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MEANDERING OF TRAJECTORIES
OF POLYNOMIAL VECTOR FIELDS

IN THE AFFINE n-SPACE

D. Novikov and S. Yakovenko

Abstract
We give an explicit upper bound for the number of isolated inter-
sections between an integral curve of a polynomial vector field in
Rn and an affine hyperplane.

The problem turns out to be closely related to finding an ex-
plicit upper bound for the length of ascending chains of polynomial
ideals spanned by consecutive derivatives.

This exposition constitutes an extended abstract of a forthcom-
ing paper: only the basic steps are outlined here, with all technical
details being either completely omitted or at best indicated.
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1. Geometry: Trajectories of polynomial vector fields
and their meandering

An algebraic curve defined by simple formulas in Rn cannot be strongly
meandering in the following sense: each (affine) hyperplane in Rn either
entirely contains this curve, or intersects it by no more than a finite num-
ber of isolated points, and this number can be easily bounded in terms of
the algebraic complexity of the curve (the degree of polynomial equations
determining it). For example, if the curve is explicitly parameterized as
t �→ (x1(t), . . . , xn(t)), where xj(t) are polynomials of degree � d in one
variable, then the number of isolated intersections with a hyperplane is
at most d. More generally, if a nonsingular curve is defined as a common
zero locus for any finite number of polynomials in n variables of degree
� d, then the number of isolated intersections cannot be greater than
dn−1 (a variation on the theme of Bézout theorem).

It would be natural to expect that an integral curve of a polynomial
vector field of degree � d, though almost never algebraic, would exhibit
a similar property: the number of isolated intersections with any hyper-
plane can be explicitly majorized in terms depending only on the differ-
ential equations determining the curve. Note that if a solution would be
explicitly known, then one might try to use a result from [15] claiming
that the number of isolated intersections with any affine hyperplane is no
greater than a weighted sum of integral Frenet curvatures. But even for
the rare case of integrable equations the answer in terms of integral cur-
vatures may well happen to be not uniformly bounded over all integral
curves.

Easy examples show that it is insufficient to know only the degree of
the polynomials defining the vector field; the magnitude of the coeffi-
cients affects the possible number of intersections already in the linear
case. The “size” of the curve also must be taken into account. Be-
sides, there seems to be no more relevant parameters, and the question
arises: is it possible to place an explicit upper bound on the number of
intersections between an integral curve and a hyperplane, in terms of the
dimension of the space, the degree of the vector field, the magnitude of
its coefficients and the size of the curve?

An affirmative answer to this question constitutes the main result of
this paper.

1.1. Formulation of the main result. Consider a system of n
polynomial nonautonomous ordinary differential equations ẋ = v(t, x)
or, more explicitly,
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(1.1)
ẋi = vi(t, x1, . . . , xn), vi ∈ R[t, x1, . . . , xn], i = 1, . . . , n,
t ∈ R, x = (x1, . . . , xn) ∈ R

n, deg v := max
i=1,... ,n

deg vi � d,

with the polynomial right hand sides vi of some known degree d.
Recall that the height h(p) of a multivariate polynomial p is the max-

imal absolute value of its coefficients. We assume that the height of the
right hand side of the system (1.1) is known and bounded by a certain
constant r:

(1.2)
vi = vi(t, x) =

∑
j+|α|�d

vijα tjxα, α = (α1, . . . , αn) ∈ Z
n
+,

h(v) = max
i

h(vi) = max
i

max
j,α

|vijα| � r.

Let Γ be a solution to this system, a parameterized curve, whose ge-
ometric dimensions are also known: we assume that in the space-time
the graph of Γ is contained in the ball of some radius r′ centered at the
origin (the minimal such r′ will be called the height of the curve and
denoted by h(Γ ) for aesthetical reasons),

(1.3)
Γ : I → R

n, I � t �→ x(t) ∈ R
n,

I ⊆ [−r′, r′], ‖x(t)‖ := max
j=1,... ,n

|xj(t)| � r′ ∀t ∈ I.

