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Abstract: Simulation studies of oil field water flooding have demonstrated a significant
potential of optimal control technology to improve industrial practices. However, real-life
applications are challenged by unknown geological factors that make reservoir models highly
uncertain. To minimize the associated financial risks, the oil literature has used ensemble-
based methods to manipulate the net present value (NPV) distribution by optimizing sample
estimated risk measures. In general, such methods successfully reduce overall risk. However,
as this paper demonstrates, ensemble-based control strategies may result in individual profit
outcomes that perform worse than real-life dominating strategies. This poses significant financial
risks to oil companies whose main concern is to avoid unacceptable low profits. To remedy this,
this paper proposes offset risk mimimization. Unlike existing methodology, the offset method
uses the NPV offset distribution to minimize risk relative to a competing reference strategy.
Open-loop simulations of a 3D two-phase synthetic reservoir demonstrate the potential of
offset risk minimization to significantly improve the worst case profit offset relative to real-
life best practices. The results suggest that it may be more relevant to consider the NPV offset
distribution than the NPV distribution when minimizing risk in production optimization.

Keywords: Optimal control, Model-based control, Production control, Risk, Stochastic
modelling.

1. INTRODUCTION

Industrial strategies of oil field water flooding rely on
reactive control to shut in producer wells as they become
unprofitable. To enhance production, the oil literature has
proposed optimal control technology, including nonlinear
model predictive control (NMPC). The use of NMPC is
referred to as closed-loop reservoir management (CLRM)
(Jansen et al., 2009). The goal of CLRM is to determine
the optimal operating profile that maximizes a key per-
formance indicator (KPI) over the reservoir life-cycle, e.g,
the cumulative oil recovery or a financial measure such
as the net present value (NPV). CLRM consists of 1) an
optimizer that uses the reservoir model to determine the
optimal operating profile by solving a constrained open-
loop optimization problem and 2) a state estimator for his-
tory matching to update the reservoir model as new data
becomes available. This paper focuses on the optimizer,
i.e. feedback and state-estimation is not considered. In
the oil literature, this open-loop optimal control problem
is referred to as life-cycle production optimization. The
problem corresponds to computing the a priori optimal
operating profile before the oil recovery process has begun
and feedback becomes available. While simulation studies
have demonstrated a significant potential of production
optimization to increase overall profit, real-life applica-
tions are challenged by a wide range of uncertainties
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tied to reservoir simulation. To address the challenges of
uncertainty, the oil literature has considered ensemble-
based methods. Such methods represent the uncertainty
by approximating the continuous NPV distribution by a
finite number of possible outcomes, i.e., by an ensemble
of realizations. To minimize risk, the ensemble members
are combined to form a sample estimated risk measure
that is optimized over the reservoir life-cycle. Popular
ensemble-based methods include robust optimization (RO)
(Van Essen et al. (2009)), mean-variance optimization
(MVO) ( Bailey et al. (2005), Capolei et al. (2015b)) and
conditional value-at-risk optimization (CVaRO) ( Capolei
et al. (2015a), Siraj et al. (2015), Codas et al. (2016)).
Such methods have proven to reduce overall risk rela-
tive to real-life dominating strategies of reactive control.
However, ensemble-based control strategies may still result
in individual profit outcomes that perform worse than
reactive control. For reservoir asset managers whose pri-
mary concern is profit loss, this poses a significant risk
of unacceptable low profit realizations. Therefore, despite
overall lower risk, oil companies may be inclined to dis-
card ensemble-based methodology. To meet this challenge,
this paper proposes offset risk minimization. The offset
approach seeks to determine the control strategy that
minimizes the risk of performing worse than a competing
reference strategy. To this end, the method maximizes the
worst-case outcome of the NPV offset distribution. As op-
posed to methods of the oil literature, the offset approach
mitigates the risk of low profit realizations relative to the
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competing reference strategy. In this way, the risk of profit
loss relative to industrial standards is minimized. Using an
ensemble of 100 realizations of a 3D synthetic reservoir,
open-loop simulations demonstrate the potential of offset
risk minimization to significantly increase the offset worst-
case scenario relative to reactive control. Compared to the
conventional use of the NPV distribution, the results sug-
gest that the NPV offset distribution may be more relevant
for risk mitigation in life-cycle production optimization.
The paper is organized as follows. In section 2, life-cycle
production optimization under uncertainty is formulated
as a risk minimization problem. Section 3 introduces off-
set risk minimization. Numerical results are presented in
Section 4 and conclusions are made in Section 5.

