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Regime-based asset allocation has been shown to add value over rebalancing to static weights and, in
particular, reduce potential drawdowns by reacting to changes in market conditions. The predominant
approach in previous studies has been to specify in advance a static decision rule for changing the
allocation based on the state of �nancial markets or the economy. In this article, model predictive control
(MPC) is used to dynamically optimize a portfolio based on forecasts of the mean and variance of �nancial
returns from a hidden Markov model with time-varying parameters. There are computational advantages
to using MPC when estimates of future returns are updated every time a new observation becomes
available, since the optimal control actions are reconsidered anyway. MPC outperforms a static decision
rule for changing the allocation and realizes both a higher return and a signi�cantly lower risk than a
buy-and-hold investment in various major stock market indices. This is after accounting for transaction
costs, with a one-day delay in the implementation of allocation changes, and with zero-interest cash as
the only alternative to the stock indices. Imposing a trading penalty that reduces the number of trades
is found to increase the robustness of the approach.

Keywords: Multi-period portfolio selection; Mean�variance optimization; Model predictive control;
Hidden Markov model; Adaptive estimation; Forecasting

JEL Classi�cation: C22, C51, C53, C61, G11

1. Introduction

The objective of portfolio optimization is to �nd an optimal tradeo� between risk and return over
a �xed planning horizon. Traditionally, investors decide on a strategic asset allocation (SAA) based
on a single-period optimization, inspired by the mean�variance framework of Markowitz (1952).
The purpose is to develop a static, �all-weather� portfolio that optimizes e�ciency across a range
of economic scenarios. Even if the SAA is reconsidered on an annual basis, it is unlikely to change
signi�cantly, as long as the purpose is �all-weather� e�ciency.
In the presence of time-varying investment opportunities, portfolio weights should be adjusted

as new information arrives to take advantage of favorable economic regimes and withstand adverse
regimes (Sheikh and Sun 2012). The abrupt regime changes that �nancial markets tend to undergo
present a big challenge to traditional SAA. Although some changes may be transitory, the new
behavior often persists for several periods after a change (Ang and Timmermann 2012).

∗Corresponding author. Email: pnys@dtu.dk

1



July 26, 2017 Quantitative Finance Dynamic_Portfolio_Optimization

Regime-based asset allocation (RBAA) has indeed been shown to add value over rebalancing
to static weights and, in particular, reduce potential drawdowns by reacting to changes in market
conditions (see Ang and Bekaert 2004, Guidolin and Timmermann 2007, Bulla et al. 2011, Kritzman
et al. 2012, Nystrup et al. 2015a, 2017). The predominant approach is to specify in advance a static
decision rule for changing the allocation based on the state of �nancial markets or the economy.
The parameters of the decision rule can be optimized in sample, but it does not guarantee that

the decision rule is optimal for the problem at hand. A disadvantage is, therefore, that a large
number of di�erent speci�cations might have to be tried, in order to �nd a decision rule with good
performance. Testing many di�erent speci�cations increases the risk of inferior performance out of
sample. Further, it can be argued that a static decision rule is hardly optimal when the underlying
model used for regime inference is time-varying, as in Bulla et al. (2011) and Nystrup et al. (2015a,
2017).
An alternative approach is to dynamically optimize the portfolio based on the inferred regime

probabilities and parameters taking into account transaction costs, risk aversion, and possibly other
constraints. Herzog et al. (2007) and Boyd et al. (2014) proposed to use model predictive control
(MPC) to solve this constrained, stochastic control problem. In MPC, a statistical model of the
process is used to predict its future evolution and choose the best control action.
The great strength of MPC is the capability to solve control problems under constraints in a

computationally feasible manner. Even so, it is commonly assumed that asset prices can be described
by a linear factor model with constant variance and that there are no transaction costs in order
to derive analytical expressions for when the allocation should be changed (see, e.g., Herzog et al.

2007, Costa and Araujo 2008, Cala�ore 2008, 2009). This limits the practical impact of the results.
Transaction costs are important when comparing the performance of static and dynamic strategies,
because frequent rebalancing can o�set the potential excess return of a dynamic strategy. Moreover,
transaction costs stabilize the optimization problem (Brodie et al. 2009, Ho et al. 2015).
In this article, asset returns are modeled by a two-state hidden Markov model (HMM) with time-

varying parameters, similar to the model considered in Nystrup et al. (2015a, 2016b, 2017). From a
statistical perspective, the HMM is a more realistic description of asset price dynamics than a linear
factor model with constant variance. It is well suited to capture the stylized behavior of �nancial
series, including volatility clustering, leptokurtosis, and time-varying correlations (see, e.g., Rydén
et al. 1998, Ang and Timmermann 2012). From an economic perspective, the HMM can describe
the abrupt changes in market conditions and investment opportunities that arise due to changes in
risk aversion and structural changes in the state of the economy.
Instead of a static decision rule for changing the portfolio based on the inferred regime, MPC

is used to dynamically optimize the portfolio based on forecasted means and variances. Using an
HMM, the forecasts are mean-reverting and only change when the regime probabilities change. Thus,
the allocation is still determined indirectly by the inferred regime. MPC, however, is applicable to
forecasts from any type of model. The impact of transaction costs and risk aversion is analyzed in
a live-sample setting using available market data. MPC is compared with previous approaches to
RBAA under realistic assumptions about transaction costs and implementation.
The article is structured as follows: Section 2 introduces the HMM, its estimation, and use for

forecasting. Section 3 is concerned with dynamic portfolio optimization and MPC. The empirical
results are presented in section 4. Finally, section 5 concludes.

2. The Hidden Markov Model

The HMM is a popular choice for inferring the hidden state of �nancial markets. It can match
the tendency of �nancial markets to change their behavior abruptly and the phenomenon that
the new behavior often persists for several periods after a change (Ang and Timmermann 2012).
In addition, it is well suited to capture the stylized behavior of many �nancial series including
volatility clustering and leptokurtosis, as shown by Rydén et al. (1998).

