

Publicacions Matemàtiques, Vol 41 (1997), 481-487.

P-NILPOTENT COMPLETION IS NOT IDEMPOTENT

GEOK CHOO TAN

Abstract

Let P be an arbitrary set of primes. The P-nilpotent completion of a group G is defined by the group homomorphism $\eta:G\to G_{\widehat{P}}$ where $G_{\widehat{P}}=\operatorname{invlim}(G/\Gamma_iG)_P$. Here Γ_2G is the commutator subgroup [G,G] and Γ_iG the subgroup $[G,\Gamma_{i-1}G]$ when i>2. In this paper, we prove that P-nilpotent completion of an infinitely generated free group F does not induce an isomorphism on the first homology group with \mathbf{Z}_P coefficients. Hence, P-nilpotent completion is not idempotent. Another important consequence of the result in homotopy theory (as in [4]) is that any infinite wedge of circles is R-bad, where R is any subring of rationals.

1. Introduction

For a group G, we denote by Γ_2G the commutator subgroup [G,G] and Γ_iG the subgroup $[G,\Gamma_{i-1}G]$ when i>2. A group G is nilpotent if $\Gamma_i(G)$ is trivial for some i. The nilpotency class nil(G) of G is the least c such that $\Gamma_c(G)$ is trivial. Let P be a set of prime numbers. There is a well-known P-localization in the category of nilpotent groups, [7]. We denote this localization on a nilpotent group N by $e: N \to N_P$.

The P-nilpotent completion of \mathbf{Z}_P -completion of a group G is defined to be the group homomorphism $\eta: G \to G_{\widehat{P}}$ where $G_{\widehat{P}} = \operatorname{invlim}(G/\Gamma_i G)_P$, with i running through all finite ordinals. For each i, the group homomorphism $G \to (G/\Gamma_i G)_P$ defines a localization on the category \mathcal{G} of groups. Its universal property gives rise to a natural map $(G_{\widehat{P}}/\Gamma_i G_{\widehat{P}})_P \to (G/\Gamma_i G)_P$. Passing to inverse limit, we obtain a natural transformation $\chi: (G_{\widehat{P}})_{\widehat{P}} \to G_{\widehat{P}}$ so that $(()_{\widehat{P}}, \eta, \chi)$ is a monad on \mathcal{G} .

Let F be a free group on an infinitely countable set of generators. In [4, Proposition IV.5.4], it is proved that the abelianization of $\eta: F \to F_{\hat{\mathbf{Z}}} = \operatorname{invlim}(F/\Gamma_i F)$ is not an isomorphism. This result is used to verify that **Z**-completion (which is P-nilpotent completion when P is the set of all primes) is not idempotent in [3].

We study these proofs closely and obtain a similar proof of the non-idempotence of P-nilpotent completion for any set P of primes. We use results from orthogonal pairs, idempotent monads and the P-localization on the category of nilpotent groups.

Although the P-nilpotent completion is not idempotent on the category of groups, a procedure to obtain an idempotent monad from it is described in [5]. This turns out to be the minimal P-localization, which is also obtained in [2]. It is the "smallest" (in the sense that it provides the least local objects) idempotent monad which extends P-localization on the category of nilpotent groups to the category of groups. This minimal P-localization coincides with the P-nilpotent completion on groups which have finitely generated abelianization [3] and groups with stable lower central series [2].

2. The P-nilpotent completion is not idempotent

Let \mathcal{C} be a category, X be an object of \mathcal{C} and $f:A\to B$ be a morphism of \mathcal{C} . Then X and f are said to be orthogonal to each other, denoted by $X\bot f$ or $f\bot X$, if $f^*:\mathcal{C}(B,X)\cong\mathcal{C}(A,X)$. For a class D of objects in \mathcal{C} , the orthogonal complement of D in \mathcal{C} , denoted by D^\bot , is the class of morphisms orthogonal to every object in D. Dually, the orthogonal complement of S can be defined for a class S of morphisms. An orthogonal pair (S,D) in \mathcal{C} comprises a collection S of morphisms in \mathcal{C} and a collection D of objects in \mathcal{C} satisfying $S=D^\bot$ and $D=S^\bot$. Every idempotent monad (see [8, p. 133]) (also known as localization in [6]) is associated with a unique orthogonal pair.