2. LIFE-CYCLE PRODUCTION OPTIMIZATION
UNDER UNCERTAINTY

Oil recovery by water flooding uses injection wells to
dynamically inject water into the reservoir to displace
hydrocarbons towards a set of production wells. The well
injection strategy is referred to as the operating profile,
u. The goal of life-cycle production optimization is to
determine the operating profile that maximizes profit,
ψ, over the reservoir life by solving the optimal control
problem (Brouwer and Jansen, 2004; Sarma et al., 2005;
Nævdal et al., 2006; Foss and Jensen, 2011; Völcker et al.,
2011; Capolei et al., 2013):

max
u∈U

ψ(u; θ). (1)

Here U expresses linear decision constraints and θ ⊂ Rm

represents geological, petrophysical and economical model
parameters. In this paper, profit is given by the cumulative
NPV, i.e.,

ψ(u, θ) =

N−1∑
k=0

Δtk

(1 + d)
tk+1

τ

[ value of produced oil︷ ︸︸ ︷∑
j∈P

ro qo,j
(
uk, xk+1(u, θ)

)

−
cost of separating produced water︷ ︸︸ ︷∑
j∈P

rwP qw,j

(
uk, xk+1(u, θ)

)

−
cost of injecting water︷ ︸︸ ︷∑

j∈I
rwI qj

(
uk, xk+1(u, θ)

) ]
.

(2)

Here ro , rwp and rwi denote the oil price, the water
separation cost, and the water injection cost, respectively;
qw,i and qo,i are the volumetric water and oil flow rates
at producer i; ql is the volumetric well injection rate at
injector l; d is the discount factor, N is the number of
control steps and Δtk = tk+1 − tk denotes the length of
the time step. Well flow rates are computed using the
Peaceman well model (Peaceman, 1983). For each time-
step, tk, the state-space variables, xk = x(tk), denote
reservoir pressures and fluid saturations whereas uk =
u(tk) represents a zero-order-hold parametrization of the
well controls. The states xk are computed by a two-phase
immiscible flow model based on mass conservation and
Darcy’s law for porous media. Relative permeabilities are
described by the Corey model. See e.g. Aziz and Settari
(1979); Chen et al. (2006); Chen (2007); Völcker et al.
(2009).

2.1 Risk mitigation by ensemble-based methods

The inaccessible geographical location of oil fields severely
limits the amount of available geological data. Conse-
quently, reservoir model parameters such as permeability,
porosity and initial states are often highly uncertainty. The
control strategy that solves (1) therefore imposes signifi-
cant risks of profit loss and becomes unreliable for practical
purposes. To reduce the financial risks of model discrepan-
cies with real-life reservoirs, the oil literature has proposed
ensemble-based production optimization. Ensemble-based
methods represent geological uncertainty by a discrete set
of equiprobable model realizations

θnd
= {θ1, θ2, ..., θnd} = {θi}nd

i=1. (3)

The ensemble (3) is used to approximate the continuous
NPV probability distribution by the related finite set of
profit outcomes

ψnd
= {ψi}nd

i=1, ψ
i = ψ(u; θi), 1 ≤ i ≤ nd. (4)

To minimize risk, the idea is to manipulate the discrete
NPV profit distribution (4) by formulating an appropriate
optimal control problem. To this end, it is customary to
use a risk measure R : ψnd

→ R to replace the overall
profit distribution and quantify risk in terms of the scalar
objective, R(ψ) :

min
u∈U

R(ψ(u; θnd
)). (5)

Figure 1 illustrates the key features of ensemble-based
production optimization.

2.2 Specific risk measures and ensemble-based methods

Risk measures quantify the stochastic profit, ψ, by a nu-
merical value, R(ψ), which serves as a surrogate for the
overall profit distribution. The quantification of risk allows
for fast and efficient decision-making. In particular, risk as-
sessment of two scenarios, ψ� and ψ��, reduces to comparing
the values R(ψ�) and R(ψ��). However, the quality of the
risk assessment heavily depends on the properties of the
risk measure in question. The following briefly discusses
the risk measures and related ensemble-based method used
in this paper. Capolei et al. (2015a) provide a detailed
overview of risk quantification in production optimization.