2



July 26, 2017 Quantitative Finance Dynamic_Portfolio_Optimization

In an HMM, the probability distribution that generates an observation depends on the state of
an unobserved Markov chain. A sequence of discrete random variables {St : t ∈ N} is said to be a
�rst-order Markov chain if, for all t ∈ N, it satis�es the Markov property:

Pr (St+1|St, . . . , S1) = Pr (St+1|St) . (1)

The conditional probabilities Pr (St+1 = j|St = i) = γij are called transition probabilities. A
Markov chain with transition probability matrix Γ = {γij} has stationary distribution π, if
πTΓ = πT and 1Tπ = 1, where 1 is a column vector with all entries one. The Markov chain
is said to be stationary if δ = π, where δ is the initial distribution, i.e., δi = Pr (S1 = i).
As an example, consider the two-state model with Gaussian conditional distributions:

Yt ∼ N
(
µSt

, σ2
St

)
,

where

µSt
=

{
µ1, if St = 1,

µ2, if St = 2,
σ2
St

=

{
σ2

1, if St = 1,

σ2
2, if St = 2,

and Γ =

[
1− γ12 γ12

γ21 1− γ21

]
.

When the current state St is known, the distribution of Yt depends only on St, and not on previous
states or observations.
The sojourn times are implicitly assumed to be geometrically distributed:

Pr ('staying t time steps in state i') = γt−1
ii (1− γii) . (2)

The geometric distribution is memoryless, implying that the time until the next transition out of
the current state is independent of the time spent in the state.
In order to improve its �t to the distributional and temporal properties of daily returns, the Gaus-

sian HMM has been extended by considering other sojourn-time distributions than the memoryless
geometric distribution (Bulla and Bulla 2006), other conditional distributions than the Gaussian
distribution (Bulla 2011), and a continuous-time formulation as an alternative to the dominating
discrete-time models (Nystrup et al. 2015b). As an alternative to increasing the model complexity,
Nystrup et al. (2016b) obtained good results using an adaptive estimation approach that allowed
for time variation in the parameters of a two-state Gaussian HMM. This approach was adopted in
Nystrup et al. (2015a, 2017) and will be adopted in this article as well.

2.1. Adaptive Parameter Estimation

The parameters of an HMM are typically estimated using the maximum-likelihood method. The
two most popular approaches to maximizing the likelihood are direct numerical maximization and
the Baum�Welch algorithm, a special case of the expectation�maximization (EM) algorithm (Baum
et al. 1970, Dempster et al. 1977).
Every observation is assumed to be of equal importance, no matter how long the sample period

is. This approach works well when the sample period is short and the underlying process does not
change over time. The time-varying behavior of the parameters documented in previous studies
(Rydén et al. 1998, Bulla 2011, Nystrup et al. 2016b), however, calls for an adaptive approach
that assigns more weight to the most recent observations, while keeping in mind past patterns at a
reduced con�dence.
As pointed out by Cappé et al. (2005), it is possible to evaluate derivatives of the likelihood

function with respect to the parameters for virtually any model that the EM algorithm can be
applied to. As a consequence, instead of resorting to a speci�c algorithm such as the EM algorithm,

3
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the likelihood can be maximized using gradient-based methods. Lystig and Hughes (2002) described
an algorithm for exact computation of the score vector and the observed information matrix in
HMMs that can be performed in a single pass through the data. Their algorithm was derived from
the forward�backward algorithm.
The reason for exploring gradient-based methods is the �exibility to make the estimator recursive

and adaptive.1 The estimation of the parameters through a maximization of the conditional log-
likelihood function can be done online using the estimator

θ̂t = arg max
θ

t∑
n=1

wn logPr (Yn |Yn−1, . . . , Y1, θ ) = arg max
θ
l̃t (θ) (3)

with wn = 1.2 The online estimator can be made adaptive by introducing a di�erent weighting. A
popular choice is to use exponential weights wn = f t−n, where 0 < f < 1 is the forgetting factor
(Parkum et al. 1992, Kulhav�y and Zarrop 1993). The speed of adaption is then determined by the
e�ective memory length

Neff =
1

1− f
. (4)

Maximizing the second-order Taylor expansion of l̃t (θ) around θ̂t−1 with respect to θ and de�ning

the solution as the estimator θ̂t leads to

θ̂t = θ̂t−1 −
[
∇θθ l̃t

(
θ̂t−1

)]−1
∇θ l̃t

(
θ̂t−1

)
. (5)

This is equivalent to a speci�c case of the generalized autoregressive score (GAS) model of Creal
et al. (2013). Using the estimator (5) it is possible to reach quadratic convergence, whereas the
GAS model, in general, converges only linearly (see Cappé et al. 2005).
Scaling by the Hessian in (5) is equivalent to scaling by the variance of the score function,

because the expectation of the score is zero. The variance of the score function is known as the
Fisher information

It (θ) = E [−∇θθlt] = E
[
∇θlt∇θlTt

]
. (6)

Approximating the Hessian by the Fisher information leads to the recursive, adaptive estimator

θ̂t ≈ θ̂t−1 +A
[
It

(
θ̂t−1

)]−1
∇θ l̃t

(
θ̂t−1

)
. (7)

The tuning constant A can be adjusted to increase or decrease the speed of convergence without
changing the e�ective memory length, although it is common to choose A ≈ 1/Neff . The inverse of
the Fisher information can be updated recursively using (6) and the matrix inversion lemma. It is
necessary to apply a transformation to all constrained parameters for the estimator (7) to converge
and it is advisable to start the estimation at t > 1 to avoid large initial steps.
The time variation of the parameters is observation driven based on the score of the likelihood

function. Although the parameters are stochastic, they are perfectly predictable given the past
observations. This is contrary to parameter-driven models, in which the parameters are stochastic
processes with their own source of error. No prior knowledge is assumed about the parameters, and

1See Khreich et al. (2012) for a survey of techniques for incremental learning of HMM parameters.
2An online estimator processes its input observation-by-observation in a sequential fashion, without having the entire input
sequence available from the start.
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no attempt is made to identify the drivers of the variations (see, e.g., Brennan et al. 1997).
The use of the score function for updating the parameters is intuitive, as it de�nes the steepest

ascent direction for improving the model's local �t in terms of the likelihood at time t given the
current parameter values (Creal et al. 2013). For HMMs, the score function must consider previous
observations and cannot reasonably be approximated by the score function of the most recent obser-
vation, as it is often done for other models (Khreich et al. 2012). This leads to a signi�cant increase
in computational complexity. In order to compute the weighted score function, the algorithm of
Lystig and Hughes (2002) has to be run for each iteration and the contribution of each observation
has to be weighted.