Let a_1,a_2,\ldots be elements of a group G. We define $[a_1,a_2]=a_1^{-1}a_2^{-1}a_1a_2$ and $[a_1,a_2,\ldots,a_k]=[[a_1,\ldots,a_{k-1}],a_k]$ recursively for $k\geq 3$.

Proposition 1. Let F be the free group on a_1, \ldots, a_k . For every positive integer n, $[a_1, \ldots, a_k]^n$ does not belong to the subgroup of $\Gamma_2 F$ that is generated by $\Gamma_{k+1} F$ and $\Gamma_2 \Gamma_2 F$.

Proof: Replacing F by the quotient $F/\langle \Gamma_{k+1}F, \Gamma_2\Gamma_2F \rangle$, the proposition becomes: for each n, there exists a group G with the following properties: (i) The commutator subgroup Γ_2G is abelian, (ii) G is nilpotent of class k+1, and (iii) there exists $x \in \Gamma_k G$ such that $x^n \neq 1$.

However, it is enough to pick a prime p that does not divide n and find a p-group G such that Γ_2G is abelian and G is nilpotent of class k+1. For any positive integer m, consider the \mathbb{Z}/p vector space V on a

basis $\{v_1, v_2, \dots, v_{p^m}\}$ and let $\sigma \in GL(V)$ where

$$\sigma(v_i) = \begin{cases} v_i + v_{i+1} & \text{if } i \leq p^m - 1 \\ v_{p^m} & \text{if } i = p^m. \end{cases}$$

For each positive integer $j \leq p^m$,

$$\sigma^{j}(v_{i}) = \begin{cases} \sum_{l=0}^{j} {j \choose l} v_{i+l} & \text{if } i \leq p^{m} - j \\ \\ \sum_{l=0}^{r} {j \choose l} v_{i+l} & \text{if } i > p^{m} - j, \text{ where } r = p^{m} - i \end{cases}$$

so that the order of σ is p^m . The semi-direct product group of V and $\langle \sigma \rangle$ is a p-group whose commutator subgroup is abelian and has nilpotency class p^m (see [1] and [9]). By choosing $m \geq k+1$ and factoring this semi-direct product group by the k+1-th lower central term we obtain a group G with the required properties. \blacksquare

Let P be a fixed set of prime numbers. We use the notation $n \in P$ to mean all prime divisors of n are in P and P' to denote the complement of P in the set of all primes. A group G is said to be P-local if the map $g \mapsto g^n$ is a bijection for all $n \in P'$. A group homomorphism $f: G \to K$ is said to be (i) P-injective if for any two elements $g_1, g_2 \in G$ such that $f(g_1) = f(g_2)$, there exists an integer $n \in P'$ such that $g_1^n = g_2^n$; (ii) P-surjective if for every $k \in K$, there exists an integer $n \in P'$ such that $k^n \in Imf$; and (iii) P-bijective if f is both P-injective and P-surjective.

On the category of nilpotent groups, there is a well-known P-localization [7], which is denoted by $e: N \to N_P$ for each nilpotent group N, where N_P is P-local nilpotent and e is a P-bijection.

