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THE MULTIPLICATIVE STRUCTURE
OF K(n)*(BAj)

MAURIZIO BRUNETTI

Abstract

Let K(n)*(—) be a Morava K-theory at the prime 2. Invari-
ant theory is used to identify K(n)*(BA4) as a summand of
K(n)*(BZ/2 x BZ/2). Similarities with H*(BAy;Z/2) are also
discussed.

Introduction

Let G be a finite group, and let N and C denote respectively the
normalizer and the centralizer of a p-Sylow subgroup H of G.

For a large family of cohomology theories including the Brown-Pe-
terson cohomology BP*(—) and Morava K-theories K(n)*(—), the au-
thor described h*(BG) when H is cyclic [3], and discussed the case
“p-rank (H) < 3” in [5], proving in particular that h*(BGQ) is generated
as h*-module by at most two elements if |N : C| divides p — 1.

Results in this paper show that the condition above is really necessary,
in fact we have

Theorem 0.1. Let K(n)*(—) be a Morava K -theory at the prime 2.
K(n)*(BAy) restricts to those elements in

n

K(n)*(BZ/2 x BZ/2) = K (n)*[z,y)/(«*" . y*")
which algebraically depend on
G =a%+y>+ay+ Vn(x2"*1+1y2"*1 + xQ"*1y2"*1+1)’
7=+ 2y (@@ 2,

Ty = a3+ + zy? + Vn(x2n71+2y2n71).

1991 Mathematics subject classifications: 55N20, 55N22.
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This paper has several motivations. The knowledge of K(n)*(BA4)
could help to have explicit formulee for the K (n)*-Dickson classes. Fur-
thermore, similarities among H*(BAy4;Z/2) and K(n)*(BAy4) suggest to
study K(n)*(BA,,) —whose rank as K(n)*-module can be calculated
[6]— to get information on H*(BA,,;Z/2) which is not entirely known
for m > 16 (see [1] for the cohomology of several alternating groups).

The author would like to thank the anonymous referee, who drew
attention to certain inaccuracies contained in the first version.

1. Preliminaries. H*(BA,)

From now on V will denote the group Z/2 x Z/2, and H*(—) ordinary
cohomology with coefficients in Z/2.

In [7], the authors describe H*(PSLyF,) for any odd ¢: they first
calculate the cohomology of the generalized quaternion group (Jgn+1 of
order 2"+ and then use the diagram

7)2 —— SIL,F, —— PSL,F,

| K E
7)2 —— Qouin —— D,

where D,, is the dihedral group of order 2", rows are fibrations, and ¢
and j are inclusions of 2-Sylow subgroups. Nevertheless, we show in this
section that the special case

PSLoF; = A,

can be approached in a more direct way.

The alternating group A, is the central term of the short exact se-
quence of groups

0—V—A —Z/3—0,

therefore for any mod 2 cohomology theory h*(—), h*(BA4) is isomorphic
to the ring of invariants [h*(BV)]%/3 under the action determined by the
map h*(B¢) induced by an automorphism ¢ of order 3 in Aut(V). On
H*(BV) =2 Fa[x,y] the action of a generator of Z/3 < GL(V) is

x5y and y L x4y

Consider now the map ® from F[z, y] to itself which maps any element
¢ to the sum
®(c) = c+an(c) + afy(c);



THE MORAVA K-THEORIES OF BAy 607

® is commonly known as norm map. It is easy to see that
Im ® = [H*(BV)]|%/3;
furthermore the image of ® restricted to the set of monomials generates
[H*(BV)])%/3 regarded as graded Fa-vector space.
The invariant of lowest positive degree in Fa[z, y] is
o=®(zy) =22 +zy + 9>
This element is actually the Dickson class known in literature as Q21

(see [9]).

The reader will find the relevant invariant theoretic computation in [2]
to prove the algebraic dependence of every invariant on ®(zy), ®(22y),
®(2y?). In fact we have the following proposition.

Proposition 1.1. As a graded ring, H*(BAy4) is isomorphic to
Fslo, 11, 72]/R,
where dego = 2, degm = degme = 3, and R is the ideal generated by
o® + 712 + 1172 + 7'22.

The proposition above can be restated in terms of pure invariant the-
ory.

Corollary 1.2. Suppose that a Z/3-action on Falz,y] is given by
r—y and y—zx+y.
The ring of the invariants is a polynomial Ting generated by
0:x2+y2—|—xy, 1 =$3+y3+x2y, To =x3—|—y3+xy2,

quotiented by
R= (o3 + 12+ 1o+ 73).
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2. The Morava K-theory of BA,

We recall that Morava K-theory at the prime 2 is a complex oriented
cohomology theory with coefficients

K(n)*({pt}) = Falvn, v, ]
where degv,, = —2(2" — 1), and we have
K(n)*(BV) = K (n)*[z,y]/(+*",y*")

where degx = degy = 2. As noticed in section 1, K(n)*(BA,) is iso-
morphic to
[K ()" (BV)]?/?

where the Z/3-module structure is defined by the map K (n)*(B¢), being
¢ a generator of Z/3 < Aut(V). The following lemma helps to give a
concrete description of the K (n)-invariants.

