# THE MULTIPLICATIVE STRUCTURE <br> OF $K(n)^{*}\left(B A_{4}\right)$ 

Maurizio Brunetti


#### Abstract

$\qquad$ Let $K(n)^{*}(-)$ be a Morava $K$-theory at the prime 2. Invariant theory is used to identify $K(n)^{*}\left(B A_{4}\right)$ as a summand of $K(n)^{*}(B \mathbb{Z} / 2 \times B \mathbb{Z} / 2)$. Similarities with $H^{*}\left(B A_{4} ; \mathbb{Z} / 2\right)$ are also discussed.


## Introduction

Let $G$ be a finite group, and let $N$ and $C$ denote respectively the normalizer and the centralizer of a $p$-Sylow subgroup $H$ of $G$.

For a large family of cohomology theories including the Brown-Peterson cohomology $B P^{*}(-)$ and Morava $K$-theories $K(n)^{*}(-)$, the author described $h^{*}(B G)$ when $H$ is cyclic [3], and discussed the case " $p$-rank $(H)<3$ " in [5], proving in particular that $h^{*}(B G)$ is generated as $h^{*}$-module by at most two elements if $|N: C|$ divides $p-1$.

Results in this paper show that the condition above is really necessary, in fact we have

Theorem 0.1. Let $K(n)^{*}(-)$ be a Morava $K$-theory at the prime 2 . $K(n)^{*}\left(B A_{4}\right)$ restricts to those elements in

$$
K(n)^{*}(B \mathbb{Z} / 2 \times B \mathbb{Z} / 2) \cong K(n)^{*}[x, y] /\left(x^{2^{n}}, y^{2^{n}}\right)
$$

which algebraically depend on

$$
\begin{gathered}
\bar{\sigma}=x^{2}+y^{2}+x y+\nu_{n}\left(x^{2^{n-1}+1} y^{2^{n-1}}+x^{2^{n-1}} y^{2^{n-1}+1}\right), \\
\bar{\tau}_{1}=x^{3}+y^{3}+x^{2} y+\nu_{n}\left(x^{2^{n-1}} y^{2^{n-1}+2}\right) \\
\bar{\tau}_{2}=x^{3}+y^{3}+x y^{2}+\nu_{n}\left(x^{2^{n-1}+2} y^{2^{n-1}}\right)
\end{gathered}
$$

[^0]This paper has several motivations. The knowledge of $K(n)^{*}\left(B A_{4}\right)$ could help to have explicit formulæ for the $K(n)^{*}$-Dickson classes. Furthermore, similarities among $H^{*}\left(B A_{4} ; \mathbb{Z} / 2\right)$ and $K(n)^{*}\left(B A_{4}\right)$ suggest to study $K(n)^{*}\left(B A_{m}\right)$-whose rank as $K(n)^{*}$-module can be calculated [6]- to get information on $H^{*}\left(B A_{m} ; \mathbb{Z} / 2\right)$ which is not entirely known for $m \geq 16$ (see [1] for the cohomology of several alternating groups).

The author would like to thank the anonymous referee, who drew attention to certain inaccuracies contained in the first version.

## 1. Preliminaries. $H^{*}\left(B A_{4}\right)$

From now on $V$ will denote the group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$, and $H^{*}(-)$ ordinary cohomology with coefficients in $\mathbb{Z} / 2$.

In $[\mathbf{7}]$, the authors describe $H^{*}\left(P S L_{2} \mathbb{F}_{q}\right)$ for any odd $q$ : they first calculate the cohomology of the generalized quaternion group $Q_{2^{n+1}}$ of order $2^{n+1}$, and then use the diagram

where $D_{n}$ is the dihedral group of order $2^{n}$, rows are fibrations, and $i$ and $j$ are inclusions of 2 -Sylow subgroups. Nevertheless, we show in this section that the special case

$$
P S L_{2} \mathbb{F}_{3} \cong A_{4}
$$

can be approached in a more direct way.
The alternating group $A_{4}$ is the central term of the short exact sequence of groups

$$
0 \longrightarrow V \longrightarrow A_{4} \longrightarrow \mathbb{Z} / 3 \longrightarrow 0
$$

therefore for any mod 2 cohomology theory $h^{*}(-), h^{*}\left(B A_{4}\right)$ is isomorphic to the ring of invariants $\left[h^{*}(B V)\right]^{\mathbb{Z} / 3}$ under the action determined by the map $h^{*}(B \phi)$ induced by an automorphism $\phi$ of order 3 in $\operatorname{Aut}(V)$. On $H^{*}(B V) \cong \mathbb{F}_{2}[x, y]$ the action of a generator of $\mathbb{Z} / 3 \leq G L(V)$ is

$$
x \xrightarrow{\alpha_{H}} y \quad \text { and } \quad y \xrightarrow{\alpha_{H}} x+y .
$$