2.2. Forecasting

The �rst step toward calculating the forecast distributions is to estimate the current state proba-
bilities given the past observations and parameters. The vector of state probabilities is

αT
T |T =

δTP1 (y1)
∏T
t=2 ΓtPt (yt)

δTP1 (y1)
(∏T

t=2 ΓtPt (yt)
)

1
, (8)

where the i'th entry is
(
αT |T

)
i

= Pr (ST = i|YT , . . . , Y1) and Pt (yt) is a diagonal matrix with the
state-dependent conditional densities pi (yt) = Pr (Yt = yt|St = i, θt) as entries.
Once the current state probabilities are estimated, the state probabilities k steps ahead can be

calculated by multiplying αT |T with the transition probability matrix k times:

αT
T+k|T = αT

T |TΓkT . (9)

The parameters are assumed to stay constant in the absence of a model describing their evolution.
The density forecast is the average of the state-dependent conditional densities weighted by the

forecasted state probabilities. When the conditional distributions are distinct normal distributions,
the forecast distribution will be a non-normal mixture (Frühwirth-Schnatter 2006).1 Using Monte
Carlo simulation, Boyd et al. (2014) showed that the results of dynamic portfolio optimization are
not particularly sensitive to higher order moments. Consequently, for the present application, only
the �rst and second moment of the forecast distribution are considered.
The �rst two moments of a mixture distribution are

µ =

m∑
i=1

µiαi (10)

σ2 =

m∑
i=1

(
µ2
i + σ2

i

)
αi − µ2 (11)

with αi denoting the weights�that is, the forecasted state probabilities.
Before calculating the moments of the mixture distribution, the conditional means and variances

of the returns are calculated based on the moments of the log-returns. Within each state, the returns
rt are assumed to be iid with log-normal distribution

log (1 + rt) ∼ N
(
µ, σ2

)
,

where µ and σ2 are the mean and variance of the log-returns. Thus, the mean and variance of the

1The non-normality can easily be captured by generating scenarios using the current state probabilities as initial probabilities.
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returns are given by

E [rt] = exp
(
µ+ σ2

/
2
)
− 1 (12)

Var [rt] =
(
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
. (13)

The forecasted mean and variance will be mean-reverting, as the forecast horizon extends and
the state probabilities converge to the stationary distribution of the Markov chain. The rate of
convergence is determined by the size of the second largest eigenvalue of the transition probability
matrix, which for a two-state Markov chain is |λ2| = |γ11 + γ22 − 1|. The more persistent the states
are�or equivalently, the larger the size of λ2�the lower the rate of convergence.

3. Dynamic Portfolio Optimization

The approach outlined in the previous section can be applied online to forecast the mean and
variance of returns at discrete horizons. The forecasted means and variances are inputs to a multi-
period portfolio optimization. Every day a decision has to be made whether or not to change the
current portfolio allocation, knowing that the decision will be reconsidered the next day with new
input. In the risk-neutral case, the possible gain or saving from changing allocation has to exceed
the costs involved.
The planning horizon should at least be long enough to reach the stationary distribution of the

underlying Markov chain, whereafter the forecast does not change. In principle, the forecast horizon
should be in�nitely long, but in reality no one has an in�nite horizon.
There is a limit to how far ahead in time it is meaningful to make predictions. For su�ciently

long horizons, it is not possible to make better predictions than the long-term mean and variance,
which is also the reason that the forecasted mean and variance converge to their stationary values,
when the forecast horizon extends. Thus, looking only a limited number of steps into the future is
not just an approximation necessary to make the optimization problem computationally feasible, it
also seems perfectly reasonable.
The formulation of the dynamic portfolio optimization problem as a stochastic control problem

is inspired by Boyd et al. (2014), however, the objective function and the way transaction costs
are handled are signi�cantly di�erent. Boyd et al. (2014) assumed that in�nite amounts of cash
could be entered into the portfolio on any given day. Although it would be possible to constrain the
amount of cash that can be entered into the portfolio per day, it is for most purposes more realistic
to assume that only a �nite amount of cash is available initially. At any later point in time, the
amount of cash available depends on the portfolio's development and transaction costs incurred.

3.1. Stochastic Control Formulation

Let ht ∈ Rn denote the portfolio holdings at time t, where (ht)i is the dollar value of asset i at the
end of day t, with (ht)i < 0 meaning a short position in asset i. Assets can be bought and sold at
the end of each day. Let ut ∈ Rn denote the dollar values of the trades, with (ut)i > 0 meaning
that asset i is bought at the end of day t.
The post-trade portfolio is de�ned as

h+
t = ht + ut, t = 0, . . . , T − 1, (14)

which is also the portfolio at the beginning of day t + 1. The total value of the portfolio before
trading is Vt = 1Tht and the total value of the post-trade portfolio is V +

t = 1Th+
t ≤ Vt. Working

with holdings ht, rather than weights ht/Vt, simpli�es the notation.
The portfolio is assumed to be self-�nancing with transaction costs proportional to the total trade
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volume, that is,

1Tut + κT |ut| = 0, t = 0, . . . , T − 1, (15)

where κ is a vector of commission rates and the absolute value is elementwise. The constraint
states that −1Tut, which is the total gross proceeds from sales minus the total gross proceeds from
purchases, equals κT |ut|, the total transaction cost for purchases and sales.
For optimization purposes, the constraint (15) is replaced by the convex relaxation

1Tut + κT |ut| ≤ 0, t = 0, . . . , T − 1, (16)

which allows the possibility of discarding money.

t = 0 t = 1 t = 2

h0 h+0

r1

h1 h+1

r2

h2 h+2

. . .

u0 u1 u2

Figure 1. Timeline of portfolio dynamics.

