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HARMONIC FUNCTIONS OPERATING IN
HERMITIAN BANACH ALGEBRAS

A. El Kinani

Abstract
The purpose of this paper is to introduce a harmonic functional
calculus in order to generalize some extended versions of theorems
of von Neumann, Heinz and Ky Fan.

1. Introduction and notations

Let A be an algebra over the complex field with the involution ∗ and
unit e. The symbols Spx and ρ(x) denote the spectrum of x and the
spectral radius of x, respectively. An element x in A is said to be hermi-
tian if x = x∗. An element x in A is said to be unitary if xx∗ = x∗x = e.
Denote by U the set of all unitary elements of A, by Ue the identity
component in U . We say that the algebra A is hermitian if the spectrum
of every hermitian element of A is real. As in [5], we denote by |x|∗ the
square-root of the spectral radius of the element x∗x, i.e., |x|∗ = ρ(x∗x)

1
2 .

Let Ω be an open subset of C. An A-valued function f : Ω → A
is said to be holomorphic on Ω if ϕ(f(z)) is holomorphic on Ω in the
classical sense for every ϕ ∈ A′, where A′ denotes the conjugate space
of A. We will denote by H(Ω, A) the set of all holomorphic A-valued
functions on Ω. Let f : Ω → A be a C(2) function of two real variables x
and y. Recall that f is said to be harmonic if it satisfies the differential
equation: ∂2f

∂x2 + ∂2f
∂y2 = 0 on Ω. The set of all harmonic A-valued functions

on Ω is denoted by h(Ω, A). For the scalar functions, we denote simply:
H(Ω) = H(Ω, C) and h(Ω) = h(Ω, C).
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Throughout the paper e will denote the unit of A (not necessarily of
norm 1), and for the complex number z we often simply write z instead
of ze. Also the open unit disk and the closed disk will be denoted by D
and D respectively.

In [7], K. Fan proves the following:

Theorem (K. Fan). Let f be a complex function analytic on the
open unit disk D. If f(D) ⊂ D, then the inequality ‖f(T )‖ < 1 holds for
every operator T on a Hilbert space H with ‖T‖ < 1.

It was pointed out in [7] that K. Fan’s Theorem is closely related
to the important theorem of von Neumann given also in [7]. We have
extended, in [3], Fan’s Theorem to hermitian Banach algebras. In [10],
Shih and Tan introduced a Hilbert space norm equivalent to the original
one and proved the analog of Fan’s Theorem for commuting topological
proper contractions. Generalizations in two settings of the results of [10]
to analytic vector valued functions in hermitian algebras are obtained in
[5] and [6].

In this paper, we extend K. Fan’s Theorem to harmonic functions in
hermitian algebras. An analog of von Neumann’s inequality and two
theorems on the maximum principle are obtained. We also make an
extension of Shih and Tan’s Theorem.

2. Some preparatory results

The functional calculus for harmonic A-valued functions was defined
in [4] and [5]. Let us recall the following definition.

Definition 2.1. Let A be a complex unital Banach algebra with con-
tinuous involution, Ω an open subset of C, z0 ∈ Ω such that D(z0, R) ⊂ Ω
(R > 0), x an element of A with Spx ⊂ D(z0, R) and f ∈ h(Ω, A). Then

f(x) =
1
2π

∫
|z−z0|=R

f(z) Re
[
(z + x− 2z0)(z − x)−1

] |dz|
R

.

The following lemmas will be needed later on.

Lemma 2.2. Let A be a complex unital Banach algebra with con-
tinuous involution. Assume that f ∈ h(Ω1) and g ∈ H(Ω2, A) satisfy
the condition that for each compact set K in Ω2, there exists a disk
D(w0, R) ⊂ Ω1, (R > 0), such that Sp g(z) ⊂ D(w0, R) for every z ∈ K.
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Then the function h defined by h(z) = f(g(z)) for z ∈ Ω2 is an element
of h(Ω2, A).

Proof: Let z0 ∈ Ω2 and r > 0 such that D(z0, r) ⊂ Ω2. Consider the
set Γ2 = {z ∈ C : |z − z0| = r} and D(w0, R) be a disk in Ω1 such that
Sp g(z) ⊂ D(w0, R) for |z − z0| ≤ r. Put Γ1 = {w ∈ C : |w − w0| = R}.
Then for z ∈ D(z0, r), we have

h(z) = f(g(z)) =
1
2π

∫
Γ1

f(w) Re
[
(w + g(z) − 2w0)(w − g(z))−1

] |dw|
R

.