The P-nilpotent completion or \mathbf{Z}_P -completion of a group G is defined to be the group homomorphism $\eta:G\to G_{\widehat{P}}$ induced by the group homomorphisms $G\to G/\Gamma_iG\stackrel{e}\to (G/\Gamma_iG)_P$, where $G_{\widehat{P}}=\operatorname{invlim}(G/\Gamma_iG)_P$, with i running through all finite ordinals. For each i, the above group homomorphism $G\to (G/\Gamma_iG)_P$ defines an idempotent monad on G whose universal property enables us to complete the following diagram

$$G_{\widehat{P}} \longrightarrow (G_{\widehat{P}}/\Gamma_i G_{\widehat{P}})_F$$

$$\downarrow$$

$$(G/\Gamma_i G)_P$$

484 G. C. TAN

by a unique map $(G_{\widehat{P}}/\Gamma_i G_{\widehat{P}})_P \to (G/\Gamma_i G)_P$. Passing to inverse limits, we obtain a natural transformation $\chi: (G_{\widehat{P}})_{\widehat{P}} \to G_{\widehat{P}}$ so that $(()_{\widehat{P}}, \eta, \chi)$ is a monad on \mathcal{G} .

Let \mathcal{G} be the category of groups and \mathcal{G}' be the full subcategory of groups G such that the natural homomorphism $G_{\widehat{P}} \to (G_{\widehat{P}})_{\widehat{P}}$ is an isomorphism. Then $(\)_{\widehat{P}}$ restricts to an idempotent monad on \mathcal{G}' . Let (S',D') be the associated orthogonal pair. Since every abelian group A satisfies $A_{\widehat{P}} \cong A_P$, all abelian groups are objects of \mathcal{G}' ; moreover, all P-local abelian groups are in D'.

For any group G in \mathcal{G}' , the completion homomorphism $\eta: G \to G_{\widehat{P}}$ is in S' and hence it is orthogonal to all P-local abelian groups. From this fact it follows that, for all groups G in \mathcal{G}' , the natural map

$$(G/\Gamma_2 G)_P \to (G_{\widehat{P}}/\Gamma_2 G_{\widehat{P}})_P$$

induced by η is an isomorphism. Thus, if G is in \mathcal{G}' , then $H_1(G; \mathbf{Z}_P) \cong H_1(G_{\widehat{P}}; \mathbf{Z}_P)$.

For any group G, we denote by γ_i the projection of G onto G/Γ_iG , by θ_i the natural epimorphism from $G_{\widehat{P}}$ onto $(G/\Gamma_iG)_P$, by $\bar{\eta}$ the abelianization of $\eta: G \to G_{\widehat{P}}$, and by e the P-localization homomorphism. Since $(G/\Gamma_2G)_P$ is abelian, there is a unique homomorphism $\bar{\theta}_2: G_{\widehat{P}}/\Gamma_2G_{\widehat{P}} \to (G/\Gamma_2G)_P$ such that $\bar{\theta}_2\gamma_2 = \theta_2$. Now we have

$$\bar{\theta}_2 \bar{\eta} \gamma_2 = \bar{\theta}_2 \gamma_2 \eta = \theta_2 \eta = e \gamma_2.$$

Since γ_2 is surjective, we infer that $\bar{\theta}_2\bar{\eta}=e$. Under the assumption that the group G is in the subcategory \mathcal{G}' , both $\bar{\eta}$ and e are P-bijections. It follows that $\bar{\theta}_2$ is a P-bijection as well. Hence, we have proved the following result.

Proposition 2. For a group G, if the natural homomorphism $G_{\widehat{P}} \to (G_{\widehat{P}})_{\widehat{P}}$ is an isomorphism, then the homomorphism $H_1(G; \mathbf{Z}_P) \to H_1(G_{\widehat{P}}; \mathbf{Z}_P)$ induced by the P-completion map $G \to G_{\widehat{P}}$ and the homomorphism $H_1(G_{\widehat{P}}; \mathbf{Z}_P) \to H_1(G; \mathbf{Z}_P)$ induced by the projection $G_{\widehat{P}} \to (G/\Gamma_2 G)_P$ are isomorphisms, and they are inverse to each other.