The post-trade portfolio is held until the
end of the next day. The (pre-trade) portfolio
at the end of the next day is given by

ht+1 = (1 + rt+1) ◦ h+
t , t = 0, . . . , T − 1,

(17)
where rt+1 ∈ Rn is the vector of asset re-
turns from day t to day t + 1 and ◦ de-
notes Hadamard (elementwise) multiplica-
tion of vectors. As illustrated in �gure 1, the
dynamics are linear, but unknown at time t.
The returns rt are random variables with mean and covariance

E [rt] = r̄t, E
[
(rt − r̄t) (rt − r̄t)T

]
= Σt, t = 1, . . . , T.

The trades are determined in each period by a trading policy φt : Rn → Rn:

ut = φt (ht) , t = 0, . . . , T − 1.

Let Ct ⊆ Rn denote the post-trade portfolio constraint set. Since Ct is nonempty, it follows that
for any value of ht, there exists a ut for which

h+
t = ht + ut ∈ Ct. (18)

Explicit constraints are imposed only on the post-trade portfolio h+
t , because this can be controlled

by buying and selling (i.e., through ut), whereas the pre-trade portfolio ht is determined by the
random return rt in the previous period and, therefore, not directly controllable.
The portfolio may be subject to constraints on the post-trade holdings, such as minimum and

maximum allowed holdings for each asset:

hmin
t ≤ h+

t ≤ hmax
t , (19)

where the inequalities are elementwise and hmin
t and hmax

t are given vectors of minimum and max-
imum asset holdings in dollars. For a long-only portfolio with no short positions allowed hmin = 0.
Position limits can also be expressed relative to the total portfolio value, for example,

y+
t ≤ V

+
t H

max
t , (20)

with Hmax
t ∈ Rn.
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The overall objective is to maximize

J = E

[
VT −

T−1∑
t=0

ψt (ht, ut)

]
, (21)

where the expectation is over the sequence of returns r1, . . . , rT conditional on all past observations,
VT = 1ThT is the terminal value of the portfolio, and ψt : Rn × Rn → R is a cost, with units of
dollars, for period t. This is a stochastic control problem with linear dynamics and convex objective
function, ensuring the existence of a unique solution (Boyd and Vandenberghe 2004). The data for
the problem is the distribution of rt, the stage costs ψt, and the initial portfolio h0.

3.1.1. Risk-Averse Control. The traditional risk-adjustment charge is proportional to the
variance of the next period portfolio value given the current post-trade portfolio, which corresponds
to

ψt (ht, ut) = γ
Var

[
Vt+1|h+

t

]
V +
t

= γ

(
h+
t

)T
Σt+1h

+
t

V +
t

, (22)

where γ ≥ 0 is a unitless risk-aversion parameter. In control theory, the inclusion of a risk penalty
is referred to as risk-averse control (Whittle 1981). To ensure that the tradeo� between terminal
value and variance does not depend on the portfolio value, the variance is scaled by the post-trade
value V +

t .
If the returns are independent, then the sum of the variances is the variance of the terminal value.

In that case, the objective function (21) with the risk-adjustment charge (22) is equivalent to the
mean�variance criterion of Markowitz (1952).1 It is a special case of expected utility maximization
with a quadratic utility function. While the utility approach was theoretically justi�ed by von
Neumann and Morgenstern (1953), in practice few, if any, investors know their utility functions; nor
do the functions which �nancial engineers and economists �nd analytically convenient necessarily
represent a particular investor's attitude toward risk and return (Dai et al. 2010a). The mean�
variance criterion remains the most commonly used in portfolio optimization (Meucci 2005).
As an alternative to including a risk penalty in the objective function, Boyd et al. (2014) proposed

to constrain the portfolio standard deviation to a fraction of the portfolio value. In a single-period
setting, the two formulations are equivalent. A risk limit might be preferable, because it is easier
to quantify than a risk-aversion parameter. In a multi-period setting, however, a constraint on
the portfolio standard deviation leads to excessive trading and inferior performance. The resulting
constant-risk portfolio does not consider the attractiveness of the risk-return tradeo�. In order to
maximize the return, the portfolio will be right at the risk limit most of the time, which leads to
forced trading, whenever the volatility forecast increases unexpectedly.

3.1.2. Trading Aversion. Boyd et al. (2014) gave examples of other convex constraints and
cost terms that arise in practical investment problems and can easily be included. One option is to
include a penalty for trading

ψt (ut) = ρT |ut| , (23)

where ρ is a vector of trading-aversion parameters. This could re�ect a conservatism toward trading,
for example, due to the uncertainty related to the parameter estimates and forecasts. In�ating the

1Everything is scaled by Vt.
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transaction cost κ in (15)�(16) would have the same e�ect. In order to distinguish it from the
actual transaction cost, the trading penalty (23) is instead included in the objective function (21),
similarly to the variance penalty (22).
It is well known that estimation errors can cause mean�variance optimized portfolios to perform

poorly (see Michaud 1989, DeMiguel et al. 2009). Brodie et al. (2009) showed that the mean�variance
optimization problem can be reformulated as a constrained, least-squares regression problem. Im-
posing a trading penalty (23) that is proportional to the trade volume is a convex relaxation of
constraining the number of trades. Similar to the least absolute shrinkage and selection opera-
tor (LASSO) in regression analysis (Tibshirani 1996), this `1-penalty regularizes the optimization
problem and reduces the risk due to estimation errors (Ho et al. 2015).

