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NONLOCAL PROBLEMS
FOR QUASILINEAR FUNCTIONAL
PARTIAL DIFFERENTIAL EQUATIONS
OF FIRST ORDER

JAN TURO

Abstract

Existence and uniqueness of almost everywhere solutions of nonlo-
cal problems to functional partial differential systems in diagonal
form are investigated. The proof is based on the characteristics
and fixed point methods.

1. Introduction

For any metric spaces X and Y we denote by C(X,Y) the set of
all continuous functions from X to Y. Let ag > 0 be a given con-
stant and I,, = [0,a9] X R™. Write D = [—7,0] X [—b,b], where T €
Ry =[0,+00) and b = (b1,... ,by,) € R} For z: [-7,a0] x R™ — R"
and (z,y) = (z,91,---Ym) € Ilay, we define z,,y : D — R”
by 2@ (s,t) = z(x + s,y +t), (s,t) € D. Thus, we see that z(, )
is a restriction of z to the rectangle [z — 7,z] x [y — b,y + b]. Put
0 =10,a0] x R™ x C(D,R™) and I = [-7,0] x R™.

We assume that o = [g;;] : @ = R"™, i=1,...,n,j=1,...,m,
f = (fl:"' vfn) Q- Rn’ hk = [hkij] I — Rnn’ Z,J = 1, , 1,
k=1,...,r, 0 =(¢1,... ,pn): I — R™ are given functions.

We consider quasilinear hyperbolic systems of functional partial dif-
ferential equations

m
(1) Dzzz($7 y) =+ Z Qij ('T7 Y, Z(m,y))Dyjzi(xa y) = fl(xv Y, Z(z,y)):

j=1
i=1,...,n, (z,y) € I,,, with nonlocal condition
(2) 2(0,y) + Z(hk)(o,y)z(ak,y) =0,y YERT,

k=1
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where ar, k =1,... ,r, are finite numbers such that 0 < a; < as < --- <
a,r < ag.
The nonlocal condition (2) may be also written in the form

(3) z(x,y)+2hk(x,y)2(ak+:c,y) :¢($7y)3 (xay) el
k=1

For r = n, 7 = 0 and hgi; = hijor; (Or; is the Kronecker sym-
bol) nonlocal boundary condition (2) reduces to the nonlocal condition
“4 la Cesari” [8], [1]. If hg;; = 0kid;; then (2) reduces to the Nicoletti
condition [10], [12]. Furthermore, if all a =0, k = 1,... ,r then we get
the usual Cauchy condition.

Nonlocal condition was considered for parabolic problems in [4], [5],
[8], and for hyperbolic problems in [2], [3], [6], [9]. Mixed problems for
system (1) in two independent variables were investigated in [10].

System (1) contains as particular cases the system of differential
equations with a retarded argument, differential-integral systems and
differential-functional equations with operators of the Volterra type (see
Section 4).

In this paper, we consider the local existence and uniqueness of gen-
eralized solutions of nonlocal problem (1), (2). The method used in the
paper is based on characteristics theory and the fixed point theorem.

2. Assumptions and Lemma

For n = (m1,...,m,) € RF we write n|p = max{|m:| : 1 < i < k}.
For the matrix U = [u;;], i = 1,...,n, j = 1,... ,m, we define ||U|| =
max{> "1, |uij| : 1 < < n}. Let |[v|| denote the supremum norm of
v € C(D,R™) and C(D,R™;p) = {v € C(D,R") : ||v]| < p}, p € Ry.
Let L([e, 8], R) be the set of all integrable functions ! : [«, 5] — R. We
denote by Cp(D,R"™) the class of all functions v € C(D,R™) satisfying
the condition

) fo(s.t) o5 Dl < /sw@)ds‘wuﬂm, (s,).(5.1) € D,

where w € L([-7,0],R4), ¢ € Ry (w and ¢ depend on v). For v €
Cr(D,R™) we define ||v||z = ||v||« + ||v]|, where

0
[lv]|« = inf {q —I—/ w(§)d¢ : q and w satisty (4)} )

—T
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Let CL(D,R™;p) = {v € CL(D,R") : ||v||lr < p}, p € R4. Denote
by A the set of all functions X : [0,a0] X Ry — Ry such that A(-,¢) €
L([0,ap],R4) for each ¢ € Ry and A(s,-) is nondecreasing on Ry for
almost every (a.e.) s € [0, ag].