Robust optimization (RO) (Van Essen et al., 2009) refers
to the ensemble-based method that maximizes the life-
cycle sample estimated expected return, i.e.,

RRO := − 1

nd

nd∑
i=1

ψi. (6)

As a drawback, the expected profit is a risk neutral mea-
sure (Capolei et al., 2015a). As such, RO does not directly
account for important risk indicators such as the lowest
profit outcome.

Worst-case optimization (WCO) (Alhuthali et al., 2010)
focuses solely on maximizing the lowest profit outcome,
i.e.,

RWCO := −min
θi

ψ(u; θi) = −ψ̃. (7)

Here ψ̃ denotes the lowest profit realization associated with
the ensemble, i.e., ψ̃ ≤ ψi, 1 ≤ i ≤ nd . The restriction to
a single profit outcome implies that the measure is blind
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competing reference strategy. In this way, the risk of profit
loss relative to industrial standards is minimized. Using an
ensemble of 100 realizations of a 3D synthetic reservoir,
open-loop simulations demonstrate the potential of offset
risk minimization to significantly increase the offset worst-
case scenario relative to reactive control. Compared to the
conventional use of the NPV distribution, the results sug-
gest that the NPV offset distribution may be more relevant
for risk mitigation in life-cycle production optimization.
The paper is organized as follows. In section 2, life-cycle
production optimization under uncertainty is formulated
as a risk minimization problem. Section 3 introduces off-
set risk minimization. Numerical results are presented in
Section 4 and conclusions are made in Section 5.

2. LIFE-CYCLE PRODUCTION OPTIMIZATION
UNDER UNCERTAINTY

Oil recovery by water flooding uses injection wells to
dynamically inject water into the reservoir to displace
hydrocarbons towards a set of production wells. The well
injection strategy is referred to as the operating profile,
u. The goal of life-cycle production optimization is to
determine the operating profile that maximizes profit,
ψ, over the reservoir life by solving the optimal control
problem (Brouwer and Jansen, 2004; Sarma et al., 2005;
Nævdal et al., 2006; Foss and Jensen, 2011; Völcker et al.,
2011; Capolei et al., 2013):

max
u∈U

ψ(u; θ). (1)

Here U expresses linear decision constraints and θ ⊂ Rm

represents geological, petrophysical and economical model
parameters. In this paper, profit is given by the cumulative
NPV, i.e.,

ψ(u, θ) =

N−1∑
k=0

Δtk

(1 + d)
tk+1

τ

[ value of produced oil︷ ︸︸ ︷∑
j∈P

ro qo,j
(
uk, xk+1(u, θ)

)

−
cost of separating produced water︷ ︸︸ ︷∑
j∈P

rwP qw,j

(
uk, xk+1(u, θ)

)

−
cost of injecting water︷ ︸︸ ︷∑

j∈I
rwI qj

(
uk, xk+1(u, θ)

) ]
.

(2)

Here ro , rwp and rwi denote the oil price, the water
separation cost, and the water injection cost, respectively;
qw,i and qo,i are the volumetric water and oil flow rates
at producer i; ql is the volumetric well injection rate at
injector l; d is the discount factor, N is the number of
control steps and Δtk = tk+1 − tk denotes the length of
the time step. Well flow rates are computed using the
Peaceman well model (Peaceman, 1983). For each time-
step, tk, the state-space variables, xk = x(tk), denote
reservoir pressures and fluid saturations whereas uk =
u(tk) represents a zero-order-hold parametrization of the
well controls. The states xk are computed by a two-phase
immiscible flow model based on mass conservation and
Darcy’s law for porous media. Relative permeabilities are
described by the Corey model. See e.g. Aziz and Settari
(1979); Chen et al. (2006); Chen (2007); Völcker et al.
(2009).