3.2. Model Predictive Control

MPC, also referred to as receding horizon control or rolling horizon planning, is widely used in some
industries; primarily for systems with slow dynamics such as energy systems, chemical plants, and
supply chains (see, e.g., Bemporad 2006), but it is also used, for example, for steering autonomous
vehicles (see, e.g., Falcone et al. 2007). MPC typically works very well in practice, even for short
horizons.
MPC is based on the simple idea that in order to determine ut, all future (unknown) returns

are replaced by their forecasted mean values r̂τ , τ = t+ 1, . . . , T. This turns the stochastic control
problem into a deterministic optimization problem

maximize VT −
∑T−1

τ=t ψτ (hτ , uτ )
subject to hτ+1 = (1 + r̂τ+1) ◦ (hτ + uτ ) , τ = t, . . . , T − 1

(24)

with variables ht+1, . . . , hT and ut, . . . , uT−1. Note that ht is not a variable, but the (known) current
portfolio holdings.
Solving this convex optimization problem yields an optimal sequence of trades u?t , . . . , u

?
T−1. This

sequence is a plan for future trades over the remaining trading horizon under the highly unrealistic
assumption that future returns will be equal to their forecasted values. An alternative is to forecast
the unconditional distribution and generate a number of scenarios, but this is computationally much
more challenging.
The MPC policy takes φMPC (ht) = u?t , that is, only the �rst trade in the planned sequence of

trades is executed. At the next step, the process is repeated, starting from the new portfolio ht+1.
In the case of a mean�variance objective function, Herzog et al. (2007) showed that future asset
allocation decisions do not depend on the trajectory of the portfolio, but solely on the current
tradeo� between satisfying the constraints and maximizing the objective. As emphasized by Boyd
et al. (2014), there are computational advantages to using MPC in cases when estimates of future
return statistics are updated online. In this case, the expected returns r̄t are simply replaced with
the most recent return estimates.
MPC for stochastic systems is a suboptimal control strategy, however, it uses new information

advantageously and is better than pure open-loop control (Herzog et al. 2007). The open-loop policy
would be to execute the entire sequence of trades u?t , . . . , u

?
T−1 based on the initial portfolio without

recourse. Using Monte Carlo simulation, Boyd et al. (2014) showed that, in any practical sense, the
MPC policy is optimal.

Truncated MPC. The MPC policy described in (24) plans a sequence of trades for the full time
interval t, . . . , T . A common variation is to look a limited number of steps, K, into the future. At
each time t the optimization problem is

maximize V term
t+K (ht+K)−

∑t+K−1
τ=t ψτ (hτ , uτ )

subject to hτ+1 = (1 + r̂τ+1) ◦ (hτ + uτ ) , τ = t, . . . , t+K − 1
(25)
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Algorithm 1 MPC approach to dynamic portfolio optimization

(i) Update HMM parameters based on the most recent returns
(ii) Forecast the mean and variance K steps into the future
(iii) Compute an optimal sequence of trades u?t , . . . , u

?
t+K−1 based on the current portfolio

(iv) Execute the �rst trade, u?t , in the sequence and return to step i

with variables ht+1, . . . , ht+K and ut, . . . , ut+K−1. Here K is the number of steps of look-ahead and
V term
t+K is the terminal value.
If the terminal value is appropriately chosen, then the truncated MPC policy is exactly the

same as the full look-ahead policy. If K is large enough to reach the stationary distribution of
the underlying Markov chain, then V term

t+K (ht+K) can be replaced by Vt+K = 1Tht+K , since the
risk�return tradeo� does not change after this point. If transaction costs are very high, then the
choice of K can a�ect the result, even when K is large enough to reach the stationary distribution
of the underlying Markov chain. The choice, however, should still re�ect how far ahead in time it
is meaningful to make predictions.
Algorithm 1 summarizes the four steps in the MPC approach to solving the dynamic portfolio

optimization problem. At time t, a new measurement is obtained, which is used to update the
parameters of the HMM and forecast the mean and variance K steps into the future. The next step
is to compute an optimal sequence of trades u?t , . . . , u

?
t+K−1 based on the current portfolio and the

forecasts. Only the �rst trade in the sequence is executed before a new measurement is obtained
and the procedure is repeated. Computing the optimal sequence of trades for K = 100 by solving
the optimization problem (25) takes less than 18 milliseconds using CVXPY (Diamond and Boyd
2016) with the open-source solver ECOS (Domahidi et al. 2013).

4. Empirical Results

4.1. Data

The asset universe considered consists of various major stock market indices and cash. Cash po-
sitions are assumed to be risk-free and yield zero interest, hence, the only source of performance
is the stock indices. The stock indices are considered one at a time. By only considering one risky
asset and one risk-free asset, correlations can be disregarded. It is natural to focus on a stock in-
dex, since portfolio risk is typically dominated by stock market risk (see, e.g., Goyal et al. 2015).
Previous studies on RBAA have also focused on stocks and cash, sometimes in combination with
bonds (Ang and Bekaert 2004, Guidolin and Timmermann 2007, Bulla et al. 2011, Kritzman et al.

2012, Nystrup et al. 2015a).
In the �rst subsections, the data analyzed is 4,943 daily log-returns of the MSCI World Total

Return Index covering the period from 1997 through 2015.1 Then in section 4.6, the analysis is
repeated for S&P 500, TOPIX, DAX, FTSE, and MSCI EM. Figure 2 shows the MSCI World index
and its daily log-returns over the 19-year data period. The volatility forms clusters, as large price
movements tend to be followed by large price movements and vice versa, as noted by Mandelbrot
(1963).2 RBAA aims to exploit this persistence of the volatility, since risk-adjusted returns, on
average, are substantially lower during turbulent periods, irrespective of the source of turbulence,
as shown by Kritzman and Li (2010).
Similar to previous studies, the regime detection will focus on the log-returns of the stock indices.

The observed regimes in �nancial markets are related to the phases of the business cycle (Campbell

1The log-returns are calculated using rt = log (Pt)− log (Pt−1), where Pt is the closing price of the index on day t and log is
the natural logarithm.
2A quantitative manifestation of this fact is that while returns themselves are uncorrelated, absolute and squared returns
display a positive, signi�cant, and slowly decaying autocorrelation function.
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Figure 2. MSCI World Total Return Index and its daily log-returns.

