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Abstract: Robust multi-stage Model Predictive Control (MPC) is an increasingly popular
approach to handle model uncertainties due to the simplicity of its problem formulation
and other attractive properties. However, the exponential growth of the problem dimensions
with respect to the robust horizon renders the online solution of such problems challenging
and the development of tailored solvers crucial. In this paper, an interior point method is
presented that can solve Quadratic Programs (QPs) arising in multi-stage MPC efficiently by
means of a tree-structured Riccati recursion and a high-performance linear algebra library.
A performance comparison with code-generated and general purpose sparse QP solvers shows
that the computation times can be significantly reduced for all problem sizes that are practically
relevant in embedded MPC applications. The presented implementation is freely available as
part of the open-source software HPMPC.
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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
strategy that uses the model of the controlled plant to
optimize its future behavior, subject to constraints (Rawl-
ings and Mayne, 2009). However, when uncertainties are
present in the model, the performance of the controller
may deteriorate significantly (Grimm et al., 2004). Many
approaches have been proposed in the literature to tackle
this issue, such as min-max MPC (Campo and Morari,
1987) and tubed-based MPC (Mayne et al., 2011).

Another formulation that is recently gaining attention is
the so-called (robust) multi-stage or scenario tree MPC,
where the uncertainty is represented by a finite number
of realizations at each decision point (de la Pena et al.,
2005; Bernardini and Bemporad, 2009; Lucia et al., 2014).
For the linear case, this approach leads to Quadratic Pro-
grams (QPs) with tree-structured dynamic constraints and
dimensions that grow exponentially in the horizon length.
As a result, structure-exploiting algorithms are essential
for using multi-stage MPC in practical applications.

Several customized algorithms have been proposed in
the literature to solve such tree-structured optimization
problems. In the pioneering work of (Steinbach, 2002),
an Interior Point (IP) method is used with a generic
framework to recursively factorize the KKT matrix of a
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wide class of tree-structured optimization problems. This
framework is closely related to the developments of this
paper. Recent research focuses on very large problems,
where distributed IP methods of different flavors have been
developed (Blomvall and Lindberg, 2002; Pakazad et al.,
2016; Hübner et al., 2016). The authors in (Sampathirao
et al., 2015) implemented a dual accelerated proximal
gradient method on a GPU to solve tree-structured convex
problems in a massively parallelizable fashion.

A common practice to tackle scenario tree optimization
problems is to decompose the tree into scenarios that
are coupled to each other via constraints on the inputs,
often referred to as non-anticipativity constraints. These
constraints enforce that the control at each node of the tree
is the same for all uncertainty realizations, i.e., the current
realization of the uncertainty cannot be anticipated. This
reformulation leads to optimization problems with sim-
pler structure but higher dimension. Dual decomposition
techniques have been successfully applied on such formu-
lations that solve the dual problem using first-order meth-
ods (Marti et al., 2015) or Newton’s method (Leidereiter
et al., 2015; Klintberg et al., 2016).

In this paper, we directly tackle the lower dimensional tree-
structured QP with an IP method as in Steinbach (2002),
and employ a modified Riccati recursion to efficiently com-
pute the search direction. We combine the algorithm with
a tailored Linear Algebra (LA) library, especially suited for
matrix dimensions that are common in most MPC prob-
lems. In contrast to existing software that focuses on large-
scale problems, our aim is to provide high-performance
solvers for small- to medium-scale embedded MPC ap-

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 14964

A high-performance Riccati based solver
for tree-structured quadratic programs �

Gianluca Frison ∗,∗∗ Dimitris Kouzoupis ∗∗ Moritz Diehl ∗∗,∗∗∗

John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark (e-mail: {giaf , jbjo} at dtu.dk)

∗∗ Department of Microsystems Engineering, University of Freiburg
(e-mail: {dimitris.kouzoupis , moritz.diehl} at imtek.uni-freiburg.de)
∗∗∗ Department of Mathematics, University of Freiburg, Germany

Abstract: Robust multi-stage Model Predictive Control (MPC) is an increasingly popular
approach to handle model uncertainties due to the simplicity of its problem formulation
and other attractive properties. However, the exponential growth of the problem dimensions
with respect to the robust horizon renders the online solution of such problems challenging
and the development of tailored solvers crucial. In this paper, an interior point method is
presented that can solve Quadratic Programs (QPs) arising in multi-stage MPC efficiently by
means of a tree-structured Riccati recursion and a high-performance linear algebra library.
A performance comparison with code-generated and general purpose sparse QP solvers shows
that the computation times can be significantly reduced for all problem sizes that are practically
relevant in embedded MPC applications. The presented implementation is freely available as
part of the open-source software HPMPC.

Keywords: Predictive control, Quadratic programming, Tree structures, Numerical methods.

1. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
strategy that uses the model of the controlled plant to
optimize its future behavior, subject to constraints (Rawl-
ings and Mayne, 2009). However, when uncertainties are
present in the model, the performance of the controller
may deteriorate significantly (Grimm et al., 2004). Many
approaches have been proposed in the literature to tackle
this issue, such as min-max MPC (Campo and Morari,
1987) and tubed-based MPC (Mayne et al., 2011).

Another formulation that is recently gaining attention is
the so-called (robust) multi-stage or scenario tree MPC,
where the uncertainty is represented by a finite number
of realizations at each decision point (de la Pena et al.,
2005; Bernardini and Bemporad, 2009; Lucia et al., 2014).
For the linear case, this approach leads to Quadratic Pro-
grams (QPs) with tree-structured dynamic constraints and
dimensions that grow exponentially in the horizon length.
As a result, structure-exploiting algorithms are essential
for using multi-stage MPC in practical applications.

