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Abstract: The purpose of this study is to develop an adaptive unscented Kalman filter (UKF)
by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE)
and the covariance matching (CM) method to estimate the noise covariance. The multi-step
prediction errors generated by the UKF are used for covariance estimation by MLE and
CM. Then we apply the two covariance estimation methods on an example application. In
the example, we identify the covariance of the measurement noise for a continuous glucose
monitoring (CGM) sensor. The sensor measures the subcutaneous glucose concentration for a
type 1 diabetes patient. The root-mean square (RMS) error and the computation time are used
to compare the performance of the two covariance estimation methods. The results indicate
that as the prediction horizon expands, the RMS error for the MLE declines, while the error
remains relatively large for the CM method. For larger prediction horizons, the MLE provides
an estimate of the noise covariance that is less biased than the estimate by the CM method.
The CM method is computationally less expensive though.

Keywords: Unscented Kalman filter, Maximum likelihood estimation, Covariance matching
technique, Adaptive filtering, Covariance estimation, Continuous glucose monitors.

1. INTRODUCTION

Identifying the uncertainties that affect a system is fun-
damental for monitoring and designing an optimal and
adaptive estimator. In order to have a filter that is close
to optimal, we need to know the covariance of the pro-
cess and measurement noise. Methods for identifying noise
covariances often include maximum likelihood estimation
(MLE) (Zagrobelny and Rawlings, 2015b; Jørgensen and
Jørgensen, 2007), covariance matching (CM) techniques
(Maybeck, 1982; Weige et al., 2015; Partovibakhsh and
Liu, 2015), and correlation-based approaches such as
the autocovariance least-squares (ALS) method (Åkesson
et al., 2008; Odelson et al., 2006a,b; Zagrobelny and Rawl-
ings, 2015a). These methods often deal with only linear or
linearized systems. The CM technique is commonly used
for the nonlinear systems, because it is computationally
inexpensive and it is flexible to accommodate the nonlinear
models. It is a suboptimal covariance estimation though.
The literature on the use of optimization-based covariance
estimation approaches for nonlinear systems is sparse.

The purpose of this study is to use an optimization-based
estimator, i.e., the MLE method, for identification of the
noise covariance in a nonlinear system. Furthermore, we
compare the MLE approach with a suboptimal estimation
method, i.e., the CM algorithm, in the context of an
adaptive unscented Kalman filter (UKF). We employ the

� This work is funded by the Danish Diabetes Academy supported
by the Novo Nordisk Foundation.

estimation of the measurement noise covariance as the
basis for deriving filter adaptation.

The paper is structured as follows. First, we present the
unscented Kalman filter (UKF) for prediction, filtering,
and generating the covariance matrix of the prediction
errors. Then, we develop the MLE problem and the CM
technique to estimate the covariance of the measurement
noise. The multi-step prediction errors and their covari-
ances generated by the UKF are used in the MLE and CM
methods. We then apply the MLE and CM algorithms on
an example. The example is a nonlinear metabolic model of
a patient with type 1 diabetes. In the example, we estimate
the noise covariance of a continuous glucose monitoring
(CGM) sensor, and derive the adaptive UKF to filter the
sensor measurements.

2. MATERIALS AND METHODS

2.1 The unscented Kalman filter

In the UKF, a set of sigma points are deterministically
chosen to represent the mean and covariance of the states.
The sigma points therefore approximate the probability
distribution of the states as it goes through the nonlinear
transformation (Särkkä, 2007; Julier and Uhlmann, 2004).
Approximating the probability distribution of the states
by the sigma points in the UKF has shown to produce
less estimation bias compared to the linearization in the
extended Kalman filter (EKF) (Simon, 2006).
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Model The model of the state space in the stochastic
differential equation (SDE) form and the measurement
model are of the form

dx(t) = f (x(t), u(t), d(t)) dt+ σ · dω(t), (1a)

yk = g(xk) + ξk, (1b)

dω(t) ∼ Niid(0, Idt), (1c)

in which x is the state, u is the input, d is the distur-
bance, and y is the measurement. We assume that ξ is a
Gaussian zero-mean discrete-time measurement noise with
covariance R. The stochastic noise ω is a standard Wiener
process, and σ is the diffusion coefficient. I is an n × n
identity matrix, where n is the number of state variables
in the model.