2.1 Risk mitigation by ensemble-based methods

The inaccessible geographical location of oil fields severely
limits the amount of available geological data. Conse-
quently, reservoir model parameters such as permeability,
porosity and initial states are often highly uncertainty. The
control strategy that solves (1) therefore imposes signifi-
cant risks of profit loss and becomes unreliable for practical
purposes. To reduce the financial risks of model discrepan-
cies with real-life reservoirs, the oil literature has proposed
ensemble-based production optimization. Ensemble-based
methods represent geological uncertainty by a discrete set
of equiprobable model realizations

θnd
= {θ1, θ2, ..., θnd} = {θi}nd

i=1. (3)

The ensemble (3) is used to approximate the continuous
NPV probability distribution by the related finite set of
profit outcomes

ψnd
= {ψi}nd

i=1, ψ
i = ψ(u; θi), 1 ≤ i ≤ nd. (4)

To minimize risk, the idea is to manipulate the discrete
NPV profit distribution (4) by formulating an appropriate
optimal control problem. To this end, it is customary to
use a risk measure R : ψnd

→ R to replace the overall
profit distribution and quantify risk in terms of the scalar
objective, R(ψ) :

min
u∈U

R(ψ(u; θnd
)). (5)

Figure 1 illustrates the key features of ensemble-based
production optimization.

2.2 Specific risk measures and ensemble-based methods

Risk measures quantify the stochastic profit, ψ, by a nu-
merical value, R(ψ), which serves as a surrogate for the
overall profit distribution. The quantification of risk allows
for fast and efficient decision-making. In particular, risk as-
sessment of two scenarios, ψ� and ψ��, reduces to comparing
the values R(ψ�) and R(ψ��). However, the quality of the
risk assessment heavily depends on the properties of the
risk measure in question. The following briefly discusses
the risk measures and related ensemble-based method used
in this paper. Capolei et al. (2015a) provide a detailed
overview of risk quantification in production optimization.

Robust optimization (RO) (Van Essen et al., 2009) refers
to the ensemble-based method that maximizes the life-
cycle sample estimated expected return, i.e.,

RRO := − 1

nd

nd∑
i=1

ψi. (6)

As a drawback, the expected profit is a risk neutral mea-
sure (Capolei et al., 2015a). As such, RO does not directly
account for important risk indicators such as the lowest
profit outcome.

Worst-case optimization (WCO) (Alhuthali et al., 2010)
focuses solely on maximizing the lowest profit outcome,
i.e.,

RWCO := −min
θi

ψ(u; θi) = −ψ̃. (7)

Here ψ̃ denotes the lowest profit realization associated with
the ensemble, i.e., ψ̃ ≤ ψi, 1 ≤ i ≤ nd . The restriction to
a single profit outcome implies that the measure is blind
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Fig. 1. Outline of ensemble-based production optimiza-
tion, that consists of two key parts: 1) a reservoir
simulator that, given an ensemble of reservoir models
and a control input, computes the profit probability
distribution (black arrows and boxes) and 2) an opti-
mizer that uses the profit distribution to compute the
control strategy that minimizes risk as measured by
R (blue arrows and boxes).

to features of the NPV probability distribution. Conse-
quently, the risk quantification may be too conservative
and expected return may be compromised.

Conditional value-at-risk optimization (CVaRO) maxi-
mizes the sample estimated average of the α · 100% lowest
outcomes, {ψ̃i}nα

i=1, i.e.

RCVaR,α := − 1

nα

nα∑
i=1

ψ̃i, α ∈ (0, 1). (8)

Here ψ̃i denotes the ith lowest profit outcome associated
with the ensemble. By design, CVaROα accounts for the
entire α-tail of the profit distribution. When α increases,
CVaROα includes more of the profit distribution. As such,
emphasis is gradually moved towards promoting expected
return. In particular, for nα := nd, CVaROα reduces to
RO (6). On the other hand, when α decreases, CVaROα

includes only low profit realizations and in the extreme
case of nα := 1, CVaROα reduces to WCO (7).
As a drawback, CVaRα

(
ψ(u, θ)

)
is non-differentiable with

respect to the controls, u, for any α �= 1 (Christiansen
et al., 2016). The non-differentiability may interfere with
the optimization procedure (5). This potentially leads to
suboptimal solutions. As a way to overcome this issue,
Rockafellar and Uryasev (2002) and Rockafellar and Roy-
set (2010) show that the minimization problem (5) is
equivalent to the following smooth problem

min
c∈R,u∈U ,y∈Rnd

− c+
1

α · nd

nd∑
i=1

yi, (9a)

s.t. yi ≥ c− ψ(u, θi), i = 1, . . . , nd, (9b)

yi ≥ 0, i = 1, . . . , nd, (9c)

This paper uses the formulation (9) to minimize CVaRα,
whenever nα �= 1.

