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Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.
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1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally
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needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14957

Hardware Tailored Linear Algebra for
Implicit Integrators in Embedded NMPC �

Gianluca Frison ∗,∗∗ Rien Quirynen ∗∗ Andrea Zanelli ∗∗

Moritz Diehl ∗∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, email: {giaf, jbjo} at dtu.dk

∗∗ Department of Microsystems Engineering, University of Freiburg,
email: {gianluca.frison, andrea.zanelli, moritz.diehl} at
imtek.uni-freiburg.de, rien.quirynen at esat.kuleuven.be

Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.

Keywords: Nonlinear predictive control, Embedded optimization, Computer software

1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally

� This research was supported by the EU via ERC-HIGHWIND
(259 166), ITN-TEMPO (607 957), ITN-AWESCO (642 682), by
the DFG in context of the Research Unit FOR 2401, and by Det
Frie Forskningsr̊ad (DFF - 6111-00398).

needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14957

Hardware Tailored Linear Algebra for
Implicit Integrators in Embedded NMPC �

Gianluca Frison ∗,∗∗ Rien Quirynen ∗∗ Andrea Zanelli ∗∗

Moritz Diehl ∗∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, email: {giaf, jbjo} at dtu.dk

∗∗ Department of Microsystems Engineering, University of Freiburg,
email: {gianluca.frison, andrea.zanelli, moritz.diehl} at
imtek.uni-freiburg.de, rien.quirynen at esat.kuleuven.be

Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.

Keywords: Nonlinear predictive control, Embedded optimization, Computer software

1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally

� This research was supported by the EU via ERC-HIGHWIND
(259 166), ITN-TEMPO (607 957), ITN-AWESCO (642 682), by
the DFG in context of the Research Unit FOR 2401, and by Det
Frie Forskningsr̊ad (DFF - 6111-00398).

needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14957

Hardware Tailored Linear Algebra for
Implicit Integrators in Embedded NMPC �

Gianluca Frison ∗,∗∗ Rien Quirynen ∗∗ Andrea Zanelli ∗∗

Moritz Diehl ∗∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, email: {giaf, jbjo} at dtu.dk

∗∗ Department of Microsystems Engineering, University of Freiburg,
email: {gianluca.frison, andrea.zanelli, moritz.diehl} at
imtek.uni-freiburg.de, rien.quirynen at esat.kuleuven.be

Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.

Keywords: Nonlinear predictive control, Embedded optimization, Computer software

1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally

� This research was supported by the EU via ERC-HIGHWIND
(259 166), ITN-TEMPO (607 957), ITN-AWESCO (642 682), by
the DFG in context of the Research Unit FOR 2401, and by Det
Frie Forskningsr̊ad (DFF - 6111-00398).

needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14957

Hardware Tailored Linear Algebra for
Implicit Integrators in Embedded NMPC �

Gianluca Frison ∗,∗∗ Rien Quirynen ∗∗ Andrea Zanelli ∗∗

Moritz Diehl ∗∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, email: {giaf, jbjo} at dtu.dk

∗∗ Department of Microsystems Engineering, University of Freiburg,
email: {gianluca.frison, andrea.zanelli, moritz.diehl} at
imtek.uni-freiburg.de, rien.quirynen at esat.kuleuven.be

Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.

Keywords: Nonlinear predictive control, Embedded optimization, Computer software

1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally

� This research was supported by the EU via ERC-HIGHWIND
(259 166), ITN-TEMPO (607 957), ITN-AWESCO (642 682), by
the DFG in context of the Research Unit FOR 2401, and by Det
Frie Forskningsr̊ad (DFF - 6111-00398).

needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14957



	 Gianluca Frison  et al. / IFAC PapersOnLine 50-1 (2017) 14392–14398	 14393

Hardware Tailored Linear Algebra for
Implicit Integrators in Embedded NMPC �

Gianluca Frison ∗,∗∗ Rien Quirynen ∗∗ Andrea Zanelli ∗∗

Moritz Diehl ∗∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, email: {giaf, jbjo} at dtu.dk

∗∗ Department of Microsystems Engineering, University of Freiburg,
email: {gianluca.frison, andrea.zanelli, moritz.diehl} at
imtek.uni-freiburg.de, rien.quirynen at esat.kuleuven.be

Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.

Keywords: Nonlinear predictive control, Embedded optimization, Computer software

1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally

� This research was supported by the EU via ERC-HIGHWIND
(259 166), ITN-TEMPO (607 957), ITN-AWESCO (642 682), by
the DFG in context of the Research Unit FOR 2401, and by Det
Frie Forskningsr̊ad (DFF - 6111-00398).

needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14957

Hardware Tailored Linear Algebra for
Implicit Integrators in Embedded NMPC �

Gianluca Frison ∗,∗∗ Rien Quirynen ∗∗ Andrea Zanelli ∗∗

Moritz Diehl ∗∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, email: {giaf, jbjo} at dtu.dk

∗∗ Department of Microsystems Engineering, University of Freiburg,
email: {gianluca.frison, andrea.zanelli, moritz.diehl} at
imtek.uni-freiburg.de, rien.quirynen at esat.kuleuven.be

Abstract: Nonlinear Model Predictive Control (NMPC) requires the efficient treatment of
the dynamic model in the form of a system of continuous-time differential equations. Newton-
type optimization relies on a numerical simulation method in addition to the propagation of
first or higher order derivatives. In the case of stiff or implicitly defined dynamics, implicit
integration schemes are typically preferred. This paper proposes a tailored implementation of
the necessary linear algebra routines (LU factorization and triangular solutions), in order to
allow for a considerable computational speedup of such integrators. In particular, the open-
source BLASFEO framework is presented as a library of efficient linear algebra routines for
small to medium-scale embedded optimization applications. Its performance is illustrated on
the nonlinear optimal control example of a chain of masses. The proposed library allows for
considerable speedups and it is found to be overall competitive with both a code-generated
solver and a high-performance BLAS implementation.

