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THE MULTIPLICATIVE STRUCTURE
OF K(n)∗(BA4)

Maurizio Brunetti

Abstract
Let K(n)∗(−) be a Morava K-theory at the prime 2. Invari-
ant theory is used to identify K(n)∗(BA4) as a summand of
K(n)∗(BZ/2 × BZ/2). Similarities with H∗(BA4;Z/2) are also
discussed.

Introduction

Let G be a finite group, and let N and C denote respectively the
normalizer and the centralizer of a p-Sylow subgroup H of G.

For a large family of cohomology theories including the Brown-Pe-
terson cohomology BP ∗(−) and Morava K-theories K(n)∗(−), the au-
thor described h∗(BG) when H is cyclic [3], and discussed the case
“p-rank (H) < 3” in [5], proving in particular that h∗(BG) is generated
as h∗-module by at most two elements if |N : C| divides p− 1.

Results in this paper show that the condition above is really necessary,
in fact we have

Theorem 0.1. Let K(n)∗(−) be a Morava K-theory at the prime 2.
K(n)∗(BA4) restricts to those elements in

K(n)∗(BZ/2 ×BZ/2) ∼= K(n)∗[x, y]/(x2n

, y2n

)

which algebraically depend on

σ̄ = x2 + y2 + xy + νn(x2n−1+1y2n−1
+ x2n−1

y2n−1+1),

τ̄1 = x3 + y3 + x2y + νn(x2n−1
y2n−1+2),

τ̄2 = x3 + y3 + xy2 + νn(x2n−1+2y2n−1
).

1991 Mathematics subject classifications: 55N20, 55N22.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13270187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


606 M. Brunetti

This paper has several motivations. The knowledge of K(n)∗(BA4)
could help to have explicit formulæ for the K(n)∗-Dickson classes. Fur-
thermore, similarities among H∗(BA4; Z/2) and K(n)∗(BA4) suggest to
study K(n)∗(BAm) —whose rank as K(n)∗-module can be calculated
[6]— to get information on H∗(BAm; Z/2) which is not entirely known
for m ≥ 16 (see [1] for the cohomology of several alternating groups).

The author would like to thank the anonymous referee, who drew
attention to certain inaccuracies contained in the first version.

1. Preliminaries. H∗(BA4)

From now on V will denote the group Z/2×Z/2, and H∗(−) ordinary
cohomology with coefficients in Z/2.

In [7], the authors describe H∗(PSL2Fq) for any odd q: they first
calculate the cohomology of the generalized quaternion group Q2n+1 of
order 2n+1, and then use the diagram

Z/2 −−−−→ SL2Fq −−−−→ PSL2Fq
∥
∥
∥

�

i

�

j

Z/2 −−−−→ Q2n+1 −−−−→ Dn

where Dn is the dihedral group of order 2n, rows are fibrations, and i
and j are inclusions of 2-Sylow subgroups. Nevertheless, we show in this
section that the special case

PSL2F3
∼= A4

can be approached in a more direct way.
The alternating group A4 is the central term of the short exact se-

quence of groups

0 −→ V −→ A4 −→ Z/3 −→ 0,

therefore for any mod 2 cohomology theory h∗(−), h∗(BA4) is isomorphic
to the ring of invariants [h∗(BV )]Z/3 under the action determined by the
map h∗(Bφ) induced by an automorphism φ of order 3 in Aut(V ). On
H∗(BV ) ∼= F2[x, y] the action of a generator of Z/3 ≤ GL(V ) is

x
αH−−→ y and y

αH−−→ x + y.

Consider now the map Φ from F2[x, y] to itself which maps any element
c to the sum

Φ(c) = c + αH(c) + α2
H(c);
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Φ is commonly known as norm map. It is easy to see that

Im Φ = [H∗(BV )]Z/3;

furthermore the image of Φ restricted to the set of monomials generates
[H∗(BV )]Z/3 regarded as graded F2-vector space.

The invariant of lowest positive degree in F2[x, y] is

σ = Φ(xy) = x2 + xy + y2.

This element is actually the Dickson class known in literature as Q2,1

(see [9]).

The reader will find the relevant invariant theoretic computation in [2]
to prove the algebraic dependence of every invariant on Φ(xy), Φ(x2y),
Φ(xy2). In fact we have the following proposition.

Proposition 1.1. As a graded ring, H∗(BA4) is isomorphic to

F2[σ, τ1, τ2]/R,

where deg σ = 2, deg τ1 = deg τ2 = 3, and R is the ideal generated by

σ3 + τ2
1 + τ1τ2 + τ2

2 .

The proposition above can be restated in terms of pure invariant the-
ory.

Corollary 1.2. Suppose that a Z/3-action on F2[x, y] is given by

x −→ y and y −→ x + y.

The ring of the invariants is a polynomial ring generated by

σ = x2 + y2 + xy, τ1 = x3 + y3 + x2y, τ2 = x3 + y3 + xy2,

quotiented by

R = (σ3 + τ2
1 + τ1τ2 + τ2

2 ).
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2. The Morava K-theory of BA4

We recall that Morava K-theory at the prime 2 is a complex oriented
cohomology theory with coefficients

K(n)∗({pt}) = F2[νn, ν
−1
n ]

where deg νn = −2(2n − 1), and we have

K(n)∗(BV ) ∼= K(n)∗[x, y]/(x2n

, y2n

)

where deg x = deg y = 2. As noticed in section 1, K(n)∗(BA4) is iso-
morphic to

[K(n)∗(BV )]Z/3

where the Z/3-module structure is defined by the map K(n)∗(Bφ), being
φ a generator of Z/3 ≤ Aut(V ). The following lemma helps to give a
concrete description of the K(n)-invariants.

