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GENERIC BIFURCATION
OF REVERSIBLE VECTOR FIELDS
ON A 2-DIMENSIONAL MANIFOLD

Marco Antonio Teixeira

Abstract

In this paper we deal with reversible vector fields on a 2-dimen-
sional manifold having a codimension one submanifold as its sym-
metry axis. We classify generically the one parameter families
of such vector fields. As a matter of fact, aspects of structural
stability and codimension one bifurcation are analysed.

1. Introduction

Let M be a C∞ compact orientable two-dimensional manifold and
f : M → R be a C∞ function having 0 as regular value. Call S =
{f−1(0)}, M+ = f−1[0,∞), M− = f−1(−∞, 0].

Let ϕ : M → M be a C∞ diffeomorphism (an involution) from M
onto M , such that ϕ ◦ ϕ = Id (ϕ is an involution) and Fixϕ = S.

We say that a vector fieldX onM is ϕ-reversible (or simply reversible)
if

ϕ ∗X = −X ◦ ϕ.

Let Φr be the space of the Cr ϕ-reversible vector fields on M endowed
with the Cr-topology (r > 2).

The main result of this paper says that:

The set Σ0 of all Cr ϕ-reversible vector fields in M which are struc-
turally stable is open and dense in Φr. This set is characterized in Sec-
tion 3 (see Definition 3).
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Call Φ1 = Φr − Σ0 the bifurcation set of Φr. There exists a Cr−1

immersed codimension-one submanifold Σ1 of Φr such that:

(i) Σ1 is dense in Φ1 (both with the relative topology);

(ii) for any X in Σ1, there exists a neighborhood B1 in the intrinsic
topology of Σ1 such that any Y in B1 is topologically equivalent
to X;

(iii) the part of Σ1 imbedded in Φr is also characterized.

In [11], we have classified all the symmetric singularities of codimen-
sion 0, 1 and 2 of X ∈ Φr. We have presented a technique which enabled
us to classify in a simple manner those singularities. In that work the
treatment is local and the technique consists to make a special change of
coordinates around the point and then address the analysis to the study
of the contact between a general system and S. In this paper we follow
those ideas and use extensively the tools of the Singularity Theory and
the results contained in [1], [7], [9], [10], [11] and [12]. In our setting,
the strategy is to establish a connection between a reversible system on
M and a vector defined on M+. Roughly speaking, having reduced the
system to the study of vector fields defined in manifolds with boundary,
the next step is to employ the results and methods contained in [10].

Denote by χr the space of all Cr vector fields on M , endowed with
the Cr topology.

In the class of all vector fields in M , the structural stability has
been characterized by Peixoto [9]. Sotomayor [7] has characterized the
structural stability of one-parameter families of vector fields in M . De-
vaney [3] has stated a Kupka-Smale Theorem for reversible vector fields
and flows.

In the class of reversible vector fields some persistent phenomena oc-
cur which cannot be destroyed by perturbations in Φr such as periodic
orbits and saddle connections which meet the submanifold S. However,
concerning non trivial recurrences no surprises arise at all. As a matter
of fact, this point becomes in some sense simpler in this class. We men-
tion for example that such reversible systems on the torus do not admit
an irrational flow.

We suggest that the reader see [4] for further references and connec-
tions with other problems.

This paper is organized as follows.

In Section 2 we give definitions and recall standard facts.
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Section 3 is devoted to the study of the structural stability in Φr.
Some considerations concerning structural stability in manifolds with
boundary are made.

In Section 4 the main result of the paper is presented. In our procedure
we classify the stable one parameter families of reversible vector fields
on M .

Section 5 contains an appendix where the main tools required for the
proof of the main theorem are recalled.

2. Preliminaries

In what follows we list some known properties of a vector field X ∈ Φr:

• The phase portrait of X is symmetric with respect to S. So the
knowledge of the phase portrait of X in M+ determines the phase
portrait of X in M .

• If p ∈ S and X(p) 
= 0 then the orbit of X is always transverse to
S at p.