Keywords: Nonlinear predictive control, Embedded optimization, Computer software

1. INTRODUCTION

Optimization based control and estimation techniques
have gained an increasing popularity, because of their
ability to directly treat the, possibly nonlinear, con-
straints, system dynamics and objectives. This paper
targets the use of Nonlinear Model Predictive Con-
trol (NMPC) (Mayne and Rawlings, 2013), which requires
the solution of a nonlinear nonconvex Optimal Control
Problem (OCP) at each sampling instant. Especially in
case of fast dynamic systems, the corresponding compu-
tational burden can form a major challenge. Note that
Moving Horizon Estimation (MHE) techniques typically
require the online solution of a similar OCP formulation.
For this purpose, tailored online algorithms have been de-
veloped for real-time optimal control as discussed in (Diehl
et al., 2009; Kirches et al., 2010; Ohtsuka, 2004).

An important algorithmic ingredient in any direct optimal
control method consists of the integration scheme for the
numerical simulation of the nonlinear system of differential
equations (Bock and Plitt, 1984). Especially in case of
stiff or implicitly defined dynamics, implicit integrators
are typically used to efficiently provide an accurate dis-
cretization of the continuous-time problem (Hairer and
Wanner, 1991). When using a Newton-type optimization
algorithm (Nocedal and Wright, 2006), one additionally
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needs the efficient propagation of first or possibly even
second order derivatives (Griewank and Walther, 2008;
Quirynen et al., 2017).

As discussed in (Quirynen et al., 2015, 2016), the compu-
tational bottleneck in the implementation of such implicit
integrators with tailored sensitivity propagation, typically
corresponds to the Linear Algebra (LA) routines. Note
that, in combination with structure exploiting optimal
control algorithms, dense instead of sparse LA packages
can be used in general (Frison, 2015). More specifically,
the present paper focuses on the efficient factorization of
the Jacobian matrix and its reuse for the corresponding
linear system solutions in the implicit integrator. For this
purpose, high-performance open-source BLAS implemen-
tations can be used such as GotoBLAS (Goto and Geijn,
2008), OpenBLAS (OpenBLAS, 2011) and BLIS (Van Zee
and van de Geijn, 2015), as well as proprietary imple-
mentations such as Intel’s MKL and AMD’s ACML. In
the case of small embedded applications, the technique of
automatic code generation has been shown to be relatively
successful (Houska et al., 2011; Mattingley et al., 2010).

Unlike the above mentioned BLAS implementations (which
are generally optimized for large-scale problems) and code
generation tools (targeting small-scale systems), we pro-
pose highly efficient implementations for a wide range
of small to medium-scale embedded optimization appli-
cations. The open-source BLASFEO (Frison et al., 2017)
framework is introduced which provides highly optimized
dense LA routines, specially tailored to give the best
performance for the typical matrix sizes of interest. Cur-
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rently, BLASFEO provides three implementations: a high-
performance one (further developing the implementation
scheme originally proposed in HPMPC (Frison et al.,
2014)), a reference one (coded in plain C with focus on
small-scale performance) and wrappers to key BLAS and
LAPACK routines. The high-performance implementation
is the most noteworthy. It provides a matrix format op-
timizing cache usage for small to medium size matrices,
and assembly-coded LA kernels optimized to exploit the
specific hardware features of many computer architectures.
Therefore, BLASFEO provides efficient LA routines for a
wide range of matrix sizes.

The paper is organized as follows. Section 2 introduces
the use of implicit integrators with a direct sensitivity
propagation for embedded predictive control. Section 3
discusses the efficient implementation of the corresponding
LA routines, with a focus on the LU factorization and
Section 4 presents the open-source implementation in the
BLASFEO framework. Section 5 illustrates the numerical
performance of the proposed implementation, including
the case study of the nonlinear optimal control of a chain
of masses. Section 6 finally concludes the paper.

Contribution: this paper presents the efficient implemen-
tation of the dense LU factorization and relative trian-
gular solutions in the BLASFEO framework, tailored to
be used in implicit integrators for embedded optimization
applications. Even though the proposed approach follows
the guidelines of the HPMPC library, using register block-
ing, vectorization based instruction sets and a tailored
panel-major storage format, this paper features a novel
hardware tailored implementation of the LU factorization,
including the efficient implementation of partial pivoting.
The contribution of the present paper is orthogonal to
the improvements in integration algorithms, as it can be
combined with any implicit integration scheme. Depending
on the problem size, a speedup of up to one order of
magnitude is observed, with respect to code-generated LA
currently employed in embedded optimization.

2. IMPLICIT INTEGRATORS FOR EMBEDDED
PREDICTIVE CONTROL

Let us consider the following parametric optimal control
problem (OCP) formulation in discrete time

min
X,U

N−1∑
i=0

l(xi, ui) +m(xN ) (1a)

s.t. 0 = x0 − x̂0, (1b)

0 = xi+1 − φ(xi, ui), i = 0, . . . , N − 1, (1c)

0 ≥ h(xi, ui), i = 0, . . . , N − 1, (1d)

0 ≥ r(xN ), (1e)

with state trajectory X = [x�
0 , . . . , x

�
N ]�, where xi ∈ Rnx

and control inputs U = [u�
0 , . . . , u

�
N−1]

�, where ui ∈ Rnu .
The objective (1a) consists of a stage cost l(·) for each of
the intervals i = 0, . . . , N − 1, and a terminal cost m(·).
The function φ(·) defines the continuity constraint in (1c).
Path constraints can be specified in (1d), in addition to
a terminal constraint (1e). The parametric optimization
problem depends on x̂0 in (1b), which denotes the current
state estimate of the system.

