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ABSTRACT 1 

The effect of partially replacing fishmeal in aquafeed with feathermeal (FTH) at three 2 

levels (0%: FTH0, 8%: FTH8, 24%: FTH24) and two extrusion temperatures (100 and 3 

130 °C) were evaluated in rainbow trout (Oncorhynchus mykiss) with respect to growth 4 

performance, metabolism response, and oxidative status of the feed proteins. Multivariate 5 

data analyses revealed that FTH24 correlated positively with high levels of: oxidation 6 

products, amino acids (AA) racemization, glucogenic AAs level in liver, feed intake (FI), 7 

specific growth rate (SGR), and feed conversion ratio (FCR); and low AAs digestibility. 8 

Both FI and SGR were significantly increased when 8 and 24% feathermeal was included 9 

in the feed extruded at 100 °C, while there was a negative effect on FCR in fish fed 10 

FTH24. In conclusion, higher oxidation levels in FTH24 may give rise to metabolic 11 

alterations while lower levels of FTH may be considered as fishmeal substitute in 12 

aquafeed for rainbow trout.   13 

Keywords: fishfeed; fishmeal; feathermeal; extrusion; oxidation; metabolite; growth 14 

performance; rainbow trout; Oncorhynchus mykiss 15 

  16 

 17 

 18 

  19 
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INTRODUCTION  20 

In recent years, the soaring global demand for protein has boosted commercial fish 21 

farming dramatically. Hence, global production of aquafeeds is increasing and expected to 22 

reach 71 million metric tonnes by 2020, corresponding to an increase at an average rate of 23 

11 percent per year 1-2. Feed costs are a significant part of the total production costs, 24 

mostly due to high cost of fishmeal 2-3. However, there are several ways to reduce the 25 

fishmeal proportion in aquafeed. Increasing attention has been paid to utilization of more 26 

economically and environmentally sustainable alternative protein sources to reduce 27 

production costs 4-6. Feathermeal (FTH) is becoming attractive due to high supply options, 28 

low costs, its high content of protein and essential amino acids (AAs), and the lack of anti-29 

nutritional factors 7. Recently, the potential of utilizing FTH in extruded fish feed was 30 

investigated and showed promising results 8. Overall, it was found that the formation of 31 

oxidation products and heat-induced cross-links increased with a high inclusion level of 32 

feathermeal (24%). However, it was also found that an inclusion of 8% FTH in the feed 33 

resulted in the highest in vitro digestibility 8. These preliminary findings underlined that 34 

the relationship between chemical and physicochemical changes of proteins and 35 

digestibility is more or less straightforward; hence, the biochemical and biological effects, 36 

especially the bioavailability, must be taken into account upon evaluating protein 37 

replacement. In previous studies on replacement of fishmeal with feathermeal 9-11 there 38 

has, to the best of our knowledge, been no focus on the relationship between feed protein 39 

chemical changes and fish biological performance.  40 

During extrusion, feed ingredients undergo extensive heat treatments at high-pressure 41 

conditions. Therefore, heat sensitive AAs such as methionine, lysine, and tryptophan may 42 

suffer from oxidative damages, which may reduce the digestion or absorption of nutrients 43 

and consequently affect growth performance and even induce toxicity 12-13. Knowledge 44 
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about the effect of extruded proteins on the chemical and biological characteristics in 45 

relation to aquafeed is, however, scarce. The current study was therefore conducted to 46 

provide more knowledge about the interactions between extrusion and fishmeal 47 

replacement with FTH and the chemical effects in feed and biological effects in rainbow 48 

trout (Oncorhynchus mykiss). Based on recent results (own unpublished data), feed with 49 

inclusion levels of 8% (the best candidate) and 24% (worst-case scenario) were produced 50 

in industrial settings at two different extrusion temperatures (100 and 130 °C). Extrusion 51 

processing effect on proteins was monitored as protein oxidation products, amino acid 52 

digestibility, and amino acid racemization (AAR). Furthermore, the effects of protein 53 

changes on fish growth performance and liver and plasma metabolites were monitored.  54 

 55 

MATERIALS AND METHODS 56 

Extrudate and Feed Production  57 

Feed was produced and extruded by Biomar A/S (Biomar A/S, Tech Center, Brande, 58 

Denmark). A feed production experiment was designed according to a 3 × 2 factorial 59 

model with three feathermeal inclusion levels (0, 8, and 24%) and two extrusion 60 

temperatures (100 and 130 °C). The feeds were formulated to have similar level of 61 

macronutrients, to be iso-nitrogeneous, iso-energetic by balancing with wheat flour, and to 62 

meet rainbow trout requirements 14. The content of lysine, histidine, methionine, and 63 

tryptophan was maintained constant by adding L-lysine HCl, L-histidine, DL-methionine, 64 

and L-tryptophan respectively, while phosphorus was optimized by adding mono-calcium 65 

phosphate. Yttrium oxide was added as internal marker. Recipes and the chemical 66 

composition of fishmeal and feathermeal, the meal mixes, the extrudates, and 67 

experimental feed after oil coating are given in Table 1.  68 
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Feed ingredients were milled with a hammer mill to pass through a 0.75 mm screen. The 69 

formulation mixtures were subsequently extruded in a five-section twin-screw extruder 70 

(Clextral BC 45 extruder, Clextral, France) equipped with a 2.4 mm die. Moisture content 71 

of the dough during extrusion was set at 25%. Following extrusion processing, the 72 

extrudates were dried and coated by fish- and rapeseed oil using a vacuum oil pump. 73 

Samples labelled ‘extrudate’ were sampled immediately after the extrusion process and 74 

stored in closed plastic containers at 4 °C until analysis for oxidation and heat-induced 75 

products. Samples labelled ‘feed’ (6 codes: FTH0/T100, FTH0/T130, FTH8/T100, 76 

FTH8/T130, FTH24/T100, and FTH24/T130) refer to the extrudates after drying and oil 77 

coating and were stored in bags at 4 °C until used in the fish trials.  78 

 79 

Protein Extraction and Determination of Solubilized Proteins  80 

Samples (50 mg) of meal mixes and extrudates were shaken for 4 h in 10 mL of 6 M 81 

guanidine hydrochloride (GuHCl). Samples were then centrifuged for 1 min at 1000 rpm, 82 

and the supernatants (protein solutions) were collected for analysis of solubilized protein 83 

content and oxidation products. The solubilized protein content of the raw meal mixes and 84 

extrudates was determined by a bicinchoninic acid (BCA) assay kit (Pierce, Bonn, 85 

Germany) according to the manufacturer instruction using the microplate procedure (25 86 

µL sample/200 µL BCA reagent; 37 °C/30 min). Bovine Serum Albumin (BSA from 87 

Sigma, Munich, Germany) was used as protein standard. The absorbance of the solution 88 

was measured using a spectrophotometer at a wavelength of 562 nm. Each sample was 89 

assayed in triplicate. 90 

 91 

Oxidation and Heat-induced Changes  92 
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All analyses of heat-induced changes of proteins were performed on the extrudates. The 93 

following measurements of oxidation products were all based on soluble proteins (ca. 0.6 94 

mg/mL) obtained from protein extraction in 6 M GuHCl as mentioned above and selected 95 

wavelengths from following references;  96 

Protein hydroperoxides (PHP): the content of PHP was obtained by mixing an aliquot of 97 

the protein solution with a xylenol orange and ammonium ferrous reagent following 98 

incubation and measurement of absorbance at 560 nm 15 using a spectrofluorometer 99 