Several customized algorithms have been proposed in
the literature to solve such tree-structured optimization
problems. In the pioneering work of (Steinbach, 2002),
an Interior Point (IP) method is used with a generic
framework to recursively factorize the KKT matrix of a

� Support by the EU via ERC-HIGHWIND (259 166), ITN-TEMPO
(607 957), and ITN-AWESCO (642 682), by DFG via the Research
Unit FOR 2401, by Ministerium für Wissenschaft, Forschung und
Kunst Baden-Wuerttemberg (Az: 22-7533.-30-20/9/3), and by Det
Frie Forskningsr̊ad (DFF - 6111-00398) is gratefully acknowledged.

wide class of tree-structured optimization problems. This
framework is closely related to the developments of this
paper. Recent research focuses on very large problems,
where distributed IP methods of different flavors have been
developed (Blomvall and Lindberg, 2002; Pakazad et al.,
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MPC problem can be seen as a multi-stage MPC problem
where all nodes have at most one child. This implies that
the notion of stage and node are essentially equivalent and
the Riccati recursion can be seen as a factorization where
the tree is processed node-wise.

In the more general case where a node can have more
than one children, the notion of node and stage can not
be interchanged any longer. It is however still possible to
derive a modified factorization procedure that processes
the tree node-wise, taking into account information from
all children nodes.

3.1 Recursion for nodes with one child

This is the standard Riccati recursion case, except for
the different indexing in the matrices and vectors of the
dynamic equations.

One stage of the KKT matrix with the corresponding
terminal cost looks like


Qn ST

n AT
m

Sn Rn BT
m

Am Bm −I
−I Pm






xn

un

πm

xm


 =



qn
rn
bm
pm


 , (2)

where in this case C(n) = {m}.
The variable xm can be eliminated by adding the last
block-row to the third block-row multiplied by Pm,


Qn ST

n AT
m

Sn Rn BT
m

PmAm PmBm −I



[
xn

un

πm

]
=

[
qn
rn

Pmbm + pm

]
.

The variable πm can be eliminated by adding the last
block-row multiplied by AT

m to the first block-row, and by
adding the last block-row multiplied by BT

m to the second
block-row, [

Q̃n S̃T
n

S̃n R̃n

] [
xn

un

]
=

[
q̃n
r̃n

]
,

where the updated matrices and vectors are

Q̃n = Qn +AT
mPmAm (3a)

S̃n = Sn +BT
mPmAm (3b)

R̃n = Rn +BT
mPmBm (3c)

q̃n = qn +AT
m(Pmbm + pm) (3d)

r̃n = rn +BT
m(Pmbm + pm). (3e)

Finally, the variable un can be eliminated adding the last

block-row multiplied by −S̃T
n R̃

−1
n to the first block-row,

obtaining
[Pn] [xn] = [pn]

where
Pn = Q̃n − S̃T

n R̃
−1
n S̃n (4)

and
pn = q̃n − S̃T

n R̃
−1
n r̃n. (5)

This concludes the calculations for nodes with one child.

3.2 Recursion for nodes with two or more children

For the shake of simplicity, let us consider the case of only
two children per node.

In the tree case, the index of matrices and vectors is
associated to the node, and not the stage as in the standard

Algorithm 1 Tree Riccati - backward factorization

1: for each node n in N̂ to 0 do
2: if n ∈ L then
3: Ln ← Q

1/2
n

4: else
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9: end for

10:
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]
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11: end if
12: end for

Riccati recursion. Let the indexes m1 and m2 refer to the
two elements of C(n), i.e., C(n) = {m1,m2}. One stage
of the KKT matrix with the corresponding terminal cost
looks like



Qn ST
n AT

m1
AT

m2

Sn Rn BT
m1

BT
m2

Am1
Bm1

−I
Am2

Bm2
−I

−I Pm1

−I Pm2







xn

un

πm1

πm2

xm1

xm2



=




qn
rn
bm1

bm2

pm1

pm2




Note that this looks identical to (2), where

xm =

[
xm1

xm2

]
, Am =

[
Am1

Am2

]
, Bm =

[
Bm1

Bm2

]
, bm =

[
bm1

bm2

]

Pm =

[
Pm1

Pm2

]
, pm =

[
pm1

pm2

]
, πm =

[
πm1

πm2

]

i.e. the two children nodes are considered as a single stage
with increased variable sizes.

This suggests that it is possible to use the standard Riccati
recursion to handle trees, at the cost of increasing the
variable sizes and ignoring the specific structure of the
problem.

Due to the block-diagonal structure of the recursion ma-
trix Pm in the tree case, the matrices and vectors in (3)
look like

Q̃n = Qn +AT
m1

Pm1
Am1

+AT
m2

Pm2
Am2

S̃n = Sn +BT
m1

Pm1
Am1

+BT
m2

Pm2
Am2

R̃n = Rn +BT
m1

Pm1Bm1 +BT
m2

Pm2Bm2

q̃n = qn +AT
m1

(Pm1bm1 + pm1) +AT
m2

(Pm2bm2 + pm2)

r̃n = rn +BT
m1

(Pm1bm1 + pm1) +BT
m2

(Pm2bm2 + pm2),

where the updates from the different children are added
together.

Once the updated matrices and vectors have been com-
puted, the recursion matrix Pn and vector pn are computed
as in (4) and (5).

3.3 Computational cost analysis

The algorithm for the factorization of the KKT matrix of
the tree MPC problem is presented in Algorithm 1. The
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plications. We do not consider parallelization techniques,
since we target sampling times in the millisecond range or
below, where the overhead of parallelization makes its use
of limited interest. By means of a numerical case study, we
show that the resulting software, which is freely available
online, can outperform general purpose sparse solvers as
well as code-generated optimal control solvers designed for
nominal MPC. Moreover, a comparison between nominal
and robust multi-stage MPC with plant-model mismatch
shows that the latter can guarantee constraint satisfaction
with higher probability, without sacrificing significantly
more computational resources.