Note that the structured OCP in Eq. (1) is common in
practice and can, for example, be obtained using direct
multiple shooting for a continuous-time OCP formulation
as in (Bock and Plitt, 1984).

2.1 Online Algorithms for Nonlinear MPC

Any nonlinear optimization solver can be used to solve
the NLP in Eq. (1). This paper considers a Sequential
Quadratic Programming (SQP) approach, which has been
shown to work well for Nonlinear MPC in (Diehl et al.,
2009). It solves a sequence of Quadratic Program (QP)
approximations and converges to a locally optimal solution
of the original NLP (Nocedal and Wright, 2006). When
the OCP consists of a least-squares type objective, the
Generalized Gauss-Newton (GGN) method (Bock, 1983)
is typically used. All nonlinear functions in the NLP need
to be linearized at each SQP iteration. For this purpose,
Algorithmic Differentiation (AD) (Griewank and Walther,
2008) can be used to efficiently evaluate derivatives.

In NMPC, one needs to solve this parametric NLP (1)
at each time step. An efficient continuation technique is
part of the Real-Time Iteration (RTI) scheme as pre-
sented in (Diehl et al., 2002). The aim is to minimize
the computational delay between obtaining the new state
estimate x̂0 and applying the next control input. There are
different options to efficiently solve the large structured
QP subproblem. For our case study in Section 5, the
combination of condensing with the embedded active-set
solver qpOASES is used (Ferreau et al., 2014).

2.2 Implicit Integrators in Newton-type Optimization

The dynamic model is typically described as

0 = f(ẋ(t), x(t), u(t)), (2)

which denotes a set of implicit Ordinary Differential Equa-
tions (ODE), where the Jacobian ∂f

∂ẋ (·) is assumed to be
invertible. The function φ(xi, ui) in the continuity con-
straint (1c) then represents a numerical simulation of these
dynamics (2) over the interval [ti, ti+1], starting from the
initial value x(ti) = xi and applying the input ui. Note
that this can be readily extended to an index-1 system of
Differential-Algebraic Equations (DAE).

For systems having stiff or implicit dynamics, implicit
integration schemes are typically preferred as they allow
for performing these numerical simulations at a lower com-
putational cost than explicit schemes (Hairer and Wanner,
1991). Let us consider the popular class of Implicit Runge-
Kutta (IRK) schemes, for which one integration step can
be written in a compact form as

xi,n+1 = F (xi,n,Ki,n, ui)

0 = G(xi,n,Ki,n, ui),
(3)

for n = 0, . . . , Ns − 1 where Ns denotes the number of
integration steps. The simulation result xi,Ns

can then be
used to define the function φ(xi, ui), given the initial state
value xi,0 = xi. In the case of an s-stage IRK formula,
the auxiliary variables Ki,n ∈ Rs nx are defined for each
integration step.

For a well-defined set of dynamics (2), the Jacobian ∂G
∂K (·)

is invertible (Hairer and Wanner, 1991). This means that
the stage variables Ki,n can be computed iteratively
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K
[j+1]
i,n = K

[j]
i,n − ∂G

∂K

−1

G(xi,n,K
[j]
i,n, ui), (4)

where j denotes the iteration number, using a Newton-
type implementation. Note that one can avoid performing
multiple inner iterations, by lifting such an implicit inte-
gration scheme in a Newton-type optimization algorithm
as discussed in (Quirynen et al., 2015, 2016). Based on
the implicit function theorem, also the first order forward
sensitivities can be computed as

dKi,n

d(xi, ui)
= − ∂G

∂K

−1 ( ∂G

∂xi,n

dxi,n

d(xi, ui)
+

[
0

∂G

∂ui

])
. (5)

Note that both the numerical elimination of the IRK
variables in (4) and the propagation of first order sensi-
tivities (5), requires the efficient computation of a factor-
ization for the matrix ∂G

∂K and the corresponding linear
system solutions. This paper focuses on these algorithmic
aspects and presents a hardware tailored software imple-
mentation for the associated LA routines.

3. EFFICIENT LINEAR SYSTEM SOLUTION

The matrix ∂G
∂K in (4) and in (5) is in general not symmetric

and, in this paper, it is considered as a dense matrix. It
can therefore be factorized using a dense LU factorization.

3.1 Introduction to the LU Factorization

The LU factorization can be employed to factorize a
generic n × n matrix A as the product of a lower trian-
gular matrix L and an upper triangular matrix U , at a
computational cost of about 2

3n
3 flops (Golub and Loan,

1996). The basic algorithm is not numerically stable, and
it can break down if, at some point, a zero is found on the
diagonal. The stability of the algorithm can be improved
by properly reordering rows and/or columns of A. This
operation is commonly referred to as pivoting. A recent
survey of pivoting techniques for the LU factorization can
be found in (Donfack et al., 2015).

The most common pivoting technique is known as partial
pivoting, where only row swaps are performed. This is
equivalent to finding the LU factorization of the matrix
PA, where P is a permutation matrix. It can be proved
that an LU factorization with partial pivoting exists for
any square matrix (Golub and Loan, 1996). While, in
theory, the LU factorization with partial pivoting can be
numerically unstable, decades of experience has shown
that, in practice, it can be considered stable.