(Synergy 2 spectrofluorometer (BioTek, Winooski, VT, USA)). The standard curve for 100 

quantification (µmol PHP/mg protein) was based on hydrogen peroxide (0 to 30 µM).  101 

Total carbonyl: the content of total carbonyl (arbitrary intensity units (AU)/mg protein) of 102 

an aliquot of the protein solution was obtained by fluorescence detection with excitation at 103 

350 nm 16 and emission intensity at 447 nm in non-transparent microtiter plates (96-104 

Corning-Costar (Lowell, MA, USA)) on a Perkin Elmer LS 50B spectrofluorometer 105 

(PerkinElmer, Massachusetts, United States).  106 

N-formylkynurenine (NFK): the content of NFK (arbitrary intensity units (AU)/mg 107 

protein) of an aliquot of the protein solution was obtained by fluorescence detection with 108 

excitation at 330 nm 15, 17 and emission intensity at 449 nm in non-transparent microtiter 109 

plates (96-Corning-Costar (Lowell, MA, USA)) using a Perkin Elmer LS 50B 110 

spectrofluorometer (PerkinElmer, Massachusetts, United States).  111 

Schiff base products: the content of Schiff base products (arbitrary intensity units 112 

(AU)/mg protein) of an aliquot of the protein solution was obtained by fluorescence 113 

detection with excitation at 345 nm and emission intensity at 449 nm 18-19 in non-114 

transparent microtiter plates (96-Corning-Costar (Lowell, MA, USA)) using a Perkin 115 

Elmer LS 50B spectrofluorometer (PerkinElmer, Massachusetts, United States).  116 
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Lanthionine and furosine: Quantification of lanthionine and furosine was carried out 117 

following acidic hydrolysis of the extrudates. Briefly, an amount of sample corresponding 118 

to 10 mg protein was suspended in 1 mL 6M hydrochloric acid (HCl) and incubated for 24 119 

hours at 100 °C. HCl was subsequently removed by purging with nitrogen gas, and the 120 

dried sample was resuspended in 1 mL MilliQ water and sonicated for 5 min in water bath 121 

(Marshall Scientific Branson 1210 Ultrasonic Cleaner) at room temperature. The samples 122 

were centrifuged (10 min, 19000 g, 4 °C) and supernatants were diluted 1:50 in MilliQ 123 

water containing 1 µg/mL internal standard deuterated lysine (L-Lysine-4,4,5,5-d4 124 

hydrochloride, Sigma Aldrich). Diluted samples were centrifuged (10 min, 19000 g, 4 °C) 125 

and 10 µL of the supernatants were injected into a LC-MS/MS system. Quantification was 126 

performed via an RP-UPLC (Thermo-Scientific) featuring a C18 column (Phenomenex 127 

Aeris XB-C18. 1.7 µm particle size, 150 x 2.1 mm) coupled with mass spectrometer (Q-128 

Exactive Orbitrap) using electrospray ionization in positive mode. The analytes were 129 

eluted from the LC column using a 27-min method with aqueous (A) and organic buffers 130 

(100% acetonitrile, B) both containing 5 mM perfluoropentanoic acid. The method was 131 

designed as follows: 100% A (0 to 5 minutes), 100 to 50% A (5 to 15 min), 50 to 100% B 132 

(15 to 17 min), 100% B (17 to 22 min), 100% B to 100% A (22 to 24 min) and 100% A 133 

(24 to 27 min) at a constant flow rate and oven temperature of 0.25 mL/min and 40 °C, 134 

respectively. Direct injection of standard solutions in the mass spectrometer was used to 135 

determine ionization source parameters (auto-tuning).  136 

Peaks were identified and quantified by monitoring the specific m/z ratios for each 137 

analytes (Table 2). Processing and quantification was performed using the 138 

ThermoScientific Xcalibur software. A standard curve (5 to 10000 ng/mL) was derived 139 

for every standard prior to sample analysis, using for every point the analyte/internal 140 

standard peak area ratio (PAR). The internal standard was present in each point of the 141 
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curve and for each analyte at the same concentration (1 µg/mL). The calculated furosine 142 

and lanthionine concentrations in the samples were then compared to the known protein 143 

concentration of each material and expressed in µg/mg protein. 144 

 145 

Amino Acid Racemization  146 

The method for measuring amino acid racemization (AAR) was based on Tojo et al. 147 

(2012) 20, which combines derivatization using Marfey´s reagent (2,4-Dinitro-5-148 

fluorophenyl; FDAA, Sigma Aldrich 71478) with separation and quantification of D- and 149 

L-amino acids by HPLC. D-AAs derivatized with Marfey’s reagent exhibit strong 150 

intramolecular bonding, which reduces their polarity relative to the corresponding L-151 

amino acid derivates. Consequently, the D-derivates are selectively retained on reverse 152 

phase columns and elute later than the corresponding L-derivates.  153 

Approximately 10 mg of grinded feed were added to hydrolysis tubes (Thermo Scientific 154 

29571) in addition to 1.7 mL 6 N HCl containing 0.2% phenol (w/v). Air/oxygen was 155 

removed by flushing the tubes with nitrogen gas followed by application of vacuum 156 

(alternating 3 times, 30 sec each) and tightening the lid under vacuum. The samples were 157 

hydrolysed for 24 hours at 110 °C. Nor-Leucine (Sigma Aldrich N8513) was added as an 158 

internal standard for estimation of recovery. The hydrolysed samples were transferred to 159 

glass tubes and the HCl evaporated in a vacuum-concentrator (CentriVap, VWR 531-160 

0224). The samples were re-suspended in 33% acetonitrile and filtered by 0.2 µm 161 

centrifugation filters (VWR 516-0234) and could hereafter be derivatized with 1% FDAA 162 

in acetone, according to Thermo Scientific online protocol (MAN0016377), using 50 µL 163 

for standards or feed samples. As derivatized samples are rather unstable, they were 164 

analyzed immediately after derivatization. Identification and quantification was performed 165 
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by means of an uHPLC system (Flexar FX-10, PerkinElmer Inc., Waltham, MA, USA) 166 

using gradients of 50 mM trimethylamine-phosphate buffer, pH 3.5, containing either 10 167 

or 40% acetonitrile (mobile phases A and B, respectively). Standard curves were prepared 168 

using a standard mix of L- amino acids (Sigma Aldrich A9781) added the D-isoforms 169 

(Sigma Aldrich) of methionine (M9375), lysine (L8021), threonine (T8250), 170 

phenylalanine (P1751) and valine (855987). The chromatographs for the different samples 171 

were analyzed using the CHROMORA FLEXAR v3.2.0 4847 software (PerkinElmer 172 

Inc.). The amount of D-AA per kg feed were subsequently calculated, taking recovery of 173 

nor-leucine into account. The degree of AAR of each individual AA was calculated as: 174 

Degree of AAR= D/(D+L); where D and L refer to the two isoforms of the amino acid. 175 