• If X(p) = 0 then X(ϕ(p)) = 0. If p ∈ S then it is called a
symmetric critical point of X. Otherwise it is an asymmetric
critical point. Moreover ϕ interchanges the stable and unstable
manifolds and a symmetric critical point cannot be an attractor
or a repellor.

• Any periodic orbit of X crossing S is called a symmetric periodic
orbit of X. Any symmetric periodic orbit is never an isolated
limit cycle. If, on the other hand, a periodic orbit γ of X is away
from S it is called asymmetric and it is paired by another periodic
solution given by ϕ(γ).

• If Xt denotes the flow associated to X then we have the following
expressions:
Xt ◦ ϕ = ϕ ◦X−t, U2

t = Id and Fix{Ut} = Xt/2(Fix{ϕ}),
where Ut = Xt ◦ ϕ.

• Any orbit of X connecting two asymmetric hyperbolic saddles
(and so meeting S, transversally) is persistent under perturbation
of X in Φr.

• There is no isolated periodic orbit of X passing through points
p ∈ S.

• The codimension zero (generic) symmetric critical points are ei-
ther a hyperbolic saddle (with real eigenvalues λ and −λ) or of
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elliptical type (with eigenvalues ±ib). Their normal forms (see for
example [11]) are:

X01(x, y) = (y, x) and X02(x, y) = (−y, x).
We may refer to them as generic S-singularities.

• In [2] it is shown the following expressions relating the genus g of
M and the Betti number k of S:

(i) k ≤ g + 1,
(ii) k 
= g Mod(2) and
(iii) g − k + 1 ∈ 2 N.

In particular, one deduces that k = 1 or 2 provided that M is the
sphere or the torus respectively. When M is the bitorus then k
can be 1 or 2.

We denote by T = T (S) a neighborhood of S inM , such that ϕ(T ) = T
and T± = T ∩M±.

3. Structural Stability

3.1. Structural stability in manifolds with boundary.
Let χr be the space of the Cr vector fields on M endowed with the

Cr-topology (r > 2).
The results in this section will be used in the sequel.
Let Z ∈ χr and N be a 2-dimensional submanifold of M with S = ∂N .
We say that p ∈ S is an S-singularity of Z ∈ χr if either Z(p) = 0 or

Z(p) 
= 0 and Zf(p) = 0.

It should be mention that Zf(p) = Df(p)(Z(p)) is still a real function
defined on M . So we may define inductively the function Zkf(p) =
Z(Zk−1f(p)) which expresses the order contact between the vector field
Z and the curve S at p.

Definition 1. We say that p ∈ S is a fold singularity of Z if Z(p) 
= 0,
Zf(p) = 0 and ZZf(p) 
= 0. In this case we say that the contact between
the orbit of Z and S at p is quadratic.

A vector field Z in χr is S-stable if there are neighborhoods B of Z in
χr and V of N in M such that for every Y in B there is an S-preserving
homeomorphism h(Y ) : V → V which is a C0 equivalence between Z |V
and Y |V . Such a homeomorphism will be refered to as an S-equivalence
between Z and Y . The concept of S-structural stability in χr is given in
a natural way.
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Definition 2. Let Ξ0(S) be the class of all Z in χr for which the
following conditions are satisfied:

(0) Z does not have nontrivial recurrent trajectories;

(I1) all critical points of Z |N are hyperbolic;

(I2) all periodic orbits of Z |N are hyperbolic;

(I3) Z |N does not have saddle connections;

(S1) all singular points of Z |N are contained in the interior of N ;

(S2) all periodic orbits of Z |N are contained in the interior of N ;

(S3) any tangency between a trajectory of Z |N and S is quadratic;

(S4) Z |N does not have tangency connections;

(S5) Z |N does not admit a connection between a saddle critical point
and a tangency point.

Theorem 3.1 (Andronov-Pontryaguin and Peixoto). (a) Ξ0(S)
is open and dense in χr; (b) Z is S-structurally stable in χr if only if it
belongs to Ξ0(S).

Assume that Z ∈ Ξ0(S). A separatrix of Z is an orbit which connects
either two saddle critical points or two tangency points between the
vector field and S or a tangency point and a saddle critical point. Any
equivalence between two vector fields in χr must preserve such objects.