We next prove that if F is a free group on an infinite set of generators, then $\bar{\theta}_2$ is not P-injective. This implies that F is not in \mathcal{G}' , as desired.

Thus, we shall assume that $\bar{\theta}_2$ is P-injective and arrive at a contradiction. Pick a countable subset of free generators of F and label them as $\{a_{ij}\}$, where $1 \leq j \leq i$. Denote by F_m the free group generated by a_{m1}, \ldots, a_{mm} . Let π_m be the projection of F onto F_m sending all other

generators to 1. Likewise, we denote by $\hat{\pi}_m$, the induced homomorphism $F_{\widehat{P}} \to (F_m)_{\widehat{P}}$ and by η_m , the completion map $F_m \to (F_m)_{\widehat{P}}$.

Consider the element $b=(b_2,b_3,\dots)\in F_{\hat{\mathbf{Z}}}$, where $b_2=1$ and, for $m\geq 2,\, b_{m+1}$ is the class of

$$[a_{21}, a_{22}][a_{31}, a_{32}, a_{33}] \cdots [a_{m1}, \dots, a_{mm}]$$

in $F/\Gamma_{m+1}F$. Since the natural map $F_{\widehat{\mathbf{Z}}} \to F_{\widehat{P}}$ is injective, we may view b as an element of $F_{\widehat{P}}$ as well. In fact we have

$$\hat{\pi}_m(b) = \eta_m([a_{m1}, \dots, a_{mm}]).$$

Since $1 = \theta_2(b) = \bar{\theta}_2(\gamma_2(b))$ and $\bar{\theta}_2$ is assumed to be *P*-injective, it follows that $\gamma_2(b)^n = 1$ for some $n \in P'$. Hence, $b^n \in \Gamma_2 F_{\widehat{P}}$. Therefore we may write

$$b^n = [u_1, u_2] \cdots [u_{2k-1}, u_{2k}],$$

with $u_i \in F_{\widehat{P}}$ for all i. Now, for each i, we have $\theta_2(u_i)^{t_i} = e(\gamma_2(z_i))$, for some $t_i \in P'$ and $z_i \in F$ because e is P-surjective and γ_2 is surjective. Since only a finite number of generators of F are involved in z_i , we have $\pi_m(z_i) = 1$ for all i and all m except for a finite number of indices m_1, \ldots, m_r . Choose any $m \neq m_1, \ldots, m_r$, which will remain fixed in the rest of the argument.

Let ψ_m be the unique homomorphism that renders the following diagram commutative:

For each i, we have

$$\psi_m(\theta_2(u_i))^{t_i} = \psi_m(e(\gamma_2(z_i))) = e(\gamma_2(\pi_m(z_i))) = 1.$$

Since the target of ψ_m is a P-local group, we infer that $\psi_m(\theta_2(u_i)) = 1$, and hence $\theta_2(\hat{\pi}_m(u_i)) = 1$. Therefore, $\theta_{m+1}(\hat{\pi}_m(u_i))$ belongs to the kernel of the reduction map $(F_m/\Gamma_{m+1}F_m)_P \to (F_m/\Gamma_2F_m)_P$, that is,

$$\theta_{m+1}(\hat{\pi}_m(u_i)) \in (\Gamma_2 F_m / \Gamma_{m+1} F_m)_P$$

486 G. C. TAN

for all i. Now observe that

$$\theta_{m+1}(\eta_m([a_{m1},\ldots,a_{mm}]^n)) = \theta_{m+1}(\hat{\pi}_m(b^n))$$