Prediction This section explains the multi-step pre-
diction with the UKF. The prediction steps are j =
1, 2, . . . , Np and Np is the prediction horizon. The scaling
parameter λ determines how far the sigma points are
scattered away from the mean. λ and c are defined as

λ = α2(n+ κ)− n, c = α2(n+ κ). (2a)

The associated weights, W , for the 2n+1 sigma points are
given by

W (0)
m = λ/(n+ λ), (2b)

W (0)
c = λ/{(n+ λ)(1− α2 + β)}, (2c)

W (i)
m = 1/{2(n+ λ)}, i = 1, . . . , 2n (2d)

W (i)
c = 1/{2(n+ λ)}, i = 1, . . . , 2n (2e)

Wm = [W (0)
m . . .W (2n)

m ]T . (2f)

A deterministic approach, based on the Cholesky fac-
torization of the covariance P , samples the probability
distribution to generate the sigma points X̂.

X̂k+j−1 = [x̂k+j−1|k . . . x̂k+j−1|k]

+
√
c [0

√
Pk+j−1|k −

√
Pk+j−1|k]

= [m(i) . . . m(2n)], i = 0, . . . , 2n. (3a)

The nonlinear function f propagates each of the sigma
points according to

dX̂k+j−1

dt
(t) = f

(
X̂k+j−1(t), u(t), d(t)

)
,

t ∈ [tk+j−1 tk+j ] (3b)

X̂k+j = X̂k+j−1(tk+j). (3c)

The parameters α, κ, and β are set to α = 0.01, κ = 0,
and β = 2. The weighted average of the transformed sigma
points gives the predicted mean

x̂k+j|k = X̂k+jWm. (3d)

The covariance of the estimation error is computed by
propagating dPk+j−1 according to

dPk+j−1(t)

dt

=
2n∑
i=0

W (i)
c

(
m(i)(t)−mx(t)

)(
f(m(i)(t), u(t))−mf (t)

)T

+

2n∑
i=0

W (i)
c

(
f(m(i)(t), u(t))−mf (t)

)(
(m(i)(t)−mx(t)

)T

+ σσT , t ∈ [tk+j−1 tk+j ] (3e)

where mx and mf are

mx(t) =

2n∑
i=0

W (i)
m m(i)(t),

mf (t) =

2n∑
i=0

W (i)
m f(m(i)(t), u(t)). (3f)

The propagated error covariance is then

Pk+j|k = Pk+j−1(tk+j). (3g)

To increase accuracy, new sigma points are generated from
the predicted state mean and covariance as indicated in

X̃k+j = [x̂k+j|k . . . x̂k+j|k]

+
√
c [0

√
Pk+j|k −

√
Pk+j|k]

= [m̃(i) . . . m̃(2n)], i = 0, . . . , 2n. (3h)

The measurement model transforms each of the new sigma
points

Ŷk+j = g(X̃k) = [µ(i) . . . µ(2n)], i = 0, . . . , 2n. (4a)

The weighted average of the measurement sigma points
gives the predicted measurement

ŷk+j|k = Ŷk+jWm, (4b)

and the j-step prediction error is given by

ek+j|k = yk+j − ŷk+j|k. (4c)

Syy
k+j is the covariance of Ŷk+j and is computed as

Syy
k+j =

2n∑
i=0

W (i)
c

(
µ(i) − ŷk+j|k

)(
µ(i) − ŷk+j|k

)T

. (4d)

Sk+j is the covariance of ek+j|k and is calculated by

Sk+j = Syy
k+j +Rk+j . (4e)

Filtering The equation set (5) describes filtering and
measurement update with the UKF. Sxy

k+1 is the cross-

covariance of X̃ and Ŷk+j|k, and can be estimated as

Sxy
k+1 =

2n∑
i=0

W (i)
c

(
m̃(i) − x̂k+1|k

)(
µ(i) − ŷk+1|k

)T

,

(5a)

and Kk+1 is the filter gain as follows

Kk+1 = Sxy
k+1 S−1

k+1. (5b)

The updated state mean is computed as

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k). (5c)

The updated error covariance is given by

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1. (5d)

Multi-step prediction error and its covariance matrix
Let {yk}Nk=1 denote the measurements and Np denote
the prediction horizon. Let the time indices be k =
0, 1, . . . N −Np, and the prediction index be 1 ≤ j ≤ Np.
This implies that 1 ≤ k + j ≤ N . Let εk+Np denote the
vector of the prediction errors in the Np-sample prediction
window as

εk+Np
=




ek+1|k
ek+2|k

...
ek+Np|k


 =




yk+1 − ŷk+1|k
yk+2 − ŷk+2|k

...
yk+Np

− ŷk+Np|k


 . (6)
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Model The model of the state space in the stochastic
differential equation (SDE) form and the measurement
model are of the form

dx(t) = f (x(t), u(t), d(t)) dt+ σ · dω(t), (1a)

yk = g(xk) + ξk, (1b)

dω(t) ∼ Niid(0, Idt), (1c)

in which x is the state, u is the input, d is the distur-
bance, and y is the measurement. We assume that ξ is a
Gaussian zero-mean discrete-time measurement noise with
covariance R. The stochastic noise ω is a standard Wiener
process, and σ is the diffusion coefficient. I is an n × n
identity matrix, where n is the number of state variables
in the model.