Our principal goal is to place an explicit upper bound on the number
of isolated intersections between Γ and an arbitrary affine hyperplane
in Rn, knowing only the degree and the height of the determining equa-
tion (1.1) and the height of the trajectory Γ . Obviously, it would be
sufficient to estimate in the above terms the number of isolated intersec-
tions with the hyperplane {x1 = 0}. Moreover, in order to reduce the
number of initial data, we assume (and it turns out to be rather natural)
that r = r′. To abbreviate the formulations, we introduce the following
notation.

Definition 1. Let n, d be two natural numbers and r > 0 a real num-
ber. The meandering index Ω(r, n, d) is the supremum of the possible
number of isolated intersections with hyperplanes, taken over all polyno-
mial equations of dimension n, degree d and height r and over all their
integral curves of (the same) height r.

One may show, using some general results on real analytic sets [3], that
Ω(r, n, d) is always finite, but the methods used in [3] give absolutely no



226 D. Novikov, S. Yakovenko

information on the nature of Ω as a function of its arguments. Our main
result claims computability of Ω in a certain very strong sense and places
an explicit upper bound on it.

Definition 2. A primitive recursive function is a function from Zm
+

to Z+ that can be obtained from the basic functions (identity and the
constant 1) by a finite number of compositions (substitutions), juxta-
position (concatenation) and recursion in one variable. The latter rule
allows to construct a function using the recursive construction

f(1, ν) = g(ν), ν = (ν1, . . . , νa) ∈ Z
m
+ ,

f(k + 1, ν) = G(k, f(k, ν), ν), k = 1, 2, . . . ,

provided that the functions g(·) and G(·, ·, ·) are already constructed.

Despite the seemingly all-embracing appearance of the class of primi-
tive recursive functions, this class does not include all functions that are
computable in the algorithmic sense of this word. As a counterexample,
one could mention the Ackermann generalized exponential described in
section 3.3. This function grows more rapidly than any primitive re-
cursive function, and in a strange way appears in connection with the
problem of bounding Ω, as explained in sections 3.3 and 3.4.

Now the principal result of this paper can be formulated.

Theorem 1 (main).

Ω(r, n, d) � (2 + r)B(n,d),

where B is a finite number depending only on n and d.
Moreover, B(n, d) as a function of two natural arguments is explic-

itly computable, admits a primitive recursive majorant and for large n, d
grows not more rapidly than the tower of four exponents, exp[4]

(
n+d) ≡

exp exp exp exp(n + d).

1.2. Remarks. This formulation deserves, to our opinion, several
comments. The finiteness of Ω(r, n, d) is, as already mentioned, a corol-
lary to a very basic property of real analytic sets.

The analytic section 2 provides information sufficient to conclude that
for any particular choice of n and d, the meandering index Ω(r, n, d) as
a function of r grows at most polynomially. In other words, the value
B(n, d) is proved to exist and be always finite.
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In the beginning of section 3 we explain why B(n, d) can be explicitly
majorized using some finite deterministic algorithms, and therefore ad-
mits a recursive, but not (yet) necessarily primitive recursive majorant.
The problem is in estimating the maximal length of certain ascending
chains of polynomial ideals, the subject that received substantial atten-
tion since the paper by G. Hermann [8] and later works by A. Seidenberg
[18], [19].

Five years ago one might hope that upgrading recursiveness to the
primitive recursiveness is a matter of technical skill. However, the recent
results by G. Moreno Soćıas [14] show that the best result one can get
without additional information is the upper bound in the form of the
Ackermann generalized exponential, see below in section 3.3. The growth
of this function is faster than any closed expression (elementary function,
e.g. the tower of one million exponents) or even any primitive recursive
function.

However, one can obtain much better estimate for the length, using the
algebraic fact that the ideals in the chain are obtained by adding consec-
utive derivatives, resulting in a certain “convexity” of the “monotonous”
chain of ideals. In section 3 we discuss without going into technical
details, how this “convexity” makes ascending chains infinitely shorter,
resulting in the tower of only three exponents. This implies that the
bound for the original problem on the number of intersections can be
achieved as the tower of 4 exponents.

Concluding this informal discussion, we would like to stress that the
function B(n, d) can be written in an explicit closed form. Moreover, the
asymptotic upper bound given in Theorem 1 is certainly excessive (the
price for its relatively compact form). Yet we were unable to reduce it
to the tower of two exponents (see section 1.3 below), not saying about
polynomial expressions.

