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Robust speech dereverberation with a neural
network-based post-filter that exploits

multi-conditional training of binaural cues
Tobias May

Abstract—This study presents an algorithm for binaural speech
dereverberation based on the supervised learning of short-term
binaural cues. The proposed system combined a delay-and-sum
beamformer (DSB) with a neural network-based post-filter that
attenuated reverberant components in individual time-frequency
(T-F) units. A multi-conditional training (MCT) procedure was
used to simulate the uncertainties of short-term binaural cues
in response to room reverberation by mixing the direct part
of head related impulse responses (HRIRs) with diffuse noise.
Despite being trained with only anechoic HRIRs, the proposed
dereverberation algorithm was tested in a variety of reverberant
environments and achieved considerable improvements relative to
a coherence-based approach in terms of three objective metrics
reflecting speech quality and speech intelligibility. Moreover, a
systematic evaluation showed that the proposed system general-
ized very well to a wide range of acoustic conditions, including
various measured binaural room impulse responses (BRIRs) re-
flecting different reverberation times, azimuth positions spanning
the entire frontal hemifield, various source-receiver distances as
well as different artificial heads.

Index Terms—Dereverberation, binaural, coherence, neural
networks, short-term direct-to-reverberant energy ratio, ideal
ratio mask

I. INTRODUCTION

IN everyday listening situations, the sound mixture arriving
at the listener’s ears is a superposition of direct sound

stemming from the target as well as early and late reflections
from the walls or obstacles in the room, which are delayed
and attenuated versions of the direct sound. While early
reflections can be advantageous for speech intelligibility in
rooms [1], [2], late reflections cause temporal and spectral
smearing of the target signal characteristics, which reduces
speech intelligibility for normal-hearing and hearing-impaired
listeners [3]–[6]. In addition, the presence of reverberation
deteriorates the performance of many technical applications,
such as automatic speech recognition (ASR) [7] and speaker
identification (SID) systems [8]. Thus, dereverberation algo-
rithms can be assumed to be beneficial for a wide range of
speech processing applications.

Microphone array processing techniques are fundamental
building blocks in many speech processing applications and
can enhance the target source by spatial filtering [9]. The most
simple yet robust approach is the delay-and-sum beamformer
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(DSB), which can be steered towards a particular target
source (look direction) by compensating for the time delay
between the microphone signals. In this way, coherent signal
components from the target source are constructively added,
while diffuse signal components are attenuated. One limitation
of such static beamformers is that the amount of attenuation of
interfering sources from undesired directions is quite limited
for a low number of microphones. In addition, beamformers
can only partially suppress reverberation because reflections
coming from the look direction are not attenuated.

Late reverberation can be modeled as an additive signal
degradation [10] and can thus be removed by spectral en-
hancement strategies, where a real-valued gain function is
applied to the short-time discrete Fourier transform (STFT)
representation of the reverberant speech signal. In the context
of single-channel dereverberation, this gain function is typi-
cally based on an estimate of the late reverberant power spec-
tral density (PSD) [10], [11]. More sophisticated approaches
aim at reducing both interfering noise and reverberation by
either jointly estimating the noise and the late reverberant
PSD [12] or by combining an autoregressive moving-average
(ARMA) model of the late reverberant PSD with a hidden
Markov model (HMM) of clean speech in a Bayesian filtering
framework [13].

One frequently-used gain function for binaural dereverber-
ation is based on the short-term interaural coherence (IC)
function which measures the similarity between two ear
signals. In this way, time-frequency (T-F) units dominated
by the direct-sound can be distinguished from reverberation,
for which the IC is typically lower. A linear coherence-to-
gain mapping function was proposed in [14], whereas [15]
presented a non-linear sigmoidal mapping based on coherence
histograms which allowed for a much stronger attenuation
of reverberant components. For a comprehensive overview
of recent developments on speech dereverberation, the reader
is referred to [16]. Apart from applications in the context
of binaural dereverberation, such gain functions based on
the short-term IC are also often employed as post-filters to
increase the effectiveness of beamformers [17].