Prediction This section explains the multi-step pre-
diction with the UKF. The prediction steps are j =
1, 2, . . . , Np and Np is the prediction horizon. The scaling
parameter λ determines how far the sigma points are
scattered away from the mean. λ and c are defined as

λ = α2(n+ κ)− n, c = α2(n+ κ). (2a)

The associated weights, W , for the 2n+1 sigma points are
given by

W (0)
m = λ/(n+ λ), (2b)

W (0)
c = λ/{(n+ λ)(1− α2 + β)}, (2c)

W (i)
m = 1/{2(n+ λ)}, i = 1, . . . , 2n (2d)

W (i)
c = 1/{2(n+ λ)}, i = 1, . . . , 2n (2e)

Wm = [W (0)
m . . .W (2n)

m ]T . (2f)

A deterministic approach, based on the Cholesky fac-
torization of the covariance P , samples the probability
distribution to generate the sigma points X̂.

X̂k+j−1 = [x̂k+j−1|k . . . x̂k+j−1|k]

+
√
c [0

√
Pk+j−1|k −

√
Pk+j−1|k]

= [m(i) . . . m(2n)], i = 0, . . . , 2n. (3a)

The nonlinear function f propagates each of the sigma
points according to

dX̂k+j−1

dt
(t) = f

(
X̂k+j−1(t), u(t), d(t)

)
,

t ∈ [tk+j−1 tk+j ] (3b)

X̂k+j = X̂k+j−1(tk+j). (3c)

The parameters α, κ, and β are set to α = 0.01, κ = 0,
and β = 2. The weighted average of the transformed sigma
points gives the predicted mean

x̂k+j|k = X̂k+jWm. (3d)

The covariance of the estimation error is computed by
propagating dPk+j−1 according to

dPk+j−1(t)

dt

=
2n∑
i=0

W (i)
c

(
m(i)(t)−mx(t)

)(
f(m(i)(t), u(t))−mf (t)

)T

+

2n∑
i=0

W (i)
c

(
f(m(i)(t), u(t))−mf (t)

)(
(m(i)(t)−mx(t)

)T

+ σσT , t ∈ [tk+j−1 tk+j ] (3e)

where mx and mf are

mx(t) =

2n∑
i=0

W (i)
m m(i)(t),

mf (t) =

2n∑
i=0

W (i)
m f(m(i)(t), u(t)). (3f)

The propagated error covariance is then

Pk+j|k = Pk+j−1(tk+j). (3g)

To increase accuracy, new sigma points are generated from
the predicted state mean and covariance as indicated in

X̃k+j = [x̂k+j|k . . . x̂k+j|k]

+
√
c [0

√
Pk+j|k −

√
Pk+j|k]

= [m̃(i) . . . m̃(2n)], i = 0, . . . , 2n. (3h)

The measurement model transforms each of the new sigma
points

Ŷk+j = g(X̃k) = [µ(i) . . . µ(2n)], i = 0, . . . , 2n. (4a)

The weighted average of the measurement sigma points
gives the predicted measurement

ŷk+j|k = Ŷk+jWm, (4b)

and the j-step prediction error is given by

ek+j|k = yk+j − ŷk+j|k. (4c)

Syy
k+j is the covariance of Ŷk+j and is computed as

Syy
k+j =

2n∑
i=0

W (i)
c

(
µ(i) − ŷk+j|k

)(
µ(i) − ŷk+j|k

)T

. (4d)

Sk+j is the covariance of ek+j|k and is calculated by

Sk+j = Syy
k+j +Rk+j . (4e)

Filtering The equation set (5) describes filtering and
measurement update with the UKF. Sxy

k+1 is the cross-

covariance of X̃ and Ŷk+j|k, and can be estimated as

Sxy
k+1 =

2n∑
i=0

W (i)
c

(
m̃(i) − x̂k+1|k

)(
µ(i) − ŷk+1|k

)T

,

(5a)

and Kk+1 is the filter gain as follows

Kk+1 = Sxy
k+1 S−1

k+1. (5b)