Fish trial 176 

An 8-weeks fish performance trial was carried out in a recirculating freshwater 177 

aquaculture system at the Biomar Research Center in Hirtshals, Denmark. The trial was 178 

carried out in accordance with EU legislation and Danish Animal Welfare Regulations. 179 

All six feed codes (FTH0/T100, FTH0/T130, FTH8/T100, FTH8/T130, FTH24/T100, and 180 

FTH24/T130) were fed to triplicate tanks containing 90 rainbow trout each with a start 181 

weight of 111.2 ± 2.60 g. Fish were fed ad libitum every 6h each day, and uneaten pellets 182 

were collected and weighted. Water temperature (12 °C), oxygen (>92%), and a light:dark 183 

ratio (16:8 h) were kept constant for the duration of the trial. Upon finalizing the feeding 184 

period, the fish were anaesthetized, gently cleaned with soft tissue and weighed, stripped 185 

for feces, and plasma and liver samples were obtained. Growth performance parameters 186 

including the specific growth rate in % day− 1 (SGR; 100*(ln final weight – ln initial 187 

weight)/feeding days), feed conversion ratio (FCR, dry feed intake/wet weight gain), and 188 
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daily feed intake in % day− 1 (FI; 100*((daily feed load - daily feed loss)/feeding days) 189 

were calculated for each replicate at the end of the study. 190 

In vivo Amino Acid Digestibility  191 

The amino acid composition of the feed and stripped feces from the rainbow trout was 192 

analyzed according to ISO 13903 21, and the apparent digestibility (ADC) of the amino 193 

acids 22 was calculated as follows: ADCi = (1-(Fi/Di x Dy/Fy)) x 100; where Fi and Di refer 194 

to the percentages of the amino acid (i) in the feces and diet, respectively, and Fy and Dy 195 

refer to the percentage of yttrium (y) in the feces and diet, respectively. 196 

 197 

1
H NMR-based Metabolomics Analyses 198 

Sample Preparation for Metabolomics Study of Plasma and Liver 199 

Preparing fish plasma samples for 1H NMR analyses were carried out as described 200 

previously 23, with slight modification. Briefly, Nanosep centrifugal filters with 3 kDa cut-201 

off (Pall Life Science, Port Washington, NY, USA) were washed three times with MilliQ 202 

water (2000 g, 12 min, 30 ºC) to remove glycerol from the filter membrane. For plasma 203 

analyses, pooled samples from 5 fish per tank were used. This included mixing, 100 µL of 204 

each plasma sample into one tube (total= 500 µL) and centrifuging at 13000 g at 4 ºC. 200 205 

µL of the pooled plasma samples were subsequently mixed with 350 µL of deuterium 206 

oxide (D2O) and 50 µL D2O containing 0.05 wt% of sodium-3-(trimethylsilyl)-2,2,3,3-207 

tetradeuteriopropionate (TSP) as internal standard. The pooled plasma samples were 208 

prepared in duplicates.  209 

Fish liver samples were extracted and prepared for 1H NMR analyses following the 210 

method described previously 24, with few modifications. Hence, 20 mg of lyophilized, 211 

grinded homorganic liver powder was whirl-mixed in 3 steps of 1 min duration each: first 212 
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in 300 µL ice-cold methanol, then in 300 µL ice-cold chloroform and third in 300 µL ice-213 

cold water. The samples were placed on ice for 10 min between each step and finally 214 

stored at 4 °C overnight for separation. The following day the samples were centrifuged 215 

(30 min, 1400 g, 4 ºC) (Eppendorf centrifuge 5417, USA), and following phase separation 216 

the aqueous and chloroform supernatant was collected in separate tubes. The collected 217 

aqueous phase samples were dried using an evacuated centrifuge (Eppendorf Concentrator 218 

Plus, Germany) for approximately 3 hours and re-dissolved with 550 µL D2O, 25µL 219 

MilliQ water and 25 µL D2O containing 0.05 wt% TSP. The chloroform phase samples 220 

were dried for approximately 1 hour and re-dissolved in 575 µL CDCl3 (99.96 atom% D) 221 

and 25 µL CDCl3 containing 0.05 wt% TSP. The liver samples were prepared in 222 

quintuplicate (5 individual fish per tank and diet). The plasma and liver samples were 223 

subsequently analyzed with 1H NMR in 5 mm NMR tubes (Bruker Spectrospin Ltd, 224 

BioSpin, Karlsruhe, Germany). 225 

 226 

1 
H NMR Spectroscopy, data processing and identification of the signals 227 

The plasma and liver samples were analyzed with a Bruker 600 MHz spectrometer 228 

(Bruker Biospin GmbH, Rheinstetten, Germany) using zgpr pulse sequence at 25 ºC with 229 

64 scans, a spectral width of 7,288 Hz collected into 32,768 data points, an acquisition 230 

time of 2.24 sec, and an interscan relaxation delay of 5 sec. The 1H NMR spectra for the 231 

chloroform liver phase was obtained using zg30 pulse sequence (Bruker) at 20 ºC with 64 232 

scans and 65,536 data points over a spectral width of 12,335 Hz. Acquisition time was 233 

2.65 sec and relaxation delay 1sec.  234 

All data were processed using the Bruker Topspin 3.0 software (Bruker) and Fourier-235 

transformed after multiplication by line broadening of 0.3 Hz. The spectra were 236 
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referenced to standard peak TSP (chemical shift 0 ppm), phased and baseline corrected. 237 

Each NMR spectrum was integrated using Matlab R2011b (Mathworks, USA) into 0.01 238 

ppm integral region (buckets) between 0.5-9.5 ppm and 0.8-9.0 ppm for aqueous liver 239 

phase and plasma extracts, respectively, in which area between 4.7 and 5.0 ppm (4.7 and 240 

5.15 ppm for plasma) corresponding to water signal was excluded and for chloroform 241 

liver samples between 0.6 and 5.5ppm. For the aqueous and chloroform liver phase each 242 

spectral region was normalized to the intensity of internal standard (TSP) for quantitative 243 

measurements and for plasma samples was normalized to the sum of total area. The 244 

chloroform samples were not analyzed further. For the plasma and aqueous liver samples 245 

the ChenomX NMR Suite version 8.1 profiler (ChenomX Inc, Edmonton, AB, Canada) 246 

was used to identify and quantify compounds. A total of 55 metabolites in the plasma and 247 

aqueous liver phase were identified by overlapping with standard spectra, and their 248 

concentrations were expressed in µmol/mg for liver and µmol/L for plasma. Assignments 249 

of the 1H NMR signals were carried out using ChenomX NMR Suite 8.1 library 250 

(ChenomX Inc), the Human Metabolome Database (www.hmdb.ca) and previous 251 

literature 24-26, and confirmed with 2D-NMR in case of multiplicity.  252 

Data Analyses   253 

The Simca-P software (version 14.0; Umetrics, Umeå, Sweden) was applied for 254 

multivariate data analyses of the absolute concentrations of the metabolites. All variables 255 

were “unit variance” (UV)-scaled. Principal component analyses (PCA) was used to get a 256 

first overview of the data and search for outliers. Outliers were observed using PCA-257 