1.3. Related problems. A local counterpart of the problem on
counting isolated intersections is the problem on estimating the maxi-
mal multiplicity of contact, known as Risler problem [17]. An explicit
answer in the Risler problem was relatively recently obtained first by
A. Gabrielov, J.-M. Lion and R. Moussu for planar (n = 2) curves [4],
and then by Gabrielov in [2] for the general case: the multiplicity of
isolated contact between an integral curve of a polynomial system (1.1)
and a hyperplane does not exceed (d+1)2

n

, which makes a tower of two
exponents. Note that the bound does not depend on the height(s).

Another problem that leads to similar considerations, appears when
one replaces the differential equation (1.1) by a polynomial discrete time
dynamical system of the form
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R
n � x(t) �→ x(t + 1) = P (t, x(t)) ∈ R

n, t = 0, 1, 2, . . . ,

where P : R × Rn → Rn is a polynomial map of some known degree d.
For such systems the order of contact between an (infinite) orbit
{x(0), x(1), x(2), . . . } and an algebraic hypersurface (say, a hyperplane
X0 ⊆ Rn), is the length of the initial segment of the sequence {x(t)}�

t=0

that belongs to X0, provided that the infinite orbit leaves X0 at a certain
moment (otherwise the “contact” between the orbit and the hypersurface
is “nonisolated”). The problem that will be referred to as the discrete
Risler problem, is to estimate the maximal possible order of an isolated
contact, knowning only the dimension n and the degree d.

Besides the natural analogy, the discrete Risler problem naturally ap-
pears when one tries to solve the (original) Risler problem by expanding
solutions in Taylor series, at least in the linear case. On the other hand,
the method of proving Theorem 1 is more easy to explain in slightly
different settings provided by the analysis of the discrete Risler problem.

1.4. Ramifications. Besides the principal result of Theorem 1, we
solve also the discrete Risler problem for sufficiently generic polynomial
maps that are dimension-preserving in the sense described below in sec-
tion 3.5.

The solution of the discrete Risler problem, after additional consider-
ations similar to that of section 2 and using some very recent results by
M. Briskin and Y. Yomdin [1], [20], would allow to estimate the num-
ber of isolated intersections with hyperplanes for analytic curves, whose
vector Taylor coefficients can be obtained by polynomial recurrent pro-
cedures (as in the case of solutions of linear polynomial systems of first
order differential equations).

We would also remark that being originally totally real, the question
about the number of intersections makes sense also for holomorphic inte-
gral curves of polynomial differential equations. Our proof works without
any change in the complex settings as well, and the final bound remains
the same. The only difference is that the reference to Lemma 1 below
should be replaced by that to its complex analog from [16].
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2. Analysis: Construction of a quasilinear equation

Let t �→ (x1(t), . . . , xn(t)) be the parametric representation of the
curve, x0(t) ≡ 1 and λ0, λ1, . . . , λn a tuple of real constants. To majorize
the meandering, one has to estimate the number of isolated zeros of an
arbitrary linear combination λ0(t)x0 +λ1x1(t)+ · · ·+λnxn(t). Typically
such linear families of functions appear as solutions to higher order linear
differential equations (with variable coefficients). Thus we start with
our principal example that will also serve as a principal tool in further
investigations.

2.1. Linear nth order equation. Suppose that a real analytic
function f : I → R is known to satisfy on this interval some linear ordinary
differential equation of order ν with real analytic coefficients,

(2.1) y(ν) + aν−1(t) y(ν−1) + · · · + a1(t) y′ + a0(t) y = 0,

and the coefficients aj(t) extend analytically into some open neighbor-
hood U of the real interval I � R ⊆ C in the complex plane. Then the
upper bound for the absolute value of the coefficients in U is naturally
referred to as the height of the equation (2.1). It turns out that any solu-
tion to an equation of bounded height may have only a bounded number
of isolated zeros. The precise formulation follows.

Lemma 1 (see [9, Theorem 1]). If |aj(t)| � r in U � I, then any real
solution of the equation (2.1) may have no more than γ · (ν + r) isolated
zeros on I, where γ = γ(I, U) < +∞ is an explicit “geometric” constant
determined by the relative position of I inside U .