3. OFFSET RISK MITIGATION

Simulations studies have demonstrated the potential of
ensemble-based methodology to reduce overall risk of
profit loss relative to real-life dominating practices such

NPV off
θ (t, u) := NPVθ(t, u)−NPVθ(t, uref ) offset pdf 

NPV off
θ (t = tend, u)

t

Fig. 2. NPV offset risk mitigation. NPV offset uncertainty
band versus time (left). NPV offset probability dis-
tribution function over the reservoir lifetime (right).
Risk is reduced by maximizing the lifecycle average
value (blue circles) of the α% lowest offset profits (red
areas).

as reactive control. However, the conventional ensemble-
based methods and the associated risk measures take
no precautions to avoid profit loss relative to a com-
peting strategy. Consequently, despite overall lower risk,
ensemble-based control strategies may lead to individual
profit outcomes that perform significantly worse than a
given competing industrial control strategy, uref . Such
unacceptable low profit outcomes impose risks of profit
loss. Overall, the risk may be small compared to the
gains that stand to be made. However, to oil companies,
risk of profit loss outweighs potential profit gains. Conse-
quently, ensemble-based methods may be considered too
risky relative to conventional reactive control. To meet this
challenge, this paper proposes offset risk minimization as
a mean to reduce risk of profit loss relative to industrial
standards.

3.1 The profit offset distribution

Unlike ensemble-based methods that rely on the NPV
profit distribution, the offset approach uses the profit offset
distribution ψoffnd

= {ψi
off}nd

i=1, where:

ψi
off (u; θ

i) = ψ(u; θi)− ψ(uref ; θ
i), 1 ≤ i ≤ nd. (10)

Here uref denotes a competing reference strategy. For
a given control strategy, u, the profit offset distribution
provides a complete picture of the risk profile relative
to the industrial reference case. The offset distribution
therefore provides management with a tool for assessing
new methodology relative to existing practices. In this
regard, two distributions are of special interest: the tail
profit offset distribution,

{ψoff (u; θ
i)|ψoff < 0}, (11)

and the upper tail profit offset distribution,

{ψoff (u; θ
i)|ψoff ≥ 0}. (12)

These distributions represent, respectively, the distribu-
tion of the profit loss and the profit gain with respect to
the reference profit.

3.2 Offset risk minimization

Offset risk minimization seeks to determine the operating
profile, u, that minimizes the risk of performing worse
than a competing reference strategy. As opposed to the
conventional approach of minimizing risk of the profit
distribution (5), the offset approach minimizes risk of the
profit offset distribution

min
u∈U

R(ψoff (u; θnd
)). (13)
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In this way, the risk of profit loss relative to industrial
standards is minimized. Fig. 2 illustrates the idea of offset
risk minimization.

3.3 Worst case offset risk minimization

In oil reservoir management, new methodology is typically
not judged based on the chance of increased expected
return, but rather on the risk of performing worse than
existing practices. In particular, reservoir asset managers
primarily focus on risks of low profit realizations. There-
fore, this paper uses the offset approach with the worst-
case risk measure (7) to maximize the worst profit outcome
of the offset distribution:

max
u∈U

inf
θ
(ψoff (u, θ)) = max

u∈U
min

i=1,...,nd

(
ψoff (u, θ

i)
)
.

(14)
The optimization problem (14) is non-smooth. However,
for nα = 1, the numerical solution of (14) is equivalent
to the solution of the smooth constrained optimization
problem

min
u∈U

[
− inf

i=1,...,nd

(
ψoff (u, θ

i)
)]

= min
u∈U

[CVaRα (ψoff (u, θ))] ,

(15)
Consequently, the maximization of the worst case offset
profit can be regarded as an offset profit CVaR minimiza-
tion problem that can be solved by (9).

4. NUMERICAL RESULTS

The following case study demonstrates the potential of
offset risk minimization to reduce the risks of low profit
realizations relative to academic and industrial best prac-
tices. Firstly, the offset approach is used to maximize the
worst-case offset profit relative to reactive control over
the reservoir life-cycle. Secondly, the offset approach is
compared to RO, WCO and CVaRO to illustrate the main
benefits of offset risk mitigation relative to conventional
ensemble-based methods.