Consider Z ∈ χr, and p ∈ N . The positive (resp. negative) limit set
of an orbit γ(p) of Z |N is the set L+(p) (resp. L−(p)) of points q ∈ N
which are limit points of sequences of the form φX(p, tn) with tn tending
to ω(p) (resp. α(p)).

3.2. Structural stability of reversible vector fields.
Let X ∈ φr. The coming construction will be useful in the sequel.

3.2.1. A construction.
On a small tubular neighborhood Ti of each connected component Si

of S in M , consider the following coordinates (θi, ρi) with Si = {ρi = 0}
and 0 ≤ θi ≤ 1 and |ρi| < ε.

Let ϕi be the restriction of ϕ on Ti. In the above coordinates,

ϕi(θi, ρi) = (αi(θi, ρi), βi(θi, ρi))

satisfies:
ρiβi(θi, ρi) < 0 and ϕi(θi, 0) = (θi, 0).
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Define now the germ of a C∞ mapping at Si,

Fi : Ti, Si → �2

by
Fi(θi, ρi) = (θi + αi(θi, ρi), θiαi(θi, ρi) + ρiβi(θi, ρi)).

Proposition 3.2. Each Fi is a fold mapping at (θi, 0) and Fi◦ϕi =Fi.

Proof: Neglecting the subscripts we have:

Dϕ(θ, 0) =
(

1 b
0 −1

)

where b = αρ(θ, 0).
By a straightforward calculation we get

DF (θ, 0) =
(

2 b
2θ bθ

)
.

The function �(θ, ρ) = Det(DF (θ, ρ)) satisfies:

�(θ, 0) = 0 and �θ(θ, 0) = −4 − b2 < 0.

So the curve K = Kern(DF (θ, 0)) = {(u, v); 2u+ bv = 0} is transverse
to the curve Γ(F ) = {(u, v);�(u, v) = 0}.

It is immediatee to get F ◦ ϕ = F .
This finishes the proof.

On each Ti consider the coordinates (θ, ρ) and ϕ = (α, β) given above.
On the half “plane ” ρ > 0, let

u = θ + α and v = θα+ ρβ.

In the new coordinates, S is expressed by v =
(

u
2

)2, and X is trans-

formed in X∗(u, v) in such a way that X∗
(
u,

(
u
2

)2
)

= 0. We finally
define the vector field H = H(X) on the region F (Ti) by

H(u, v) =
X∗

v −
(

u
2

)2 .
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3.2.2. Local settings.
i) Let p ∈ S and X ∈ Φr.

It is well known (Montgomery-Bochner Theorem in [6]) that the invo-
lution ϕ at p, is C∞ conjugated to ϕ(x, y) = (x,−y) at p0 = 0. In this
section we carry out the analysis on �2, 0 and fix f(x, y) = y.

Observe that in local coordinates around a point p ∈ S we have the
following expressions:

S = {(x, y); y = 0} and ϕ(x, y) = (x,−y).

We may choose F (x, y) = (x, y2) and from the reversibility properties
of the vector field, it takes the form

X(x, y) =
(
ya(x, y2),

b(x, y2)
2

)
.

Moreover by u = x and v = y2 we derive that:

H(u, v) = (a(u, v), b(u, v)) for v > 0.

ii) In these coordinates the trajectory of X passing through a regular
point is always “orthogonal” to S. At a tangency point (resp. criti-
cal point), the contact between the orbit through p (resp. an invariant
manifold) and S decays by a factor of 1

2 in comparison with the orbit
or invariant manifold of H(X) passing through the same point. Fol-
lowing these considerations, we denote by H(s) a trajectory of H(X)
corresponding to a trajectory s of X.

Remark 3.3. Observe that H can be C∞ extended to a full neighbor-
hood of p. Moreover, due to the symmetry properties of X, we deduce
that the behavior of H(X) near S determines completely the behavior
of X in a small neighborhood T of S. It follows that in ρ > 0, X is topo-
logically equivalent to H(X). This leads us to analyse the S-stability
of H on the region H(T ) with boundary S. Moreover, outside a small
neighborhood V of S in T+, X and H(X) are Cr conjugated.