The paper is organized as follows. Section 2 introduces
the problem formulation. Section 3 presents the modified
Riccati recursion for multi-stage MPC and describes how
structure-exploitation can drastically reduce the compu-
tational load. Section 4 discusses software implementation
details while Section 5 provides a detailed benchmarking
of different methods using a simple numerical example.
Section 6 concludes the paper.

2. PROBLEM FORMULATION

In this section, we introduce the notion of tree-structured
dynamic constraints and derive the multi-stage MPC prob-
lem formulation.

2.1 Tree-structured dynamic constraints

In multi-stage MPC, the system dynamics depend on an
uncertain parameter θ, which can take values from a finite
set of realizations at each decision point 1 . With k denoting
the stage index, the linear (or linearized) dynamics take
the form 2

xk+1 = Ak+1(θ)xk +Bk+1(θ)uk + bk+1(θ), (1)

for k = 0, . . . , N − 1 and N the prediction horizon.
Sampling the uncertainly in this fashion gives rise to a
tree-structured system of equality constraints, since each
realization in combination with the same control input will
drive the system to a different state.

Let md be the number of uncertainty realizations at each
decision point. This sampling yieldsmN

d different scenarios
that have to be considered in the problem formulation. To
reduce the computational cost, it is a common practice to
introduce the notion of a robust horizon length Nr ≤ N
within which the dynamic constraints keep branching. The
shorter the robust horizon, the smaller (but perhaps less
robust) the optimization problem. An example of such tree
with md = 2, Nr = 2 and N = 3 is depicted in Figure 1.
We assume throughout the paper that the nodes, indexed
by n, are numbered in some ascending order. This implies
that for two nodes m,n with m < n, it holds k(m) ≤ k(n)
with k(·) denoting the stage index of a node.

In what follows, N is the set of the nodes in the tree
and N̂ := |N | its cardinality, i.e., the total number of

1 Uncertainty can also appear in the objective or in the constraints
and the same approach is applicable.
2 Note that the matrices and vectors of the system dynamics are
indexed here with k+1 instead of the more common subscript k, to
be consistent with the nodes of the tree as introduced later on.

Fig. 1. An example of a tree with prediction horizonN = 3,
robust horizon Nr = 2 and md = 2 realizations.

nodes. The set L := {n | k(n) = N} contains the leaves of

the tree (with |L| = mNr

d ) while C(n) denotes the set of
children of node n. Note that |C(n)| = md if k(n) < Nr. If
Nr ≤ k(n) < N , then | C(n) | = 1 while n ∈ L implies that
| C(n) | = 0. For the example of Figure 1, L = {7, 8, 9, 10}
and C(1) = {3, 4}.

2.2 Multi-stage MPC

Using the notation of the previous section, the node-wise
separable objective function with tree-structured dynamic
constraints and bounds on states and controls can be
summarized as

min
x,u

∑
n∈N\L

1

2

[
xn

un

1

]T


Qn ST

n qn
Sn Rn rn
qTn rTn 0



[
xn

un

1

]
+

+
∑
n∈L

1

2

[
xN

1

]T [
QN qN
qTN 0

] [
xN

1

]

s.t. xm = Amxn +Bmun + bm, n ∈ N\L, m ∈ C(n),
ul
n ≤ un ≤ uu

n, n ∈ N\L,
xl
n ≤ xn ≤ xu

n, n ∈ N ,

where xn ∈ Rnx are the differential states and un ∈ Rnu

the control inputs of node n. The vectors x, u comprise
the concatenated state and input trajectories respectively.
Note that the quadratic stage cost of each node typically
contains a weight associated with the probability that this
node occurs or simply a scaling factor so as to minimize
the average cost over all scenarios. Note also that the
matrices of the system dynamics are associated to the
children nodes, as in (1).

Remark 1. The algorithm and software presented in this
paper can handle general polyhedral constraints on states
and controls. The restriction to bounds is only made here
for notational convenience.

3. A MODIFIED RICCATI RECURSION

This section contains the derivation of a backward Ric-
cati recursion algorithm tailored to tree-structured uncon-
strained MPC problems. This recursion could be reduced
to the generic framework in (Steinbach, 2002); however, a
tailored derivation makes the presentation of the algorithm
more clear.

It is well known that the backward Riccati recursion can
be employed to factorize stage-wise the KKT matrix of
the unconstrained nominal MPC problem. Therefore, it is
often used to compute the search direction in IP methods
for nominal MPC problems (Rao et al., 1998). The nominal
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MPC problem can be seen as a multi-stage MPC problem
where all nodes have at most one child. This implies that
the notion of stage and node are essentially equivalent and
the Riccati recursion can be seen as a factorization where
the tree is processed node-wise.

In the more general case where a node can have more
than one children, the notion of node and stage can not
be interchanged any longer. It is however still possible to
derive a modified factorization procedure that processes
the tree node-wise, taking into account information from
all children nodes.

3.1 Recursion for nodes with one child

This is the standard Riccati recursion case, except for
the different indexing in the matrices and vectors of the
dynamic equations.

One stage of the KKT matrix with the corresponding
terminal cost looks like


Qn ST

n AT
m

Sn Rn BT
m

Am Bm −I
−I Pm






xn

un

πm

xm


 =



qn
rn
bm
pm


 , (2)

where in this case C(n) = {m}.
The variable xm can be eliminated by adding the last
block-row to the third block-row multiplied by Pm,


Qn ST

n AT
m

Sn Rn BT
m

PmAm PmBm −I



[
xn

un

πm

]
=

[
qn
rn

Pmbm + pm

]
.