4.1 Reservoir model description

The numerical simulations use the standard version of the
Egg model (Jansen et al., 2014). This model has been used
in a number of publications as a benchmark to test optimal
control methodologies (Van Essen et al., 2009). The Egg
model is a synthetic reservoir model consisting of 60×60×
7 = 25.200 grid cells of which 18.553 cells are active. The
reservoir is produced for 3.600 days under water flooding
conditions. It contains eight water injectors and four
producers, which are completed in all seven layers. The
bhps of the producer wells are kept fixed at 395 bar and the
water injection rates are subject to control with a sample
time of 90 days. The water injection rates are bound to be
in the interval [0, 79.5]m3/day. Fig. 3 shows the well setup.
Model uncertainty is represented by an ensemble of 100
permeability realizations. Table 1 provides petrophysical
and economical simulation parameters. Reservoir fluid flow
is simulated using a two phase (oil and water) immiscible
flow model with zero capillary pressure and incompressible
fluids and rocks.

Fig. 3. Permeability field of the ensemble and well setup
for the case study.

Table 1. Petro-physical and economical model
parameters

Description Value Unit

h Grid-block height 4 m
Δx,Δy Grid-block length/width 8 m
φ Porosity 0.2 -
co Oil compressibility 1.0 · 10−10 Pa−1

cr Rock compressibility 0 Pa−1

cw Water compressibility 1.0 · 10−10 Pa−1

μo Oil dynamic viscosity 5 · 10−3 Pa · s
μw Water dynamic viscosity 1.0 · 10−3 Pa · s
k0ro End-point relative permeability, oil 0.8 -
k0rw End-point relative permeability, water 0.75 -
no Corey exponent, oil 4.0 -
nw Corey exponent, water 3.0 -

Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.2 -
pc Capillary pressure 0 Pa
Pinit Initial reservoir pressure (top layer) 40 · 106 Pa
Sw,0 Initial water saturation 0.1 -
pbhp Production well bottom hole pressures 39.5 · 106 Pa
qwi,min Minimum water injection rate for well 0 m3/day
qwi,max Maximum water injection rate for well 79.5 m3/day
rwell Well-bore radius 0.1 m
T Simulation time 3600 day
N Number of control steps 40 -

ro Oil price 126 USD/m3

rwP Water separation cost 19 USD/m3

rwI Water injection cost 6 USD/m3

d Discount factor 0

4.2 Numerical optimization method

The optimization problem (13) is solved using a gradient
based optimization algorithm provided by MATLABs opti-
mization toolbox (MATLAB, 2014). Given an iterate of
the optimizer, ψ(u, θi) is computed by solving the flow
equations using MRST (Lie et al., 2012). The gradient,
∇uψ is computed by the adjoint method (Jørgensen, 2007;
Völcker et al., 2011; Capolei et al., 2012a,b; Jansen, 2011;
Sarma et al., 2005; Suwartadi et al., 2012). An optimal
solution is reported if the KKT conditions are satisfied
to within a relative and absolute tolerance of 10−6. The
current best but non-optimal iterate is returned in cases
for which the optimization algorithm uses more than 400
iterations, the relative change in the cost function is less
than 10−6, or the relative change in the step size is less
than 10−10. These stopping criteria are independent, i.e.
when one of the criteria is satisfied, the optimizer stops.
Furthermore, the cost function is normalized to improve
convergence. The normalization consists of dividing by 106

such that the objective function is appropriately scaled.
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In this way, the risk of profit loss relative to industrial
standards is minimized. Fig. 2 illustrates the idea of offset
risk minimization.

3.3 Worst case offset risk minimization

In oil reservoir management, new methodology is typically
not judged based on the chance of increased expected
return, but rather on the risk of performing worse than
existing practices. In particular, reservoir asset managers
primarily focus on risks of low profit realizations. There-
fore, this paper uses the offset approach with the worst-
case risk measure (7) to maximize the worst profit outcome
of the offset distribution:

max
u∈U

inf
θ
(ψoff (u, θ)) = max

u∈U
min

i=1,...,nd

(
ψoff (u, θ

i)
)
.

(14)
The optimization problem (14) is non-smooth. However,
for nα = 1, the numerical solution of (14) is equivalent
to the solution of the smooth constrained optimization
problem

min
u∈U

[
− inf

i=1,...,nd

(
ψoff (u, θ

i)
)]

= min
u∈U

[CVaRα (ψoff (u, θ))] ,

(15)
Consequently, the maximization of the worst case offset
profit can be regarded as an offset profit CVaR minimiza-
tion problem that can be solved by (9).