Partial pivoting has a computational complexity of O(n2)
comparisons such that, asymptotically, its cost is hidden
by the O(n3) flops required by the LU factorization.
However, it can heavily affect the performance due to
the intrinsic non-locality of the search, making the use
of algorithm-by-blocks difficult. It can prevent the use of
efficient algorithm-by-blocks strategies and it complicates
the parallelization of the algorithm. In the worst case, the
row swaps have also a complexity of O(n2) memory copies,
and it can be more computationally expensive than the
search for the pivot element.

Remark 1. (Warm-started pivoting). While it is generally
not possible to avoid the search for the pivot element
(unless diagonally dominant matrices are considered), it

can be possible to reduce the overall amount of row swaps
in the context of real-time optimal control. As discussed
in the previous section, each iteration of the Newton-type
optimization algorithm requires the numerical simulation
of the dynamic system. In order to reduce the overall
amount of row swaps for the LU factorization and the
linear system solutions in each integration step, one could
therefore prematurely apply a permutation to the linear
system, based on the results of the previous integration
step. We further refer to this as warm-started pivoting.

3.2 Efficient Matrix Storage Format

One of the key features of the implementation in HPMPC,
on which the developments in BLASFEO are based, is the
use of a special matrix storage format, referred to as panel-
major in (Frison, 2015). In this format, each matrix is
divided into panels, which are defined as sub-matrices with
(many) more columns than rows. In BLASFEO, each panel
has a fixed and small number of rows (generally 2, 4 or 8),
that is chosen depending on the computer architecture.
The panels are stored, one after the other, in memory in
a row-block-major format. Within each panel, the matrix
elements are stored in column-major format.

For matrices fitting in the last level of cache, this matrix
format is (nearly) the optimal storage for level 3 BLAS
routines. In fact, it roughly corresponds to the first level of
packing employed in high-performance implementations of
BLAS such as GotoBLAS (Goto and Geijn, 2008), Open-
BLAS (OpenBLAS, 2011) and BLIS (Van Zee and van de
Geijn, 2015). In high-performance BLAS implementations,
the default matrix format is column-major. However, in-
ternally, sub-matrices of the left factor A and of the right
factor B are copied into buffers such that matrix elements
are stored in the exact same order as they are streamed
by the gemm, i.e., the general matrix-matrix multiplication
kernel (allowing for efficient data prefetch and optimal
cache usage). By carefully choosing buffer sizes and the
operation order, it is possible to ensure that these buffers
are held in the L1 and L2 cache, respectively. This allows
the LA kernels to achieve near maximum throughput when
operating on data held in the buffers. The main drawback
of this approach is that the copying of data into the buffers
is performed online, and it can heavily affect performance
in case of small to medium size matrices.

Figure 1 shows an example of the product of two matrices
stored using the panel-major format. More precisely, the
performed operation is the ’NT’ variant of gemm, which
is the optimal variant for matrices stored in the panel-
major format (Frison, 2015). In this example, the kernel
computes a 4×2 sub-matrix of the result. The panel height
bs is the same for the left and for the right operands,
as well as for the result matrix (and equal to 2 in this
example, since each square sub-matrix of the result matrix
has 2 columns of 2 elements each). Conversely, the buffers
employed internally in optimized BLAS implementations
can have a different value of bs for the left and the right
factors (optimally chosen equal to the number of rows
swept by the kernel, in this case 4 and 2 for A and B
respectively), while the result matrix would be directly
stored in column-major format.
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where j denotes the iteration number, using a Newton-
type implementation. Note that one can avoid performing
multiple inner iterations, by lifting such an implicit inte-
gration scheme in a Newton-type optimization algorithm
as discussed in (Quirynen et al., 2015, 2016). Based on
the implicit function theorem, also the first order forward
sensitivities can be computed as
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+
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Note that both the numerical elimination of the IRK
variables in (4) and the propagation of first order sensi-
tivities (5), requires the efficient computation of a factor-
ization for the matrix ∂G

∂K and the corresponding linear
system solutions. This paper focuses on these algorithmic
aspects and presents a hardware tailored software imple-
mentation for the associated LA routines.

3. EFFICIENT LINEAR SYSTEM SOLUTION

The matrix ∂G
∂K in (4) and in (5) is in general not symmetric

and, in this paper, it is considered as a dense matrix. It
can therefore be factorized using a dense LU factorization.

3.1 Introduction to the LU Factorization

The LU factorization can be employed to factorize a
generic n × n matrix A as the product of a lower trian-
gular matrix L and an upper triangular matrix U , at a
computational cost of about 2

3n
3 flops (Golub and Loan,

1996). The basic algorithm is not numerically stable, and
it can break down if, at some point, a zero is found on the
diagonal. The stability of the algorithm can be improved
by properly reordering rows and/or columns of A. This
operation is commonly referred to as pivoting. A recent
survey of pivoting techniques for the LU factorization can
be found in (Donfack et al., 2015).

The most common pivoting technique is known as partial
pivoting, where only row swaps are performed. This is
equivalent to finding the LU factorization of the matrix
PA, where P is a permutation matrix. It can be proved
that an LU factorization with partial pivoting exists for
any square matrix (Golub and Loan, 1996). While, in
theory, the LU factorization with partial pivoting can be
numerically unstable, decades of experience has shown
that, in practice, it can be considered stable.

Partial pivoting has a computational complexity of O(n2)
comparisons such that, asymptotically, its cost is hidden
by the O(n3) flops required by the LU factorization.
However, it can heavily affect the performance due to
the intrinsic non-locality of the search, making the use
of algorithm-by-blocks difficult. It can prevent the use of
efficient algorithm-by-blocks strategies and it complicates
the parallelization of the algorithm. In the worst case, the
row swaps have also a complexity of O(n2) memory copies,
and it can be more computationally expensive than the
search for the pivot element.