Hotelling T2 Ellipse (95% confidential interval (CI)). Data on protein oxidation 258 

compounds, fish growth performance parameters, and metabolites were subjected to one-259 

way and two-way analysis of variance (ANOVA) and Duncan's multiple range tests to 260 

compare the effects of different experimental conditions examined and their main effects 261 
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and interactions. An independent Student’s t-Test analysis was performed to find out 262 

whether significantly different liver and plasma metabolites existed between fish fed the 263 

low (FTH0) and high (FTH24) level of feathermeal feeds. Statistical analyses were carried 264 

out using the IBM SPSS STATISTICS statistical program, (version 22.0, IBM 265 

Corporation, New York, USA). Differences were considered significant when P < 0.05 266 

unless otherwise indicated. 267 

 268 

RESULTS  269 

In the present study, we investigated the effects of two extrusion temperatures (100 and 270 

130 °C) and three feathermeal inclusion levels (0, 8, and 24%) on the chemical properties 271 

of proteins in the extrudates (i.e., protein oxidation products and AAR) and on fish growth 272 

performance (FCR, FI, and SGR) and in vivo AAs digestibility. In order to explain the 273 

underlying mechanism of how the feed parameters affected the growth performance, liver 274 

and plasma metabolites in individual rainbow trout were also examined following a 8 275 

weeks feeding study. Hence, all results were subjected to a multivariate data analysis to 276 

assess the overall relationships. In addition, the most common oxidation products and 277 

growth performance results are presented and discussed in details, while other results are 278 

presented in the supplementary material. 279 

 280 

Growth performance  281 

In general, all feeds were well accepted by the fish and the average body weight increased 282 

from 111.2 ± 2.6 g to 212.2 ± 10.9 g during the 8 weeks of feeding. There was a 283 

significant main effect of the level of FTH on the growth parameters (FI, SGR, and FCR), 284 
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while no main effect of the extrusion temperature was found (Table 3). Meanwhile, there 285 

was a significant interaction between the extrusion temperature and FTH level on FI and 286 

SGR (Table 3). A significantly higher FI was seen in fish fed feathermeal diets (FTH8 and 287 

FTH24) extruded at 100 °C compared to the control group (FTH0), while no similar effect 288 

was observed for diets processed at 130 °C (Fig. 1A). The feed intake in the control group 289 

(FTH0) was significantly higher when fed the diet extruded at 130 °C compared to 100 °C 290 

(Fig. 1A). The SGR of fish fed the FTH0 diet extruded at 100 °C was significantly lower 291 

than that of fish fed any of the other experimental feed (Fig. 1B). At the same time, 292 

replacing fishmeal with a high level of feathermeal (24%) significantly increased the FCR 293 

compared to the other groups independently of the extrusion temperature (Fig. 1C). 294 

 295 

Protein Oxidation and Amino Acid Racemization 296 

The PCA analysis (Fig. 2B) showed that the protein oxidation products, e.g. total 297 

carbonyl, NFK, and Schiff base grouped together, indicating a similar variance of the data. 298 

Hence, the oxidation and heat-induced products including PHP, carbonylation, and 299 

lanthionine together with methionine racemization (Fig. 3) serve as representative markers 300 

of changes in the primary protein structure following extrusion processing. For a detailed 301 

overview of the other protein degradation products (NFK, Schiff base, furosine, and 302 

specific AA racemization) the reader is referred to supplementary material (Fig. S1). The 303 

primary oxidation product, PHP, did not change significantly due to increased extrusion 304 

temperature to 130 °C irrespectively of the FTH inclusion levels (Fig. 3A). Only FTH24 305 

showed a significant increase in PHP as an effect of increasing the extrusion temperature 306 

from 100 to 130 °C. Carbonylation is a measure of the protein oxidation propagation and, 307 
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as seen in Fig. 3B, increasing both the extrusion temperature and the feathermeal inclusion 308 

level resulted in a significant increase in the level of total carbonyls.  309 

Regarding changes in the physical characteristics of the proteins, the amount of FTH had a 310 

significant effect on the formation of cross-links. The content of lanthionine was 311 

significantly higher in the extrudates with the highest level of feathermeal (FTH24) 312 

compared to that without feathermeal (FTH0), whereas no effect of processing 313 

temperature was found (Fig. 3C). Amino acid AAR can have a great impact on protein 314 

bioavailability and the degree of methionine racemization represents the physical changes 315 

due to AAR. Hence, increasing the level of feathermeal increased the degree of 316 

methionine racemization whereas no effect of processing temperature was found (Fig. 317 

3D). The same pattern was observed for racemization of phenylalanine (Fig S1F) while 318 

not similar effect was observed for the other tested amino acids (i.e., lysine, threonine, and 319 

valine; Fig S1B, D, and G, respectively) 320 

Correlation of Feed Variables with Growth Responses Variables 321 

In order to compare the results presented in Fig. 1 and 3 (and S1), PCA modelling was 322 

carried out. The resulting PCA plot of the feed variables and growth performance data 323 

show that the model was principally able to separate the different feeds by the first two 324 

components with the first principal component (PC1) explaining 72% of the variance in 325 

the data matrix and the second PC (PC2) explaining 14% (Fig. 2A). The extrudates, feed 326 

characteristics and fish growth performance data clearly grouped by the feathermeal level 327 

(Fig. 2), while samples were not separated according to temperature (Fig. S2). In general, 328 

an increase in feathermeal correlated with an increase in FCR, SGR, and FI (Fig. 2B). 329 

Moreover, the highest level of feathermeal correlated positively with an accumulation of 330 

oxidation and heat-induced products in the extrudates (e.g. PHP, carbonyls, NFK, Schiff 331 
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base, lanthionine, and furosine) compared to extrudates with no or low inclusion of 332 

feathermeal (Fig. 2A, B). The lack of a similar dependency of FTH level and extrusion 333 

temperature on the specific AAR (Fig. 3D, Fig. S1 B, D, F, G) is seen from the scattering 334 

of these data in the PCA plot, though a high accumulation level of AAR was correlated 335 

with samples with feathermeal included, especially with FTH24 (Fig. 2B). Furthermore, 336 

high in vivo digestibility of amino acids correlated largely with a lack of feathermeal in 337 

the feed (Fig. 2B).   338 

 339 

Correlation of Fish Metabolites (Liver and Plasma) with Growth Response Variables 340 

A PCA was also used to examine the covariance between fish growth performance, 341 

metabolites (liver and plasma), extrusion temperatures, and feathermeal inclusion levels 342 

(Fig. 4 and S3). The PCA scores plot of the liver and plasma metabolites and growth 343 

performance data displayed group separation according to the feathermeal inclusion levels 344 

along PC1, explaining 21.6 % of variation, whereas PC2 explained 12.6% of variation 345 

(Fig. 4A). Hence, separation was not as confined as the protein changes (Fig. 2), but 346 

similar to the protein changes no separation was observed with respect to extrusion 347 

temperature (Fig. S3).  348 

The variables important for the observed grouping included mainly AAs and organic acids 349 

(Fig. 4B, Table 4 & 5). Among the plasma AAs, phenylalanine, proline, valine, serine, 350 

tyrosine, leucine, and methionine correlated positively with the inclusion level of 351 

feathermeal. In contrast, plasma lysine and arginine were negatively correlated to the level 352 

of feathermeal (Fig. 4B). Only tyrosine, valine and phenylalanine were significantly 353 

different between dietary treatments following univariate statistics (Table 4). For the liver 354 