4. NUMERICAL RESULTS

The following case study demonstrates the potential of
offset risk minimization to reduce the risks of low profit
realizations relative to academic and industrial best prac-
tices. Firstly, the offset approach is used to maximize the
worst-case offset profit relative to reactive control over
the reservoir life-cycle. Secondly, the offset approach is
compared to RO, WCO and CVaRO to illustrate the main
benefits of offset risk mitigation relative to conventional
ensemble-based methods.

4.1 Reservoir model description

The numerical simulations use the standard version of the
Egg model (Jansen et al., 2014). This model has been used
in a number of publications as a benchmark to test optimal
control methodologies (Van Essen et al., 2009). The Egg
model is a synthetic reservoir model consisting of 60×60×
7 = 25.200 grid cells of which 18.553 cells are active. The
reservoir is produced for 3.600 days under water flooding
conditions. It contains eight water injectors and four
producers, which are completed in all seven layers. The
bhps of the producer wells are kept fixed at 395 bar and the
water injection rates are subject to control with a sample
time of 90 days. The water injection rates are bound to be
in the interval [0, 79.5]m3/day. Fig. 3 shows the well setup.
Model uncertainty is represented by an ensemble of 100
permeability realizations. Table 1 provides petrophysical
and economical simulation parameters. Reservoir fluid flow
is simulated using a two phase (oil and water) immiscible
flow model with zero capillary pressure and incompressible
fluids and rocks.

Fig. 3. Permeability field of the ensemble and well setup
for the case study.

Table 1. Petro-physical and economical model
parameters

Description Value Unit

h Grid-block height 4 m
Δx,Δy Grid-block length/width 8 m
φ Porosity 0.2 -
co Oil compressibility 1.0 · 10−10 Pa−1

cr Rock compressibility 0 Pa−1

cw Water compressibility 1.0 · 10−10 Pa−1

μo Oil dynamic viscosity 5 · 10−3 Pa · s
μw Water dynamic viscosity 1.0 · 10−3 Pa · s
k0ro End-point relative permeability, oil 0.8 -
k0rw End-point relative permeability, water 0.75 -
no Corey exponent, oil 4.0 -
nw Corey exponent, water 3.0 -

Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.2 -
pc Capillary pressure 0 Pa
Pinit Initial reservoir pressure (top layer) 40 · 106 Pa
Sw,0 Initial water saturation 0.1 -
pbhp Production well bottom hole pressures 39.5 · 106 Pa
qwi,min Minimum water injection rate for well 0 m3/day
qwi,max Maximum water injection rate for well 79.5 m3/day
rwell Well-bore radius 0.1 m
T Simulation time 3600 day
N Number of control steps 40 -

ro Oil price 126 USD/m3

rwP Water separation cost 19 USD/m3

rwI Water injection cost 6 USD/m3

d Discount factor 0

4.2 Numerical optimization method

The optimization problem (13) is solved using a gradient
based optimization algorithm provided by MATLABs opti-
mization toolbox (MATLAB, 2014). Given an iterate of
the optimizer, ψ(u, θi) is computed by solving the flow
equations using MRST (Lie et al., 2012). The gradient,
∇uψ is computed by the adjoint method (Jørgensen, 2007;
Völcker et al., 2011; Capolei et al., 2012a,b; Jansen, 2011;
Sarma et al., 2005; Suwartadi et al., 2012). An optimal
solution is reported if the KKT conditions are satisfied
to within a relative and absolute tolerance of 10−6. The
current best but non-optimal iterate is returned in cases
for which the optimization algorithm uses more than 400
iterations, the relative change in the cost function is less
than 10−6, or the relative change in the step size is less
than 10−10. These stopping criteria are independent, i.e.
when one of the criteria is satisfied, the optimizer stops.
Furthermore, the cost function is normalized to improve
convergence. The normalization consists of dividing by 106

such that the objective function is appropriately scaled.
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Table 2. Key performance indicators for the NPV offset distribution.