Assumption H;. Suppose that

1. the matrix-valued function o(-,y,v) : [0, ag] — R™™ is measurable
for every (y,v) € R™ x C(D,R"™) and p(z,-) : R™ x C(D,R") —
R™™ is continuous for a.e. x € [0, agl;

2. there exists d € A such that

le(z,y,v)|| < d(z,p)

for all (y,v) € R™ x C(D,R";p), a.e. x € [0,a0];
3. there exists [ € A such that

HQ(Z’,y,U) - 9(557:&76)” < l(m,p)[|y - g|m + ||U - 77”]

for all (y,v),(g,9) € R™ x Cr(D,R™;p) and a.e. x € [0, ag].

Assumption Hs. Suppose that

1. there exist constants p € (0, %L Go € R4 and a function wy €
L([-7,0],R,) such that

> k(e )l < p,
k=1

S i, y) — ha(@ 9| < \/ Bo(s) ds| + ol — Flun:

k=1

2. there exist constants py, go €R 4 and a function wy € L([—7,0], Ry)
such that

|§0($,y)|n S Po,

/: wo(s) ds

for all (x,y), (z,7) € 1.
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For a € (0,a0] we denote by Cy, .[p,w, q] the set of all functions v €
C([—7,a] x R™,R™) such that

2(z,y)ln < p,

|z(z,y) — 2(Z,9)[n < +qly = Jlm

/: w(s)ds

for (x,y), (Z,7) € I, and v satisfies condition (3) on I.

We consider a Carathéodory solution of (1), (2). More precisely, a
function z is called a Carathéodory solution of problem (1), (2) provided
the following conditions hold:

(i) z € C«p,a[pvqu];

(ii) z satisfies (1) almost everywhere in I, and (2) everywhere in R™.

For z € Cy q[p,w, q] we consider the following problem
() n'(t) = 0i(t,n(t), 2@ ), n@) =y, i=1...,n

Note that (5) is an ordinary differential equation. If Assumption Hj is
satisfied then for every z € C, o [p,w, g| the right hand side of (5) satisfies
Carathéodory assumptions and the following Lipschitz condition

|Qi(t,§, Z(t,E)) - Qi(t7ga Z(t7f))| < l(t>r0«)(1 - C])|§ - g‘mﬂ

holds, where r, = p+q+ ffT w(s) ds. Thus, the existence and uniqueness
of the solution g;[z](-;z,y) : [0,a] — R of (5) follows from classical
theorems.

Lemma 1. If Assumption Hy is satisfied and z,z € Cy, o[p,w, q| then

/: d(s,p)ds

(6) gilz](t; 2, y) — 92l 2, 9)|m

Swp%kﬂﬁlz@wdﬁ}[

+|y_y|m:|
t € [0,min(z,Z)], i=1,... ,n, and

(1) Ngilzl(t; 2, y) — gl 2](6 2, 9) |m

< [ ttsra) dses [<1+q> /jxs,ra)ds] Iz =l tel0.a]
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where || - ||o denotes the supremum norm in the space C(I,,R™).

Proof: We will consider the case where x < Z. We have, by Assump-
tion Hy,

el t.) = )52, < Iy — o+ [ " d(s,p) ds
. tefoa.

+ / (s, ra) (1 + @)l gal2) (552, ) — gal2) (532, F)lom s

Hence,by the above inequality and by Gronwall’s inequality we get (6).
We consider the case x > T analogously to the case = < .