The updated state mean is computed as

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k). (5c)

The updated error covariance is given by

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1. (5d)

Multi-step prediction error and its covariance matrix
Let {yk}Nk=1 denote the measurements and Np denote
the prediction horizon. Let the time indices be k =
0, 1, . . . N −Np, and the prediction index be 1 ≤ j ≤ Np.
This implies that 1 ≤ k + j ≤ N . Let εk+Np denote the
vector of the prediction errors in the Np-sample prediction
window as

εk+Np
=




ek+1|k
ek+2|k

...
ek+Np|k


 =




yk+1 − ŷk+1|k
yk+2 − ŷk+2|k

...
yk+Np

− ŷk+Np|k


 . (6)
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Analogously to the linear systems, the cross-covariances
of the multi-step prediction errors may be computed by
(Jørgensen and Jørgensen, 2007; Kailath et al., 2000)

Sk+i,k+j = 〈ek+i|k, ek+j|k〉

=





Ŷk+i W Ŷ T
k+j if i > j,

Ŷk+i W Ŷ T
k+j + Rk+j if i = j,

Ŷk+j W Ŷ T
k+i if i < j,

(7)

The covariance matrix of εk+Np is calculated by

Rk+Np
= 〈εk+Np

, εk+Np
〉

=




Sk+1,k+1 Sk+1,k+2 · · · Sk+1,k+Np

Sk+2,k+1 Sk+2,k+2 · · · Sk+2,k+Np

...
...

...
...

Sk+Np,k+1 Sk+Np,k+2 · · · Sk+Np,k+Np


 .

(8)

The covariance Rk+Np is an nyNp×nyNp matrix, in which
ny is the size of the measurement vector y. Under the
assumption that the measurement noise ξ is zero-mean
Gaussian, the prediction error εk+Np is also Gaussian with

the distributionN

(
[0, 0, · · · 0]T ,Rk+Np

)
. By havingR, ε,

and e from the UKF, we estimate and tune the covariance
of the measurement noise R by MLE and the CM method.

2.2 Maximum likelihood estimation

By taking the negative log likelihood of the multivariate
normal distribution of εk+Np , we write the MLE optimiza-
tion problem as

min
R�0

V (R) = ln det(Rk+Np
) + εTk+Np

R−1
k+Np

εk+Np
. (9)

When Np is large, computing ln det(Rk+Np
) is challenging

in terms of computational time and numerical accuracy.
Alternatively, Cholesky factorization offers a faster ap-
proach. The Cholesky factorization decomposes the pos-
itive definite Rk+Np

into Rk+Np
= LLT with L being a

lower triangular matrix. Then

ln det(Rk+Np
) = 2

nyNp∑
i=1

ln(Lii), (10)

in which Lii are the diagonal entries of L. Computing
inverse of Rk+Np

for calculating εTk+Np
R−1

k+Np
εk+Np

is computationally heavy. To avoid matrix inversion, we
compute εTk+Np

R−1
k+Np

εk+Np
by solving a system of linear

equations Rk+Np
Z = εk+Np

via back substitution and
finding Z. Then

εTk+Np
R−1

k+Np
εk+Np

= εTk+Np
Z. (11)

2.3 Covariance matching technique

In the prediction window for the prediction steps j =
1, 2, . . . , Np, we compute Sk+j that is the theoretical
covariance of ek+j|k. The covariance matrix Sk+j is com-
puted as

Sk+j = Syy
k+j +Rk+j , (12a)

in which the covariance matrix Syy
k+j is calculated accord-

ing to (4d). The sample covariance of ek+j|k is Ŝk+j , which
is given by

Ŝk+j =
1

M − 1

k+j∑
q=k+j−M+1

eq|q−j eTq|q−j , (12b)

where M is the length of the data sequence used for
estimating the sample covariance. We set M to 15. The
estimated measurement noise covariance is

R̂ =
1

Np − 1

Np∑
j=1

(Ŝk+j − Syy
k+j). (12c)

In both estimation methods, the estimated R is used in
the UKF for the next w samples. w is the size of the moving
step of the prediction window and is set to 50% of Np. The
size of the prediction window is the same as the prediction
horizon Np.

The root-mean square (RMS) error of the estimated noise
covariances evaluates the performance of the two covari-
ance estimation methods. The RMS error is computed by

Vrms =

√√√√ 1

N

N∑
k=1

‖Rtrue,k − R̂k‖
2

2 , (13)

where N is length of the data sequence.