Remark 3.4. It should be mentioned that if p ∈ S is a fold point
of H(X) then it is a codimension 0 (generic) critical point of X. It is
of saddle type (resp. elliptical type) provided that it is a internal (resp.
external) tangency.
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3.2.3. The manifolf Σ0.

Denote by X+ the restriction of X to Cl{M+}.

Definition 3. We say thatX ∈ Φr is simple if the following conditions
are satisfied:

(0) X does not have nontrivial recurrent trajectories;

(i) all asymmetric critical points of X are hyperbolic;

(ii) all asymmetric periodic orbits of X are hyperbolic;

(iii) X+ does not have saddle connections.

(iv) all symmetric singularities of X are of codimension 0.

Remark 3.5. As pointed out, if p is a saddle critical point of X we
have to distinguish in our analysis the cases where p is in S or not. In the
first case, it corresponds to a generic (interior) contact between H(X)
and S, and the eigenvalues associated to DX(p) are ±λ.

Remark 3.6. If X is simple we may find, from [10], a tubular neigh-
borhood T (S) of S in M such that X∗ = X |M+−T (S) satisfies the
following conditions:

(0) X∗ does not have nontrivial recurrent trajectories;

(i) all critical points and periodic orbit of X∗ are hyperbolic and
contained in the interior of M+ − T (S);

(ii) X∗ does not have saddle connections;

(iii) if X∗(p) is tangent to ∂T (S) then this contact is quadratic.

In other words, we mean that X∗ satisfies the conditions of structural
stability of vector fields defined on manifolds with boundary given in [8].
This auxiliar vector field is very useful in the proof of the main results
of this paper.

The following result is an immediate consequence of Theorem 3.1 and
Proposition 3.2.

Theorem 3.7. X ∈ Σ0 if and only if X is simple. Moreover, Σ0 is
open and dense in Φr.
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Proof: First of all, we observe that the above conditions (0), (i), (ii),
(iii) coincide exactly with the characterization of the Morse-Smale Vec-
tor Fields on M . It should be mentioned that those saddle separatrices,
asymmetric orbits and asymmetric critical points appear in pairs (each
one in a different connected component of M − S). The symmetric sin-
gularities of X are studied by the auxiliar vector field H(X) (see Propo-
sition 3.2). As a matter of fact they correspond to quadratic tangencies
between H(X) and S.

Due to the symmetry properties of X, it is clear that all the analysis
can be performed via X+. The results and techniques, contained in
[8] and [10], involving the generic contact between H(X) and S must
be used here. We observe that the question involving recurrences is
answered exactly in the same way as in the usual theory (see [5]). So
it is straightforward, from Theorem 3.1 and Proposition 3.2 to get that
X is structurally stable provided that it is a simple vector field. So the
genericity of Σ0 in Φr becomes evident.

Assume for instance that X violates some condition given in Defini-
tion 3. Once again we appeal to Theorem 3.1 and to Proposition 3.2 and
conclude that X cannot be structurally stable. In fact:

a) If X has non-hyperbolic critical points or periodic orbits outside
S then we use standart techniques to approximate it by Y in Φr

having just hyperbolic critical points or periodic orbits outside S.
We proceed similarly when we have a saddle connection off S.

b) Assume now that X has a non codimension zero critical point
p ∈ S. This implies that H(X) and S have a degenerated contact
at p. Again, we perturb X by getting Y , such that H(Y ) has in a
neighborhood of p in M+ just generic contact and/or hyperbolic
critical points outside S (see [10] and [11]).

This finishes the proof.

4. Bifurcation set

4.1. Generic bifurcation in manifolds with boundary.

Let χ1 be the complement of Ξ0(s) in χr. Assume that Z ∈ χ1.

Definition 4. We say that p ∈ S is a cusp singularity of Z if Z(p) 
= 0,
Zf(p) = 0.
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Definition 5. An S-hyperbolic critical point of Z is a critical point
p in S such that: (i) it is a hyperbolic critical point of Z; (ii) the eigen-
values of DZ(p) are pairwise distinct and the corresponding eigenspaces
are transversal to S at p and (iii) each pair of non complex conjugate
eigenvalues of DZ(p) have distinct real part.