Note that one should not assume that the coefficients aj are polynomial
or rational, though in many cases they turned to be: only their height r
is essential. The asymptotic behavior of the geometric constant γ(I, U)
is studied in [9, section 1.2].

The idea behind the proof of Lemma 1 is rather simple: the number of
isolated zeros of an analytic function is related via the Jensen inequality
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to the growth of this function in the gap between I and U . On the
other hand, solutions of linear equations cannot grow too rapidly if the
coefficients of the equations are explicitly bounded.

2.2. The nonlinear multidimensional case: the construc-
tion. The problem of estimating Ω(r, n, d) is equivalent to estimating
the number of zeros of x1-coordinate along an arbitrary solution of the
system (1.1). In this section we construct explicitly a linear equation of
the form (2.1) satisfied by the function y(t) = x1(t).

Let R = C[t, x] = C[t, x1, . . . , xn] be the ring of polynomials in t and
x; denote by D:R → R the derivation along the system (1.1): D =
∂t +

∑n
i=1 vi(t, x)∂i, ∂i = ∂/∂xi, i = 1, . . . , n. Consider the sequence of

polynomials {pk}∞k=0 ⊆ R defined by the initial condition p0(x) = x1 ∈ R

and the recursive rule

(2.2)
p0 = x1,

pk = Dpk−1, k = 1, 2, 3, . . . .

The ring R is Noetherian, therefore the ascending chain of ideals

(2.3) (0) ⊆ (p0) ⊆ (p0, p1) ⊆ (p0, p1, p2) ⊆ · · ·
· · · ⊆ (p0, p1, . . . , pk) ⊆ (p0, p1, . . . , pk, pk+1) ⊆ · · ·

must stabilize at a certain moment ! so that p� ∈ (p0, . . . , p�−1) and
hence

(2.4) p� = h�−1p�−1 + · · · + h1p1 + h0p0, hj ∈ R.

Consider now any trajectory Γ : t �→ x(t) of the nonlinear system (1.1).
By construction, the polynomial pk = pk(t, x) restricted on this curve,
is the kth derivative dk

dtk x1(t), while the restriction of hk becomes an
analytic function that we denote by −aj(t). Altogether, the identity (2.4)
would mean then that the function y(t) = x1(t) along Γ satisfies the
linear equation (2.1) of order !. By Lemma 1, to estimate the number
of zeros it would be sufficient to know the height of the coefficients on
some complex neighborhood of the real segment I and the order of the
equation !.

The problem on estimating ! is a rather difficult problem that will
be treated separately in section 3 and in particular in section 3.6. But
even knowing ! is in general not sufficient to estimate the heights of the
polynomials hj in (2.4). Indeed, the identity (2.4) means a system of
linear equations for the coefficients of the polynomials hj . This system
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is known to admit at least one solution, but nobody can guarantee that
this system is sufficiently well-posed so that in an attempt to solve it one
never divides by numbers too close to zero.

One case when such guarantee can be given is when all polynomials pj

are with integral coefficients. Then all nonzero denominators will be at
least equal to 1 in the absolute value, and the division will be well-posed.
These arguments are in more details exposed below.

2.3. Integrality via universality. The key idea behind the second
step is to ensure that all polynomials pk have integral coefficients. This
would allow to find a representation (2.4) of some bounded height. The
required integrality is achieved by adjoining formally all coefficients of
the polynomials vj to the list of independent variables.

More precisely, we consider the full collection of coefficients {vijα} of
all polynomials vi(t, x) as described in (1.2) as new independent vari-
ables, and denote by Λ = {λ1, . . . , λn′} = {t, x1, . . . , xn, . . . , vijα, . . . },
the combined list of all variables of length n′ = 1+n+n ·

(
n+d

n

)
. Denote

by R∗ the extended polynomial ring, R∗ = C[Λ] = C[t, xj , vijα].
Then the derivation D extends (by the same formula) to the deriva-

tion D∗:R∗ → R∗ and the sequence of polynomials arises as in (2.2).
Actually, the polynomials will be the same, only their dependence on the
coefficients of the vector field v will now be explicit.