The variable πm can be eliminated by adding the last
block-row multiplied by AT

m to the first block-row, and by
adding the last block-row multiplied by BT

m to the second
block-row, [

Q̃n S̃T
n

S̃n R̃n

] [
xn

un

]
=

[
q̃n
r̃n

]
,

where the updated matrices and vectors are

Q̃n = Qn +AT
mPmAm (3a)

S̃n = Sn +BT
mPmAm (3b)

R̃n = Rn +BT
mPmBm (3c)

q̃n = qn +AT
m(Pmbm + pm) (3d)

r̃n = rn +BT
m(Pmbm + pm). (3e)

Finally, the variable un can be eliminated adding the last

block-row multiplied by −S̃T
n R̃

−1
n to the first block-row,

obtaining
[Pn] [xn] = [pn]

where
Pn = Q̃n − S̃T

n R̃
−1
n S̃n (4)

and
pn = q̃n − S̃T

n R̃
−1
n r̃n. (5)

This concludes the calculations for nodes with one child.

3.2 Recursion for nodes with two or more children

For the shake of simplicity, let us consider the case of only
two children per node.

In the tree case, the index of matrices and vectors is
associated to the node, and not the stage as in the standard

Algorithm 1 Tree Riccati - backward factorization

1: for each node n in N̂ to 0 do
2: if n ∈ L then
3: Ln ← Q

1/2
n

4: else

5:

[
R̃n

S̃T
n Q̃n

]
←

[
Rn

ST
n Qn

]

6: for each child m do

7: D ←
[
BT

m

AT
m

]
Lm

8:

[
R̃n

S̃T
n Q̃n

]
←

[
R̃n

S̃T
n Q̃n

]
+DDT

9: end for

10:

[
Λn

Ln Ln

]
←

[
R̃n

S̃T
n Q̃n

]1/2

11: end if
12: end for

Riccati recursion. Let the indexes m1 and m2 refer to the
two elements of C(n), i.e., C(n) = {m1,m2}. One stage
of the KKT matrix with the corresponding terminal cost
looks like



Qn ST
n AT

m1
AT

m2

Sn Rn BT
m1

BT
m2

Am1
Bm1

−I
Am2

Bm2
−I

−I Pm1

−I Pm2







xn

un

πm1

πm2

xm1

xm2



=




qn
rn
bm1

bm2

pm1

pm2




Note that this looks identical to (2), where

xm =

[
xm1

xm2

]
, Am =

[
Am1

Am2

]
, Bm =

[
Bm1

Bm2

]
, bm =

[
bm1

bm2

]

Pm =

[
Pm1

Pm2

]
, pm =

[
pm1

pm2

]
, πm =

[
πm1

πm2

]

i.e. the two children nodes are considered as a single stage
with increased variable sizes.

This suggests that it is possible to use the standard Riccati
recursion to handle trees, at the cost of increasing the
variable sizes and ignoring the specific structure of the
problem.

Due to the block-diagonal structure of the recursion ma-
trix Pm in the tree case, the matrices and vectors in (3)
look like

Q̃n = Qn +AT
m1

Pm1
Am1

+AT
m2

Pm2
Am2

S̃n = Sn +BT
m1

Pm1
Am1

+BT
m2

Pm2
Am2

R̃n = Rn +BT
m1

Pm1Bm1 +BT
m2

Pm2Bm2

q̃n = qn +AT
m1

(Pm1bm1 + pm1) +AT
m2

(Pm2bm2 + pm2)

r̃n = rn +BT
m1

(Pm1bm1 + pm1) +BT
m2

(Pm2bm2 + pm2),

where the updates from the different children are added
together.

Once the updated matrices and vectors have been com-
puted, the recursion matrix Pn and vector pn are computed
as in (4) and (5).

3.3 Computational cost analysis

The algorithm for the factorization of the KKT matrix of
the tree MPC problem is presented in Algorithm 1. The
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Algorithm 2 Tree Riccati - backward substitution

1: for each node n in N̂ to 0 do
2: if n ∈ L then
3: pn ← qn
4: else

5:

[
r̃n
q̃n

]
←

[
rn
qn

]

6: for each child m do
7: d ← LmLT

mbm + pm

8:

[
r̃n
q̃n

]
←

[
r̃n
q̃n

]
+

[
BT

m

AT
m

]
d

9: end for
10: ln ← Λ−1

n r̃n
11: pn ← q̃n − Lnln
12: end if
13: end for

Algorithm 3 Tree Riccati - forward substitution

1: for each node n in 0 to N̂ do
2: if n /∈ L then
3: un ← −Λ−T

n (ln + LT
nxn)

4: for each child m do
5: xm ← Amxn +Bmun + bm
6: πm ← LmLT

mxm + pm
7: end for
8: end if
9: end for

algorithms for the forward and backward substitution are
presented in Algorithms 2 and 3.

Assuming that all stages have the same state and input
vector dimensions nx and nu, Algorithm 1 has a compu-
tational cost per node of

Cmd
(nx, nu) = md

(
2n3

x + 3n2
xnu + nxn

2
u

)
+ 1

3 (nx + nu)
3

flops for n ∈ N\L, and
Cf (nx) =

1
3n

3
x

flops for n ∈ L. Therefore, the cost per node does
not depend on Nr or N , and it is less than a factor
md compared to the standard Riccati recursion for the
nominal MPC problem.

For a tree with md realizations, robust horizon Nr and
prediction horizon N , the computational cost for the KKT
matrix factorization is of

md
Nr+1 − 1

md − 1
Cmd

(nx, nu)+

+md
Nr ((N −Nr)C1(nx, nu) + Cf (nx))

flops, where

C1(nx, nu) =
7
3n

3
x + 4n2

xnu + 2nxn
2
u + 1

3n
3
u

flops is the cost per node in case there is only one child
(that is equal to the cost per stage of the standard Riccati
recursion for the nominal MPC problem). Therefore, the
factorization cost is less than md times the standard
Riccati recursion cost for an horizon equal to the number
of nodes N̂ , and it scales linearly with the number of
scenarios md

Nr .