A codimension one S-singularity of Z |N is either a cusp singularity or
an S-hyperbolic critical point p in S. In the second case we distinguish
the cases where p is a node, a saddle or a focus.

In [11] it is proved the following result:

Theorem 4.1. For r > 3, there is a codimension one Cr−1 immersed
submanifold Ξ1(S) in χr, dense in χ1, in such a way that for any Z ∈ Ξ1,
there exists a neighborhood B in the intrinsic topology of χ1 such that
for any Y in B, Y |N is topologically equivalent to Z |N . Furthermore,
the part of Ξ1 imbedded in χr is also characterized.

The characterizations of the submanifolds given in the last theorem
are given in the appendix (Section 5).

Remark 4.2. Given Z ∈ χ1 the following orbits have to be dis-
tinguished: a) an invariant manifold of a saddle critical point p ∈ S;
b) a strong invariant manifold of a nodal critical point p ∈ S; c) an
orbit of Z tangent to S at p. Any C0 equivalence between two elements
of χr must necessarily preserve such objects. We may refer to them as
S-separatrices of Z.

4.2. Generic bifurcation of reversible vector fields.

4.2.1. Codimension one symmetric critical points.

Let X be in Φr and p ∈ S.

Definition 6. We say that p is a codimension one symmetric singu-
larity of X if p is a codimension one S-singularity of H(X).
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There are essentially four different topological types of a codimension
one symmetric singularity (see [11]). They are:

Cuspidal type: p is a cusp point of H(X) (see Figure 1). Its normal
form is: X0(x, y) = (y, x2).

Figure 1. Cuspidal singularity.

Nodal type: p is an S-hyperbolic critical point of H(X) of nodal type
(see Figure 2). Its normal form is: X0(x, y) = (±xy, x± 2y2).

Figure 2. Nodal type singularity.
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Saddle type: p is an S-hyperbolic critical point of H(X) of saddle type
(see Figure 3). Its normal form is: X0(x, y) = (xy, x− y2).

Figure 3. Saddle type singularity.

Focal type: p is an S-hyperbolic critical point of H(X) of focal type
(see Figure 4). Its normal form is: X0(x, y) = (xy + y3,−x+ y2).

Figure 4. Focal type singularity.
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Remark 4.3. Let p ∈ S be a codimension one symmetric singularity
of X ∈ Φr. Recalling Remark 4.2, s is a separatrix of X at p, provided
that H(s) is an S-separatrix of H(X) through p. It is clear that when
p is an S-critical point of X of nodal type then associated to it there
is a separatrix s which corresponds to the strong invariant manifold of
H(X) at the point.

4.2.2. Bifurcation set.
Let Φ1 be the complement of Σ0 in Φr. Assume that X ∈ Φ1.
The set Φ1 is the union of the following sets of vector fields Φ1(1),

Φ1(2), Φ1(3) and Φ1(4) where conditions (i), (ii), (iii) and (iv) given in
Definition 3 are violated respectively.

Call Σ1(1) the set of vector fields X in Φ1(1) such that X+ has a
unique non-hyperbolic critical point pX in the interior of M+ (i.e. asym-
metric critical point). Moreover it is a codimension one critical point
of X (i.e. a saddle-node or a generic Hopf singularity) and all the other
conditions (0), (ii), (iii) and (iv) in Definition 3 are satisfied.

Call Σ1(2) the set of vector fieldsX in Φ1(2) such thatX+ has a unique
non-hyperbolic (asymmetric) periodic orbit γ(X) ⊂ Int(M+). Moreover
it is a codimension one periodic orbit of X (i.e. a semi stable periodic
orbit) and all the other conditions (0), (i), (iii) and (iv) in Definition 3
are satisfied.

Denote by Σ1(3) the set of vector fields X in Φ1(3) such that X+ has
a unique saddle connection ν(X). Moreover all the other conditions (0),
(i), (ii) and (iv) in Definition 3 are satisfied.