1998, Cochrane 2005). As argued in Nystrup et al. (2015a), however, the link is complex and
di�cult to exploit for investment purposes due to the large lag in the availability of data related
to the business cycle. Besides, stock markets generally lead the economy (Siegel 1991). The focus
is, therefore, on readily available market data instead of attempting to establish the link to the
business cycle.

4.2. HMM Parameters

Figure 3 shows the result of applying the adaptive estimator (7) on the daily log-returns of the
MSCI World index to estimate the parameters of a two-state Gaussian HMM. An e�ective memory
length of Neff = 260 days was used with the tuning constant A = 1/Neff . The �rst 260 observations
were used for initialization.
The choice of memory length a�ects the parameter estimates and can be viewed as a tradeo�

between bias and variance. A shorter window yields a faster adaption to changes, but larger variance
of the estimates, as fewer observations are included in the estimation. In Nystrup et al. (2016b), an
e�ective memory length of about one year was found to give the best forecasts. In agreement with
this, forecasts based on a memory length of 260 days are found to give good results when used as
inputs for MPC of an investment portfolio.
Similar to the �nding in previous studies (Rydén et al. 1998, Bulla 2011, Nystrup et al. 2016b),

the HMM parameters are seen to �uctuate a lot over the 19-year data period. State one is the most
persistent, has the lowest variance, and�most of the time�has a positive mean. State two has a
much higher variance and a negative mean value most of the time. The period in the early 2000s,
when the mean return in both states was negative, exposes a weakness to having pre-de�ned rules
for changing the portfolio based on the regime; regardless of the regime, an allocation to stocks
would lose money in those years.
The probabilities of staying in the current state, γ11 and γ22, appear to be less than 0.99 the

majority of the time. A probability of 0.99 would imply an expected sojourn time of 1/ (1− 0.99) =
100 days. The number of steps of look-ahead, K, is, therefore, chosen to be 100.1 This is found to
be a su�ciently large number in that a further increase does not a�ect the results.

4.3. Optimal Thresholds for Changing Allocation

The optimal thresholds for changing allocation depend on the speci�c parameter values. Using
MPC, the current parameter values are taken into account when deciding whether to change the

1The number of steps of look-ahead, K, could also be chosen based on the maximum absolute value of the second largest
eigenvalue of the transition probability matrix, |λ2| = |1− γ11 − γ22|, which is just below 0.99.
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Figure 3. Parameters of a two-state Gaussian HMM estimated adaptively using an e�ective memory length of
Neff = 260 days.

portfolio, instead of having a static decision rule for changing the allocation based on the inferred
regime. As an example, �gure 4 shows the optimal thresholds for changing allocation for di�erent
levels of risk aversion and transaction costs for a long-only portfolio based on the parameter values
on January 2, 2012. The thresholds are not necessarily optimal ex post.
Based on the parameter values on January 2, 2012, a risk-neutral investor with γ = 0 that can

trade at zero cost should be fully invested in stocks when the probability of currently being in state
one (the state with low variance and positive mean) exceeds 0.55. Whenever the probability falls
below 0.55, the risk-neutral investor should sell all stocks. The risk-neutral investor is always fully
allocated to either stocks or cash.
A risk-averse investor with γ = 2 should be fully invested in stocks when the probability of

currently being in state one exceeds 0.86 and�similar to a risk-neutral investor�fully allocated to
cash when the probability is below 0.55. In between, the portfolio is a mix of stocks and cash.
A risk-neutral investor that can trade stocks at a cost of κ = 0.02 per transaction should buy
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Figure 4. Optimal thresholds for changing allocation for di�erent levels of risk aversion, γ, and transaction costs, κ,
based on the parameter values on January 2, 2012.

stocks when the probability of currently being in state one exceeds 0.75 and sell all stocks when the
probability falls below 0.17. In between, the risk-neutral investor should keep the initial portfolio.
The thresholds are not symmetric, as 0.75 6= 1− 0.17.
Institutional investors can trade stocks at a much lower cost than 2%, but this high value clearly

illustrates that the presence of transaction costs leads to a no-trade zone. Based on the parameter
values at the end of 2015, for example, a risk-neutral investor that can trade at a cost of 2%
should never sell stocks, even if the probability of currently being in the good state is zero, because
of the low persistence of the bad state and the not excessively negative mean value. The higher
the transaction costs, the larger the no-trade zone. Dai et al. (2010b) derived similar results in a
continuous-time framework.

4.4. Comparison of MPC Results

Table 1 summarizes the performance of MPC with and without risk (22) and trading (23) aversion
for K = 100 steps of look-ahead. Short positions were not allowed. Transaction costs of κ = 0.001
(10 basis points per transaction) have been deducted in all three cases. This is a realistic cost for
an institutional investor.
The �rst approach, MPC(γ = 0, ρ = 0), is pure return maximization with no risk or trading

penalty (except for the 10 basis point transaction cost). This approach yields the highest annualized
return (AR) despite having an annual turnover (AT) of 4.61. An AT of 4.61 means that the entire
portfolio is shifted from stocks to cash or vice versa, on average, 4.61 times per year.
Introducing a risk penalty by setting γ = 2 increases the AT from 4.61 to 5.30 and leads to a lower

standard deviation (SD), lower maximum drawdown (MDD)1, and lower AR. The Calmar ratio
(CR)2 is una�ected. To ensure that the performance comparison is not distorted by autocorrelation
in the daily returns, the reported SDs have been adjusted for autocorrelation using the procedure
outlined by Kinlaw et al. (2015). As γ increases and more emphasis is put on the variance forecast,
the Sharpe ratio (SR)3 deteriorates. This could indicate that the mean changes faster than the
variance. The variance is crucial when distinguishing between market regimes (Nystrup et al. 2016a),
however, basing the allocation decision on both the mean and variance forecasts adds another source
of estimation error. This should be further explored in a future study encompassing more assets.
The third approach, MPC(γ = 0, ρ = 0.02), is return maximization with a 2% trading penalty on

top of the 10 basis point transaction cost. The trading penalty (23) with ρ = 0.02 is included in
the objective function when determining the optimal sequence of trades in step iii of algorithm 1,

1The maximum drawdown is the largest relative decline from a historical peak in the index value.
2The Calmar ratio is the annualized return divided by the maximum drawdown.
3The Sharpe ratio is the annualized return divided by the standard deviation adjusted for autocorrelation.
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Table 1. Performance of MPC with and without risk and trading aversion.