In case the standard Riccati recursion is employed to
solve the tree MPC problem, the state and input vector

dimensions increase at each branch in the tree. The com-
putational cost for the KKT matrix factorization is

Nr∑
k=0

Cmd
(md

knx,md
knu)+

+ (N −Nr)C1(md
Nrnx,md

Nrnu) + Cf (md
Nrnx)

flops, that scales cubically in the number of scenariosmd
Nr

(and therefore it is approximately md
2Nr times larger than

using the tree Riccati recursion), since Cmd
, C1 and Cf are

cubic in nx and nu.

4. EMBEDDING IN THE HPMPC FRAMEWORK

This section discusses implementation details of the pre-
sented tree-structured IP method.

4.1 Linear algebra

The implementation of the tree Riccati algorithm requires
the same LA routines as the standard Riccati recursion.
Algorithms 1, 2 and 3 have been implemented using the
high-performance LA routines in BLASFEO (Frison et al.,
2017). BLASFEO (which stands for BLAS For Embedded
Optimization) is a LA library providing routines tailored
for small-scale matrices and optimized for a number of
computer architecures.

Compared to the LA routines present in HPMPC, BLAS-
FEO provides a new interface, that defines matrix and vec-
tor structure types to completely hide any implementation
detail to the user (e.g. the programmer coding the MPC
algorithm). In particular, two optimized implementations
are provided at the moment (besides a reference implemen-
tation): one based on BLAS (internally making use of the
column-major matrix storage), and one based on custom
LA optimized for embedded optimization (internally mak-
ing use of the panel-major matrix format) (Frison, 2015).

This allows for the same algorithm to be coded once, and
then linked to different versions of BLASFEO.

4.2 IP method routines

The HPMPC library (Frison et al., 2014; HPMPC, 2014)
contains a high-performance implementation of a Mehro-
tra’s predictor-corrector IP method tailored to MPC prob-
lems, employing a backward Riccati recusion to compute
the search direction. The key routines in an IP method are
the factorization and solution of the KKT matrix of the
equality constrained sub-problems, accounting for all the
terms cubic and quadratic in nx and nu in the computa-
tional complexity. Nevertheless, in the case of small-scale
QPs, typical of MPC applications, all remaining auxiliary
routines (e.g. computation of the update term of Hessian
and gradient, computation of the step length, update of
the variables) have also a non-negligible cost. Therefore,
highly-optimized versions of all these routines are also
provided in HPMPC.

The IP method in HPMPC is implemented such that the
number of states and inputs can change stage-wise. This
feature allows for the use of the same auxiliary routines in
both nominal and robust cases.
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5. NUMERICAL EXPERIMENTS

In this section, we compare the developed structure-
exploiting IP method (Tree HPMPC) against state-of-the-
art numerical solvers. The benchmark example is a linear
MPC controller for regulating a chain of oscillating masses.

5.1 Problem description

The test problem with the chain of masses and springs is
described in (Wang and Boyd, 2010). It is a linear system
where the number of masses m (and consequently the
number of states nx = 2m) can be easily scaled. In all
our tests, a force acts on each of the first m − 1 masses,
i.e., the number of control inputs is nu = m − 1. The
nominal value for the ratio between the spring constant
and the mass value is r = 1, but it can be changed
to introduce model-plant mismatch. The continuous time
system is sampled with a period Ts = 0.2 s. The weights
on the cost function are equal to R = I for the inputs and
Q = 10I for the states. There are bounds on all inputs and
states components, equal to ±1 for the inputs, ±1 for the
displacement and ±2 for the velocities of the masses.

5.2 Feasibility under plant-model mismatch

Let us consider the case of m = 4 masses and a prediction
horizon of N = 10 steps to introduce the benchmark
example and assess the performance of nominal and robust
multi-stage MPC under plant-model mismatch. We excite
the system with velocities v3 = −1.7 and v4 = 1.2 on
the last two masses and run closed-loop simulations with
the ratio of the controlled plant first equal to r = 1
and then r = 0.8. The nominal MPC controller assumes
r = 1 while the robust formulation uses Nr = 2 and
md = 3 with r(θ) ∈ {0.8, 1, 1.2}. As depicted in Figure 2,
the nominal MPC scheme fails to respect the constraints
on the position of the masses, 3 as opposed to multi-
stage MPC that retains feasibility. Note that all three
realizations are weighted with the same probability in the
scenario tree and therefore the controller optimizes the
average performance over all scenarios.

5.3 Standard versus tree Riccati recursion

Here we compare the time needed to factorize the KKT
matrix for the unconstrained tree MPC problem, by means
of a Standard Riccati recursion (S.R.) and a Tree Riccati
recursion (T.R.). Two test problems are considered, one
small with m = 2 masses (and therefore nx = 2m = 4
states and nu = m − 1 = 1 control), and one large with
m = 8 masses (and therefore nx = 2m = 16 states and
nu = m− 1 = 7 controls). The prediction horizon is fixed
to N = 5, while several values for the robust horizon Nr

and the number of realizations md are considered. The LA
used in the Riccati algorithms is provided by either the
high-performance (HP) implementation of BLASFEO or
by OpenBLAS (OB), which is the best performing open-
source BLAS implementation, highly optimized for many
computer architectures (OpenBLAS, 2011). The latter
library is called through the common interface described
in Section 4.1. The results are reported in Table 1.
3 Infeasible problems are treated by re-applying the previous con-
troller input.