Call Σ1(4) the set of vector fields X in Φ1(4) such that X+ has a
unique non-generic critical point in S (i.e. a symmetric critical point).
Moreover: a) it is a codimension one symmetric critical point of X,
b) all the other conditions (i), (ii) and (iii) in Definition 3 are satisfied.
It should be mentioneded that condition b) implies in particular that if
p is of nodal type then no separatrix of X+ at p converges to a saddle.

Consider the set
Σ1 = ∪j=1,... ,4Σ1(j).

We have still to define the following subsets.
Let Σ0

1(2) be the subset of Σ1(2) constituted by elements X which
satisfy the following extra assumptions:

(i) there exists no q ∈M+−γ(X), such that L+(q) = L−(q) = γ(X);
(ii) there exist no saddle points si of X+ in M+, i = 1, 2 such that

L+(Wu(s1)) = L−(W s(s2)) = γ(X).
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We denote by Σ0
1(3) the subset of Σ1(3) constituted by the elements X

such that the saddle connection is a homoclinic orbit ν(X). In this case
we impose that no other separatrix of X+ tends to ν(X).

Finally we define

Σ0
1 = Σ1(1) ∪ Σ0

1(2) ∪ Σ0
1(3) ∪ Σ1(4).

In what follows we present three lemmas which prepare the way for the
proof of the main theorem of the paper. Their proofs are slight variations
of the proof of the main result of Sotomayor in [7].

Lemma 4.4. Σ1(1) is a Cr−1 imbedded codimension one submanifold
of Φr. Moreover, every X ∈ Σ1(1) has a neighborhood B in Φ1 such
every Y ∈ B is C0 equivalent to X.

Proof: Given X ∈ Σ1(1) we define the auxiliar vector field X∗ (as in
Remark 3.6) in such a way that this latter system satisfies the Proposi-
tion 2.1 of [10]. Now define:

a) The set of X ∈ Φ1 such that: X∗ has a codimension one critical
point as its unique non hyperbolic critical point and X∗ satisfies
the conditions (0), (ii) and (iii) of Definition 3;

b) The set H0 of elements X ∈ Φr which are S-elementaries;

c) The set Λ0 of elements X ∈ Φr such that X+ has no saddle
connection.

Observe that H0 and Λ0 are open sets of Φr and it can be proved (in
[7]) that Γ∗

1 is a Cr−1 imbedded codimension one submanifold of Φr. As
Σ1(1) = Γ∗

1 ∩H0 ∩ Λ0, the first part of lemma is immediate. Moreover,
since around the codimension one critical point is locally structurally
stable relative to Φ1, using standard technique (see for example [10])
the proof of second part becomes straightforward.

Remark 4.5. It is well known how X in Σ1(1) unfolds generically
around the saddle-node or the Hopf singularity. In the case of a saddle-
node if the saddle separatrix meets S then it presents a (symmetric)
saddle-node connection s which is persistent under perturbation of X in
Φ1; when we unfold the saddle-node we get in a neighborhood of s in M
either a hyperbolic saddle connection or a family of symmetric periodic
orbits (this phenomenon is illustrated in Figure 5).
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Figure 5. Symmetric sadle-node connection.

The proof of next lemma is similar to that of the last result and it will
be omitted.

Lemma 4.6. i) Σ1(2) is a Cr−1 immersed codimension one subman-
ifold of Φr. Moreover, every X ∈ Σ1(2) has a neighborhood B in Σ1(2)
such that every Y ∈ B is C0 equivalent to X; ii) Σ0

1(2) is a Cr−1 imbed-
ded codimension one submanifold of Φr. Moreover, every X ∈ Σ0

1(2) has
a neighborhood B in Φ1 such every Y ∈ B is C0 equivalent to X.

Remark 4.7. As an illustration we mention that if X ∈ Σ1(2)−Σ0
1(2)

in such a way that there are saddle separatrices s1 and s2 of X with
α(s1) = ω(s2) = γX then we may find a sequence Xn ∈ Σ1(3) converging
to X in Φ1.