Instead of using a heuristic mapping as in [14] and [15],
the advancement in the field of machine learning allows the
use of supervised learning approaches, e.g. neural networks, to
establish a mapping between a set of features and an explicit
measure of direct-sound activity, as reflected by the short-term
direct-to-reverberant energy ratio (DRR). In addition, instead
of using one particular feature (e.g. the short-term IC), a
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neural network can exploit the combination of complementary
binaural features, such as IC, interaural phase differences
(IPDs) and interaural level differences (ILDs). However, one
of the main challenges of supervised learning approaches is the
generalization to acoustic conditions not seen during training.
The task of estimating a post-filter with a neural network is
particularly challenging, because the network should ideally be
independent of the room acoustic condition, the sound source
direction and the underlying artificial head.

Recently, deep neural networks (DNNs) have been em-
ployed to segregate a target signal from a binaural mixture
by combining spectral (monaural) and binaural features [18],
[19]. Both studies used a set of reverberant binaural room
impulse responses (BRIRs) for training. However, both studies
assumed a fixed target direction of 0 ◦, which is a signif-
icant limitation. Moreover, binaural features reflect relative
differences between the ears and thus change systematically
as a function of the sound source azimuth. In contrast, the
influence of the head shadow on monaural features is changing
less systematically with sound source azimuth and alters the
absolute magnitude of monaural features. As a consequence,
monaural features are less likely to generalize as well as
binaural features when being used in a supervised learning
framework, which may require the assumption of a fixed
source position.

In the context of binaural sound source localization, a
multi-conditional training (MCT) procedure (with Gaussian
mixture models (GMMs) or DNNs) was shown to produce
remarkably robust localization models with strong generaliza-
tion capabilities [20]–[23]. The MCT was based on anechoic
head related impulse responses (HRIRs) and the influence
of room reverberation and competing sources was simulated
by diffuse noise coming from all azimuth directions [21],
[22]. The resulting localization model generalized very well
to multiple competing sound sources, different artificial heads
and a wide range of reverberant conditions. However, the
applicability of such a training procedure for the task of speech
dereverberation and its ability to generalize to arbitrary source
directions has not yet been tested.

The current study presents a novel neural network-based
post-filter for speech dereverberation. The network was trained
with three types of short-term binaural features (IC, ILDs
and IPDs), using a MCT strategy where binaural reverberant
signals were simulated by mixing the direct part of HRIRs
with diffuse noise. In addition, a time-alignment stage was
incorporated to increase the effectiveness of the IPD feature.
The performance of the proposed approach was compared
to the coherence-based dereverberation algorithm developed
by [15] and the single-channel Bayesian filtering approach
presented in [13] using three objective metrics, namely the
perceptual evaluation of speech quality (PESQ) [24], the
short-time objective intelligibility (STOI) metric [25] and the
normalized speech-to-reverberation modulation energy ratio
(SRMR) [26]. Moreover, the generalization abilities of the
neural network-based post-filter was evaluated in isolation and
in combination with a DSB using a wide range of acoustic
conditions, including various BRIRs representing different
degrees of reverberation, several source-receiver distances, as
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Fig. 1. Block diagram of the proposed dereverberation algorithm consisting
of a fixed DSB beamformer and a neural network-based post-filter. The neural
network was trained with short-term binaural features during an initial training
stage.

well as different azimuth positions and artificial heads.

II. SYSTEM

The proposed dereverberation algorithm shown in Fig. 1
combined a fixed DSB with a neural network-based post-filter
that estimated the short-term DRR in individual T-F units. The
neural network was trained with short-term binaural features
during an initial training stage. In the testing stage, the DSB
was steered towards the estimated direction of the target source
by performing broadband time-delay estimation (TDE). The
estimated time delay was also used to time-align the left
and right ear signals prior to feature extraction. The benefit
of such a time alignment stage is discussed in Sect. IV-A.
Afterwards, the monaural beamformer output was further
processed by the network-based post-filter which attenuated
reverberant components. Both building blocks, the DSB and
the network-based post-filter, are described below.

A. Delay-and-sum beamformer (DSB)
The binaural signal was pre-processed by a static DSB that

was steered towards the estimated direction of the target source
(e.g. the most dominant source). The required time delay
between both ear signals was estimated using the generalized
cross-correlation (GCC) function [27], which was computed
for the complete left- and right ear signals for time lags within
the range of [−1, 1] ms. To increase the resolution of the
estimated time delay, the binaural signal was upsampled to
a sampling frequency of 48 kHz prior to TDE. Afterwards,
the binaural signal was time-aligned by delaying the leading
ear signal and averaged. Finally, this monaural beamformer
output was downsampled to 16 kHz and further processed by
the network-based dereverberation stage.
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B. Binaural features

Three different types of short-term binaural features were
used to train the neural network-based dereverberation al-
gorithm, namely the IC, ILDs and IPDs. All features were
derived from the STFT representation of the binaural signals.
The STFTs were computed by segmenting the left and right
ear signals into overlapping frames of 32 ms duration with
a time shift SSTFT corresponding to 8 ms. Each frame was
Hamming-windowed and a 512-point discrete Fourier trans-
form (DFT) was computed, producing the STFT represen-
tations of the left and the right ear signals, XL(k, `) and
XR(k, `), where k and ` indicate frequency bin and time
frame, respectively.