In other words, we consider (1.1)-(1.2) as a vector field in the space
with coordinates (t, xj , vijα), on understanding that the remaining coor-
dinates are governed by the trivial equations

ṫ = 1, v̇ijα = 0 1 � i � n, 0 � j + |α| � d.

Notice that with respect to the new set of independent variables:

(1) the extended derivation D∗ is integral, i.e. all right hand sides
v∗i of the corresponding system of equations are integral polyno-
mials from the subring Z[Λ] = Z[t, xj , vijα] ⊂ R∗ (actually, the
coefficients are only 0’s or 1’s),

(2) the degrees of these polynomials do not exceed d + 1 and their
height is 1,

(3) the polynomials pk are also integral, with their degrees growing
linearly in k and heights roughly exponential in k.

The chain (2.3) understood now as a chain of ideals in R∗, is determined
by the numbers n and d only, therefore one has one and the same bound
! = !(n, d) for the length of this chain, uniform over all problems of the
given dimension and degree. This already implies the existential upper
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bound of the form Ω(r, n, d) � (2 + r)B(n,d) with some finite power B
depending only on n and d, as the identities (2.4) also become universal.

Assuming the number !(n, d) being known, we show how the inte-
grality can be used to estimate the magnitude of the coefficients of the
quasilinear equation (2.1) resulting from (2.4).

Lemma 2. The representation (2.4) can be chosen in such a way
that the degrees deg hj and the heights h(hj) admit primitive recursive
majorants depending on n, d and !.

If one does not try to get the best known bound, then this result is a
rather simple observation modulo a nontrivial theorem by G. Hermann
[8]. This theorem claims that if a polynomial p� belongs to the ideal
spanned by p0, . . . , p�−1 ∈ C[Λ], then one can find a representation of
the form (2.4) such that

(2.5) deg hjpj � deg p� + 2(2 max deg pj)2
n′−1

for all j = 0, 1, 2, . . . , !− 1,

where n′ = dim Λ is the effective number of variables (including the
artificial ones). Since the degrees of all pj are explicitly known, the
inequalities (2.5) allow to place an upper bound on deg hj which was
shown in [13] to be essentially sharp.

To estimate the heights of the coefficients, we use the method of in-
definite coefficients, writing R∗ � hk =

∑
|α|�N hkαλ

α, where hkα are
unknown coefficients. Their number is explicitly bounded as the de-
grees deg hj are bounded, and the identity (2.4) becomes a linear non-
homogeneous system of (algebraic) equations, with the coefficients of
this system and the free terms being explicitly bounded. In general this
would not be sufficient to estimate the magnitude of the solutions, since
the matrix of coefficients can be very badly invertible. However, if all co-
efficients were integral, then all nonzero minors of the matrix are � 1 in
the absolute value, which fact yields an upper bound on the height of so-
lutions, and this bound obviously admits a primitive recursive majorant.
There are substantially better estimates on the height of the coefficients,
but the upper bound on !, discussed below, is so large that the difference
between more and less accurate estimates will finally disappear on the
level of the principal asymptotics.

Next, knowing the height of hk, one can explicitly estimate the height
of the resulting equation (2.1) on the ball of radius 2r and find an explicit
lower bound for the positive ε, the radius of the neighborhood U onto
which the coefficients can be analytically extended. This proves the
following corollary.
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Corollary 1. The coefficients of the equation (2.1) constructed via
the identity (2.4), extend to some complex ε-neighborhood of the real
segment I with guaranteed ε � (2+r)−C(n,d,�). Moreover, these extended
coefficients admit a polynomial in r upper bound of the form |aj | � (2 +
r)B′(n,d,�) in this ε-neighborhood. The exponents C,B′ admit primitive
recursive majorants.

Thus the problem of estimating the meandering number Ω(r, n, d) is
reduced to studying ascending chains of ideals. As soon as the length is
shown to be a primitive recursive function of n and d, Theorem 1 would
follow from the above corollary.

3. Algebra: Chains of ideals and chains of varieties

The fact that the chain (2.3) of polynomial ideals stabilizes, reflects
the most fundamental property of polynomial rings. However, effective
estimation of the length of such chain is a rather difficult problem. In
what follows we denote by Ik ⊆ R the ideal spanned by p0, . . . , pk, the
sequence pk being defined as in (2.2).