Control Eθ(ψoff ) inf(ψoff ) β := Prob[ψoff < 0] Eθ[ψoff |ψoff < 0] Eθ[ψoff

∣∣ψoff ≥ 0]

strategy 106 USD 106 USD 106 USD 106 USD

w.c. opt. 1.06 -1.11 9% -0.41 1.20
c.s. 20% 1.24 -0.92 8% -0.41 1.39
RO 1.44 -1.48 15% -0.53 1.79

offset w.c. opt. 0.99 -0.35 8% -0.22 1.10

4.3 Worst-case offset risk minimization

Fig. 4 compares the profit offset realizations associated
with 1) the worst case offset optimization strategy (offset
w.c. opt), 2) the worst case optimization strategy (w.c.
opt), 3) the CVaR20% optimization strategy (c.s. 20%),
and 4) the robust optimization strategy (RO). All strate-
gies produce realizations that perform worse than reactive
control. However, as indicated by the 5th percentile, the
worst case offset optimization strategy manages to signif-
icantly reduce both the number of negative offset realiza-
tions and the the amount of potential profit loss compared
to the ensemble-based strategies. In this way, the worst
case offset optimization solution represents the strategy
that reduces risk of profit loss relative to reactive control
to the largest extend. Fig. 5 confirms these observations. In
particular, for low risk levels, α < 0.2, all control strategies
risk to perform worse than reactive control. Nevertheless,
the offset worst case optimization strategy offers the lowest
risk. As a minor drawback, the low risk of profit loss comes
at the price of overall lowest expected return.
Table 2 quantifies the above observations by comparing
key performance indicators for the profit offset worst case
optimization strategy and the ensemble-based methods.
The first column compares expected returns, Eθ(ψoff ) and
the second column compares the worst case offset profit
outcomes, inf(ψoff ). The results confirm that the worst
case optimization strategy offers the lowest potential profit
loss at the cost of the lowest expected return. The fourth
to the sixth column report the probability of negative
offset profits, β = Prob[ψoff < 0], the average offset
profit of the negative offsets profits, Eθ[ψoff |ψoff < 0],
and the average offset profit of the positive offset profits,
Eθ[ψoff |ψoff ≥ 0]. The results show that the offset worst
case optimization strategy has a mere 8% chance of yield-
ing a negative offset profit of -0.22 mio USD, but a 92%
chance of yielding positive offset profits with an average
value of 1.10 mio USD. This implies that the offset worst
case optimization strategy provides 1) the lowest risk of
profit loss and 2) at the same time, has a high probability
(92%) of outperforming reactive control. The price to be
paid is that the offset worst case optimization provides the
lowest average positive offset profit. This implies that the
offset worst case optimization stands to improve reactive
control by the smallest amount on average.

5. CONCLUSION

This paper has introduced and investigated offset risk
minimization for life-cycle production optimization under
geological uncertainty. Using 100 realizations of a 3D syn-
thetic reservoir, open-loop simulations have demonstrated
the potential of offset risk minimization to reduce the risk
of low profit outcomes relative to the industrial standards
of reactive control. To illustrate benefits over conventional
risk mitigation methods, the offset approach was compared
to a representative selection of ensemble-based strategies.

-2 -1 0 1 2 3 4
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w.c. opt
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Fig. 4. Strip charts of the NPV offset distributions. The
black vertical lines indicate the 5th percentile, the
mean, and the 95th percentile of the profit offset
distribution.
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Fig. 5. Plot of CVaRα(ψoff ) as a function of the risk level,
α.

Based on the numerical results, the following conclusion
can be made:

• Among the strategies considered in this paper, the
offset worst case optimization strategy offers the
lowest risk of profit loss relative to reactive control.

• Compared to the ensemble-based strategies, the worst
case offset optimization strategy manages to signif-
icantly reduce both the number of negative offset
realizations and the amount of potential profit loss.

• The low risk of profit loss comes at the price of overall
lowest expected return.

• Due to oil companies main concern of avoiding unac-
ceptable low profits, the results suggest that it may be
more relevant to consider the NPV offset distribution
than the NPV distribution when minimizing risk in
production optimization.

As a minor drawback, the offset worst case optimization
strategy could not ensure zero probability of yielding lower
profit realizations than the reactive strategy. This is most
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likely because reactive control relies on feedback. Future
work seeks to explore the benefits of combining the offset
risk minimization procedure with feedback using a reced-
ing horizon implementation of combined data assimilation
and optimization.
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likely because reactive control relies on feedback. Future
work seeks to explore the benefits of combining the offset
risk minimization procedure with feedback using a reced-
ing horizon implementation of combined data assimilation
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