3. EXAMPLE: IDENTIFYING THE NOISE OF
CONTINUOUS GLUCOSE MONITORING SENSOR

The CGM sensor measures interstitial glucose from the
subcutaneous (SC) tissue. The sensor measurements are
corrupted by random noise and artifacts originated from
several sources including sensor electronics, miscalibration
of the sensor, and biofouling.

3.1 The state space model

We used the Medtronic Virtual Patient (MVP) model in
the SDE form for the state space representation of the
patient’s metabolism and also for simulating the CGM
sensor (Kanderian et al., 2009). This model describes the
pharmacokinetics (PK) of SC insulin and the insulin-
glucose interaction. We also included the blood glucose
-interstitial glucose dynamics in the model. The model also
contains the two-compartments of carbohydrate (CHO)
absorption (Wilinska et al., 2010). The model is described
as

dIsc(t) =
1

τ1

(
ID(t)

CI
− Isc(t)

)
dt+ σSC · dωSC(t), (14a)

dIp(t) =
1

τ2
(ISC(t)− Ip(t)) dt+ σp · dωp(t), (14b)

dIeff (t) =
(
−P2 · Ieff (t) + P2 · SI · Ip(t)

)
dt

+ σeff · dωeff (t),
(14c)

dGB(t) =
(
−(GEZI + Ieff (t)) ·GB(t) + EGP +Ra(t)

)
dt

+ σG · dωG(t),
(14d)

dGI(t) = −
1

τ3
(GB(t)−GI(t)) dt+ σGI

· dωGI
(t), (14e)

dD1(t) =

(
q(t)−

1

τm
D1(t)

)
dt+ σD1 · dωD1

(t), (14f)

dD2(t) =
1

τm
(D1(t)−D2(t)) dt+ σD2 · dωD2 (t), (14g)

Ra(t) =
1

VGτm
D2(t). (14h)
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ID is the SC insulin input (µU/min), Isc, Ip, and Ieff are
the SC insulin concentration (mU/L), the plasma insulin
concentration (mU/L), and the effect of insulin (min−1),
respectively. GB is the blood glucose concentration and GI

is the interstitial glucose concentration both in mg/dL.
q(t) is the CHO ingestion rate (g/min), D1 and D2 are
the glucose masses (mg) in the accessible and inaccessible
compartments, and Ra is the glucose appearance rate
(mg/dL/min). τ1 (49 min) is the time constant to the
insulin movement from administration site to the SC
tissue, τ2 (47 min) is the time constant related to the
insulin movement from the SC tissue to plasma, τ3 (10
min) is the time constant related to the glucose movement
from plasma to SC tissue, CI (2010 mL/min) is the insulin
clearance, P2 (1.06 10−2 min−1) is the delayed insulin
action on the blood glucose, SI (8.11 10−4 mL/µU/min)
is the insulin sensitivity, GEZI (2.20 10−3 min−1 ) is
the glucose effectiveness at zero insulin, EGP ( 1.33
mg/dL/min) is the endogenous glucose production rate
at zero insulin, τm (47 min) is the peak time of meal
absorption, and Vg (253 dL) is the volume of distribution
for glucose.

ID contains basal and bolus insulin. The patient eats
breakfast at 8:00 hrs, lunch at 13:15 hrs, dinner at 18:00
hrs, and snack at 22:00 hrs. The CHO content of the meals
are 72 g for breakfast, 131 g for lunch, 51 g for dinner, and
70 g for snack, respectively. The insulin bolus to cover meal
are 3.5 U for breakfast, 7 U for lunch, 2.5 U for dinner,
and 3.5 U for snack, respectively.

3.2 The measurement model

The CGM sensor samples interstitial glucose. There-
fore, the measurement model comprises GI measurements
which are affected by the measurement noise φ as indicated
by

yk = GI,k + φk. (15a)

The measurement noise φ has covarianceRφ, and Facchinetti
et al. identified it as the sum of two autoregressive pro-
cesses given by (Facchinetti et al., 2014)

φk = ck + ϑ̂k, (15b)

ck = 1.23ck−1 − 0.3995ck−1 + δc,k, (15c)

ϑ̂k = 1.013ϑ̂k−1 − 0.2135ϑ̂k−2 + δϑ,k, (15d)

δc,k ∼ N(0, 11.3), δc,k ∼ N(0, 14.45).