Lemma 4.8. i) Σ1(3) is a Cr−1 immersed codimension one subman-
ifold of Φr. Moreover, every X ∈ Σ1(3) has a neighborhood B in Σ1(3)
such every Y ∈ B is C0 equivalent to X; ii) Σ0

1(3) is a Cr−1 imbedded
codimension one submanifold of Φr. Moreover, every X ∈ Σ0

1(3) has a
neighborhood B in Φ1 such every Y ∈ B is C0 equivalent to X.

Proof: Let X ∈ Σ1(3) and ν+(X) be its saddle connection at p1 and
p2 in M+. Let ν−(X), p1 and p2 in M+ be similar objects in M− and
ν(X) = ν+(X) ∪ ν−(X).

We consider B and V small neighborhoods of X in Φr and of ν(X)
in M respectively, such that the conditions (0), (i), (ii), (iii) and (iv) of
Definition 3.

We distinguish the cases:

(a) If the saddles do not belong to S then the proof follows immedi-
ately from in [7].
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(b) Assume that p1 ∈ S and p2 
∈ S in such a way that Wu(p− 1) =
W s(p2) = ν+(X). Choose neighborhoods B1, U1 and U2 of X
in Φr, p1 in M , {p1, p2} in M respectively, such that Y has a
unique saddle point in U1 ∩ S, unique saddle point in U2 ∩M+.
Furthermore Wu(p − 1) (resp. W s(p − 2)) is transverse to ∂U1

at m1 ∈ Int(M+) (resp. ∂U1 at n1 ∈ Int(M+)) and transverse
to ∂U2 at m2 ∈ Int(M+) (resp. ∂U2 at n2 ∈ Int(M+)). Hence,
Y ∈ Σ1(3) if and only if m1 = n1. Now standart techniques (see
in [10]) allows us to finish the proof of the lemma in the present
case.

(c) if both points p1 and p2 are in S, the proof is very similar to the
above case.

Remark 4.9. As an illustration assume for instance thatX ∈ Σ1(3)−
Σ0

1(3) in such a way that there is a homoclinic orbit ν(X) at pX and a
saddle separatrix s converging to this orbit. Then we may find a sequence
Xn ∈ Σ1(3) converging to X in Φ1 (see Figure 6). Observe that such pX

has to be necessarily in Int(M+).

Xn X0

s s

Figure 6. Asymmetric semi-stable periodic orbit.
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The following result is obtained from [11] by using the same techniques
of the proof of Lemma 4.8 which have been developed in [10].

Lemma 4.10. Σ1(4) is a Cr−1 imbedded codimension one submani-
fold of Φr. Moreover, every X ∈ Σ1(4) has a neighborhood B in Φ1 such
every Y ∈ B is C0 equivalent to X.

Theorem 4.11. i) Σ1 is dense in Φ1 (both with the relative topology);

ii) for any X in Σ1, there exists a neighborhood B1 in the intrinsic
topology of Σ1, such that any Y in B1 is topologically equivalent
to X;

iii) Σ0
1 is the part of Σ1 imbedded in Φr;

iv) In the space of one parameter families of vector fields in Φr, let
Θ be the collection of elements ξ(λ) (with |λ| < ε), such that:
a) ξ(λ) ⊂ Σ0 ∪ Σ0

1; b) ξ is transversal to Σ0
1. Then any family ξ

is structurally stable if and only if ξ ∈ Θ.

Proof: This proof follows from the definitions of Σ1 and Σ0
1 and from

the Lemmas 4.4, 4.6, 4.8 and 4.10.

Corollary 4.12. In the space of one parameter families of vector
fields in Φr, let Θ be the collection of elements ξ(λ) (with |λ| < ε),
such that: a) ξ(λ) ⊂ Σ0 ∪Σ0

1; b) ξ is transversal to Σ0
1. Then any family

ξ is structurally stable if and only if ξ ∈ Θ.

Appendix

In this section we recall some aspects of the main result in [10] con-
cerning the structural stability of one parameter families of vector fields
defined in manifolds with boundary.

The bifurcation set χ1 in χr is the union of the following sets of vector
fields χ1(I1), χ1(I2), χ1(I3), χ1(S1), χ1(S2), χ1(S3), χ1(S4) and χ1(S5)
where the conditions I1), I2), I3), S1), S2), S3), S4) and S5) given in the
definition of the set Ξ0, are violated respectively.