Remark 1. (Warm-started pivoting). While it is generally
not possible to avoid the search for the pivot element
(unless diagonally dominant matrices are considered), it

can be possible to reduce the overall amount of row swaps
in the context of real-time optimal control. As discussed
in the previous section, each iteration of the Newton-type
optimization algorithm requires the numerical simulation
of the dynamic system. In order to reduce the overall
amount of row swaps for the LU factorization and the
linear system solutions in each integration step, one could
therefore prematurely apply a permutation to the linear
system, based on the results of the previous integration
step. We further refer to this as warm-started pivoting.

3.2 Efficient Matrix Storage Format

One of the key features of the implementation in HPMPC,
on which the developments in BLASFEO are based, is the
use of a special matrix storage format, referred to as panel-
major in (Frison, 2015). In this format, each matrix is
divided into panels, which are defined as sub-matrices with
(many) more columns than rows. In BLASFEO, each panel
has a fixed and small number of rows (generally 2, 4 or 8),
that is chosen depending on the computer architecture.
The panels are stored, one after the other, in memory in
a row-block-major format. Within each panel, the matrix
elements are stored in column-major format.

For matrices fitting in the last level of cache, this matrix
format is (nearly) the optimal storage for level 3 BLAS
routines. In fact, it roughly corresponds to the first level of
packing employed in high-performance implementations of
BLAS such as GotoBLAS (Goto and Geijn, 2008), Open-
BLAS (OpenBLAS, 2011) and BLIS (Van Zee and van de
Geijn, 2015). In high-performance BLAS implementations,
the default matrix format is column-major. However, in-
ternally, sub-matrices of the left factor A and of the right
factor B are copied into buffers such that matrix elements
are stored in the exact same order as they are streamed
by the gemm, i.e., the general matrix-matrix multiplication
kernel (allowing for efficient data prefetch and optimal
cache usage). By carefully choosing buffer sizes and the
operation order, it is possible to ensure that these buffers
are held in the L1 and L2 cache, respectively. This allows
the LA kernels to achieve near maximum throughput when
operating on data held in the buffers. The main drawback
of this approach is that the copying of data into the buffers
is performed online, and it can heavily affect performance
in case of small to medium size matrices.

Figure 1 shows an example of the product of two matrices
stored using the panel-major format. More precisely, the
performed operation is the ’NT’ variant of gemm, which
is the optimal variant for matrices stored in the panel-
major format (Frison, 2015). In this example, the kernel
computes a 4×2 sub-matrix of the result. The panel height
bs is the same for the left and for the right operands,
as well as for the result matrix (and equal to 2 in this
example, since each square sub-matrix of the result matrix
has 2 columns of 2 elements each). Conversely, the buffers
employed internally in optimized BLAS implementations
can have a different value of bs for the left and the right
factors (optimally chosen equal to the number of rows
swept by the kernel, in this case 4 and 2 for A and B
respectively), while the result matrix would be directly
stored in column-major format.
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Fig. 1. Panel-major matrix storage format: elements are
stored in the same order as the gemm kernel accesses
them. This gemm kernel implements the optimal ’NT’
variant (namely, A non-transposed, B transposed).
The panel height bs is the same for the left and the
right operand, as well as for the result matrix.

By fixing bs for all matrices, it is possible to use the
panel-major format as a generic matrix storage format,
since it can be used for any argument in the LA routines.
In an embedded optimization framework, this allows for
the conversion from standard matrix formats into panel-
major to be performed off-line, or outside the optimization
algorithm loop (and therefore being well amortized over
the algorithm iterations also in case of small matrices,
unlike other BLAS implementations).

3.3 High-performance Small-scale LU Factorization

The LU factorization with partial pivoting is implemented
in the LAPACK routines getrf (blocked algorithm) and
dgetf2 (unblocked algorithm). The unblocked algorithms
in LAPACK are implemented using level 2 BLAS, and are
aimed at small matrices. Conversely, blocked algorithms
in LAPACK are implemented using level 3 BLAS and
unblocked LAPACK algorithms, and are aimed at large
matrices. The block size is generally chosen such that
working sub-matrices can fit in some cache level (generally
L1, giving a typical block size of 32 or 64). Cache blocking
has the aim of improving the overall performance for
relatively large matrices. The notion of blocked algorithms
and BLAS levels can be found in (Golub and Loan, 1996).

The main drawback of this approach is that, for matrices
smaller than the block size, the LAPACK routines are
implemented using solely level 2 BLAS. Therefore, there
is no reuse of matrix elements, once they are moved into
the registers. This strongly affects the performance in
case of small matrices, which occur typically in embedded
optimization applications.

In the BLASFEO framework, we implement the LU factor-
ization routine (and more general LAPACK routines) as if
it was a level 3 BLAS routine, and not on top of it. This
means that tailored factorization kernels are implemented,
operating on sub-matrices of the result, fitting in the
registers of the processor. This register blocking provides
reuse of matrix elements for much smaller matrices than in
the case of cache blocking, greatly enhancing small-scale
performance (Frison, 2015).

In BLASFEO, the order of the two outer loops around
the LA kernels can affect the performance scalability with
the matrix size. Since there are generally more rows than
columns in the LA kernels, the left gemm factor (in what

follows, A) is streamed in larger sub-matrices than the
right gemm factor (B). Therefore, better performance can
be achieved if the sub-matrix of A is kept in L1 cache
between subsequent calls to the LA kernel, while the panels
from B are streamed from L2 cache. This can be achieved
by properly choosing the order of the two outer loops. In
particular, by having the outermost loop over the rows of
the result matrix and the middle loop over the columns,
such that the result is computed in row-blocks.