The spectral resolution of the binaural features was inspired
by the human auditory system. Specifically, a set of 64 audi-
tory filters was used that covered a frequency range between
65 Hz and 8 kHz according to the mel-frequency spacing [28],
where G(c, k) reflected the frequency-dependent response of
auditory channel c.

1) Interaural coherence (IC): The IC in auditory channel
c was calculated by

IC(c, `) =

√√√√G(c, k)

(
|ΦLR(k, `)|√

ΦLL(k, `)ΦRR(k, `)

)2

, (1)

with ΦLL(k, `), ΦRR(k, `) and ΦLR(k, `) representing the ex-
ponentially weighted short-term auto- and cross-power spectral
density functions [14]

ΦLL(k, `) = αΦLL(k, `− 1) + (1− α)XL(k, `)X∗
L(k, `),

(2)
ΦRR(k, `) = αΦRR(k, `− 1) + (1− α)XR(k, `)X∗

R(k, `),
(3)

ΦLR(k, `) = αΦLR(k, `− 1) + (1− α)XL(k, `)X∗
R(k, `),

(4)

where the exponential weight α was controlled by the time
constant τ according to α = exp(−SSTFT/τ) and ∗ denotes
the complex conjugate. The time constant was set to τ =
10 ms.

2) Interaural level difference (ILD): The ILD was deter-
mined by the amplitude ratio between the STFTs of the two
ear signals

ILD(c, `) = G(c, k)

(
20 log10

(∣∣∣∣XR(k, `)

XL(k, `)

∣∣∣∣)) . (5)

3) Interaural phase difference (IPD): The IPD was derived
by extracting the phase of the ratio of the left and right ear
STFTs

IPD(c, `) = G(c, k) arg

(
XR(k, `)

XL(k, `)

)
. (6)

C. Short-term DRR and IRM

The objective of the neural network was to estimate the
short-term DRR based on a set of binaural features. Assuming
that d(t) and r(t) represent binaural signals that were obtained
by convolving a speech signal with the direct and rever-
berant part of a BRIR, separately, the corresponding STFT

representations of the direct-sound and the reverberant signal
components, D(c, `) and R(c, `), in the auditory domain were
derived by

D(c, `) =
∑
k

G(c, k)|XD
M(k, `)|2, (7)

R(c, `) =
∑
k

G(c, k)|XR
M(k, `)|2. (8)

The binaural signals d(t) and r(t) were averaged across ears
prior to computing the STFT, resulting in monaural spectro-
gram representations of the direct-sound and the reverberant
signal components, XD

M and XR
M, respectively. The required

direct and reverberant components of the BRIR were identified
by a time-windowing procedure outlined in [29]. Specifically,
the first 1 ms after the maximum peak in the BRIR represented
the direct-path component, whereas the remaining part of the
BRIR was associated with reverberation.

Subsequently, the short-term DRR was computed by relating
the short-term energy of the direct-sound signal components
to the reverberant components

DRR(c, `) = 10 log10

(
D(c, `)

R(c, `)

)
. (9)

Finally, the short-term DRR was expressed in terms of the
ideal ratio mask (IRM), which is frequently used as a training
target in supervised learning approaches [30]

IRM(c, `) =

(
DRR(c, `)

DRR(c, `) + 1

)β
, (10)

=

(
D(c, `)

D(c, `) +R(c, `)

)β
, (11)

where the exponent β was set to 0.5.