Lemma 2.1. One of the two generators φ of Z/3 ≤ Aut(V ) acts as
follows on K(n)∗(BV ):

αK
def= K(n)∗(Bφ) : x −→ y and αK : y −→ x + y + νnx

2n−1
y2n−1

.

Proof: See [4].

The element αK(y) is actually the formal sum of x and y with respect
to the formal group law of mod 2 Morava K-theory

FK(n)(x, y) mod (x2n

, y2n

).

Consider now the norm map Ψ defined as follows:

Ψ : c ∈ K(n)∗(BV ) �−→ c + αK(c) + α2
K(c) ∈ [K(n)∗(BV )]Z/3.

The map Ψ is obviously the analogue of Φ defined in section 1: it is
surjective, and the invariants regarded as F2-vector space are spanned
by the image of Ψ restricted to monomials.

Notice also that we can equip

K(n)∗(BV ) ∼= K(n)∗[x, y]/(x2n

, y2n

)

with a different Z/3-module structure just by posing

αH(x) = y and αH(y) = x + y.

Abusing notation, we shall use again Φ to denote the endomorphism
defined on the generic element of K(n)∗(BV ) as follows:

c �−→ c + αH(c) + α2
H(c).

We are ready now to prove our main result.
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Theorem 2.2. K(n)∗(BA4) restricts to those elements in K(n)∗(BV )
which algebraically depend on

Ψ(xy) = σ̄, Ψ(x2y) = τ̄1 and Ψ(xy2) = τ̄2.

Proof: Since K(n)∗(−) is 2(2n − 1)-periodic we can look at classes in
K(n)∗(BV ) whose degree is between 2 and 2(2n − 1). In this range,
elements of type

ν2
nx

hyk

are necessarily zero, since either h or k is greater than 2n. It follows that
for any monomial xhyk ∈ K(n)∗(BV ) we have

(1) Ψ(νnx
hyk) = νnΦ(xhyk).

An element c ∈ K(n)∗(BV ) is invariant under αK if and only if Ψ(c) = c,
and supposing

2 ≤ t ≤ 2(2n − 1),

we have
c = p(x, y) + νnq(x, y),

where p(x, y) and q(x, y) are homogeneous polynomials of F2[x, y] of
degree t and t + 2(2n − 1) respectively. If Ψ(c) = c, it follows from
the considerations above that Φ(p(x, y)) = p(x, y), and by Corollary 1.2
there exists a polynomial r1 in three indeterminates such that

r1(σ, τ1, τ2) = p(x, y).

Define now

Ψ(xy) = σ̄, Ψ(x2y) = τ̄1 and Ψ(xy2) = τ̄2.

The element
c− r1(σ̄, τ̄1, τ̄2) = νns(x, y)

is invariant under αK . Notice now that s(x, y) can be regarded as a
polynomial in F2[x, y]; it follows by (1) that s(x, y) is invariant under
αH , and again by Corollary 1.2 there exists a polynomial r2 in three
indeterminates such that

r2(σ, τ1, τ2) = s(x, y).



610 M. Brunetti

We finally get
c = r1(σ̄, τ̄1, τ̄2) − νnr2(σ̄, τ̄1, τ̄2)

as we claimed.

Theorem 2.2 also gives some information on K(n)∗(BA5). Notice in
fact that 2-Sylow subgroups in A5 are abelian, and a 2-Sylow normalizer
in A5 is isomorphic to A4. It follows by a theorem in [8] that BA4

and BA5 are stably 2-homotopy equivalent. Hence the map induced by
inclusion

K(n)∗(BA5) −→ K(n)∗(BA4)

is an isomorphism.

Remark 2.3. The element

σ̄3 + τ̄2
1 + τ̄1τ̄2 + τ̄2

2

is zero in K(n)∗(BA4), as the analogous algebraic expression in σ, τ1, τ2
for ordinary cohomology. The relation above is not however of minimal
positive degree: the element

ν2
nσ̄

2n

is zero and has degree four.

It is known that the subring of Heven(BA4) generated by Chern classes
is proper (see, for example [10, p. 100]), and the reader could ask if σ̄,
τ̄1, τ̄2 are K(n)-Chern classes of suitable representations.

We recall that up to equivalence the group A4 has just four distinct
complex irreducible representations. Three of them are one-dimensional,
and their restriction to V is trivial. The fourth one has instead non-trivial
total Chern class in K(n)∗(BA4), as the next proposition shows.

Proposition 2.4. Let ξ be a 3-dimensional irreducible representation
of A4. The restriction ξ|V to the 2-Sylow subgroup V has Chern classes

c1(ξ|V ) = νnσ̄
2n−1

, c2(ξ|V ) = σ̄, c3(ξ|V ) = τ̄1 + τ̄2 + νnσ̄
2n−1+1

in K(n)∗(BV ).

Proof: Let g1 and g2 be two generators in V . Consider two one-
dimensional representations ρ1 and ρ2 defined as follows

ρi : gi �−→ −1 ρi : g3−i �−→ 1
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for i = 1, 2. The transfer ξ of ρ1 to A4 represents the equivalence class
of the 3-dimensional irreducible representations of A4; its restriction to
V is given by

ρ1 ⊕ ρ2 ⊕ (ρ1 ⊗ ρ2).

It follows that the total Chern class c.(ξ|V ) is equal to

(1 + x)(1 + y)(1 + x + y + νnx
2n−1

y2n−1
).

Hence the proposition follows.
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