MPC(γ = 0, ρ = 0) MPC(γ = 2, ρ = 0) MPC(γ = 0, ρ = 0.02)
Annualized return 0.076 0.062 0.070
Standard deviation 0.12 0.10 0.11
Sharpe ratio 0.65 0.61 0.67
Maximum drawdown 0.26 0.21 0.23
Calmar ratio 0.29 0.29 0.31
Annual turnover 4.61 5.30 1.17

Notes: Transaction costs of κ = 0.001 per transaction have been deducted. γ is the risk-aversion parameter and ρ is the

trading-aversion parameter. Short positions were not allowed.
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Figure 5. Trades in the MSCI World index relative to the portfolio value at the time based on MPC with and
without risk and trading aversion.
Notes: Transaction costs of κ = 0.001 per transaction have been deducted. γ is the risk-aversion parameter and ρ is the

trading-aversion parameter. Short positions were not allowed.
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Table 2. Performance of MPC with and without a trading penalty compared to the MSCI World index, rule-based
RBAA, and SAA, when allocation changes are subject to a one-day delay.

MPC(γ = 0, ρ = 0) MPC(γ = 0, ρ = 0.02) MSCI World RBAA SAA
Annualized return 0.065 0.069 0.056 0.046 0.041
Standard deviation 0.12 0.11 0.18 0.12 0.13
Sharpe ratio 0.56 0.63 0.30 0.38 0.32
Maximum drawdown 0.26 0.25 0.57 0.34 0.44
Calmar ratio 0.25 0.28 0.10 0.13 0.09
Annual turnover 4.16 1.17 0.00 1.94 0.09

Notes: The SAA portfolio is rebalanced monthly to a �xed allocation of 69% stocks and 31% cash, which equals the average

allocation of MPC (γ = 0, ρ = 0). Transaction costs of κ = 0.001 per transaction have been deducted. γ is the risk-aversion

parameter and ρ is the trading-aversion parameter. Short positions were not allowed.

but the actual transaction cost applied is still κ = 0.001. This subjective trading penalty leads to
a signi�cantly lower AT and a slightly lower AR compared to the unpenalized case, while the SR
and CR are roughly unchanged.
Figure 5 shows the transactions in the MSCI World index relative to the portfolio value at the

time for the three approaches. Introducing a risk penalty by setting γ = 2 leads to more frequent
trading and a higher AT compared to pure return maximization. A trading penalty, on the other
hand, leads to signi�cantly fewer trades. The trading penalty appears to be e�ective at reducing
the number of trades that are reversed within a short timespan and may, therefore, be preferred in
some applications.

4.5. Comparison with Rule-Based Approach when Allocation Changes are Delayed

t = 0 t = 1 t = 2

h0 h+0

r1

h1 h+1

r2

h2 h+2

. . .

u0 u1 u2

Figure 6. Timeline of portfolio dynamics when trades are
delayed by one day.

The results presented in the previous subsec-
tion are based on the assumption that it is
possible to trade at the closing price after it
is known and the parameters and forecasts
have been updated. It is often more realis-
tic to assume that allocation changes can-
not be implemented until the end of the next
day, as illustrated in �gure 6. To ensure that
the long-only constraint is still satis�ed at
all times, trading decisions have to be imple-
mented as fractions of the asset holding.1

In table 2, the performance of the risk-
neutral MPC approach with and without a trading penalty is reported when allocation changes
are subject to a one-day delay. Transaction costs of 10 basis points have been deducted from the
reported results. The AR of MPC with no risk or trading penalty is about one percentage point
lower when allocation changes are delayed, in spite of the AT being lowered from 4.61 to 4.16.
Imposing a trading penalty actually increases the AR when allocation changes are subject to a

one-day delay. The AR, SR, and CR of the risk-neutral MPC approach with trading aversion are
almost unchanged compared to when there is no delay. This suggest that a trading penalty increases
the robustness of the MPC approach, similarly to what it does in a single-period setting (Brodie
et al. 2009, Ho et al. 2015). The delay has no impact on the AT of the penalized MPC approach
that is still substantially lower than for the unpenalized approach.
In table 2, the performance of the risk-neutral MPC approaches is compared with the MSCI

World index, a rule-based RBAA approach, and an SAA portfolio that is rebalanced monthly to a

1If a decision is made on day t to sell $80 worth of stocks out of a total holding of $100, then 80% of the stocks are sold on
day t+ 1, regardless of their value.
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Figure 7. Performance of the return-maximizing MPC approach compared with rule-based RBAA and the MSCI
World index. In the shaded periods, the MPC and the RBAA portfolios (top and bottom half, respectively) were
fully allocated to cash.
Notes: Transaction costs of κ = 0.001 per transaction have been deducted. γ is the risk-aversion parameter and ρ is the

trading-aversion parameter. Short positions were not allowed.