D. Neural network architecture

A feedforward neural network was used to learn the map-
ping from the binaural features to IRM. The network consisted
of an input layer, one hidden layer with rectified linear unit
(ReLU) activation and 64 sigmoid output units representing the
IRM in different auditory filters. The network was trained in
full batch mode with the resilient back-propagation algorithm.
To improve the generalization of the network, the mean
squared error (MSE) performance function was modified with
a weight decay regularization of 0.5 to reduce the risk of
overfitting. Temporal context was incorporated by stacking
the binaural feature vector across a predefined number of
preceding time frames. In contrast to many other studies [19],
[30], [31], future time frames were deliberately not considered
here to limit the time delay of the algorithm and to ensure
its applicability in real-time applications. To improve the
generalization performance, an ensemble of 5 networks was
separately trained and their output was averaged to predict the
IRM.

III. EVALUATION

A. Databases

Speech material from the TIMIT database [32] was used for
the training and the testing stage. The training set contained
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TABLE I
ANECHOIC HRIRS USED FOR TRAINING.

Azimuth (◦)Database Range Steps Distance (m)

Berlin [36] ±90 5 3
Oldenburg [37] ±90 5 3
CATT [33] ±90 5 1.5

10 sentences from 630 speakers (438 males and 192 females),
forming a total set of 6300 training sentences. The test set
consisted of 8 sentences from 168 speakers (112 males and
56 females), forming a total set of 1344 testing sentences, from
which none appeared in the training set.

Binaural signals were created by convolving monaural
speech signals with HRIRs for anechoic conditions or BRIRs
for reverberant conditions. As listed in Tab. I, a set of three
anechoic HRIR databases (Berlin, Oldenburg and CATT) was
used during the training stage. Whereas the Berlin database
was recorded with a Knowles Electronic Manikin for Acoustic
Research (KEMAR) of type 45BA, the Oldenburg database
used a Brüel & Kjær head and torso simulator (HATS) of type
4128C. No details about the receiver used for the CATT-
acoustics HRIRs were available [33]. The testing was based
on two sets of reverberant BRIRs, namely the Surrey [34] and
the Aachen database [35], which are summarized in Tab. II.

B. Model training

The neural network was trained with a set of 2000 binaural
mixtures. To simulate the uncertainties of binaural cues in re-
sponse to reverberant acoustic conditions, an MCT procedure
according to [22] was employed. Specifically, each binaural
mixture consisted of direct speech components mixed with
diffuse noise at a specific signal-to-noise ratio (SNR). Direct
speech components were created by convolving a randomly
selected TIMIT sentence from the training set with the direct
part (see Sect. II-C) of an HRIR. To ensure that the network
generalized to different artificial heads and a range of source
directions, three different HRIR databases were used during
training that covered the full frontal azimuth range from −90
to 90 ◦, as summarized in Tab. I. For each of the 2000 binaural
mixtures, a randomly selected HRIR (one of three databases
and one of 37 azimuth directions) was used. The presence
of room reverberation was simulated by diffuse noise, which
consisted of a mixture of 37 uncorrelated, white Gaussian
noise sources that were placed across the frontal hemifield
ranging from −90 ◦ to 90 ◦ in steps of 5 ◦ (using the same
HRIR database as for the direct speech components). The
long-term average spectrum (LTAS) of the diffuse noise was
equalized to match the LTAS of the TIMIT speech corpus. The
SNR between the direct speech components and the diffuse
noise was randomly selected from a range between 0 dB and
15 dB. During training, mean and variance normalization was
performed using the entire feature space, while features used
for testing were scaled using those normalization statistics
measured during training.

TABLE II
TWO SETS OF REVERBERANT BRIRS USED FOR EVALUATION.

Azimuth (◦)Database Range Steps Room T60 (s) Distance (m)

A 0.32 1.5
B 0.47 1.5
C 0.68 1.5

Surrey [34] ±90 5

D 0.89 1.5
Stairway 1.1 2Aachen [35] ±90 45 Aula 3.3 3

C. Evaluation

To test the generalization abilities of the proposed ap-
proach to acoustic conditions not seen during training, two
sets of measured BRIRs were considered as summarized in
Tab. II. The first set was based on BRIRs from the Surrey
database [34], which were measured with a Cortex Manikin
Mk2 HATS at a distance of 1.5 m and ranged from −90 to
90 ◦ azimuth in steps of 5 ◦. For each of the four rooms (room
A, B, C and D) and 37 azimuth angles, 5 TIMIT sentences
were randomly selected from the test set, resulting in a set of
4 × 37 × 5 = 740 reverberant binaural mixtures. The second
set utilized BRIRs from the Aachen database [35], which were
measured with a HMS2 artificial head by HEAD acoustics
at distances of 2 m and 3 m and ranged from −90 to 90 ◦

azimuth in steps of 45 ◦. For each of the two rooms (stairway
and aula carolina) and 5 azimuth angles, 5 TIMIT sentences
were randomly selected from the test set, resulting in a set of
2× 5× 5 = 50 reverberant binaural mixtures.