Table 1. Timings (µs) for the Riccati factoriza-
tion of the KKT matrix of the unconstrained
MPC problem, for m = 2 masses and m = 8
masses. Problem size N = 5, nx = 2m, nu =
m − 1. Test processor: Intel Core i7 4800MQ

(Haswell architecture).

Nr = 1 Nr = 2

Method m LA md = 1 md = 2 md = 3 md = 2 md = 3

S.R. 2 OB 2.43 5.63 10.6 13.3 82.9

S.R. 2 HP 0.94 2.40 3.59 4.81 24.9

T.R. 2 OB 2.50 4.98 7.64 8.91 19.3

T.R. 2 HP 1.19 2.27 3.37 4.10 8.92

S.R. 8 OB 20.0 95.5 218 356 2564

S.R. 8 HP 7.10 27.8 75.8 129 1202

T.R. 8 OB 20.2 40.7 60.4 74.4 164

T.R. 8 HP 7.16 14.4 21.5 26.4 58.6

For the small problem and a number of scenarios mNr

d
up to 4, the speed-up obtained using the Tree Riccati
algorithm is negligible. This is due to the fact that well-
optimized LA routines generally have poor performance
for very small matrices, while it increases quickly for matri-
ces of size up to a few tens. Therefore, the additional num-
ber of flops is hidden by the increased LA performance.

For the larger problem with more scenarios the speed-up
given by the Tree Riccati becomes much larger. In the
case of Nr = 2 and md = 3 (giving 32 = 9 scenarios) the
speed-up is of about 15-20 times depending on the LA.

Finally, the use of the high-performance implementation
of BLASFEO provides a speed-up of about 2-3 times
(depending on the problem size) with respect to the use of
OpenBLAS, which is better suited for large-scale matrices.
Therefore, BLASFEO will provide the LA for all remaining
numerical experiments. For the large problem with Nr = 2
and md = 3, the combination of tree Riccati recursion and
BLASFEO gives a speed-up of more than 40 times with
respect to standard Riccati recursion and OpenBLAS.

5.4 Performance of Tree HPMPC

Aim of this section is to compare the performance of Tree
HPMPC against existing software for different problem
sizes. Both code-generated and general sparse solvers are
considered in this benchmark. The selected solvers are:

• CVXGEN: a code generator for small- to medium-
scale convex optimization problems (roughly up to
4000 non-zero entries in the KKT matrix) (Matting-
ley and Boyd, 2012).

• OOQP: A primal-dual IP method for convex QPs,
written in C++ (Gertz and Wright, 2003). The soft-
ware supports a variety of structured QPs as well as
general sparse QPs. The latter functionality is used
here since there is currently no module that supports
tree-structured constraints.

• FORCES Pro: a code generator of IP methods tai-
lored to multi-stage QPs (Domahidi et al., 2012).

• HPMPC: The already introduced IP method both
with a standard and a tree Riccati recursion.
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Algorithm 2 Tree Riccati - backward substitution

1: for each node n in N̂ to 0 do
2: if n ∈ L then
3: pn ← qn
4: else

5:

[
r̃n
q̃n

]
←

[
rn
qn

]

6: for each child m do
7: d ← LmLT

mbm + pm

8:

[
r̃n
q̃n

]
←

[
r̃n
q̃n

]
+

[
BT

m

AT
m

]
d

9: end for
10: ln ← Λ−1

n r̃n
11: pn ← q̃n − Lnln
12: end if
13: end for

Algorithm 3 Tree Riccati - forward substitution

1: for each node n in 0 to N̂ do
2: if n /∈ L then
3: un ← −Λ−T

n (ln + LT
nxn)

4: for each child m do
5: xm ← Amxn +Bmun + bm
6: πm ← LmLT

mxm + pm
7: end for
8: end if
9: end for

algorithms for the forward and backward substitution are
presented in Algorithms 2 and 3.

Assuming that all stages have the same state and input
vector dimensions nx and nu, Algorithm 1 has a compu-
tational cost per node of

Cmd
(nx, nu) = md

(
2n3

x + 3n2
xnu + nxn

2
u

)
+ 1

3 (nx + nu)
3

flops for n ∈ N\L, and
Cf (nx) =

1
3n

3
x

flops for n ∈ L. Therefore, the cost per node does
not depend on Nr or N , and it is less than a factor
md compared to the standard Riccati recursion for the
nominal MPC problem.

For a tree with md realizations, robust horizon Nr and
prediction horizon N , the computational cost for the KKT
matrix factorization is of

md
Nr+1 − 1

md − 1
Cmd

(nx, nu)+

+md
Nr ((N −Nr)C1(nx, nu) + Cf (nx))

flops, where

C1(nx, nu) =
7
3n

3
x + 4n2

xnu + 2nxn
2
u + 1

3n
3
u

flops is the cost per node in case there is only one child
(that is equal to the cost per stage of the standard Riccati
recursion for the nominal MPC problem). Therefore, the
factorization cost is less than md times the standard
Riccati recursion cost for an horizon equal to the number
of nodes N̂ , and it scales linearly with the number of
scenarios md

Nr .

In case the standard Riccati recursion is employed to
solve the tree MPC problem, the state and input vector

dimensions increase at each branch in the tree. The com-
putational cost for the KKT matrix factorization is

Nr∑
k=0

Cmd
(md

knx,md
knu)+

+ (N −Nr)C1(md
Nrnx,md

Nrnu) + Cf (md
Nrnx)

flops, that scales cubically in the number of scenariosmd
Nr

(and therefore it is approximately md
2Nr times larger than

using the tree Riccati recursion), since Cmd
, C1 and Cf are

cubic in nx and nu.