Since for any fixed w on Γ1 the function k defined by

k : z → Re
[
(w + g(z) − 2w0)(w − g(z))−1

]
is harmonic on D(z0, r) and continuous on Γ2, it follows that:

k(z) =
1
2π

∫
Γ2

k(u) Re
[
(u + z − z0)(u− z)−1

] |du|
r

,

which shows that

h(z) =
(

1
2π

)2 ∫
Γ1

∫
Γ2

f(w)k(u) Re
[
(u + z − 2z0)(u− z))−1

] |du|
r

|dw|
R

for every z ∈ D(z0, r). Let ϕ be any bounded linear functional on A. A
simple verification will show ϕ(h(z)) is harmonic on D(z0, r) and so is
h. This completes the proof.

If S is a subset of A, let coS denote the convex hull of S, and coS its
closure. Put A1 = {x ∈ A : |x|∗ < 1, ρ(x) < 1}. For any x ∈ A1, the
Möbius transformation Φx is defined by:

Φx(λ) = (e− xx∗)−
1
2 (λ + x)(e + λx∗)−1(e− x∗x)

1
2 , λ ∈ C

satisfying |λ| < ρ(x)−1. It is clear that Φx is holomorphic in a neigh-
borhood of D. Moreover, Φx(0) = x, and maps the unit circle into Ue

[8, p. 2].
We now prove the following version of the maximum principle.

Lemma 2.3. Let A be a complex unital Banach algebra with continu-
ous involution, and Ω be an open subset of C containing D. If f ∈ h(Ω),
then

i) ‖f(x)‖ ≤ Sup{‖f(y)‖ : y ∈ Ue} ≤ ∞ for all x in A1 satisfying
Sp Φx(λ) ⊂ D for all |λ| = 1,

ii) If A is hermitian, then |f(x)|∗ ≤ Sup{|f(y)|∗ : y ∈ Ue} ≤ ∞ for
every x in A1.
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Proof: i) Observe first that ρ(Φx(λ)) is a subharmonic function of λ in
a neighborhood of D. Then, by the maximum modulus principle, we have
Sp Φx(λ) ⊂ D for all |λ| ≤ 1. Since Ω is a neighborhood of D, it follows
that f(Φx(λ)) is defined for all |λ| ≤ 1. Define for any ϕ ∈ A′, F (λ) =
Re(ϕ(f(Φx(λ)))). Suppose K is a compact subset of D. Again by the
maximum modulus principle we see that max{ρ(Φx(λ)) : λ ∈ K} = r < 1
and hence Sp Φx(λ) is contained in D(0, r) for all λ ∈ K. Thus, by
Lemma 2.2, F belongs to h(D). Furthermore F is continous in D. It
follows from the classical maximum principle that F (0) ≤ Sup

|λ|=1

F (λ) and

consequently Reϕ(f(x)) ≤ Sup Reϕ(f(Ue)). Therefore, by a separation
theorem [2, p. 417], f(x) ∈ Cof(Ue); whence i). Concerning ii), | · |∗ is a
continuous algebra pseudonorm on A such that ρ(x) ≤ |x|∗ for all x ∈ A.
For all |λ| = 1, we have |Φx(λ)|∗ = 1. As above f(x) ∈ Cof(Ue) and ii)
holds.

3. Some inequalities for harmonic functions

In the sequel A will denoted a complex unital hermitian Banach al-
gebra with continuous involution. The following result generalizes von
Neumann’s Theorem [3, p. 934].

Theorem 3.1. Let f be a harmonic function on some neighborhood
of D and x ∈ A with |x|∗ ≤ 1. If |f(z)| ≤ 1 for z ∈ D, then |f(x)|∗ ≤ 1.

Proof: By Lemma 2.3, it suffices to show that the number r =
Sup{|f(y)|∗ : y ∈ Ue} satisfies r ≤ 1. Let y ∈ Ue. Since ρ(y) = |y|∗ = 1,
it follows that Sp y ⊂ D. Thus f(y) is defined. Moreover using Defini-
tion 2.1, one can prove that f(y) is a normal and hence |f(y)|∗ = ρ(f(y)).
Finally, by the spectral mapping theorem ([1]), Sp f(y) = f(Sp y). Thus
|f(y)|∗ ≤ 1.