It follows, from Assumption Hq, that

[ 6l i)l

+ 12 (5,01 2] (s520,9)) — Z(s,0:02) (s |} ds], T € [0, 2]

lgsl2](t; 2, y) —gi[Z](t; 2, y) |m <

m

Since

12 (s,9:20(s32.9)) — Z(s,01 (21 (i) |
<z = Zlla + qlgil2](s; 2, y) — gilZ](s; 2, Y) >

t
/ I(s,74)ds

/ (s, ra) (1 + @)l gale)(ss 2, ) — gal2) (s 2, )| s

we get

lg:[2](t; 2, y) — gil 2] (t; 2, Y) [m < Iz = 2l[a

+

Utilizing the Gronwall’s inequality, we obtain (7). The proof of
Lemma 1 is complete. B

Assumption Hs. Suppose that

1. the vector-valued function f(,y,v) : [0,a9] — R™ is measurable
for every (y,v) € R™ x C(D,R") and f(z, ) : R™ x C(D,R") —
R™ is continuous for a.e. z € [0, ag];

2. there exists d; € A such that

|f(x,y,0)‘n < dl(xvp)
for all (y,v) € R™ x C(D,R";p), a.e. z € [0, agl;
3. there exists [; € A such that
|f(@,y,0) = flz, 5,0 < L@, p)[ly = Ylm + ||v— 0]
for all (y,v), (y,v) € R™ x C(D,R"™;p) and a.e. x € [0, ag].



512 J. TUurO

3. The main theorem

Theorem 1. Suppose that Assumptions Hi-Hsz are satisfied. Then
there exist a € (0,a0], p,q € Ry and w € L([—7,a],Ry) such that prob-
lem (1), (2) has a unique solution z in the class Cy, q[p,w,q].

Proof: First, we take a so small that

/ dit,p)dt <1, Ko =explLa(l+q)] <2,
(8) 0
1

Lla(l +Q) S 17 RaLaKa +L1a < 5’

where L, = [/ I(t,p)dt, Lio = [ l1(t,p)dt and R, = qo + Gop + Pq +
Lla(l + q)

Let us choose constants p, ¢ with

p>(1—p)(1+po),

9) - L _
q>2(1—-2p)" (g0 + qop+1)

and function
(10)  w(t) = max{qd(t,p) + di(t,p), (1 = D) wo(t) + poo(t)]}-

We define the following operator

(T2)i(,y) = 210, 6i(0;2,9)) = > hii(0,6i(0; 2,)) 2 (ak, 6: (0; 2, y))

k=1
+ / fi(tvgi(t;xay)aZ(t,gi(t;z,y)))dta (xay) € Iaa
0
(T2)i(2,y) = @i(x,y) = > hwi(w,y)zi(an + 2,y),  (x,y) € 1.
k=1
From Assumptions Hs, Hs and inequalities (8), (9), we obtain

[(T2)i (2, y)| < |@i(0,9i(0;2,))|

Z hii(0, 9:(0; 2, y)) i (ak, 9:(0; z,y))
k=1

/ fi(tvgi(t;may)vz(t,gi(t;w,y))) dt‘
0

_|_

+

gp0+pp+/ di(tp)dt <p, (2.y) € I,
0
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and

Z hii(@,y)zi(ax + 2, y)
k=1

[(T2)i(2, y)| < iz, y)| +

<po+pp<p, (x,y)€l.

For any (z,v), (Z, ) € I,, from Assumptions Hy-Hs and Lemma 1, we

get
T
/ d(t,p) dt’
x

T
/ dl(t7p) dt‘ +RaKa|y_g|m~

T

[(T2)i(z,y) = (T2)i(Z,9)| < Ralgi(t;z,y) —g:(t; 2, 9)| +

< R.K,

/ d(t,p) dt’ +

For (z,y), (Z,7) € I, we have

[(T2)i(z,y) = (T2)i(7,9)| <

/ wo(t)dt‘ +p

/:w(t) dt’

+p/ wo(t) dt| + (qo + Dq + pGo) |y — Flm-

Thus, from (8)-(10), we obtain

(T2)i(2,y) = (T2)i(7,9)] <

/ w(t)dt| + aly — Fls  (2,y) € L.

We see that Tz € Cy, 4 [p,w, ql.

