, i.e., the regime where

G′ andG′′ reach slopes of 2 and 1, respectively. The addition of 1 w% UHMwPE is responsible

for the formation of a shoulder in G′, indicative of an additional mode which slows-down

the terminal relaxation substantially (see also the di�erence in zero-shear-rate viscosity in

Supporting Information Figure 5S). Indeed, for the 10th Maxwell mode (τ10 = 103 s see inset

in Figure 3a) the di�erence in g10 between the two samples is a factor of ∼ 103. It turns

out that the 10th mode of the matrix can be left out without compromising the Maxwell

�t, while it is essential for the �t of the UH-blend. For the linear data obtained from

SAOS, it is important to note that due to the rapidly decreasing torque signal upon lowering

the frequency, the lower instrumental limit is reached around a frequency ω = 0.01 rad/s.

Thus, the spectrum obtainable from SAOS (i.e. data contained in the grey square) suggests

that the two samples are identical, just like the MWD and Tm suggested. Only with the

additional creep data, can any signi�cant di�erence be detected as pointed out by Münstedt

and co-workers.32,33

The nonlinear extensional response (Figure 3b), reported in terms of the extensional

stress growth coe�cient η+E = (σzz−σrr)/ε̇ shows a clear di�erence between the two samples.

Although both samples strain harden, the extent of strain hardening is much larger for UH-

blend relative to the matrix. Initially all samples follow the LVE prediction and overlap at

small t (Figure 3b inset). Prior to quench at ε = 5.5, all samples reach steady elongational

�ow which is con�rmed by complementary nonlinear uniaxial creep measurements showing

same steady elongational viscosity34 (see Figure S6 in Supporting Information).
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Figure 3: Rheology of the UH-blend (blue symbols) and the matrix (red symbols) at 140◦C.
(a) Linear response, storage (G′) and loss modulus (G′′), obtained via SAOS (closed symbols)
and via creep (open symbols). Solid lines show the prediction by the multimode Maxwell
model (10 modes). Arrows on the x-axis indicate the range of ε̇ in extension. Inset: Maxwell
moduli gi versus time constants τi. (b) Nonlinear extensional response in terms of extensional
stress growth coe�cient η+E together with the linear viscoelastic envelope (blue and red lineas)
and HMMSF model-prediction (black dashed lines) using the nonlinear �tting parameter
GD = 350Pa (see text). Inset: extensional stress versus Hencky strain.
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The extensional response is modelled using the hierarchical multimode molecular stress

function (HMMSF) as it is able to properly capture the transient and steady state response

of a polydisperse polymer melt using only one nonlinear �t parameter GD.35 The model

considers the polydisperse samples as a collection of chain segments of various relaxation

times obtained from the multimode Maxwell model.36 Once a segment is relaxed it acts as

a solvent for the remaining unrelaxed chains. The nonlinear parameter GD is a point along

the relaxation modulus G(t) that separates permanently diluted segments from dynamically

diluted segments. GD is associated with a time constant τD de�ned by GD = G(τD) for the

onset of dynamic dilution. The extra stress tensor, calculated as a sum of stress contributions

from each Maxwell mode, is given by:

σ =
∑
i

∫ t

−∞

∂Gi(t− t′)
∂t′

SIA
DE(t, t′)fi(t, t

′)2dt′ (2)

Here Gi(t−t′) = gi exp
(
t−t′
τi

)
is the relaxation modulus and fi is the segmental chain stretch

of mode i.35 SIA
DE is the Doi-Edwards orientation tensor with the independent alignment

assumption.37�39 Both SIA
DE and fi are functions of the observation time t and the time t′ at

which new tube segments are created by reptation. Consequently, the middle segments of

the chains will be more stretched and oriented compared with the end segments that relax

much faster. The evolution of SIA
DE can conveniently be described by the a product of the

Finger strain tensor B and a damping function h(ε):

SIA
DE(t, t′) = h(t, t′)B(t, t) (3)

We use the analytic expression of h(t, t′) as found in Urakawa et al.,40 the de�nition

of B given by Bird et al.,22 and fi de�ned as the inverse relative tube diameter fi(t, t′) =

a0/ai(t, t
′). The evolution of fi is given by a convective term and two relaxation terms:

∂fi
∂t

= fi (κ : S))− 3
fi − 1

τi

(
1− 2

3
w2
i

)
− 2

3

f 2
i (f 3

i − 1)

τi
w2
i (4)
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Here κ is the velocity gradient tensor. The parameter wi is the fraction of dynamically

diluted chain segments of mode i, which is only less than 1 for modes that have τi > τD.

The chain segments that have τi < τD are considered as permanently diluted.

w2
i =

1

GD

∑
j

gj exp

(
− τi
τj

)
for τi > τD (5)

w2
i = 1 for τi < τD (6)

The HMMSF predictions, shown in Figure 3b, have been obtained with the nonlinear

parameter GD = 350 Pa adjusted to describe the steady extensional stress values. In addi-

tion, the success of the �t is crucially dependent upon the application of the complete low

frequency response in the linear regime. The combination of creep and controlled extension

thereby enables the evolution of the stretch for each mode to be studied in detail. The

HMMSF modelling reveals that the di�erence does indeed arise from the very large stretch

of the highest modes that furthermore have a squared contribution to stress. As a result the

stress contribution at ε̇ = 0.1s−1 from the longest mode is 53 Pa for the matrix while it is

17610 Pa for the UH-blend (see Figure 4a).

In trying to explain why the presence of a UHMw-tail increases the potential for oriented

structures we utilize relations connecting chain stretch and nucleation rates in combination

with the HMMSF model. Peters and co-workers have found that the rate of shish nucleation