The model (1) corresponds to the model (14) with the
state variables x = [Isc Ip Ieff GB GI D1 D2]

T , the
input u = ID, the disturbance d = q, the noise ξ = φ, and
the measurement y being the CGM data. In this example,
the measurement model g is linear and Rφ is a scaler.
For simulating the measurements y, we first simulated the
model in (14) by using Euler Maruyama method (Higham,
2001). Then we added noise φ to the simulated GI . We
simulated one day of one-minute CGM data that consists
of 1440 measurements. The aim is to estimate the unknown
Rφ and adopt the UKF accordingly.

4. RESULTS AND DISCUSSION

We considered six different values for the prediction hori-
zon Np ( see Table 1). For each prediction horizon we
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Fig. 1. Root-mean square error of covariance estimation
averaged over 50 experiments.
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Fig. 2. Deviation of the estimated covariance from the true
covariance averaged over 50 experiments.

performed 50 experiments, each experiment consists of
simulating the model in (14) to generate one day (1440
min) CGM data. For simulation, we set σ to 0.5% of xss,
in which xss is the steady state of the model. The experi-
ments had different realizations of the measurement noise
φ and process noise dω. Then we applied the MLE and the
CM method on each experiment to estimate the covariance
Rφ. We initialized the UKF from the steady state of the
model, and P0 = σσT . Table 1 and Table 2 summarize the
results which are averaged over 50 experiments for each
prediction horizon.

Fig. 1 compares the performance of the two covariance es-
timation methods in terms of the root-mean square error.
Fig. 2 illustrates the absolute deviation of the estimated
covariance from the true covariance, for the two estimation
methods. Fig. 3 depicts the histogram of the estimated
covariance over 50 experiments for the prediction horizon
= 200 min. Fig. 4 shows the histogram of the CPU time
for covariance estimation for 50 experiments and the pre-
diction horizon = 200 min. Fig. 5 indicates the result of
applying MLE and CM methods on an example experi-
ment. Fig. 1 and Fig. 2 indicate that as the prediction
horizon Np expands, the bias of the covariance estimate
declines. This originates from the consistency property
of the MLE. Because MLE is a consistent estimator, in-
creasing the number of measurements by expanding the
prediction horizon improves the estimation precision and
reduces bias. This is well demonstrated in Fig. 1 and Fig.
2. The figures also indicate that the decrease in Vrms and
bias is approximately exponential for the MLE. Fig. 3
also shows that for sufficiently large Np, the MLE has
considerably less bias than CM method.
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ID is the SC insulin input (µU/min), Isc, Ip, and Ieff are
the SC insulin concentration (mU/L), the plasma insulin
concentration (mU/L), and the effect of insulin (min−1),
respectively. GB is the blood glucose concentration and GI

is the interstitial glucose concentration both in mg/dL.
q(t) is the CHO ingestion rate (g/min), D1 and D2 are
the glucose masses (mg) in the accessible and inaccessible
compartments, and Ra is the glucose appearance rate
(mg/dL/min). τ1 (49 min) is the time constant to the
insulin movement from administration site to the SC
tissue, τ2 (47 min) is the time constant related to the
insulin movement from the SC tissue to plasma, τ3 (10
min) is the time constant related to the glucose movement
from plasma to SC tissue, CI (2010 mL/min) is the insulin
clearance, P2 (1.06 10−2 min−1) is the delayed insulin
action on the blood glucose, SI (8.11 10−4 mL/µU/min)
is the insulin sensitivity, GEZI (2.20 10−3 min−1 ) is
the glucose effectiveness at zero insulin, EGP ( 1.33
mg/dL/min) is the endogenous glucose production rate
at zero insulin, τm (47 min) is the peak time of meal
absorption, and Vg (253 dL) is the volume of distribution
for glucose.

ID contains basal and bolus insulin. The patient eats
breakfast at 8:00 hrs, lunch at 13:15 hrs, dinner at 18:00
hrs, and snack at 22:00 hrs. The CHO content of the meals
are 72 g for breakfast, 131 g for lunch, 51 g for dinner, and
70 g for snack, respectively. The insulin bolus to cover meal
are 3.5 U for breakfast, 7 U for lunch, 2.5 U for dinner,
and 3.5 U for snack, respectively.

3.2 The measurement model

The CGM sensor samples interstitial glucose. There-
fore, the measurement model comprises GI measurements
which are affected by the measurement noise φ as indicated
by

yk = GI,k + φk. (15a)

The measurement noise φ has covarianceRφ, and Facchinetti
et al. identified it as the sum of two autoregressive pro-
cesses given by (Facchinetti et al., 2014)

φk = ck + ϑ̂k, (15b)

ck = 1.23ck−1 − 0.3995ck−1 + δc,k, (15c)

ϑ̂k = 1.013ϑ̂k−1 − 0.2135ϑ̂k−2 + δϑ,k, (15d)

δc,k ∼ N(0, 11.3), δc,k ∼ N(0, 14.45).