Now, we prove that T is a contraction. Indeed, for any z,Z€ Cy, 4[p, w, q]
we have

((T2)i(2,y) = (T2)i(z,y)| < li(0, g[2](0; 2, y)) — ¢i(0, 9[2](0; 7, )|

+ 1> [hi (0, 6il21(0; 2, ) — hi (0, i 2] (0; 9379))]21'(%791'[2](0;33,y))‘
k=1

+ 1> i (0, 9:[21(0 2, ) [z4(ak, :[2] (0 2, ) — Zi(an, g:[2)(0; z,y))]|
k=1

+ /Ofi(t7gi[z](t;xhy)vZ(t,gi[z](t;w,y)))_fi(t’gi[’g](t;xvy)az(t,gi[f](t;m,y)))] dt’

< (RoLoKa+ Lia +D)||z2 = Z||a;  (2,y) € I,
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and

(T2)i(w,y) = (T2)i(w.y)l < | hwilw,y)lzilar +2,y) = Zilax + 2,y)
k=1

<pllz = 2lla, (z,y) €l

Thus, it follows from (8) that T is a contraction.

It remains to prove that the fixed point z of the operator T is the
Carathéodory solution of (1), (2). By taking y = ¢;(2;0,7) in the equa-
tion z;(x,y) = (T'2):(x,y), we get

(1) zi(w, gs(w;0,m)) = i(0,m) = Y hxs(0,m)2i(ar, )
k=1

+ / fi(t, 9i(t:0,m), 2(¢,9,(1:0.0)))
0

since the solution g; of (5) satisfies the following group property
gi(t'st, gi(t;x,y)) = ¢:(t';2,y). By differentiation of (11) with respect
to x, using the chain rule differentiation Lemma (4.ii) of [7], and by
putting again y = g;(x;0,7n), we obtain that z satisfies (1) almost ev-
erywhere in I,. It follows immediately that z satisfies (2). The proof of
Theorem 1 is complete. B

4. Special cases of system (1)

We list below a few examples of problems which can be derived from
(1) by specializing the functions ¢ and f.

1) Suppose that g : I,, x R x R" — R™ and f : I,, x R" x R* — R"
are given functions. Let

o(z,y,v) =0 (m,y,v(O,O),/Dv(s,t) ds dt) ,

flz,y,v)=f (ac,y,v(0,0),/ v(s,t)ds dt> , (x,y,v) € I, xC(D,R™).
D

Then system (1) reduces to the differential-integral system

Dzzz(wvy)—’_Z@zj ($7y72($ay)7/ Z($+S7y+t) det) Dyjzz(xuy)
D
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2) Suppose that o = (g, ), 3 = (8o, ) : Lo, x C(D,R") — R*™,
0: 1oy xR*" xR" — R™ and f : I, x R™ xR™ — R™ are given. Assume
that

(QO(x7y7v) - 130/(%1/7”) - y) € D7
(160((E7y7v) - 1’,5/(907?/7?) -

for (z,y,v) € Iy, x C(D,R™).
Put

@

S~—
m
)

Q(l‘,y,’U) = @(I,y,U(O,O),U(OLQ(l‘,y,’U) - I7O/(m7yvv) - y))7
f(agy,v) = f(l‘,y,U(0,0),’U(ﬁo(l’,y,’U) - x,ﬂ’(a@y,v) - y))

Then system (1) reduces to the differential system with a retarded argu-
ment

D Zz € y Z 1' Y, 2 ) z(ao(x,y,z(zyy)),a'(x,y,z(xyy))))Dyjzi(x,y)

:fl( z,Y, ( z,y )7 (50(x7y7Z(m,y))75/(m7ywz(m,y))))? t=1,...,n.

The functions « and (3 depend on the functional argument. Therefore,
we cannot apply existence theorems from [13], [14] to the above system.

3) If we take

where (Z(;,)v)(s,t) = v(s — x,t — y) then system (1) reduces to the
system of differential-functional equations ([13], [14])

m

D Zz z,y) Z -73 'Yy 2 ),(Vz)(x,y))Dyjzi(a:,y)

= filz,y, z(x,y), Vz)(z,y), i=1,...,n.
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