Call Ξ1(I1) the set of vector fields X in χ1(I1) such that Z |N has a
unique non-hyperbolic critical point outside S. Moreover it is a codi-
mension one critical point of Z (i.e. a saddle-node or a generic Hopf
singularity) and all the other conditions I2), I3), S1), S2), S3), S4) and
S5) in Definition 1 are satisfied.
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Call Ξ1(I2) the set of vector fields Z in χ1(I2) such that Z |N has a
unique non-hyperbolic periodic orbit γ(Z). Moreover it is a codimension
one periodic orbit of Z (i.e. a semi stable periodic orbit) and all the
other conditions I1), I3), S1), S2), S3), S4) and S5) in Definition 1 are
satisfied.

We denote by Ξ0
1(I2) the subset of Ξ1(I2) constituted by the elements

Z which satisfy: i) there exists no q ∈ N − γ(Z), such that L+(q) =
L−(q) = γ(Z); b) there exists no saddle points si in N , i = 1, 2 such
that L+(Wu(s1)) = L−(W s(s2)) = γ(Z); c) associated to Z there exists
no (s, q) ∈ N × N , where s is a saddle point of Z, q ∈ S, and Z(q) is
tangent to S at this point, with L+(q) = L−(q) = γ(Z); there exist no
pi ∈ S with L+(p1) = L−(p2) = γ(Z).

Denote by Ξ1(I3) the set of vector fields Z in χ1(I3) such thatX |N has
a unique saddle connection ν(Z). Moreover all the other conditions I1),
I2), S1), S2), S3), S4) and S5) in Definition 1 are satisfied.

We denote by Ξ0
1(I3) the subset of Ξ1(I3) constituted by the elements

X such that the saddle connection is a homoclinic orbit. Moreover no
trajectory of Z |N which is either tangent to S or a saddle separatrix
tends to ν(Z).

Denote by Ξ1(S1) the set of vector fields Z in χ1(S1) such that Z |N
has a unique critical point pZ in S and: a) pZ is S-hyperbolic and of
nodal type, b) there is no separatrix which is the strong manifold of pZ

and c) all the other conditions I1), I2), I3), S2), S3), S4) and S5) in
Definition 1 are satisfied.

Denote by Ξ1(S2) the set of vector fields Z in χ1(S2) such that Z |N
has a unique periodic orbit γ(Z) tangent to S, while all the other con-
ditions I1), I2), I3), S1), S3), S4) and S5) in Definition 1 are satisfied.

We denote by Ξ0
1(S2) the subset of Ξ1(S2) constituted by the elements

Z such that γ(Z) is neither the α nor the 8 limit, of either the saddle
separatrices or the trajectories tangent to S (with respect to Z |N ).

Denote by Ξ1(S3) the set of vector fields Z in χ1(S3) such that Z |N
has a unique orbit tangent to S and this tangency point is at a cusp
point. Moreover all the other conditions I1), I2), I3), S1) S2), S4) and
S5) in Definition 1 are satisfied.

Denote by Ξ1(S4) the set of vector fields Z in χ1(S4) such that Z |N
has a unique orbit tangent to S in more than one point. Moreover this
orbit contains exactly 2 tangency points and all the other conditions I1),
I2), I3), S1), S2), S3) and S5) in Definition 1 are satisfied.
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Denote by Ξ1(S5) the set of vector fields Z in χ1(S5) such that Z |N
has a unique saddle separatrix tangent to S. Moreover all the other
conditions I1), I2), I3), S1), S2), S3) and S4) in Definition 1 are satisfied.

We define Ξ1 as the union of the sets Ξ1(Ij) and Ξ1(Sl) for j = 1, 2, 3
and k = 1, 2, 3, 4, 5.

The part of Ξ1 imbedded in χr is:

Ξ0
1 = Ξ1(I1)∪Ξ0

1(I2)∪Ξ0
1(I3)∪Ξ1(S1)∪Ξ0

1(S2)∪Ξ1(S3)∪Ξ1(S4)∪Ξ1(S5).
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