The network-based post-filter was compared to the
coherence-based approach by [15], using the same block size
of 32 ms with a time shift of 8 ms. Similarly, the time constant
involved in the IC calculation was set to 10 ms, which gave
better results than the original value of 100 ms suggested
in [15]. The histogram-based coherence-to-gain mapping was
performed using the magnitude-squared coherence function
with a processing degree of 0.3, where the minimum gain
value corresponded to 20 dB attenuation. In addition, the
Bayesian filtering approach combining ARMA modeling with
a HMM [13] was evaluated as a representative single-channel
algorithm using the original implementation provided by the
authors with the default set of parameters [38].

The dereverberation performance was assessed by three
different objective metrics, namely PESQ [24] as provided
by [39], STOI [25] and the normalized SRMR [26]. The
SRMR metric has been shown to reflect the quality and intelli-
gibility of reverberant speech [40] and therefore is commonly
used to evaluate speech dereverberation algorithms [41]. In
case of PESQ and STOI, the binaural signal consisting of
the direct part only was used as a reference and the relative
improvement compared to the unprocessed reverberant mixture
was reported, producing ∆PESQ and ∆STOI. The SRMR is
a non-intrusive metric and, thus, the relative SRMR difference
between the dereverberated speech signal and the unprocessed
reverberant signal was computed, producing ∆SRMR. Binau-
ral signals were averaged across ears prior to computing all
objective metrics.
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TABLE III
INFLUENCE OF DIFFERENT NEURAL NETWORK CONFIGURATIONS ON ∆PESQ AVERAGED ACROSS ALL FOUR ROOMS OF THE SURREY DATABASE. THE

RELATIVE IMPROVEMENT IN PERCENT WITH RESPECT TO THE BASELINE CONFIGURATION IS SHOWN IN PARENTHESES.

Temporal Network # Time # hidden unitsFeatures context ensemble dim alignment 128 256 512

IC 0 1 64 off 0.35 (baseline) 0.36 (+2.8 %) 0.36 (+2.9 %)
IC, ILD 0 1 128 off 0.39 (+11.8 %) 0.41 (+16.1 %) 0.42 (+19.1 %)

IC, ILD, IPD 0 1 192 off 0.42 (+20.4 %) 0.43 (+22.3 %) 0.44 (+25.5 %)
IC, ILD, IPD 4 1 960 off 0.44 (+26 %) 0.43 (+23.2 %) 0.46 (+30.7 %)
IC, ILD, IPD 4 5 960 off 0.45 (+29 %) 0.48 (+36.7 %) 0.51 (+44.0 %)

IC 0 1 64 on 0.35 (+0 %) 0.36 (+2.1 %) 0.36 (+2.0 %)
IC, ILD 0 1 128 on 0.40 (+12.4 %) 0.41 (+15.8 %) 0.42 (+18.6 %)

IC, ILD, IPD 0 1 192 on 0.44 (+25.6 %) 0.45 (+28.6 %) 0.46 (+29.1 %)
IC, ILD, IPD 4 1 960 on 0.47 (+33.5 %) 0.45 (+27.1 %) 0.48 (+35.9 %)
IC, ILD, IPD 4 5 960 on 0.49 (+37.6 %) 0.52 (+46.8 %) 0.55 (+55.7 %)

IV. EXPERIMENTS

Two experiments were conducted to assess the performance
of the proposed dereverberation algorithm in a variety of
reverberant acoustic conditions. The first experiment focused
on the evaluation of the neural network-based post-filter and
used the Surrey database to analyze the effectiveness of three
types of short-term binaural features (IC, ILDs and IPDs)
with and without time alignment. In addition, the impact of
different neural network configurations, including the benefit
of temporal context, ensemble averaging and the number
of hidden units, was analyzed. The second experiment used
both the Surrey and the Aachen database and compared the
proposed neural network-based post-filter to the coherence-
based dereverberation algorithm described in [15] and the
single-channel Bayesian filtering approach [13]. Each of the
algorithms was tested individually and in combination with
a DSB. The single-channel approach was either applied to
the reverberant speech averaged across both ears or to the
monaural DSB output.