In case of the LU factorization, the search for the pivot
element prevents the use of the optimal loop order, since
the search is performed over the entire column below
the diagonal element. This also prevents the strict use of
algorithm-by-blocks for the computation of L: each matrix
element needs to be computed in two steps, one to compute
the pivot, and one to scale the column below the diagonal
once the pivot has been found. However, the computation
of the upper factor U can be entirely performed using
algorithm-by-blocks and optimal loop ordering.

As a final note, the kernels in the LU factorization are
based on the ’NN’ (both A and B non-transposed) variant
of the gemm routine. In the BLASFEO framework, this
generally gives slightly worse performance than the opti-
mal ’NT’ variant (A non-transposed, B transposed), since
the matrix B is streamed in a non-contiguous way.

3.4 Triangular System Solutions

In this paper, the LU factorization is employed in the
solution of systems of linear equations

PAX = LUX = PB, (6)

where P is a permutation matrix and the matrix A is not
assumed to be symmetric. In general, X and B can be
matrices, i.e., in the multiple right-hand side (RHS) case.
Note that a multiplication on the left by a permutation
matrix gives a permutation of the rows. The solution of
triangular systems of linear equations with the lower tri-
angular matrix L (forwardsolve) and the upper triangular
matrix U (backsolve) in (6) is implemented as

X = U−1(L−1(PB)).

In the above solution scheme (referred to as ’N’ scheme),
the triangular matrix is always on the left. Therefore, in
the LA kernel, a large triangular matrix is used to solve a
system with a smaller number of RHSs, resulting in high
dependency between instructions. And both operands are
non-transposed, such that the solve routines are based on
the sub-optimal ’NN’ variant of gemm.

A better implementation is obtained by transposing both
sides in (6), as

XTUTLT = (PAX)T = (PB)T = BTPT . (7)

Note that a multiplication on the right by a permutation
matrix gives a permutation of the columns. The forward-
solve and backsolve in (7) are implemented as

XT = ((BTPT )L−T )U−T .

In the above solution scheme (referred to as ’T’ scheme),
the triangular matrix is always on the right. Therefore,
in the LA kernel, a small triangular matrix is used to
solve a system with a larger number of RHSs, resulting in
many independent instructions. The left operand is non-
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transposed while the right one is transposed, such that the
routines are based on the optimal ’NT’ variant of gemm.

The ’T’ scheme requires the transposed BT of the RHS
and returns the transposed XT of the result matrix. If
the transposition is explicitly performed, this forms an
overhead. In some cases, it is possible to avoid that, e.g.,
if the transposition is embedded in the conversion of the
data matrices between column- and panel-major storage
formats, and therefore performed at no extra cost.

4. OPEN-SOURCE BLASFEO FRAMEWORK

The LA routines, employed in this paper, are implemented
in the recently developed, open-source BLASFEO frame-
work (Frison et al., 2017). This is a further development of
the LA framework originally proposed in HPMPC (Frison
et al., 2014), a library for the High-Performance imple-
mentation of solvers for MPC.

Compared to the LA routines in HPMPC, BLASFEO
introduces a novel interface, that defines matrix (strmat)
and vector (strvec) structure types to completely hide
any implementation detail about the storage format. Three
implementations are provided: a high-performance version
(HP, providing assembly-coded LA kernels optimized for
many computer architectures and employing the panel-
major matrix format), a reference version (RF, written in
plain C code with 2× 2 register block size and employing
column-major matrix format) and a wrapper to key BLAS
and LAPACK routines (WR, employing column-major
matrix format). Furthermore, the HP and RF implemen-
tations store an extra vector that can be employed to hold,
e.g., the inverse of the diagonal (computed anyway in the
factorization process), eliminating the need to re-compute
expensive divisions in the solve routines. The three im-
plementations together allow one to code an algorithm
once, while choosing the best LA option, depending on
the specific problem dimensions.

Conversion and cast routines are provided to manage the
coexistence of strmat and standard matrix formats in the
same piece of code. In the particular case of the RF imple-
mentation, there is no need to convert between column-
major and strmat. Therefore, the reference version is
generally the best choice for small matrices (matching
or exceeding the performance of code-generated triple-
loop based LA routines). The one-time conversion cost is
generally well amortized for medium size matrices, where
the HP version performs better. For very large matrices,
the WR version may be the best choice since generally
BLAS is well optimized for the large-scale case and it
comes with a multi-thread implementation.

5. NUMERICAL EXPERIMENTS

In this section, numerical results are reported that show
the benefits of the proposed implementations. All numer-
ical simulations are carried out on a modern computer
architecture (Intel Core i7 4800MQ processor). The pro-
cessor architecture is Haswell, supporting the AVX2 and
FMA3 instruction sets (ISAs). Each core can execute two
256-bit wide fused-multiply-add instructions every clock
cycle. At 3.3 GHz (maximum frequency when the 256-bit
wide execution units are active), this gives a maximum
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Fig. 2. Performance plot for LU factorization (left) and
relative solves (right) for square n× n matrices.

throughput per core of 52.8 Gflops (billions of floating-
point operations per second) in double precision. The
maximum frequency when the 256-bit wide execution units
are not active is 3.7 GHz. Only single-threaded code is
considered. The operating system is a 64-bit Ubuntu dis-
tribution with Linux kernel 4.4, the compiler is gcc 5.4.0.

5.1 Computational Performance

Figure 2 shows performance plots for the LU factorization
and relative forward and backward solves: different imple-
mentations of the same LA routine are compared, and the
fastest implementation can perform the same amount of
work in shorter time, therefore resulting in higher compu-
tational performance (in Gflops). The x-axis is the matrix
size n (up to 150, which is enough to cover the largest
test in Section 5.2), while the y-axis is the computational
performance in Gflops (the maximum throughput is at
52.8 at the top of the figures). No conversions between
matrix formats are performed.