= $[\theta_{m+1}(\hat{\pi}_m(u_1)), \theta_{m+1}(\hat{\pi}_m(u_2))] \cdots [\theta_{m+1}(\hat{\pi}_m(u_{2k-1})), \theta_{m+1}(\hat{\pi}_m(u_{2k}))],$

which is an element of $(\Gamma_2\Gamma_2F_m/\Gamma_{m+1}F_m)_P$. Hence, there is an integer $q \in P'$ and an element $x \in \Gamma_2\Gamma_2F_m/\Gamma_{m+1}F_m$ such that

$$\theta_{m+1}(\eta_m([a_{m1},\ldots,a_{mm}]^n))^q = e(x).$$

Since we have the commutative diagram

$$F_{m} \xrightarrow{\eta_{m}} (F_{m})_{\widehat{P}}$$

$$\uparrow^{m+1} \downarrow \qquad \qquad \downarrow^{\theta_{m+1}}$$

$$F_{m}/\Gamma_{m+1}F_{m} \xrightarrow{e} (F_{m}/\Gamma_{m+1}F_{m})_{P}$$

where $F_m/\Gamma_{m+1}F_m$ is torsion-free and hence the localization map e is injective, we infer that

$$\gamma_{m+1}([a_{m1}, \dots, a_{mm}]^{nq}) = x.$$

It follows that $[a_{m1}, \ldots, a_{mm}]^{nq}$ belongs to the subgroup of F_m generated by $\Gamma_2\Gamma_2F_m$ and $\Gamma_{m+1}F_m$. This contradicts Proposition 1. We have thus shown

Theorem 3. Let F be a free group on an infinite set of generators. Then, for any set of primes P, the natural homomorphisms $H_1(F; \mathbf{Z}_P) \to H_1(F_{\widehat{P}}; \mathbf{Z}_P)$ and $\eta: F_{\widehat{P}} \to (F_{\widehat{P}})_{\widehat{P}}$ both fail to be isomorphisms.

We thus conclude that P-nilpotent completion is not idempotent on the category of groups. As in [4, Proposition IV.5.4], it follows from our theorem and [4, Proposition IV.5.3] that

Corollary 4. Any infinite wedge of circles is R-bad, where R is any subring of the rationals.

Acknowledgements. The author wishes to thank Jon Berrick, Carles Casacuberta and Garth Warner for many helpful comments and the referee for his/her suggestions on the presentation of this paper.

References

- 1. R. Baer, Nilpotent groups and their generalizations, *Trans. Amer. Math. Soc.* 47 (1940), 393–434.
- A. J. BERRICK AND G. C. TAN, The minimal extension of P-localization on groups, Math. Proc. Cambridge Philos. Soc. 118 (1996), 243–255.
- A. K. Bousfield, Homological localization towers for groups and π-modules, Mem. Amer. Math. Soc. 10(186) (1977), ?.
- A. K. BOUSFIELD AND D. M. KAN, "Homotopy Limits, Completions and Localizations," Lecture Notes in Math. 304, Springer-Verlag, Berlin, 1972.
- 5. C. CASACUBERTA, A. FREI AND G. C. TAN, Extending localization functors, *J. Pure Appl. Algebra* **103** (1995), 149–165.
- 6. C. Casacuberta, G. Peschke and M. Pfenniger, Orthogonal pairs in categories and localization, in "*Proc. Adams Memorial Symposium*," London Math. Soc. Lecture Note Ser. **175**, Camb. Univ. Press, Cambridge, 1992, pp. 211–223.
- P. HILTON, G. MISLIN AND J. ROITBERG, "Localization of Nilpotent Groups and Spaces," North-Holland Math. Studies 15, North-Holland, Amsterdam, 1975.
- 8. S. Maclane, "Categories for the Working Mathematician," Graduate Texts in Math. 5, Springer-Verlag, Berlin, 1972.
- 9. M. Suzuki, "Group Theory II," Grundlehren der mathematischen Wissenchaften 248, A series of Comprehensive Studies in Mathematics, Springer Verlag, 1986.

Department of Mathematics Faculty of Science National University of Singapore 10 Kent Ridge Crescent SINGAPORE 119260

Primera versió rebuda el 3 de Maig de 1996, darrera versió rebuda el 20 de Juny de 1997