A. Experiment 1: Influence of short-term binaural features and
neural network configuration

The dereverberation performance expressed in terms of
∆PESQ is shown in Tab. III, where each row represents a
different configuration of the neural network. ∆PESQ scores
were averaged across all 740 binaural mixtures using the Sur-
rey database (see Sect. III-C). First, the results corresponding
to the upper half of Tab. III are considered, which did not use
the time alignment stage. When the neural network was trained
only with the short-term IC using 128 hidden units (baseline
configuration), a relative PESQ improvement ∆PESQ of 0.35
was achieved and performance did not increase further with
increasing number of hidden units. When extending the feature
space by ILDs and IPDs, an increase in ∆PESQ by 20.4 %
compared to the baseline configuration was observed, which
was even higher when a higher number of hidden units
was used. The advantage of a broader network with more
hidden units was apparent when including temporal context
by stacking features from four preceding time frames. Finally,
the ensemble averaging across five separately trained neural
networks provided the overall largest improvement of 44 % in
terms of ∆PESQ and was used in the second experiment.

One limitation of the IPD feature is it’s inherent ambiguity
due to spatial aliasing, whereby phase differences are wrapped
to the interval [−π, π]. For a sound source located at 0 ◦,
the direct-sound signal components will produce uniform IPD
values across frequency that are close to zero. This pattern,
however, changes for lateral source positions, where the IPD
changes linearly with frequency. Although T-F units dominated
by reverberation will produce less systematic IPD values, IPDs
associated with the direct-sound cover the full range between
[−π, π], making it more difficult for the network to distinguish
between direct-sound and reverberant signal components.

Therefore, a time alignment stage prior to feature extraction
was incorporated in the testing stage of the proposed algorithm
(see block diagram in Fig. 1). In this way, coherent signal com-
ponents associated with the direct-sound always corresponded
to IPD values close to zero. Due to this consistency, the benefit
of the IPD feature was substantially improved, as shown in the
lower half of Tab. III. Importantly, the time alignment did not
affect the contribution of the IC and the ILD feature. Thus, the
neural network-based post-filter used in the second experiment
included the time alignment stage.

B. Experiment 2: Comparison with coherence-based derever-
beration and single-channel Bayesian filtering

Figure 2 shows the relative PESQ improvement of all
tested algorithms for the Surrey database as a function of
the reverberation time. Both the static beamformer (“DSB”)
and the coherence-based approach (“IC”) of [15] provided
similar improvements. Despite utilizing only one channel, the
performance of Bayesian filtering (“BF”) [13] was comparable
to “IC”, except for the condition with the lowest reverber-
ation time (T60 = 0.32). The neural network-based post-
filter (“NN”) achieved substantially higher ∆PESQ scores
and this performance benefit increased with increasing re-
verberation time. The combination of the DSB with either
the coherence- (“DSB & IC”) or the neural network-based
post-filter (“DSB & NN”) showed significant improvements,
confirming that the processing of the beamformer, which
mainly performed target enhancement, and the post-filters,
which attenuated reverberant components, were complemen-
tary. Whereas the performance of “DSB & IC” was compara-
ble to the network-based post-filter alone in two conditions
(T60 = 0.32 s and T60 = 0.68 s), the combination of the DSB
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Fig. 2. ∆PESQ scores for the Surrey database as a function of the reverberation time. The results were averaged across all azimuth directions.
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Fig. 3. ∆PESQ scores for the Surrey database as a function of the azimuth angle. The results were averaged across all rooms.

beamformer with the network-based post-filter was superior in
all tested conditions.

Figure 3 shows the ∆PESQ scores of all tested algorithms as
a function of the sound source azimuth. Results were averaged
across all four rooms of the Surrey database. It can be seen that
no benefit was achieved by the static beamformer (“DSB”) for
frontal source positions, which is due to the averaging of the
reference signal across ears, that is already time-aligned for
0 ◦. However, performance increased with more lateral source
positions, producing relative PESQ improvements of up to 0.4.
In contrast, the benefit of the coherence-based approach (“IC”)
and single-channel Bayesian filtering (“BF”) was largely in-
dependent of the source direction. The performance of the
neural network-based post-filter (“NN”) tended to be higher
for source directions different from 0 ◦, which was presumably
caused be the analysis of ILD and IPD features. Yet, the com-
bination of the DSB with either the coherence- (“DSB & IC”)
or the neural network-based post-filter (“DSB & NN”) showed
a similar trend compared to the DSB alone, with substantially
higher ∆PESQ improvements for lateral source positions,
whereas the advantage of “DSB & NN” over “DSB & IC” and
“DSB” was represented by a consistent offset across the full
azimuth range.