For the LU factorization with pivot (left), the high-
performance (HP, blue) and reference (RF, green) versions
of BLASFEO are compared to OpenBLAS (red) in case
no row swaps occur. BLASFEO HP gives very good per-
formance for all considered matrix sizes. BLASFEO RF
performs well for small matrices, but then the performance
flats out at relatively low levels since the generic C code
does not explicitly target powerful hardware ISAs. Open-
BLAS gives much lower performance for small matrices.
The BLASFEO HP version is also tested in the worst case,
where n row swaps occur (SW, cyan): the performance
penalty is considerable. Additionally, an HP implementa-
tion of the LU factorization without pivoting (NP, black)
is also plotted as a reference, to show the performance
penalty due to the search for the optimal pivot. From the
picture it is clear that the performance penalty of perform-
ing row swaps may be quite larger than the performance
penalty of looking for the pivot: this motivates the use of
warm-started pivoting in Remark 1.

For the LU solve (right), the ’N’ solution scheme is
implemented using BLASFEO HP (blue), BLASFEO RF
(green) and OpenBLAS (red). The findings are similar to
the LU factorization case. Furthermore, a BLASFEO HP
implementation of the ’T’ solution scheme is considered
(black), which gives a noticeable extra speedup.
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transposed while the right one is transposed, such that the
routines are based on the optimal ’NT’ variant of gemm.

The ’T’ scheme requires the transposed BT of the RHS
and returns the transposed XT of the result matrix. If
the transposition is explicitly performed, this forms an
overhead. In some cases, it is possible to avoid that, e.g.,
if the transposition is embedded in the conversion of the
data matrices between column- and panel-major storage
formats, and therefore performed at no extra cost.

4. OPEN-SOURCE BLASFEO FRAMEWORK

The LA routines, employed in this paper, are implemented
in the recently developed, open-source BLASFEO frame-
work (Frison et al., 2017). This is a further development of
the LA framework originally proposed in HPMPC (Frison
et al., 2014), a library for the High-Performance imple-
mentation of solvers for MPC.

Compared to the LA routines in HPMPC, BLASFEO
introduces a novel interface, that defines matrix (strmat)
and vector (strvec) structure types to completely hide
any implementation detail about the storage format. Three
implementations are provided: a high-performance version
(HP, providing assembly-coded LA kernels optimized for
many computer architectures and employing the panel-
major matrix format), a reference version (RF, written in
plain C code with 2× 2 register block size and employing
column-major matrix format) and a wrapper to key BLAS
and LAPACK routines (WR, employing column-major
matrix format). Furthermore, the HP and RF implemen-
tations store an extra vector that can be employed to hold,
e.g., the inverse of the diagonal (computed anyway in the
factorization process), eliminating the need to re-compute
expensive divisions in the solve routines. The three im-
plementations together allow one to code an algorithm
once, while choosing the best LA option, depending on
the specific problem dimensions.

Conversion and cast routines are provided to manage the
coexistence of strmat and standard matrix formats in the
same piece of code. In the particular case of the RF imple-
mentation, there is no need to convert between column-
major and strmat. Therefore, the reference version is
generally the best choice for small matrices (matching
or exceeding the performance of code-generated triple-
loop based LA routines). The one-time conversion cost is
generally well amortized for medium size matrices, where
the HP version performs better. For very large matrices,
the WR version may be the best choice since generally
BLAS is well optimized for the large-scale case and it
comes with a multi-thread implementation.

5. NUMERICAL EXPERIMENTS

In this section, numerical results are reported that show
the benefits of the proposed implementations. All numer-
ical simulations are carried out on a modern computer
architecture (Intel Core i7 4800MQ processor). The pro-
cessor architecture is Haswell, supporting the AVX2 and
FMA3 instruction sets (ISAs). Each core can execute two
256-bit wide fused-multiply-add instructions every clock
cycle. At 3.3 GHz (maximum frequency when the 256-bit
wide execution units are active), this gives a maximum
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Fig. 2. Performance plot for LU factorization (left) and
relative solves (right) for square n× n matrices.

throughput per core of 52.8 Gflops (billions of floating-
point operations per second) in double precision. The
maximum frequency when the 256-bit wide execution units
are not active is 3.7 GHz. Only single-threaded code is
considered. The operating system is a 64-bit Ubuntu dis-
tribution with Linux kernel 4.4, the compiler is gcc 5.4.0.

5.1 Computational Performance

Figure 2 shows performance plots for the LU factorization
and relative forward and backward solves: different imple-
mentations of the same LA routine are compared, and the
fastest implementation can perform the same amount of
work in shorter time, therefore resulting in higher compu-
tational performance (in Gflops). The x-axis is the matrix
size n (up to 150, which is enough to cover the largest
test in Section 5.2), while the y-axis is the computational
performance in Gflops (the maximum throughput is at
52.8 at the top of the figures). No conversions between
matrix formats are performed.

For the LU factorization with pivot (left), the high-
performance (HP, blue) and reference (RF, green) versions
of BLASFEO are compared to OpenBLAS (red) in case
no row swaps occur. BLASFEO HP gives very good per-
formance for all considered matrix sizes. BLASFEO RF
performs well for small matrices, but then the performance
flats out at relatively low levels since the generic C code
does not explicitly target powerful hardware ISAs. Open-
BLAS gives much lower performance for small matrices.
The BLASFEO HP version is also tested in the worst case,
where n row swaps occur (SW, cyan): the performance
penalty is considerable. Additionally, an HP implementa-
tion of the LU factorization without pivoting (NP, black)
is also plotted as a reference, to show the performance
penalty due to the search for the optimal pivot. From the
picture it is clear that the performance penalty of perform-
ing row swaps may be quite larger than the performance
penalty of looking for the pivot: this motivates the use of
warm-started pivoting in Remark 1.