The model (1) corresponds to the model (14) with the
state variables x = [Isc Ip Ieff GB GI D1 D2]

T , the
input u = ID, the disturbance d = q, the noise ξ = φ, and
the measurement y being the CGM data. In this example,
the measurement model g is linear and Rφ is a scaler.
For simulating the measurements y, we first simulated the
model in (14) by using Euler Maruyama method (Higham,
2001). Then we added noise φ to the simulated GI . We
simulated one day of one-minute CGM data that consists
of 1440 measurements. The aim is to estimate the unknown
Rφ and adopt the UKF accordingly.

4. RESULTS AND DISCUSSION

We considered six different values for the prediction hori-
zon Np ( see Table 1). For each prediction horizon we
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Fig. 1. Root-mean square error of covariance estimation
averaged over 50 experiments.
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Fig. 2. Deviation of the estimated covariance from the true
covariance averaged over 50 experiments.

performed 50 experiments, each experiment consists of
simulating the model in (14) to generate one day (1440
min) CGM data. For simulation, we set σ to 0.5% of xss,
in which xss is the steady state of the model. The experi-
ments had different realizations of the measurement noise
φ and process noise dω. Then we applied the MLE and the
CM method on each experiment to estimate the covariance
Rφ. We initialized the UKF from the steady state of the
model, and P0 = σσT . Table 1 and Table 2 summarize the
results which are averaged over 50 experiments for each
prediction horizon.

Fig. 1 compares the performance of the two covariance es-
timation methods in terms of the root-mean square error.
Fig. 2 illustrates the absolute deviation of the estimated
covariance from the true covariance, for the two estimation
methods. Fig. 3 depicts the histogram of the estimated
covariance over 50 experiments for the prediction horizon
= 200 min. Fig. 4 shows the histogram of the CPU time
for covariance estimation for 50 experiments and the pre-
diction horizon = 200 min. Fig. 5 indicates the result of
applying MLE and CM methods on an example experi-
ment. Fig. 1 and Fig. 2 indicate that as the prediction
horizon Np expands, the bias of the covariance estimate
declines. This originates from the consistency property
of the MLE. Because MLE is a consistent estimator, in-
creasing the number of measurements by expanding the
prediction horizon improves the estimation precision and
reduces bias. This is well demonstrated in Fig. 1 and Fig.
2. The figures also indicate that the decrease in Vrms and
bias is approximately exponential for the MLE. Fig. 3
also shows that for sufficiently large Np, the MLE has
considerably less bias than CM method.
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Table 1. Estimating measurement noise covariance by maximum likelihood estimation∗.

Prediction horizon (min) Rφ,true (mg2/dL2) R̂φ (|Rφ,true − R̂φ|/Rφ,true) % Vrms CPU time (s)

5 103.8 42.3 59.3 118.2 378.0

20 114.0 29.6 74.0 102.9 284.3

40 105.9 41.9 60.4 78.4 277.1

80 104.9 65.3 37.7 66.6 289.9

100 102.6 70.8 31.0 59.9 301.2

200 106.9 98.8 7.5 52.8 378.5

∗ The values are the mean for one-day data which is the average of the 50 one-day experiments.

Table 2. Estimating measurement noise covariance by covariance matching∗.

Prediction horizon (min) Rφ,true (mg2/dL2) R̂φ (|Rφ,true − R̂φ|/Rφ,true) % Vrms CPU time (s)

5 103.8 69.9 32.6 123.3 220.5

20 114.0 105.5 7.4 120.9 179.2

40 105.9 143.3 35.4 150.2 172.7

80 104.9 159.6 52.1 143.6 161.0

100 102.6 156.7 52.6 128.0 157.2

200 106.9 178.2 66.7 117.1 142.6

∗ The values are the mean for one-day data which is the average of the 50 one-day experiments.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

F
re

q
u
e
n
c
y

0

5

10

15

20
Maximum likelihood estimation

Estimated covariance

True covariance

Estimated R (mg
2
/ dL

2
)

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

F
re

q
u
e
n
c
y

0

5

10

15

20
Covariance matching

Estimated covariance

True covariance

Fig. 3. Histogram of the estimated covariance compared
to the true covariance based on 50 experiments and
the prediction horizon = 200 min.