Consider now the map $\Phi$ from $F_{2}[x, y]$ to itself which maps any element $c$ to the sum

$$
\Phi(c)=c+\alpha_{H}(c)+\alpha_{H}^{2}(c) ;
$$

$\Phi$ is commonly known as norm map. It is easy to see that

$$
\operatorname{Im} \Phi=\left[H^{*}(B V)\right]^{\mathbb{Z} / 3} ;
$$

furthermore the image of $\Phi$ restricted to the set of monomials generates $\left[H^{*}(B V)\right]^{\mathbb{Z} / 3}$ regarded as graded $\mathbb{F}_{2}$-vector space.
The invariant of lowest positive degree in $\mathbb{F}_{2}[x, y]$ is

$$
\sigma=\Phi(x y)=x^{2}+x y+y^{2} .
$$

This element is actually the Dickson class known in literature as $Q_{2,1}$ (see [9]).
The reader will find the relevant invariant theoretic computation in [2] to prove the algebraic dependence of every invariant on $\Phi(x y), \Phi\left(x^{2} y\right)$, $\Phi\left(x y^{2}\right)$. In fact we have the following proposition.

Proposition 1.1. As a graded ring, $H^{*}\left(B A_{4}\right)$ is isomorphic to

$$
\mathbb{F}_{2}\left[\sigma, \tau_{1}, \tau_{2}\right] / R
$$

where $\operatorname{deg} \sigma=2, \operatorname{deg} \tau_{1}=\operatorname{deg} \tau_{2}=3$, and $R$ is the ideal generated by

$$
\sigma^{3}+\tau_{1}^{2}+\tau_{1} \tau_{2}+\tau_{2}^{2}
$$

The proposition above can be restated in terms of pure invariant theory.

Corollary 1.2. Suppose that $a \mathbb{Z} / 3$-action on $\mathbb{F}_{2}[x, y]$ is given by

$$
x \longrightarrow y \quad \text { and } \quad y \longrightarrow x+y
$$

The ring of the invariants is a polynomial ring generated by

$$
\sigma=x^{2}+y^{2}+x y, \quad \tau_{1}=x^{3}+y^{3}+x^{2} y, \quad \tau_{2}=x^{3}+y^{3}+x y^{2}
$$

quotiented by

$$
R=\left(\sigma^{3}+\tau_{1}^{2}+\tau_{1} \tau_{2}+\tau_{2}^{2}\right)
$$

## 2. The Morava $K$-theory of $B A_{4}$

We recall that Morava $K$-theory at the prime 2 is a complex oriented cohomology theory with coefficients

$$
K(n)^{*}(\{p t\})=\mathbb{F}_{2}\left[\nu_{n}, \nu_{n}^{-1}\right]
$$

where $\operatorname{deg} \nu_{n}=-2\left(2^{n}-1\right)$, and we have

$$
K(n)^{*}(B V) \cong K(n)^{*}[x, y] /\left(x^{2^{n}}, y^{2^{n}}\right)
$$

where $\operatorname{deg} x=\operatorname{deg} y=2$. As noticed in section $1, K(n)^{*}\left(B A_{4}\right)$ is isomorphic to

$$
\left[K(n)^{*}(B V)\right]^{\mathbb{Z} / 3}
$$

where the $\mathbb{Z} / 3$-module structure is defined by the map $K(n)^{*}(B \phi)$, being $\phi$ a generator of $\mathbb{Z} / 3 \leq \operatorname{Aut}(V)$. The following lemma helps to give a concrete description of the $K(n)$-invariants.

Lemma 2.1. One of the two generators $\phi$ of $\mathbb{Z} / 3 \leq \operatorname{Aut}(V)$ acts as follows on $K(n)^{*}(B V)$ :

$$
\alpha_{K} \stackrel{\text { def }}{=} K(n)^{*}(B \phi): x \longrightarrow y \quad \text { and } \quad \alpha_{K}: y \longrightarrow x+y+\nu_{n} x^{2^{n-1}} y^{2^{n-1}}
$$

Proof: See [4].
The element $\alpha_{K}(y)$ is actually the formal sum of $x$ and $y$ with respect to the formal group law of mod 2 Morava $K$-theory

$$
F_{K(n)}(x, y) \quad \bmod \left(x^{2^{n}}, y^{2^{n}}\right)
$$

Consider now the norm map $\Psi$ defined as follows:

$$
\Psi: c \in K(n)^{*}(B V) \longmapsto c+\alpha_{K}(c)+\alpha_{K}^{2}(c) \in\left[K(n)^{*}(B V)\right]^{\mathbb{Z} / 3}
$$

The map $\Psi$ is obviously the analogue of $\Phi$ defined in section 1 : it is surjective, and the invariants regarded as $\mathbb{F}_{2}$-vector space are spanned by the image of $\Psi$ restricted to monomials.