For the LU solve (right), the ’N’ solution scheme is
implemented using BLASFEO HP (blue), BLASFEO RF
(green) and OpenBLAS (red). The findings are similar to
the LU factorization case. Furthermore, a BLASFEO HP
implementation of the ’T’ solution scheme is considered
(black), which gives a noticeable extra speedup.
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5.2 NMPC Case Study: Chain of Masses

This section illustrates the performance of the implicit
integrators for embedded optimization, based on the pro-
posed LA routines in the BLASFEO framework, for the
example of a Nonlinear MPC case study. As discussed
in Section 2.1, a C-code implementation of the Gauss-
Newton based RTI scheme is used in combination with
a lifted collocation integrator (Quirynen et al., 2016) and
condensing with qpOASES. The evaluation of derivatives
is performed using Algorithmic Differentiation (AD) in the
open-source CasADi framework (Andersson et al., 2012).

We consider the chain mass control problem, presented
in (Wirsching et al., 2006). The task of the controller
is to return a chain of masses connected with springs
to its steady state, starting from a perturbed initial
configuration. In this paper, the setup consists of nm

masses where this number can be changed to scale the
dimensions of the problem. The mass at one end is fixed,
while the acceleration vector of the mass at the other end
is the system input u ∈ R3. The state of each free mass
consists in its position and velocity, such that the system
can be described by the state vector x ∈ R6(nm−1). An
NMPC scheme with a horizon length of T = 2 s and N =
20 equidistant intervals with a sampling time of Ts = 0.1 s
is used. The OCP formulation is subject to simple bounds
on the control inputs ui ∈ [−10, 10], i = 1, 2, 3 and to the
system dynamics, which are described by an explicit set
of Ordinary Differential Equations (ODE). Within each
shooting interval, a fixed number of Ns integration steps
of an s-stage Gauss collocation scheme is used.

Table 1 shows the average computation times for the
different algorithmic components in one RTI iteration. It
can be observed that the implicit integrator, and especially
the linear system solution based on an LU factorization,
requires a considerable amount of computational effort,
e.g., in case of the code-generated (CG) triple-loop LA.
The CG implementation fixes the size of all loops at code
generation time and the compiler can exploit this addi-
tional information, e.g., to unroll loops. If the BLASFEO
HP version is employed, the total simulation time and the
QP solution time are about the same, for this example.
It is interesting to notice that the AD code and the QP
solution times are not the same for different LA versions,
even if they do not make use of the LA libraries (and
therefore the exact same code is executed in all cases).
This is due to the different frequency the processor can run
at: BLASFEO HP or OpenBLAS employ the 256-bit wide
execution units, resulting in about 10% lower processor
frequency (3.3 GHz vs 3.7 GHz). This is observed clearly
in this test, but applies to all performed tests.

Table 2 reports in more detail the timings for the LA
code, in case s = 1 or 3 collocation stages are employed.
The number of free masses is varied between 1 and 8,
resulting in a number of states nx ranging between 6
and 48. This results in a minimum size of the matrix
∂G
∂K equal to 6, a maximum equal to 144. Similarly, the
number of columns in the right-hand side ranges between
10 and 52. BLASFEO HP, BLASFEO RF, CG triple-loop
and OpenBLAS are compared, when LU factorization with
partial pivoting and the ’N’ solution scheme are employed.
Furthermore, a BLASFEO HP based implementation of

Table 1. Detailed timing results (in ms) for
Gauss-Newton based RTI on the chain mass

control example (N = 20, Ns = 2, s = 2).

Ns = 2, s = 2 BLASFEO triple-loop OpenBLAS
nm = 3, nx = 18 HP RF CG

AD code 0.058 0.052 0.051 0.058
LA routines 0.222 0.643 1.216 0.699

Total simulation 0.435 0.828 1.405 0.908
QP solution 0.587 0.532 0.534 0.584

nm = 5, nx = 30

AD code 0.170 0.145 0.147 0.181
LA routines 0.731 2.683 4.900 2.064

Total simulation 1.310 3.190 5.413 2.648
QP solution 1.635 1.300 1.393 1.528

nm = 7, nx = 42

AD code 0.397 0.342 0.339 0.382
LA routines 1.680 7.083 12.976 4.036

Total simulation 2.965 8.170 14.076 5.257
QP solution 2.689 2.544 2.542 2.667

LU factorization with partial pivoting and the ’T’ solution
scheme is considered. For the smallest problem, CG triple-
loop gives the best performance, but it is closely followed
by BLASFEO RF. For all but the smallest problem,
BLASFEO HP gives the best performance, in particular
if the ’T’ solution scheme is employed. Compared to CG
triple-loop LA routines, generally employed in embedded
optimization, the LA provided by BLASFEO HP can give
a speedup of up to one order of magnitude, in case of large
problems and many collocation stages.

6. CONCLUSIONS AND OUTLOOK

This paper presents a novel implementation framework for
the LA routines employed in implicit integration schemes
for embedded optimization. The use of hardware-tailored
routines can give a speedup of up to an order of mag-
nitude, compared to the code-generated triple-loop LA
routines generally employed in embedded applications.
The open-source BLASFEO framework provides an high-
performance implementation of the LU factorization and
triangular solution routines, optimized for many computer
architectures. The LA in BLASFEO can be combined with
any numerical algorithm, requiring dense LA routines, to
provide efficient solutions for a wide class of applications.
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