AAs, phenylalanine, arginine, methionine, valine, isoleucine, tyrosine, alanine, and 355 
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leucine were positively associated with fish fed FTH24, while liver lysine correlated 356 

positively with the control diet (FTH0). Detailed comparisons of liver metabolites are 357 

presented in Table 5. Furthermore, pyruvate level in the liver, plasma levels of lactate and 358 

glucose, FCR, SGR, and FI were positively correlated with FTH24 (Table 4 and Fig. 4B). 359 

Creatinine, creatine, acetate, NAD+, ATP, ADP, in liver were positively correlated with 360 

the control group (FTH0).  361 

Significantly Different Plasma and Liver Metabolites between FTH0 and FTH24 362 

The largest effects on plasma and liver metabolites (Fig. 4A) were seen between fish fed 363 

the high feathermeal diet and fish fed the control diet. A high inclusion of feathermeal 364 

resulted in a decrease in plasma creatinine, dimethylamine, trimethylamine, 365 

trimethylamine-n-oxide, n-methylhydantoin, and an increase in plasma phenylalanine, 366 

valine, methionine, tyrosine independently of the extrusion temperature (Table 4). In 367 

contrast, liver metabolites were with a few exceptions more affected by the extrusion 368 

temperature. Hence, a high inclusion of feathermeal in the diet extruded at a high 369 

temperature resulted in a decrease of creatine, creatinine, NADP+, taurine and threonine, 370 

whereas the low extrusion temperature of the same diet resulted in an increase in 371 

isoleucine, phenylalanine, valine and beta-alanine (Table 5).  372 

DISCUSSION 373 

The global shortage of fishmeal as a primary source of protein forces the aquafeed 374 

industry to use unconventional protein ingredients in formulated aquafeed 27. A large 375 

number of poultry-industry waste materials such as feathermeal can potentially be used. 376 

However, high concentrations of sulfur-containing AAs that are more susceptible to 377 

oxidation than fishmeal makes feathermeal questionable with respect to digestibility. 378 
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Hence, reduced fish growth 28-30 and altered immune response 31 have been reported when 379 

oxidized feeds have been used in aquaculture.  380 

In the present study, the extent of protein oxidation in the extruded feed was found to be a 381 

function of both extrusion cooking temperature and feathermeal inclusion level. Hence, 382 

mildly treated samples (100 °C) had fewer protein oxidation products compared to the 383 

more harshly treated samples (130 °C). Furthermore, the degree of racemization of the 384 

examined AAs correlated positively with the FTH inclusion, being highest in FTH24. The 385 

higher levels of AAR and protein oxidation products in feed with feathermeal proteins 386 

might be attributed to the transformation of free radicals formed from sulfur-containing 387 

AAs oxidized during extrusion cooking and turned into other AAs 32.  388 

The accumulation of lanthionine in feed with high FTH inclusion did not seem to be 389 

affected by the extrusion temperature. In comparison, previous studies have shown that 390 

heat treatment has a significant effect on the formation of unnatural AAs, particularly 391 

lanthionine, leading to a reduction in protein digestibility 33-34. The results in the current 392 

study are consistent with the observation that oxidative cross-linking occurring in 393 

feathermeal can reduce AAs digestibility in vivo. The digestibility of proteins typically 394 

decreases when the ratio of AAR increases due to the stereospecificity of proteinases and 395 

peptidases 32. Furthermore, the positive correlation between FCR and oxidation products 396 

found (Fig. 2) indicates that protein, being one of the most valuable components of the 397 

feed from a nutritional standpoint, can be made partly unobtainable to the fish due to heat-398 

induced damages. Hence, the levels of oxidation products and AAR in the feed combined 399 

with reduction in in vivo AAs digestibility and higher FI in fish fed FTH24 all suggest that 400 

the heat-induced damages on proteins plays a significant role in energy demanding 401 

process. 402 
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In aquafeed, an optimal proportion of all essential AAs is required for efficient protein 403 

utilization and growth of the fish 35. Feathermeal is deficient in several AAs including 404 

methionine, lysine, histidine, and tryptophan 36. In the present study, these essential AAs 405 

were therefore supplemented as free AAs to diets containing FTH (Table 1). It has 406 

previously been reported that lysine, sulfur-containing amino acids, and the indole ring of 407 

tryptophan are the AAs most susceptible sensitive to oxidation 37-38. Consistent with this, 408 

high level of protein oxidation was observed in the feed containing FTH supplemented 409 

with free essential AAs. Similar to the current study, a previous study has also shown that 410 

FCR increases when diets are supplemented with free AAs 39. The higher FI in fish fed 411 

high amounts of FTH may thus be a reflection of an increased energy demand deriving 412 

from de novo protein synthesis from AAs damaged during extrusion cooking or catabolic 413 

expenses associated with deaminating and excreting the damaged AAs. Furthermore, 414 

increased energy demand due to consumption of oxidized proteins might also be the 415 

reason for higher FI in the control group fed the diet extruded at 130 °C, in which higher 416 

protein oxidation were found compared to the diet extruded at 100 °C. 417 

A high inclusion level of feathermeal resulted in a higher hepatic pyruvate level. Pyruvate 418 

can be produced from glucose via glycolysis in the cytosol. It usually penetrates the 419 

mitochondria and is converted to acetyl Co-A which enters the tricarboxylic acid (TCA) 420 

cycle generating energy in form of Adenosine triphosphate (ATP) 40. An increase of 421 

pyruvate in the liver may thus indicate that its use in the TCA cycle was somehow 422 

affected. Consistent with this, lower levels of ATP correlated with a high dietary inclusion 423 

level of feathermeal, indicating that the liver cells were energy limited. Furthermore, the 424 

high correlation between FTH24 and the levels of lactate in both liver and plasma samples 425 

corroborate that pyruvate did not efficiently enter the TCA cycle, explaining that there 426 

was no need to deplete lactate from blood. Consistent with these results, a higher glucose 427 
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level in the plasma correlated with a high inclusion level of feathermeal. A high glucose 428 

content in the plasma of fish fed feed containing high levels of feathermeal may be related 429 

to an impaired TCA cycle leading to a reduction in the glycolytic activity and 430 

consequently an insufficient transfer of glucose from the blood stream into the body cells. 431 

The low levels of NAD+ in the liver of fish fed feed containing high levels of feathermeal 432 

are consistent with this hypothesis. Under normal conditions, NAD+ promotes the release 433 

of energy from pyruvate via the TCA cycle 40. Furthermore, a lack of pyruvate in the 434 

mitochondria would activate glutamine metabolism to ensure a persistent TCA cycle 435 

function 41. Consistent with this, the low concentrations of glutamine in the liver in the 436 

present study correlating with a high inclusion level of feathermeal might indicate 437 

glutamine depletion due to a lack of pyruvate.  438 

It is well known that dietary ingredients can be reflected in fish tissues or biofluids. In the 439 

present study, the hepatic levels of leucine, isoleucine, tyrosine, valine, methionine, 440 

arginine, and phenylalanine correlated positively with fish fed a high inclusion level of 441 

feathermeal. All of the above mentioned AAs are involved in energy metabolism 24, 40. 442 