Ṅs in a polymer melt containing a small UHMw-fraction has a power law dependency on

the stretch Λi of the UHMw-component.41�43 Speci�cally they �nd that Ṅs ∝ Λ4 − 1 at the

onset of crystallization. Based on ideas by the Rolie-Poly model they de�ne Λi from the

stress tensor expression non-dimensionalized by the modulus.44 In the following we there-

fore associate the relevant stretch ratio with the segmental stretch fi as de�ned above. In

the present study where the molar masses of the matrix and the blend are not completely

separated, it is not solely the UHMw-component that is stretching, but the highest molar

mass fraction of the matrix as well. To account for that, we calculate an average crystalliza-
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Figure 4: HMMSF analysis (a) Extensional stress. Coloured lines indicate the contribution
from the di�erent modes to the total stress (black line). Note the di�erence between the two
samples for the longest mode (10th mode). (b) crystallization rate at the point of quench.
Red and blue lines indicate average crystallization rate proportionality of the matrix and the
UH-blend, respectively. The black line indicates the ratio of shish nucleation rate between
UH-blend and matrix.
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tion rate proportionality (〈Λ4 − 1〉) from the stretch fi of each mode in the HMMSF model

weighted by gi:

〈
Λ4 − 1

〉
=

1

G0
N

∑
i

gi
(〈
f 4
i

〉
− 1
)

(7)

where G0
N = 2.5 GPa is the plateau modulus45 and

〈
f 4
i

〉
=

∫ t
−∞ (∂Gi(t− t′)/∂t′) fi(t, t′)4dt′∫ t

−∞ (∂Gi(t− t′)/∂t′) dt′
(8)

Figure 4 shows the obtained values of 〈Λ4 − 1〉 for both samples. At the highest Hencky

strain rate investigated (ε̇ = 1 s−1), the value of 〈Λ4 − 1〉 for the UH-blend is a factor of

4 higher than that of the matrix. Hence, according to the model, the addition of 1 w%

UHMwPE to the matrix, would result in an increase by a factor of 4 in Ṅs.

To elucidate the connection between crystalline orientation and �ow we plot in Figure

5 the �nal crystalline orientation FH versus steady stress. Although the data contain some

uncertainty, FH for the two samples appear to collapse onto a single master curve. The

experimental relationship between orientation and stress shows a power law dependency

with a slope of 2/5 rather than the linear relation reported for non-crystallizing systems.46

The apparent collapse of data onto one master curve is in accordance with previous �ndings

for long chain branched polyethylene.31

We have shown that a very small fraction of UHMw-component in a semicrystalline

polymer melt changes the extensional rheology as well as the �nal morphology signi�cantly.

The link between extensional rheology and enhanced formation of oriented structures lies

in their mutual inherent sensitivity to chain stretch. The extensional response enables the

evolution of the high molecular weight tail stretch to be studied in detail, up to steady �ow.

Thus we conclude that nonlinear extensional rheology particularly in connection with linear

creep, provides a powerful tool for the study of threadlike precursors and shish formation in

polymers of high polydispersity and/or with a UHMw-tail.
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Figure 5: Herman's orientation factor versus steady stress for the UH-blend (blue) and
matrix (red). Black solid and dashed line shows the apparent slope of 2/5 and the expected
trend for amorphous systems, respectively.

Materials and Methods Blending of UHMwPE and commercial HDPE was carried out

in solution using hot xylene with subsequent precipitation in cold methanol according to

procedures described elsewhere.47,48 The density of the commercial HDPE was 0.958g/cm3

which is high, hence the degree of branching was assumed to be very small.

SAOS was carried out in a strain controlled ARES G2 rheometer (TA instruments) and

creep in a stress controlled rheometer MCR702 (Anton Paar, Austria). In both cases an 8 mm

plate-plate geometry was used and the measurements were carried out in inert atmosphere

(N2). For SAOS, we performed frequency sweeps at temperatures between 140 − 190 ◦C.

For creep, measurements were carried out at 150 ◦C at di�erent stresses (see Supporting In-

formation for further experimental details and compliance curves). Compliance curves were

subsequently inverted to obtain G′ and G′′ via multimode Maxwell �t using the software NL-

Reg based on a generalized Tikhonov regularization.49 For each sample, SAOS and inverted

creep data were shifted via time-temperature superposition principle and combined into one

master curve at the reference temperature T = 140 ◦C.

We performed nonlinear extensional rheology using a Filament Stretch Rheometer (VADER

1000 from Rheo�lament) comprising a moving top and a stationary bottom plate between

which a sample disc was placed. Uniaxial extension at a constant Hencky strain rate was

performed at 140 ◦C by axial movement of the top plate. The deformation of the mid�l-
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ament plane, monitored via a laser micrometer, was measured in terms of Hencky strain

ε = −2 ln D(t)
D0

where D(t) and D0 are the measured and the initial diameter, respectively.

A feedback control loop enabled controlled deformation and prevented failure due to un-

controlled neck propagation.50�53 The normal stress di�erence in the material is given by

〈σzz − σrr〉 = (F − 1
2
mg)/π

4
D(t)2. Here F is the force measured on the bottom plate, m is

the mass of the sample and g is the gravitational acceleration. The �laments were quenched

to room temperature at ε = 5.5 at a rate > 10 K/s. The diameter at quench for all samples

were 0.47− 0.5. (see Supporting Information for further details on extension)

Ex-situ SAXS patterns from the mid�lament plane of quenched samples were collected

using a SAXSLAB instrument (Ganesha from SAXSLAB, Denmark) with a 300k Pilatus

detector (pixel sizes 172× 172µm). The wavelength of the X-ray beam was 1.54 Å and the

sample-to-detector distance was 1491 mm. Exposure times were 10 − 170min.
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