A consequence of Theorem 3.1 is the following:

Theorem 3.2. Suppose f ∈ h(D). For 0 < r < 1, let M(r) =
Max
|z|=r

|f(z)|. Then M(r) = Max
|x|∗≤r

|f(x)|∗.

Proof: If M(r) = 0, then the theorem is trivially true. Assume that
M(r) > 0. The function g defined by g(z) = f(rz)/M(r) is harmonic on
|z| < r−1. By the maximum modulus principle, |g(z)| ≤ 1 for z ∈ D. An
application of Theorem 3.1 to g shows that |g(x)|∗ ≤ 1 for every x ∈ A
with |x|∗ ≤ 1. This is equivalent to saying that |f(x)| ≤ M(r) for |x|∗ ≤ r
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and Max
|x|∗≤r

|f(x)|∗ ≤ M(r). Furthermore, if |z0| = r and |f(z0)| = M(r),

then |f(z0e)|∗ = |f(z0)e|∗ = |f(z0)e|∗ = |f(z0)| = M(r). This completes
the proof.

A direct consequence of Theorem 3.2 is the following result which
clearly generalizes Theorem 3.1 of [3].

Theorem 3.3. Let x ∈ A with |x|∗ < 1, and f ∈ h(D) such that
f(D) ⊂ D. Then |f(x)|∗ < 1.

Remark 3.4. Theorem 3.3 is derived from Theorem 3.1. Using the
proof of Theorem 2 of [4] and the continuity of the harmonic calculus
([1]), one can prove that the two theorems are equivalent.

Recall [5, p. 199] that an element x of A is said to be a topological
proper contraction if ρ(x) < 1. If ρ(x) ≤ 1, x is said to be a topological
contraction. Using Theorem 3.3 and Lemma III.10 of [5], one can prove
the following:

Theorem 3.5. Let x ∈ A be a topological proper contraction. Then
there exists a hermitian involution # on A such that:

1) | |∗ is equivalent to | |#.

2) |f(x)|# < 1 for every f ∈ h(D) such that f(D) ⊂ D.

Another statement that is intimately related to Theorem 3.5 is the
following:

Theorem 3.6. Consider δ > 0 and Ω = {z : |z| < 1 + 2δ}. If x ∈ A
is a topological contraction, then there exists a hermitian involution #
on A such that

1) | |∗ is equivalent to | |#.

2) |f(x)|# ≤ 1 for every f ∈ h(Ω) with |f(z)| ≤ 1 for all z ∈ Ω.

Appealing to Theorem 3.5, we obtain another version of the maximum
principle, the first version of which was proved in Theorem 3.2.
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Theorem 3.7. If f ∈ h(D), then for 0 < r < 1, max{|f(z)| : |z| ≤
r} = Max

ρ(x)≤r
ρ(f(x)).

Proof: As in the proof of Theorem 3.2, we suppose M(r) > 0. The
function g defined by g(z) = f(rz)/M(r) is harmonic on |z| < r−1. By
the maximum modulus principle, |g(z)| < 1 for all z ∈ D. If x ∈ A with
ρ(x) < 1, by Theorem 3.5 there exists a hermitian involution # on A
such that |g(x)|# < 1 and then ρ(g(x)) < 1. Therefore ρ(f(rx)) ≤ M(r)
for ρ(x) < 1 which is equivalent to ρ(f(x)) ≤ M(r) for ρ(x) ≤ r. Thus
max

ρ(x)≤r
ρ(f(x)) ≤ M(r). Moreover if |z0| = r and |f(z0)| = M(r) then

ρ(z0e) = |z0| = r and ρ(f(z0e)) = ρ(f(z0)) = M(r) and we are done.
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mation, J. Funct. Anal. 11 (1972), 1–16.



Harmonic functions in Hermitian algebras 409

10. M. H. Shih and K. K. Tan, Analytic fonctions of topological
proper contractions, Math. Z. 187 (1984), 317–323.

Ecole Normale Supérieure Takaddoum
B.P. 5118
10105 Rabat
MAROC

Primera versió rebuda el 4 de Març de 1996,
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