Fig. 4 implies that the CPU time for the MLE is around
1.5 times greater than that for the CM estimation. How-
ever, this CPU time seems reasonable for the example
application in Section 3. If the filter was optimal, the
filter innovations (the one-step ahead prediction error)
were white and could serve as the orthogonal basis for the
LDL decomposition of Rk+Np

(Jørgensen and Jørgensen,
2007; Kailath et al., 2000). In this case, there is no need
for the Cholesky decomposition of Rk+Np . In addition
we could spare us the multi-step predictions, because
the filter routine is sufficient to generate the innovations
sequence. This would result in a computationally more
efficient MLE. However, the innovations sequence is not
white for two reasons. First, we did not assume ξ in (1b)
to be a white noise. Second, we do not process the data
with the optimal filter. The optimal filter is unknown,
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Fig. 4. Histogram of CPU time for covariance estimation
based on 50 experiments and the prediction horizon
= 200 min.

because the true noise covariance is not known in the
prediction window and is to be estimated. Furthermore,
the assumption of optimality for the nonlinear filters, i.e.
the UKF and EKF, is not valid in general. This is due to
the fact that the UKF approximates the state probability
distribution and the EKF linearizes the state-space model,
both procedures make the filter deviate from optimality.
As Fig. 5(c) illustrates, the CGM data filtered with the
maximum likelihood estimated covariance is closer to the
ideally (known covariance) filtered CGM, compared to the
CGM data filtered with the CM estimated covariance. The
improvement is modest though. This is because the process
noise covariance moderates the effect of variation of the
measurement noise covariance on filtering. When the pro-
cess noise is relatively small (small σ in (14)), the filtered
measurements are close to the one step model-predicted
measurements, due to the small filter gain, without being
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Fig. 5. Covariance estimation and filtering for an example
experiment and the prediction horizon = 200 min. a)
Estimated covariance. b) The filtered CGM data. c)
The absolute deviation of the filtered CGM data from
the ideally filtered CGM. The ideal filter is the UKF
with the actual measurement noise covariance.

profoundly affected by the variations of the measurement
noise covariance.

5. CONCLUSIONS

We presented an adaptive UKF by tuning the measure-
ment noise covariance. A method based on the MLE
estimates the noise covariance. The inputs of the ML
objective function are the multi-step prediction errors and
their covariance matrix generated by the UKF. We also
compared the method with the CM algorithm which is
a suboptimal estimation technique. The results generally
show that the MLE method outperforms the CM method.
However, the computational cost associated to the MLE
method is somewhat larger than the computational cost
of the CM method.

REFERENCES

Facchinetti, A., Del Favero, S., Sparacino, G., Castle,
J., Ward, W., and Cobelli, C. (2014). Modeling the
glucose sensor error. IEEE Transactions on Biomedical
Engineering, 61(3), 620–629.

Higham, D.J. (2001). An algorithmic introduction to
numerical simulation of stochastic differential equations.
SIAM Review, 43(3), 525–546.

Jørgensen, J.B. and Jørgensen, S.B. (2007). Comparison
of prediction-error-modelling criteria. In Proceedings of
the American Control Conference, 5300–5306.

Julier, S. and Uhlmann, J. (2004). Unscented filtering and
nonlinear estimation. Proceedings of the IEEE, 92(3),
401–422.

Kailath, T., Sayed, A.H., and Hassibi, B. (2000). Linear
estimation. Prentice Hall,.

Kanderian, S., Weinzimer, S., Voskanyan, G., and Steil, G.
(2009). Identification of intraday metabolic profiles dur-
ing closed-loop glucose control in individuals with type
1 diabetes. Journal of Diabetes Science and Technology,
3(5), 1047–1057.

Maybeck, P.S. (1982). Stochastic models, estimation, and
control. Academic Press, Chapter 10.

Odelson, B.J., Lutz, A., and Rawlings, J.B. (2006a). The
autocovariance least-squares method for estimating co-
variances: Application to model-based control of chem-
ical reactors. IEEE Transactions on Control Systems
Technology, 14(3), 532–540.

Odelson, B.J., Rajamani, M.R., and Rawlings, J.B.
(2006b). A new autocovariance least-squares method for
estimating noise covariances. Automatica, 42(2), 303–
308.

Partovibakhsh, M. and Liu, G. (2015). An adaptive un-
scented Kalman filtering approach for online estimation
of model parameters and state-of-charge of lithium-ion
batteries for autonomous mobile robots. IEEE Trans-
actions on Control Systems Technology, 23(1), 357–363.
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