3.1. Basic definitions. We list several standard definitions. For
two ideals I, J ⊆ R their colon ratio is the ideal defined as I : J =
{p ∈ R: pJ ⊆ I}. The dimension of an ideal is the (complex analytic)
dimension of the zero locus V (I) = {x ∈ Cn: p(x) = 0 ∀p ∈ I}. This an-
alytic dimension coincides with the Krull dimension defined in algebraic
terms [21].

If a point a ∈ Cn is a complex isolated point of V (I), then the multi-
plicity of I at a is the (finite) number µa(I) = dimC Rma

/I ·Rma
, where

ma ⊆ R is the maximal ideal of the point, Rma the localization of R by
ma and the ideal I · Rma

is the span of the original ideal I in the local
ring Rma

.
If I ⊆ R is a polynomial ideal of dimension s and a ∈ V (I) a regular

(smooth) point on the zero locus, then a generic affine subspace Π ⊆ Cn

of codimension s passing through a is transversal to V (I), therefore a
will be isolated in V (I)∩Π. Hence the multiplicity of the ideal I +L at
a is well defined in the above sense (here L is the ideal of the subspace).
One can show that this multiplicity (that will be also denoted by µa(I))
is independent of Π as soon as the latter remains transversal to V (I).

An ideal Q ⊆ R is primary , if pq ∈ Q and p /∈ Q implies that qn ∈
Q for some n. The radical P =

√
Q of a primary ideal is called the

associated prime. If Q is primary, then for almost all points a ∈ V (Q)
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the multiplicity µa(Q) is the same; we refer to it then as simply the
multiplicity of Q.

After all these definitions are recalled, we proceed with the main prop-
erty of chains generated by consecutive derivatives.

3.2. Strict monotonicity and convexity. Though for our pur-
poses it would be sufficient to find the first step when I�−1 = I�, it turns
out that after the first coincidence the chain (2.3) will identically stabi-
lize from that moment on. This follows from a more general though very
simple observation.

Lemma 3. The colon ratios Ik : Ik+1 constitute an increasing chain:

(3.1) (I0 : I1) ⊆ (I1 : I2) ⊆ · · · ⊆ (Ik−1 : Ik) ⊆ (Ik : Ik+1) ⊆ · · · .

Indeed, taking an arbitrary polynomial q ∈ Ik−1 : Ik = Ik−1 : (pk)
we can write qpk =

∑k−1
j=0 hjpj . Applying the derivation D, we conclude

that qpk+1 = q · Dpk ∈ (p0, . . . , pk) = Ik, which means that q ∈ Ik :
(pk+1) = Ik : Ik+1.

A monotonous (ascending) chain of ideals {Ik} possessing the prop-
erty (3.1) will be called a convex chain (as the first “differences” are
monotonously growing).

Corollary 2. If the chain (2.3) is convex, then:
(1) it is strictly ascending, i.e. if I�−1 = I�, then I� = I�+1 =

I�+2 = · · · ;
(2) the dimensions of the colon ideals in (3.1) are nonincreasing.

Indeed, in this case I�−1 : I� = (1) = R, which implies that all other
colon ideals in (3.1) coincide with the ring R and hence Ik = Ik+1 for all
k � !.

3.3. General finiteness result. The degrees of the polynomials
spanning the ideal Ik are known to grow linearly in k, as seen from the
rule (2.2): deg pk � k(d − 1) + 1 � kd for k � 1. One might try to
place an upper bound on the length of the chain (2.3), using only the
information on the degrees. This is possible in principle: in [18], [19] an
algorithm is given for computing the length ! = !(n, d) of the ascending
chain (2.3) with deg pk = kd, dimx = n, and the answer is therefore a
well defined and computable function of the integer data n and d.

However, a detailed analysis recently carried out by G. Moreno [14]
shows that in general the length of an ascending chain (2.3) as a function
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of n and d can be as large as the Ackermann generalized exponential ,
a function that is known to grow faster than any primitive recursive
function. From the computational point of view this means that the
problem of estimating length is untreatable. Recall that the Ackermann
generalized exponential A(z, x, y) is determined by the recursive rules

A(0, x, y) = y + 1,
A(1, x, 0) = x,

A(2, x, 0) = 0,
A(3, x, 0) = A(4, x, 0) = · · · = 1,

A(z + 1, x, y + 1) = A(z, x,A(z + 1, x, y)).