The increase in the concentration of these AAs in the liver thus indicates that they were 443 

inhibited from entering the TCA metabolic pathway and thereby hindered from generating 444 

energy, potentially explaining the higher FI in fish fed FTH24 compared to the control 445 

group. Furthermore, tyrosine synthesized from the essential AA phenylalanine is a 446 

precursor for thyroid hormones and neurotransmitters 42. Thyroid hormones play an 447 

important role next to energy metabolism and protein synthesis, and indirectly affect the 448 

feed intake, feed conversation efficiency and growth performance. Thus, higher tyrosine 449 

(plasma) and phenylalanine (liver and plasma) levels in fish fed FTH24 may indicate a 450 

thyroid promoting effect of the feathermeal diet due to higher energy demands, 451 

subsequently leading to the observed increased feed intake.  452 
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Trimethylamine-n-oxide (TMAO) has protein-stabilizing capabilities and prevents 453 

oxidative damages 43-44. High TMAO levels can be obtained either from the diet or by 454 

endogenous biosynthesis from the trimethylamine moiety of choline 45. In the current 455 

study, we observed a lower level of TMAO with higher inclusion of feathermeal 456 

independently of the extrusion temperature in plasma and for high extrusion temperature 457 

in the liver. The observation might be explained with the lower levels of TMAO found in 458 

the diets (i.e., FTH0 vs. FTH24 for mild extrusion: 0.56 ± 0.06 µM/mg vs. 0.44 ± 0.02 459 

µM/mg, respectively; for harsh extrusion: 0.60 ± 0.00 µM/mg vs. 0.50 ± 0.00 µM/mg, 460 

respectively).     461 

In summary, the results in the current study showed that protein oxidation increases as a 462 

function of the extrusion temperature and dietary feathermeal inclusion level. Although, 463 

harshly treated feed samples with a higher level of feathermeal were more prone to 464 

oxidation and led to lower amino acid digestibility, the liver and plasma metabolites of the 465 

fish appeared to be affected mainly by the feathermeal inclusion level. Furthermore, the 466 

observed increase in certain AAs in the liver was presumably associated with energy 467 

metabolism, suggesting a metabolic disturbance at the hepatic level that may explain the 468 

higher FI and FCR in fish fed the highest FTH inclusion level. In comparison, a lower 469 

level of feathermeal (FTH8) resulted in an increased SGR without any adverse effect on 470 

FCR. To our knowledge, this is the first study correlating dietary protein oxidation effects, 471 

amino acid digestibility, and liver and plasma metabolomics with growth performance of 472 

fish as a means to explore the effects of replacing fishmeal with feathermeal in the diet. 473 

The study demonstrated that the studied variables were useful as indexes for monitoring 474 

fishmeal replacement with a new protein source in extruded fish feed. However, further 475 

in-depth research is needed to determine the fate of oxidation products, metabolic 476 
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pathways, and pyruvate carrier inhibitors potentially affected by feathermeal included in 477 

extruded aquafeed. 478 

ABBREVIATIONS USED 479 

(FTH: feathermeal, AA: amino acids;  FI: feed intake; SGR: specific growth rate; FCR: 480 

feed conversion ratio; AAR: amino acid racemization; PHP: Protein hydroperoxides; AU: 481 

arbitrary intensity units; FDAA: 2,4-Dinitro-5-fluorophenyl; ADC: apparent digestibility; 482 

TSP: sodium-3-(trimethylsilyl)-2,2,3,3-tetradeuteriopropionate; PCA: Principal 483 

component analyses; CI: confidential interval; ANOVA: analysis of variance; NFK: N-484 

formylkynurenine; ATP: Adenosine triphosphate; TCA: tricarboxylic acid; TMAO: 485 

Trimethylamine-n-oxide 486 
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 499 

SUPPORTING INFORMATION  500 

Following supporting information are available free of charge on the ACS Publications 501 

website at: DOI: 502 

Metabolite differences in liver and plasma of fish fed the control diet (FTH0) and the diet 503 

with high inclusion of feathermeal (Table S1); Effect of different inclusion levels of 504 

feathermeal (0, 8, and 24%) and extrusion temperatures (100 and 130°C) on Schiff Base, N-505 

Formylkynurenine, furosine, and racemization of amino acids (lysine, threonine, phenylalanine, 506 

and valine) in the different extrudates (Fig. S1); Effect of different extrusion temperatures 507 

(100 and 130°C) on differentiation of the studied observations based on protein and feed 508 

functional characteristics, and growth performance of the fish fed extruded feed 509 

containing different levels of feathermeal (Fig. S2); Effect of different extrusion 510 

temperatures (100 and 130°C) on differentiation of the studied observations based on 511 

growth response variables and metabolites from liver and plasma of the fish fed extruded 512 

feed containing different levels of feathermeal (Fig. S3) 513 
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FIGURE CAPTIONS  

Fig. 1: Effect of different inclusion levels of feathermeal (0, 8, and 24%) and extrusion 

temperatures (100 and 130 °C) on growth performance: feed intake (A), specific growth 

rate (B), feed conversion ratio (C) of rainbow trout after 8 weeks feeding trial with the 

different feeds, FTH0: 0% feathermeal, FTH8: 8% feathermeal, FTH24: 24% feathermeal. 

Results are expressed as mean ± SD and statistically significant differences between 

individual treatments assessed by Duncan test at P < 0.05 are indicated with different 

letters in superscript.  

Fig. 2: Scores (A) and loading (B) plots based on extrudates and feed protein 

characteristics and fish growth performance for different levels of feathermeal, FTH0: 0% 

feathermeal, FTH8: 8% feathermeal; FTH24: 24% feathermeal. FCR: feed conversion 

ratio, SGR: specific growth rate, FI: feed intake.     ⃝: Amino acids digestibility; ☆☆☆☆: 

Oxidation (lanthionine (1), total carbonyls (2), Schiff base (3), N-formyl kynurenine 

(NFK) (4), protein hydroperoxides (PHP) (5), and furosine (6); ◇◇◇◇: Growth performance 

(FCR, FI, and SGR).  

Fig. 3: Effect of different inclusion levels of feathermeal (0, 8, and 24%) and extrusion 

temperatures (100 and 130 °C) on protein hydroperoxides (A), carbonylation (B), 

lanthionine (C), and racemization of methionine (D) in the different extrudates, FTH0: 0% 

feathermeal, FTH8: 8% feathermeal, FTH24: 24% feathermeal. Results are expressed as 

mean ± SD, except for lanthionine in FTH0 and racemization of methionine in FTH8 

extruded at 100 °C, which was measured once. Statistically significant differences 

between individual treatments assessed by Duncan test at P < 0.05 are indicated with 

different letters in superscript, except for those stated before.   
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Fig. 4: Scores (A) and loadings (B) plot based on growth response variables and 

metabolites from liver and plasma of the fish fed extruded feed containing different levels 

of feathermeal. FTH0: control fish fed feed with 0% feathermeal, FTH8: fish fed feed 

with 8% feathermeal; FTH24: fish fed feed with 24% feathermeal. ■: Plasma metabolites; 

●: Liver metabolites; ◇◇◇◇: Growth Performance.  
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Table 1: Recipes and Nutrient Composition of Meal Mix, Extrudates, and Feed Including 

Three Inclusion Levels of Feathermeal (0, 8, and 24%)  