Notice also that we can equip

$$
K(n)^{*}(B V) \cong K(n)^{*}[x, y] /\left(x^{2^{n}}, y^{2^{n}}\right)
$$

with a different $\mathbb{Z} / 3$-module structure just by posing

$$
\alpha_{H}(x)=y \quad \text { and } \quad \alpha_{H}(y)=x+y
$$

Abusing notation, we shall use again $\Phi$ to denote the endomorphism defined on the generic element of $K(n)^{*}(B V)$ as follows:

$$
c \longmapsto c+\alpha_{H}(c)+\alpha_{H}^{2}(c) .
$$

We are ready now to prove our main result.

Theorem 2.2. $K(n)^{*}\left(B A_{4}\right)$ restricts to those elements in $K(n)^{*}(B V)$ which algebraically depend on

$$
\Psi(x y)=\bar{\sigma}, \quad \Psi\left(x^{2} y\right)=\bar{\tau}_{1} \quad \text { and } \quad \Psi\left(x y^{2}\right)=\bar{\tau}_{2} .
$$

Proof: Since $K(n)^{*}(-)$ is $2\left(2^{n}-1\right)$-periodic we can look at classes in $K(n)^{*}(B V)$ whose degree is between 2 and $2\left(2^{n}-1\right)$. In this range, elements of type

$$
\nu_{n}^{2} x^{h} y^{k}
$$

are necessarily zero, since either $h$ or $k$ is greater than $2^{n}$. It follows that for any monomial $x^{h} y^{k} \in K(n)^{*}(B V)$ we have

$$
\begin{equation*}
\Psi\left(\nu_{n} x^{h} y^{k}\right)=\nu_{n} \Phi\left(x^{h} y^{k}\right) \tag{1}
\end{equation*}
$$

An element $c \in K(n)^{*}(B V)$ is invariant under $\alpha_{K}$ if and only if $\Psi(c)=c$, and supposing

$$
2 \leq t \leq 2\left(2^{n}-1\right)
$$

we have

$$
c=p(x, y)+\nu_{n} q(x, y)
$$

where $p(x, y)$ and $q(x, y)$ are homogeneous polynomials of $\mathbb{F}_{2}[x, y]$ of degree $t$ and $t+2\left(2^{n}-1\right)$ respectively. If $\Psi(c)=c$, it follows from the considerations above that $\Phi(p(x, y))=p(x, y)$, and by Corollary 1.2 there exists a polynomial $r_{1}$ in three indeterminates such that

$$
r_{1}\left(\sigma, \tau_{1}, \tau_{2}\right)=p(x, y)
$$

Define now

$$
\Psi(x y)=\bar{\sigma}, \quad \Psi\left(x^{2} y\right)=\bar{\tau}_{1} \quad \text { and } \quad \Psi\left(x y^{2}\right)=\bar{\tau}_{2} .
$$

The element

$$
c-r_{1}\left(\bar{\sigma}, \bar{\tau}_{1}, \bar{\tau}_{2}\right)=\nu_{n} s(x, y)
$$

is invariant under $\alpha_{K}$. Notice now that $s(x, y)$ can be regarded as a polynomial in $\mathbb{F}_{2}[x, y]$; it follows by (1) that $s(x, y)$ is invariant under $\alpha_{H}$, and again by Corollary 1.2 there exists a polynomial $r_{2}$ in three indeterminates such that

$$
r_{2}\left(\sigma, \tau_{1}, \tau_{2}\right)=s(x, y)
$$

We finally get

$$
c=r_{1}\left(\bar{\sigma}, \bar{\tau}_{1}, \bar{\tau}_{2}\right)-\nu_{n} r_{2}\left(\bar{\sigma}, \bar{\tau}_{1}, \bar{\tau}_{2}\right)
$$

as we claimed.
Theorem 2.2 also gives some information on $K(n)^{*}\left(B A_{5}\right)$. Notice in fact that 2-Sylow subgroups in $A_{5}$ are abelian, and a 2-Sylow normalizer in $A_{5}$ is isomorphic to $A_{4}$. It follows by a theorem in [8] that $B A_{4}$ and $B A_{5}$ are stably 2 -homotopy equivalent. Hence the map induced by inclusion

$$
K(n)^{*}\left(B A_{5}\right) \longrightarrow K(n)^{*}\left(B A_{4}\right)
$$

is an isomorphism.
Remark 2.3. The element

$$
\bar{\sigma}^{3}+\bar{\tau}_{1}^{2}+\bar{\tau}_{1} \bar{\tau}_{2}+\bar{\tau}_{2}^{2}
$$

is zero in $K(n)^{*}\left(B A_{4}\right)$, as the analogous algebraic expression in $\sigma, \tau_{1}, \tau_{2}$ for ordinary cohomology. The relation above is not however of minimal positive degree: the element