Figure 4 presents ∆PESQ scores for the two rooms from
the Aachen database as a function of the reverberation time.

Despite the stronger amount of reverberation, the overall
ranking of the different algorithms was fairly similar to
the results obtained with the Surrey database (compare to
Fig. 2). The improvement obtained with either the static
beamformer (“DSB”), the coherence-based approach (“IC”)
or single-channel Bayesian filtering (“BF”) was quite low,
presumably due to the high amount of reverberation. Again,
the combination of the DSB with the neural network-based
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TABLE IV
OBJECTIVE PERFORMANCE METRICS OF ALL TESTED DEREVERBERATION ALGORITHMS AVERAGED ACROSS AZIMUTH DIRECTIONS. BOLDFACE

INDICATES THE ALGORITHM THAT PRODUCED THE BEST RESULT FOR A GIVEN CONDITION.

Surrey [34] Aachen [35]Metric Algorithm A B C D Stairway Aula Mean

DSB 0.27 0.20 0.33 0.15 0.14 0.17 0.21
IC 0.26 0.22 0.22 0.12 0.10 0.07 0.16
BF 0.08 0.16 0.23 0.15 0.12 0.11 0.14
NN 0.59 0.58 0.60 0.47 0.36 0.32 0.49
DSB & IC 0.52 0.44 0.55 0.30 0.26 0.28 0.39
DSB & BF 0.36 0.40 0.61 0.37 0.28 0.33 0.39

∆PESQ

DSB & NN 0.85 0.80 0.90 0.69 0.52 0.56 0.72
DSB 3.01 3.67 2.95 5.36 4.27 5.68 4.15
IC 0.39 1.16 -0.28 2.11 1.72 0.62 0.95
BF -2.83 -1.66 -2.35 -0.85 -1.43 0.82 -1.38
NN 2.67 4.87 2.53 7.18 6.15 7.48 5.15∆STOI

DSB & IC 2.37 3.42 1.70 5.45 4.53 4.92 3.73
DSB & BF 0.33 1.89 0.44 4.12 3.16 6.27 2.7

(%)

DSB & NN 4.06 6.08 3.85 9.02 7.49 9.74 6.71
DSB 0.11 0.15 0.22 0.26 0.16 0.40 0.22
IC 0.03 0.15 0.13 0.27 0.17 0.32 0.18
BF 0.30 0.37 0.37 0.40 0.16 0.17 0.29
NN 0.12 0.36 0.26 0.68 0.56 0.87 0.47
DSB & IC 0.11 0.27 0.28 0.49 0.31 0.64 0.35
DSB & BF 0.40 0.50 0.58 0.68 0.38 0.69 0.54

∆SRMR

DSB & NN 0.18 0.43 0.38 0.82 0.64 1.10 0.59

post-filter (“DSB & NN”) achieved the best performance.
A summary of all three objective metrics is given in Tab. IV,

where along with ∆PESQ, also ∆STOI and ∆SRMR scores
are shown for all tested algorithms. Results were averaged
across all sound source directions for a particular room. It can
be seen that the relative benefit of the network-based post-
filter over the DSB and the coherence-based approach [15]
is reflected in a consistent improvement in all three objective
metrics. The single-channel Bayesian filtering approach per-
formed well in terms of the ∆SRMR metric, but produced
negative STOI scores. On average, the combination of the
DSB with the neural network-based post-filter (“DSB & NN”)
performed best in all experimental conditions.