�xed allocation of 69% stocks and 31% cash, which equals the average allocation of the unpenalized
MPC approach.
The rule-based RBAA approach is the same as in Nystrup et al. (2017). Like the risk-neutral

MPC approaches, it is either fully allocated to stocks or cash. The allocation is changed when the
probability that a regime change has occurred exceeds a threshold of 0.9998. The underlying HMM
is estimated using (7) with an e�ective memory length of two years, since this was found to give
better results. A similar memory length was used in Nystrup et al. (2015a, 2017).
The risk-neutral MPC approaches have realized the highest AR and have outperformed the MSCI

World index that has a signi�cantly higher SD and MDD. This is under the assumption that cash
positions yield zero interest. Further, with approximately the same SD and a lower MDD than the
RBAA and SAA portfolios, the MPC approaches have realized a substantially higher SR and CR.
RBAA outperforms both SAA and the index in terms of SR and CR. Its AT of 1.94 is higher

than that of the penalized MPC approach, but less than half of that of the unpenalized MPC
approach. The performance of RBAA relative to the index is not as convincing as when there are
other alternatives to invest in than zero-interest cash (see Nystrup et al. 2015a, 2017).
In �gure 7, the performance of MPC with no trading or risk penalty is compared to the rule-

based RBAA strategy and the MSCI World index when allocation changes are subject to a one-day
delay. In the shaded periods, the MPC (top half) and the RBAA portfolios (bottom half) were fully
allocated to cash. The allocations are di�erent from what would be expected if the regimes were
based on a business cycle indicator.
The MPC portfolio performs better than the RBAA portfolio during the build-up and burst of

the dot-com bubble around the year 2000. It is fully allocated to stocks most of the time leading
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Table 3. Performance of MPC with no risk or trading penalty when applied to various major stock indices with no
delay in allocation changes.

MSCI World S&P500 TOPIX DAX FTSE MSCI EM
Annualized return 0.076 (0.056) 0.110 (0.108) 0.044 (0.025) 0.066 (0.073) 0.051 (0.078) 0.119 (0.072)
Standard deviation 0.12 (0.18) 0.14 (0.16) 0.17 (0.24) 0.16 (0.22) 0.14 (0.15) 0.18 (0.27)
Sharpe ratio 0.65 (0.30) 0.79 (0.68) 0.26 (0.10) 0.41 (0.33) 0.36 (0.54) 0.66 (0.27)
Maximum drawdown 0.26 (0.57) 0.36 (0.55) 0.48 (0.72) 0.39 (0.73) 0.36 (0.48) 0.38 (0.65)
Calmar ratio 0.29 (0.10) 0.30 (0.20) 0.09 (0.03) 0.17 (0.10) 0.14 (0.16) 0.31 (0.11)
Annual turnover 4.61 (0.00) 3.29 (0.00) 4.69 (0.00) 5.89 (0.00) 4.59 (0.00) 8.18 (0.00)

Notes: The numbers in parentheses are the summary statistics for a buy-and-hold investment in the respective indices. Trans-

action costs of κ = 0.001 per transaction have been deducted. Short positions were not allowed.

up to the peak and fully allocated to cash throughout the downturn. The MPC portfolio stays fully
allocated to cash throughout the downturn, because the mean value in both states is negative in
this period, cf. �gure 3. The RBAA portfolio times the subsequent rebound better and does well by
staying fully allocated to cash throughout the crash in 2008. The MPC portfolio times the rebound
in 2009 better and gradually extends its lead over the following years.
The MPC portfolio is slightly behind the MSCI World index at the peak in year 2000, but then

moves ahead of the index during the downturn. The lead is maintained in the following years leading
up to the crash in 2008, during which the lead is signi�cantly extended. Part of the lead is lost
during the market rebound in the �rst half of 2009, before the MPC allocation is shifted to stocks.
At the end of the sample, the performance gap is substantial. The outperformance relative to the
index comes from the two major downturns, but this is hardly surprising, since there is no other
source of return than the index itself. In risk-adjusted terms, the outperformance is conclusive.

4.6. Application to Other Indices

Table 3 summarizes the results from applying MPC with no risk or trading penalty (i.e.,
MPC(γ = 0, ρ = 0)) to various major stock market indices. For the MSCI World index, the numbers
are the same that were reported in table 1. Recall that the testing period for the MSCI World index
spans 1998 through 2015. For S&P 500, TOPIX, DAX, and FTSE, the data period includes 1984
through 2015. The �rst two years are used for initialization, leaving 30 years for testing. For the
MSCI EM index, daily data is only available from 1988 and onwards, thus the testing period is four
years shorter. All indices are net total return.
The MPC approach realizes a higher SR and CR than a buy-and-hold investment (as summarized

in parentheses) in �ve out of six indices, with FTSE being the only exception. The best performance
relative to the underlying index is obtained for MSCI World, TOPIX, and MSCI EM. For all indices
except DAX and FTSE, the AR of the MPC approach is higher than that of the underlying index
despite high ATs�which could easily be reduced by introducing a trading penalty. In all six cases,
the SD and MDD are lower than those of the underlying index. The results in table 3 show that the
MPC approach in combination with the adaptively estimated HMM has worked well for multiple
major stock indices across di�erent time periods. By introducing a trading penalty and calibrating
its level to each index individually, it would be possible to further improve the results.

5. Conclusion

This article has shown the strength of using MPC for dynamic portfolio optimization in combi-
nation with an online method for forecasting the mean and variance of �nancial returns. There
are computational advantages to using MPC in cases when estimates of future return statistics
are updated every time a new observation becomes available, since the optimal control actions are
reconsidered anyway.
Based on forecasts from an adaptively-estimated HMM, the MPC approach realized a higher
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return and a signi�cantly lower risk than a buy-and-hold investment in various major stock indices.
This was after accounting for transaction costs. Imposing an additional trading penalty increased
the robustness, by reducing the number of trades, and improved the performance, when allocation
changes were subject to a delay.
MPC also outperformed RBAA based on a static decision rule for changing the portfolio. The

performance of rule-based RBAA has been stronger in previous studies, where there were more
investment opportunities than stocks and zero-interest cash. Thus, there is potential for using
MPC for optimal control of multi-asset portfolios.
To keep things simple and illustrate the strength of the approach, the focus of this article was on

stocks and cash, but it naturally extends to a multi-asset portfolio. Another possibility for future
work would be to specify a model for the parameter changes, possibly including relevant explanatory
variables, in an attempt to improve the forecasts and take the stochasticity into account in the
portfolio optimization.
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