Lemma 2.1. One of the two generators ¢ of Z/3 < Aut(V) acts as
follows on K(n)*(BV):

QK défK(n)*(BgZ)):m—>y and aK:y—>x+y+1/nx2n71y2n71.

Proof: See [4]. R

The element ak (y) is actually the formal sum of z and y with respect
to the formal group law of mod 2 Morava K-theory

Fi(m(z,y) mod (2%, y").
Consider now the norm map ¥ defined as follows:
U :ce K(n) (BV) — c+ ak(c) + a(c) € [K(n)*(BV))/3.

The map V¥ is obviously the analogue of ® defined in section 1: it is
surjective, and the invariants regarded as Fo-vector space are spanned
by the image of ¥ restricted to monomials.

Notice also that we can equip
K(n)*(BV) = K(n)"[e.3)/ (2", y*")
with a different Z/3-module structure just by posing
ag(x)=y and ag(y)=z+y.

Abusing notation, we shall use again ® to denote the endomorphism
defined on the generic element of K (n)*(BV) as follows:

c— c+ay(c) +a(c).

We are ready now to prove our main result.
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Theorem 2.2. K (n)*(BA) restricts to those elements in K(n)*(BV)
which algebraically depend on

U(zy) =06, V(y)=7 and V(zy®)=".

Proof: Since K (n)*(—) is 2(2" — 1)-periodic we can look at classes in
K(n)*(BV) whose degree is between 2 and 2(2" — 1). In this range,
elements of type

2 h,k
LS

are necessarily zero, since either h or k is greater than 2™. It follows that
for any monomial z"y* € K(n)*(BV) we have

(1) \I/(Vnajhyk) = V,L(I’(xhyk).

An element ¢ € K(n)*(BV) is invariant under a if and only if ¥(c) = ¢,
and supposing
2 <t <22 1)

we have
c=p(x,y) +vnq(z,y),

where p(z,y) and ¢(z,y) are homogeneous polynomials of Fy[z,y] of
degree t and t + 2(2" — 1) respectively. If U(c) = ¢, it follows from
the considerations above that ®(p(x,y)) = p(x,y), and by Corollary 1.2
there exists a polynomial 71 in three indeterminates such that

ri(o, 711, 72) = p(x,y).
Define now
U(ry) =05, U(r*y)=7 and Y(zy?) = .
The element
c—11(G,71,T2) = vps(x,y)

is invariant under ag. Notice now that s(x,y) can be regarded as a
polynomial in Falx,y]; it follows by (1) that s(z,y) is invariant under
ag, and again by Corollary 1.2 there exists a polynomial ro in three
indeterminates such that

r2(07 7—177_2) = S(iﬂ,y).
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We finally get
c=11(0,71,T2) — Vnr2(0, 71, T2)

as we claimed. W

Theorem 2.2 also gives some information on K(n)*(BAs). Notice in
fact that 2-Sylow subgroups in Ay are abelian, and a 2-Sylow normalizer
in Aj is isomorphic to A4. It follows by a theorem in [8] that BAy
and BAs are stably 2-homotopy equivalent. Hence the map induced by
inclusion

K(n)* (BAs) — K(n)(BAy)

is an isomorphism.
Remark 2.3. The element
AT ATIT T

is zero in K (n)*(BA,), as the analogous algebraic expression in o, 71, 7o
for ordinary cohomology. The relation above is not however of minimal
positive degree: the element

2 72"L

v, 0

is zero and has degree four.

It is known that the subring of H¢V**(BA,) generated by Chern classes
is proper (see, for example [10, p. 100]), and the reader could ask if 7,
71, T2 are K (n)-Chern classes of suitable representations.

We recall that up to equivalence the group Ay has just four distinct
complex irreducible representations. Three of them are one-dimensional,
and their restriction to V' is trivial. The fourth one has instead non-trivial
total Chern class in K (n)*(BA4), as the next proposition shows.

Proposition 2.4. Let £ be a 3-dimensional irreducible representation
of Ay. The restriction §y to the 2-Sylow subgroup V has Chern classes

n—1 n—1
alv)=vmad®> |, alv)=0 v)=n+n+ro> T

in K(n)*(BV).

Proof: Let g1 and go be two generators in V. Consider two one-
dimensional representations p; and po defined as follows

piigir— =1 piigz;—1
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for i = 1,2. The transfer £ of p; to A4 represents the equivalence class
of the 3-dimensional irreducible representations of Ay; its restriction to
V is given by

p1® p2 © (p1 @ pa).

It follows that the total Chern class c.(§)y) is equal to

n—1 271.71

(I+2)1+y)Q+z+y+rvea® y> ).

Hence the proposition follows. ®
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