Nutrient composition 
FTH0 

(g/100 g DM) 

FTH8 

(g/100 g DM) 

FTH24 

(g/100 g DM) 

Recipe  
  

 

  Fishmeal 52.57 42.84 20.67 

  Feathermeal  
 

8.00 24.00 

  Wheat flour 19.70 21.00 24.07 

  L-Lysine HCI  
 

 1.08 

  DL-Methionine 
 

0.01 0.37 

  L-Histidine 0.16 0.31 0.66 

  L-Tryptophan 
 

0.01  

  Mono-calcium phosphate 
 

 0.7 

  Yttrium 0.05 0.05 0.05 

  Fish oil* 6.40 6.40 6.50 

  Rapeseed oil* 19.10 19.30 19.50 

Fishmeal    

 Protein 71   

 Lipid 10.30   

FTH    

 Protein 86.40   

 Lipid 6.90   

Meal mixes
a
 
 
 

 
  

  Protein 51.20 53.60 52.60 

  Lipid 9.10 8.60 7.50 

Extrudates
b
  

 
  

  Protein 53.3±1.00 53.0±0.30 54.7±1.40 

  Lipid 9.50±0.20 8.90±0.10 7.60±0.10 

Feed
c
   

 
  

  Protein 39.9±0.50 39.7±1.50 40.2±0.70 

  Lipid 34.7±0.20 33.7±0.10 32.5±1.40 

  Total ash 8.95±0.07 7.55±0.07 5.40±0.00 
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DM: dry matter. FTH: feathermeal. *: oils used for coating the final feed. asampled after 

meal mixer and before pre-conditioning. bsampled at the end of the extruder. csampled 

after oil coating. The values for extrudates and feed are given as the mean±SD. 
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Table 2: m/z Values and Fragments Used for LC-MS/MS Analysis 

Compound [M+H] m/z Fragments m/z 

Deuterated lysine 151 88.1 and 134.1  

Lanthionine 209 120.0  

Lysinoalanine 234 130.1 and 84.1 
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Table 3: Effects of Extrusion Temperatures (100 and 130 °C) and Feathermeal Levels (0, 

8, and 24%), and Their Interaction on Protein Oxidation and Growth Parameters of Fish 

Fed with the Experimental Feeds 

 Temperature FTH 

level 

Temperature х FTH 

level 

FCR NS * NS 

SGR NS * * 

FI NS * * 

PHP * * * 

Carbonyls * * * 

NFK * * * 

Schiff base * * * 

Lanthionine NS * NS 

Furosine NS NS NS 

FTH: Feathermeal, FCR: feed conversion ratio; SGR: specific growth rate; FI: feed intake; 

PHP: protein hydroperoxides; NFK: N-formylkynurenine. *: Significant at P-value <0.05, 

NS: not significant 
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Table 4: Significantly Different Absolute Concentrations of Metabolites (µmol/L) in 

Plasma of Rainbow Trout Fed the Experimental Diets with Different Inclusion Levels of 

Feathermeal (0, 8 and 24%) at Different Extrusion Temperatures (100 and 130 °C) 

Metabolites 
FTH0 FTH8 FTH24 

100 °C 130 °C 100 °C 130 °C 100 °C 130 °C 

Aromatic amino acid  

Phenylalanine 131 ± 14.7 a 119 ± 1.35 a 150 ± 13.7 abc 126 ± 6.06 a 152 ± 10.2 b 173 ± 14.5 b 
Tyrosine 50.6 ± 2.87 a 51.2 ± 6.50 a 58.2 ± 19.1 abc 46.5 ± 10.4 a 68.8 ± 6.91 b 77.2 ± 4.79 b 

Branched-chain amino acid  

Valine 472 ± 60.0 a 479 ± 5.84 a 575 ± 146 abc 528 ± 47.7 ab 712 ± 120 c 664 ± 19.0 bc 

Other amino acid 

Aspartate 19.0 ± 3.48 b 16.2 ± 0.18 ab 13.5 ± 2.95 ab 20.0 ± 6.46 b 13.4 ± 3.23 ab 11.7 ± 2.21 a 

Methionine 148.5 ± 21.7 a 145.2 ± 23.0 
a 

164.4 ± 42.1 a 142.5 ± 33.6 a 295.7 ± 55.6 b 354.3 ± 22.5 b 

Glutamate 67.0 ± 31.3 ab 59.3 ± 25.5 a 126 ± 27.2 b 72.3 ± 22.9 ab 84.6 ± 52.8 ab 74.2 ± 10.2 ab 

Organic acid and derivates 

Betaine 42.8 ± 1.96 a 60.3 ± 3.77 ab 58.9 ± 5.33 ab 61.1 ± 9.83 ab 79.1 ± 27.02 b 71.3 ± 9.62 b 

Organic heterocyclic compounds 

Creatinine 128 ± 24.8 cd 180 ± 29.2 d 107 ± 36.7 bc 114 ± 53.1 bc 47.1 ± 1.37 a 58.7 ± 12.9 ab 

N-Methylhydantoin 177 ± 23.0 c 173 ± 16.5 c 164 ± 25.5 bc 138 ± 6.54 b 83.7 ± 12.0 a 87.5 ± 10.6 a 

Organic nitrogen compounds 

Dimethylamine 10.2 ± 1.51 b 11.8 ± 4.75 b 9.95 ± 2.31 ab 9.45 ± 5.07 ab 4.60 ± 0.69 a 5.05 ± 0.48 a 
Trimethylamine 3.90 ± 0.60 bc 4.75 ± 0.09 c 3.20 ± 1.53 abc 3.45 ± 1.04 abc 2.00 ± 0.46 a 3.00 ± 0.54 ab 

Trimethylamine N-oxide 24.9 ± 0.79 c 21.9 ± 1.66 bc 19.9 ± 5.68 ab 16.0 ± 4.61 ab 14.0 ± 2.80 a 17.2 ± 0.71 ab 

Organic oxygen compounds 

Acetone 9.60 ± 1.19 ab 11.4 ± 2.5 b 8.75 ± 0.74 a 7.80 ± 0.84 a 7.85 ± 0.57 a 7.40  ± 0.48 a 

Glucose 
9719 ± 1138 
ab 

9198 ± 643 a 
12367 ± 2103 
b 

10772 ± 1599 
ab 

13212 ± 2679 
b 

11432 ± 2170 
ab 

myo-Inositol 78.4 ± 29.2 ab 101 ± 34.9 b 55.6 ± 8.68 a 80.0 ± 13.6 ab 63.6 ± 21.7 ab 61.2 ± 14.3 ab 

trans-4-Hydroxy-L-
proline 

88.0 ± 16.3 ab 93.3 ± 8.17 ab 106 ± 22.4 b 81.7 ± 15.1 ab 69.1 ± 10.9 a 86.7 ± 15.2 ab 

Experimental diets: FTH0: fish fed control feed without feathermeal, FTH8: fish fed the 

8% feathermeal diet; FTH24: fish fed the 24% feathermeal diet. Absolute concentration 

values are expressed as mean ± SD (n=21 per diet). abcdmean values across rows with 

different superscripts assessed by Duncan test are significantly different (P < 0.05)  
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Table 5: Significantly Different Absolute Concentrations of Metabolites (µmol/mg) in 