4. EMBEDDING IN THE HPMPC FRAMEWORK

This section discusses implementation details of the pre-
sented tree-structured IP method.

4.1 Linear algebra

The implementation of the tree Riccati algorithm requires
the same LA routines as the standard Riccati recursion.
Algorithms 1, 2 and 3 have been implemented using the
high-performance LA routines in BLASFEO (Frison et al.,
2017). BLASFEO (which stands for BLAS For Embedded
Optimization) is a LA library providing routines tailored
for small-scale matrices and optimized for a number of
computer architecures.

Compared to the LA routines present in HPMPC, BLAS-
FEO provides a new interface, that defines matrix and vec-
tor structure types to completely hide any implementation
detail to the user (e.g. the programmer coding the MPC
algorithm). In particular, two optimized implementations
are provided at the moment (besides a reference implemen-
tation): one based on BLAS (internally making use of the
column-major matrix storage), and one based on custom
LA optimized for embedded optimization (internally mak-
ing use of the panel-major matrix format) (Frison, 2015).

This allows for the same algorithm to be coded once, and
then linked to different versions of BLASFEO.

4.2 IP method routines

The HPMPC library (Frison et al., 2014; HPMPC, 2014)
contains a high-performance implementation of a Mehro-
tra’s predictor-corrector IP method tailored to MPC prob-
lems, employing a backward Riccati recusion to compute
the search direction. The key routines in an IP method are
the factorization and solution of the KKT matrix of the
equality constrained sub-problems, accounting for all the
terms cubic and quadratic in nx and nu in the computa-
tional complexity. Nevertheless, in the case of small-scale
QPs, typical of MPC applications, all remaining auxiliary
routines (e.g. computation of the update term of Hessian
and gradient, computation of the step length, update of
the variables) have also a non-negligible cost. Therefore,
highly-optimized versions of all these routines are also
provided in HPMPC.

The IP method in HPMPC is implemented such that the
number of states and inputs can change stage-wise. This
feature allows for the use of the same auxiliary routines in
both nominal and robust cases.
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Fig. 2. Closed loop trajectories of positions and controls for nominal MPC without plant-model mismatch (left), nominal
MPC with plant-model mismatch (middle) and robust multi-stage MPC with plant-model mismatch (right).

Table 2. Number of variables and average/maximum timings (ms) for two benchmark problems.
First problem with m = 2 and N = 5. Second problem with m = 4 and N = 10. Test processor:

Intel Xeon E5-2687W (Sandy Bridge architecture).

Tree parameters
Nr = 1 Nr = 2 Nr = 3

md = 1 md = 2 md = 3 md = 2 md = 3 md = 2 md = 3

Solvers / # variables 29 54 79 91 192 146 443

CVXGEN 0.07/0.08 0.17/0.24 0.28/0.39 0.36/0.55 0.77/1.36 0.64/0.85 -/-

OOQP 0.49/0.65 0.78/1.08 1.12/1.53 1.33/2.02 2.92/4.45 2.21/4.29 7.82/13.03

FORCES Pro 0.07/0.10 0.17/0.21 0.34/0.45 0.51/0.64 4.02/5.56 1.52/2.19 56.35/73.00

Standard HPMPC 0.04/0.05 0.06/0.10 0.09/0.13 0.12/0.19 0.42/0.57 0.27/0.49 3.47/4.69

Tree HPMPC 0.04/0.06 0.08/0.11 0.13/0.21 0.15/0.22 0.32/0.48 0.24/0.34 0.61/0.82

Solvers / # variables 118 128 338 417 911 754 2438

CVXGEN 0.71/0.91 1.38/1.73 -/- -/- -/- -/- -/-

OOQP 2.28/3.33 4.78/8.50 7.66/12.57 9.74/15.61 24.07/39.98 19.50/33.80 80.52/104.65

FORCES Pro 0.56/0.69 1.22/1.57 2.93/3.76 6.32/8.65 98.37/132.19 48.82/65.49 2617.19/3933.07

Standard HPMPC 0.12/0.19 0.29/0.44 0.61/0.87 0.88/1.38 5.48/7.41 3.64/5.12 105.98/142.58

Tree HPMPC 0.14/0.21 0.28/0.40 0.43/0.60 0.52/0.77 1.14/1.60 0.90/1.24 3.13/4.22

The above solvers are used in closed-loop simulations
where the linear MPC controller regulates the system
to the origin after an initial perturbation. Average and
maximum timings for a small (N = 5,m = 2) and a large
(N = 10,m = 4) problem are reported in Table 2 (all tim-
ings are performed in C code). No plant-model mismatch
is considered here (r = 1) to avoid infeasible problems for
the nominal MPC schemes. Note that although the same
problem formulation that is passed to Standard HPMPC
can be also used within FORCES Pro, the recently devel-
oped tool Y2F (Y2F, 2016) is used instead to automati-
cally translate the problem from YALMIP (Löfberg, 2004)
to the expected multi-stage form. This approach seemed
to be both simpler and more efficient for the conducted
experiments. The missing entries of CVXGEN in the table
indicate problem instances where code generation failed
due to large number of variables.

From Table 2 it is clear that the solvers for nominal MPC
(Standard HPMPC) and multi-stage QPs (FORCES Pro)
perform reasonably well for a small number of scenarios,
but their computational cost explodes as the number
of scenarios increases. Standard HPMPC scales better
due to the superior performance of the LA routines in
BLASFEO. On the other hand, solvers for generic sparse
QPs (CVXGEN and OOQP) are able to exploit the
problem structure and their performance scales well with
the number of scenarios. CVXGEN is roughly 4-8 times
faster than OOQP for small problems where the code
generation succeeds.