The effect of reverberation is illustrated in Fig. 5, where the
spectrogram representation of a direct-sound signal (panel a)
is compared to the reverberant binaural mixture (panel b) for
a TIMIT sentence auralized at −90 ◦ in the Aachen stairway
room (T60 = 1.1 s). The impact of reverberation on the speech
signal in terms of temporal and spectral smearing is clearly
visible. The remaining panels show the output of all tested
dereverberation algorithms. Although the static beamformer
(“DSB”) shown in panel c) enhanced the target direction,
which is reflected by the higher intensity of the speech
harmonics, the amount of reverberation is hardly reduced. Both
the coherence-based post-filter (“IC”) presented in panel d)
and single-channel Bayesian filtering (“BF”) shown in panel
e) were able to reduce the amount of temporal smearing to
some extend, but the neural network-based post-filter (“NN”),
shown in panel f), achieved a much stronger attenuation
of the reverberant energy. This is particularly evident when
comparing the gaps between words, and to some extend also
the notches in between spectral harmonics, with the direct-
sound signal shown in panel a). Finally, the combination of the
DSB with the network-based post-filter (“DSB & NN”) further
enhanced the energy of speech harmonics, as illustrated in

panel i).

V. DISCUSSION AND CONCLUSION

This study presented a novel neural network-based post-
filter for speech dereverberation based on short-term binaural
cues. The network was trained using a MCT procedure where
binaural reverberant signals were simulated by mixing the
direct part of HRIRs with diffuse noise. It was shown that
dereverberation performance increased when three different
types of short-term binaural features, namely IC, ILDs and
IPDs, were jointly exploited. A systematic evaluation revealed
that the proposed algorithm generalized very well to acoustic
conditions not seen during training. Specifically, the network
generalized to different artificial heads as well as a wide range
of reverberant BRIRs, despite being trained with anechoic
HRIRs.

A time alignment stage prior to feature extraction was
shown to substantially increase the effectiveness of the IPD
feature due to a more consistent distribution of IPD values
associated with the direct-sound. Alternatively, the STFT-
based feature extraction stage employed here could be replaced
by an auditory-inspired front-end, where frequency-specific
time differences between the two ear signals are typically
analyzed by a cross-correlation function (CCF) in different
subbands [20]. The CCF changes systematically with sound
source azimuth and avoids the problem of estimating interaural
time differences via peak picking. Consequently, using the
entire CCF as a feature was shown to improve the performance
of binaural sound source localization [23] and binaural speech
segregation [18] systems and might as well be beneficial for
the task of speech dereverberation.

The present study focused on the development of an ef-
fective post-filter for speech dereverberation. The sequential
enhancement of the reverberant speech signal using a DSB and
the neural network-based post-filter was shown to effectively
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(c) DSB (∆PESQ= 0.17)
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(d) IC (∆PESQ= 0.08)
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(e) BF (∆PESQ= 0.04)
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(f) NN (∆PESQ= 0.23)
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(g) DSB & IC (∆PESQ= 0.32)
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(h) DSB & BF (∆PESQ= 0.2)
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(i) DSB & NN (∆PESQ= 0.56)
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Fig. 5. Spectrogram representations for (a) the direct sound and (b) the unprocessed reverberant mixture consisting of a TIMIT sentence auralized at −90 ◦ in
the Aachen stairway room (T60 = 1.1 s) along with all tested dereverberation algorithms: (c) DSB, (d) coherence-based post-filter (e) single-channel Bayesian
filtering (f) neural network-based post-filter, (g) DSB with coherence-based post-filter, (h) DSB with single-channel Bayesian filtering and (i) DSB with neural
network-based post-filter. Binaural signals were averaged across both channels prior to spectrogram analysis.

combine the complementary processing principles of target en-
hancement and reverberation attenuation, yielding an enhanced
monaural output. For hearing aid applications, maintaining the
interaural cues of the individual sound sources is required to
preserve the spatial impression of the acoustic scene. Thus,
the system presented here could be readily extended to a
binaural cue-preserving dereverberation algorithm [42], where
the neural network-based post-filter could be synchronously
applied to both ear signals. In addition, more sophisticated
beamformers, such as the minimum variance distortionless
response (MVDR) beamformer, could be used, which can
produce a true binaural output by estimating the speech
components based on two reference signals (one for each
ear) [43].

The proposed system was evaluated with a single target
source in reverberant environments. Due to the robustness
provided by the MCT, which has already been shown to enable
accurate binaural localization in multi-source scenarios [22],
the proposed approach has the potential to be applicable in

reverberant conditions with multiple competing talkers, which
has to be confirmed in future evaluations. Finally, future
work will perform behavioral listeners tests to quantify the
subjective benefit of the proposed dereverberation algorithm.

In summary, the neural network-based post-filter constitutes
a powerful tool that allows to attenuate reverberant compo-
nents independent of the room acoustic condition, the sound
source direction, the source-receiver distance and the artificial
head.
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