$$
\nu_{n}^{2} \bar{\sigma}^{n}
$$

is zero and has degree four.
It is known that the subring of $H^{\text {even }}\left(B A_{4}\right)$ generated by Chern classes is proper (see, for example [10, p. 100]), and the reader could ask if $\bar{\sigma}$, $\bar{\tau}_{1}, \bar{\tau}_{2}$ are $K(n)$-Chern classes of suitable representations.
We recall that up to equivalence the group $A_{4}$ has just four distinct complex irreducible representations. Three of them are one-dimensional, and their restriction to $V$ is trivial. The fourth one has instead non-trivial total Chern class in $K(n)^{*}\left(B A_{4}\right)$, as the next proposition shows.

Proposition 2.4. Let $\xi$ be a 3-dimensional irreducible representation of $A_{4}$. The restriction $\xi_{\mid V}$ to the 2-Sylow subgroup $V$ has Chern classes

$$
c_{1}\left(\xi_{\mid V}\right)=\nu_{n} \bar{\sigma}^{2^{n-1}}, \quad c_{2}\left(\xi_{\mid V}\right)=\bar{\sigma}, \quad c_{3}\left(\xi_{\mid V}\right)=\bar{\tau}_{1}+\bar{\tau}_{2}+\nu_{n} \bar{\sigma}^{2^{n-1}+1}
$$

in $K(n)^{*}(B V)$.
Proof: Let $g_{1}$ and $g_{2}$ be two generators in $V$. Consider two onedimensional representations $\rho_{1}$ and $\rho_{2}$ defined as follows

$$
\rho_{i}: g_{i} \longmapsto-1 \quad \rho_{i}: g_{3-i} \longmapsto 1
$$

for $i=1,2$. The transfer $\xi$ of $\rho_{1}$ to $A_{4}$ represents the equivalence class of the 3-dimensional irreducible representations of $A_{4}$; its restriction to $V$ is given by

$$
\rho_{1} \oplus \rho_{2} \oplus\left(\rho_{1} \otimes \rho_{2}\right)
$$

It follows that the total Chern class $c .\left(\xi_{\mid V}\right)$ is equal to

$$
(1+x)(1+y)\left(1+x+y+\nu_{n} x^{2^{n-1}} y^{2^{n-1}}\right) .
$$

Hence the proposition follows.

## References

1. A. Adem, J. Maginnis and R. J. Milgram, Symmetric invariants and cohomology of groups, Math. Ann. 287 (1990), 391-411.
2. D. Benson, "Polynomial invariants of finite groups," London Math. Soc., Lecture Notes 190, 1993.
3. M. Brunetti, A family of $2(p-1)$-sparse cohomology theories and some actions on $h^{*}\left(B C_{p^{n}}\right)$, Math. Proc. Cambridge Philos. Soc. 116 (1994), 223-228.
4. M. Brunetti, On the canonical $G L_{2}\left(\mathbb{F}_{2}\right)$-module structure of $K(n)^{*}(B \mathbb{Z} / 2 \times B \mathbb{Z} / 2)$, in "Algebraic Topology: New Trends in Localization and Periodicity," (C. Broto, C. Casacuberta, G. Mislin, eds.), Barcelona Conference on Algebraic Topology 1994, Birkhäuser Verlag, 1996, pp. 51-59.
5. M. Brunetti, On groups of order $p^{2} q$ and some complex oriented cohomology theories, Preprint.
6. M. J. hopkins, N. J. Kuhn and D. G. Ravenel, Morava $K$-theory of classifying spaces and generalized characters of finite groups, in "Algebraic Topology: Homotopy and Group Cohomology," (J. Aguadé, M. Castellet, F. R. Cohen, eds.), Proceedings of the 1990 Barcelona Conference on Algebraic Topology, Springer LNM 1509, 1992, pp. 186-209.
7. S. A. Mitchell and S. Priddy, Symmetric product spectra and splittings of classifying spaces, Amer. J. Math. 106 (1984), 219-233.
8. G. Nishida, Stable homotopy types of classifying spaces of finite groups, in "Algebraic and Topological Theories," to the memory of T. Miyata, Kinokuniya Comp. Ltd., Tokyo, 1986, pp. 391-404.
9. W. Singer, Invariant theory and the Lambda Algebra, Trans. Amer. Math. Soc. 280 (1981), 673-693.
10. C. B. Thomas, "Characteristic classes and the cohomology of finite groups," Cambridge University Press, 1986.

Dipartimento di Matematica e Applicazioni
Università di Napoli
Via Claudio 21
I-80125 Napoli
ITALY

Primera versió rebuda el 3 de Setembre de 1996, darrera versió rebuda el 17 de Març de 1997


[^0]:    1991 Mathematics subject classifications: 55N20, 55N22.