Tree HPMPC is the fastest solver in most cases (and for
the larger problems by a wide margin), since the tree
Riccati recursion can exploit well the tree-structure of
the QPs. It is interesting to note that the ratio of the
computational time between OOQP and Tree HPMPC is
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rather constant with respect to the number of scenarios,
and equal to about 10 for the small problem and 20 for
the large problem. This is a clear hint to the fact that
both solvers are equally able to exploit the sparsity in
the problem, with the difference in computational time
coming from the much higher performance of the dense
LA routines in BLASFEO compared to the sparse LA
employed in OOQP.

6. CONCLUSION

In this paper, we presented a tailored Riccati recursion
algorithm to efficiently factorize the KKT matrix of uncon-
strained, tree-structured QPs arising in multi-stage MPC.
The computational cost of the method scales linearly in
the number of nodes in the tree describing the MPC
problem. Furthermore, the computational cost per node
is smaller than the computational cost in the standard
Riccati recursion case times the number of children of the
node. The tree Riccati recursion has been implemented
using the high-performance LA routines in BLASFEO
and embedded into a Mehrotra’s type IP method. The
developed solver compares favorably to several existing
alternatives, showing that the combination of a structure-
exploiting algorithm with high-performance dense LA rou-
tines tailored for small-scale matrices can outperform by
a wide margin code-generated solvers as well as general
purpose sparse solvers for this class of problems.
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Hübner, J., Schmidt, M., and Steinbach, M.C. (2016).
A distributed interior-point KKT solver for multistage
stochastic optimization. Optimization Online.

Klintberg, E., Dahl, J., Fredriksson, J., and Gros, S.
(2016). An improved dual Newton strategy for scenario-
tree MPC. In Proceedings of the IEEE Conference on
Decision and Control (CDC).

Leidereiter, C., Potschka, A., and Bock, H.G. (2015). Dual
decomposition for QPs in scenario tree NMPC. In
Proceedings of the European Control Conference (ECC).
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Fig. 2. Closed loop trajectories of positions and controls for nominal MPC without plant-model mismatch (left), nominal
MPC with plant-model mismatch (middle) and robust multi-stage MPC with plant-model mismatch (right).

Table 2. Number of variables and average/maximum timings (ms) for two benchmark problems.
First problem with m = 2 and N = 5. Second problem with m = 4 and N = 10. Test processor:

Intel Xeon E5-2687W (Sandy Bridge architecture).

Tree parameters
Nr = 1 Nr = 2 Nr = 3

md = 1 md = 2 md = 3 md = 2 md = 3 md = 2 md = 3

Solvers / # variables 29 54 79 91 192 146 443

CVXGEN 0.07/0.08 0.17/0.24 0.28/0.39 0.36/0.55 0.77/1.36 0.64/0.85 -/-

OOQP 0.49/0.65 0.78/1.08 1.12/1.53 1.33/2.02 2.92/4.45 2.21/4.29 7.82/13.03

FORCES Pro 0.07/0.10 0.17/0.21 0.34/0.45 0.51/0.64 4.02/5.56 1.52/2.19 56.35/73.00

Standard HPMPC 0.04/0.05 0.06/0.10 0.09/0.13 0.12/0.19 0.42/0.57 0.27/0.49 3.47/4.69

Tree HPMPC 0.04/0.06 0.08/0.11 0.13/0.21 0.15/0.22 0.32/0.48 0.24/0.34 0.61/0.82

Solvers / # variables 118 128 338 417 911 754 2438

CVXGEN 0.71/0.91 1.38/1.73 -/- -/- -/- -/- -/-

OOQP 2.28/3.33 4.78/8.50 7.66/12.57 9.74/15.61 24.07/39.98 19.50/33.80 80.52/104.65

FORCES Pro 0.56/0.69 1.22/1.57 2.93/3.76 6.32/8.65 98.37/132.19 48.82/65.49 2617.19/3933.07

Standard HPMPC 0.12/0.19 0.29/0.44 0.61/0.87 0.88/1.38 5.48/7.41 3.64/5.12 105.98/142.58

Tree HPMPC 0.14/0.21 0.28/0.40 0.43/0.60 0.52/0.77 1.14/1.60 0.90/1.24 3.13/4.22

The above solvers are used in closed-loop simulations
where the linear MPC controller regulates the system
to the origin after an initial perturbation. Average and
maximum timings for a small (N = 5,m = 2) and a large
(N = 10,m = 4) problem are reported in Table 2 (all tim-
ings are performed in C code). No plant-model mismatch
is considered here (r = 1) to avoid infeasible problems for
the nominal MPC schemes. Note that although the same
problem formulation that is passed to Standard HPMPC
can be also used within FORCES Pro, the recently devel-
oped tool Y2F (Y2F, 2016) is used instead to automati-
cally translate the problem from YALMIP (Löfberg, 2004)
to the expected multi-stage form. This approach seemed
to be both simpler and more efficient for the conducted
experiments. The missing entries of CVXGEN in the table
indicate problem instances where code generation failed
due to large number of variables.

From Table 2 it is clear that the solvers for nominal MPC
(Standard HPMPC) and multi-stage QPs (FORCES Pro)
perform reasonably well for a small number of scenarios,
but their computational cost explodes as the number
of scenarios increases. Standard HPMPC scales better
due to the superior performance of the LA routines in
BLASFEO. On the other hand, solvers for generic sparse
QPs (CVXGEN and OOQP) are able to exploit the
problem structure and their performance scales well with
the number of scenarios. CVXGEN is roughly 4-8 times
faster than OOQP for small problems where the code
generation succeeds.

Tree HPMPC is the fastest solver in most cases (and for
the larger problems by a wide margin), since the tree
Riccati recursion can exploit well the tree-structure of
the QPs. It is interesting to note that the ratio of the
computational time between OOQP and Tree HPMPC is
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