Liver of Rainbow Trout Fed the Experimental Diets with Different Inclusion Levels of 

Feathermeal (0, 8 and 24%) at Different Extrusion Temperatures (100 and 130 °C)  

Metabolites 
FTH0 FTH8 FTH24 

100 °C 130 °C 100 °C 130 °C 100 °C 130 °C 

Aromatic amino acid 

Phenylalanine 
0.68 ± 0.04 
ab 

0.70 ± 0.09 
ab 

0.81 ± 0.18 
ab 

0.66 ± 0.05 a 0.86 ± 0.03 b 
0.82 ± 0.09 
ab 

Branched-chain amino acid 

Isoleucine 0.78 ± 0.10 a 
0.91 ± 0.14 
ab 

1.00 ± 0.11 
b 

0.80 ± 0.02 a 1.01 ± 0.06 b 
0.86 ± 0.06 
b 

Leucine 
1.88 ± 0.20 
ab 

2.17 ± 0.24 
ab 

1.98 ± 0.22 
ab 

1.79 ± 0.15 a 
2.00 ± 0.26 
ab 

2.25 ± 0.28 
b 

Valine 1.28 ± 0.25 a 
1.64 ± 0.18 
bc 

2.14 ± 0.28 e 
1.46 ± 0.03 
ab 

2.07 ± 0.11 
dc 

1.80 ± 0.08 
cd 

Other amino acids 

Alanine 
23.3 ± 2.44 
ab 

21.2 ± 2.69 a 
22.3 ± 2.60 
ab 

24.7 ± 1.91 
ab 

27.2 ± 3.88 b 
24.3 ± 3.03 
ab 

Creatine 
1.57 ± 0.14 
ab 

1.68 ± 0.19 b 
1.49 ± 0.09 
ab 

1.38 ± 0.18 a 
1.42 ± 0.18 
ab 

1.32 ± 0.05 a 

Glutamate 
23.8 ± 3.72 
ab 

29.4 ± 4.78 b 
23.6 ± 0.59 
ab 

23.5 ± 2.51 a 
24.3 ± 3.11 
ab 

26.4 ± 0.57 
ab 

Lysine 
2.11 ± 0.39 
ab 

2.65 ± 0.15 
ab 

1.81 ± 0.34 a 1.97 ± 0.23 a 1.66 ± 0.37 a 
1.67 ± 0.31 
b 

Methionine 0.24 ± 0.03 a 0.49 ± 0.14 b 
0.62 ± 0.18 
cd 

0.34 ± 0.08 
ab 

0.58 ± 0.11 
cd 

0.70 ± 0.02 a 

Threonine 
5.11 ± 0.81 
ab 

5.22 ± 0.42 b 
4.57 ± 0.21 
ab 

5.05 ± 0.37 
ab 

4.65 ± 0.38 
ab 

4.25 ± 0.20 a 

Nucleosides, nucleotides and analogues 

NADP+ 0.19 ± 0.04 b 
0.18 ± 0.02 
cd 

0.16 ± 0.02 
ab 

0.15 ± 0.03 
ab 

0.17 ± 0.01 
ab 

0.14 ± 0.01 a 

UDP-glucose 1.55 ± 0.02 d 
1.44 ± 0.12 
cd 

1.24 ± 0.17 
ab 

1.33 ± 0.07 
bc 

1.1 ± 0.05 a 
1.31 ± 0.03 
bc 

UDP-glucoronate 1.74 ± 0.17 b 1.82 ± 0.04 b 1.55 ± 0.03 a 1.55 ± 0.05 a 1.58 ± 0.03 a 1.45 ± 0.07 a 
Organic acid and derivates 

2-Aminobutyrate 
0.21 ± 0.01 
ab 

0.29 ± 0.09 b 
0.24 ± 0.03 
ab 

0.19 ± 0.04 a 0.18 ± 0.04 a 
0.20 ± 0.01 
ab 

3-Hydroxyisobutyrate 
0.15 ± 0.03 
ab 

0.17 ± 0.03 
ab 

0.17 ± 0.03 
ab 

0.14 ± 0.00 a 
0.17 ± 0.01 
ab 

0.19 ± 0.04 
b 

5-Aminopentanoate 3.14 ± 1.00 c 
2.56 ± 0.46 
abc 

1.87 ± 0.21 
ab 

2.68 ± 0.51 
bc 

2.20 ± 0.25 
abc 

1.63 ± 0.25 a 

Formate 
0.36 ± 0.09 
ab 

0.31 ± 0.05 
ab 

0.41 ± 0.07 
b 

0.29 ± 0.02 a 
0.38 ± 0.03 
ab 

0.33 ± 0.06 
ab 

N,N-Dimethylglycine 
0.03 ± 0.00 
abc 

0.04 ± 0.01 c 
0.03 ± 0.01 
bc 

0.02 ± 0.00 
ab 

0.02 ± 0.00 a 0.02 ± 0.00 a 

Sarcosine 0.21 ± 0.09 a 
0.06 ± 0.01 
ab 

0.04 ± 0.01 a 0.05 ± 0.01 a 0.03 ± 0.00 a 0.06 ± 0.02 a 

Taurine 141 ± 7.94 b 138 ± 3.13 b 136 ± 1.51 b 133 ± 5.33 b 134 ± 5.72 b 115± 9.34 a 

β-Alanine 
2.63 ± 0.45 
ab 

2.22 ± 0.37 a 
2.95 ± 0.38 
bc 

2.49 ± 0.09 
ab 

3.55 ± 0.38 c 
2.49 ± 0.33 
ab 

Organic heterocyclic compounds 

Creatinine 0.82 ± 0.24 b 0.85 ± 0.27 b 0.44 ± 0.05 a 
0.60 ± 0.12 
ab 

0.52 ± 0.18 
ab 

0.39 ± 0.05 a 

N-Methylhydantoin 0.59 ± 0.04 d 0.51 ± 0.10 c 
0.42 ± 0.07b 

c 

0.45 ± 0.02 
bc 

0.39 ± 0.03 b 0.26 ± 0.04 a 

Organic nitrogen compounds 

O-Phosphocholine 4.22 ± 0.72 b 
4.09 ± 0.13 
ab 

3.04 ± 0.52 
ab 

4.28 ± 1.84 b 2.47 ± 0.70 a 
2.67 ± 0.21 
ab 

Trimethylamine N-
oxide 

0.81 ± 0.22 c 
0.62 ± 0.10 
abc 

0.43 ± 0.04 a 
0.68 ± 0.15 
bc 

0.48 ± 0.04 
ab 

0.44 ± 0.04 a 

Organic oxygen compounds 

Glucose 54.7 ± 5.07 69.7 ± 24.0 b 71.6 ± 13.0 41.0 ± 11.8 a 63.5 ± 9.83 51.2 ± 5.84 
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ab b ab ab 

Experimental diets: FTH0: fish fed control feed without feathermeal, FTH8: fish fed the 

8% feathermeal diet; FTH24: fish fed the 24% feathermeal diet. Absolute concentration 

values are expressed as mean ± SD (n=21 per diet). abcdmean values across rows with 

different superscripts assessed by Duncan test are significantly different (P<0.05)  
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Fig. 1:  
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Fig. 2:  
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Fig. 3:  
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Fig. 4: 
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