In particular,

A(1, x, y) = x + 1 + · · · + 1 = x + y,

A(2, x, y) = x + x + · · · + x = xy,

A(3, x, y) = xx · · ·x = xy,

A(4, x, y) = xx···
x

︸ ︷︷ ︸
y times

etc.

In the remaining part of this section we show that the chains satisfying
the convexity condition (3.1), must stabilize infinitely sooner than in the
general case. The arguments become more transparent if one considers
a closely related problem on lengths of decreasing chains of algebraic
varieties.

3.4. Decreasing chains of algebraic varieties. A related but
more simple question is about the length of a descending chain of al-
gebraic varieties Xk, the zero loci of the ideals from the chain (2.3):
Xk = {x ∈ Cn: p0(x) = · · · = pk(x) = 0} (obviously, Xk+1 ⊆ Xk).

If the polynomials pk spanning the ideals Ik are consecutive deriva-
tives, then in general it is not true that the decreasing chain is strictly
decreasing (example: n = 1, p0 = xµ, D = ∂x, Ik = (xµ−k), Xk = {0}
for k = 0, 1, . . . , µ− 1 but Iµ = (1), Xµ = ∅).

However, if the sequence {pk}∞k=0 is generated by iterations of a homo-
morphism, then the chain of varieties must be strictly decreasing. More
precisely, assume that P : Cn → Cn is a polynomial map, H = P ∗:R →
R the corresponding ring homomorphism, and instead of the rule (2.2)
one has

(3.2) pk+1 = pk◦P or, what is the same, pk+1 = Hpk, k = 0, 1, 2, . . . .
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Then one can easily prove the following geometric analog of the algebraic
assertion of Lemma 3.

Lemma 4.

(3.3) P (Xk � Xk+1) ⊆ Xk−1 � Xk ∀k = 1, 2, . . . .

Indeed, the rule (3.2) allows to interpret Xk as the set of points x
such that the first k points of the P -orbit of x belong to the variety
X0. This observation links the problem of estimating the length of the
descending chain with the discrete Risler problem, see section 1.3. Then
the assertion of Lemma 4 becomes obvious: the difference Xk � Xk+1

consists of points that leave X0 on the step number k+1 and not earlier,
while application of P means a shift along the orbit. Since the image of
a non-empty set is non-empty (recall that P is a polynomial map defined
everywhere), we have the following corollary.

Corollary 3. Under assumption (3.2) the chain {Xk} is strictly de-
scending: if X�−1 = X�, then X� = X�+1 = X�+2 = · · · .

The rule (3.2) allows to estimate the degrees deg pk in the same way as
the rule (2.2), the only difference is that the degrees grow as a geometric
progression in this case.

The primary tool for studying descending chains of algebraic varieties
is the irreducible decomposition: any algebraic variety can be uniquely
represented as an irredundant union of irreducible algebraic (sub)vari-
eties of various dimensions. The irreducibility means, among other prop-
erties, that a proper subset of an irreducible s-dimensional variety has a
strictly inferior dimension s′ < s.

An algebraic variety in Cn defined by an arbitrary number of polyno-
mial equations of degree � d, may have no more than dn−s irreducible
components of dimension � s. This is a relatively simple generalization
of the Bézout theorem [7].

The length of a descending chain of algebraic varieties can be bounded
from above by monitoring irreducible components: each component of
Xk may either belong to Xk+1, or be split into some number of compo-
nents of smaller dimensions. The number of such newly-born components
is estimated by the Bézout theorem and is proportional to the degree
deg pk+1. The worst scenario occurs if on each step only one irreducible
component of Xk is split, and if this component is of minimal possible
dimension. Thus we first see as all 0-dimensional components (isolated
points) disappear. Then one of 1-dimensional components (curves) is
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split into a number of points. For some number of subsequent steps
these new points will disappear one by one, until the next 1-dimensional
component would have to be split etc. Note that in this process the
degrees of the polynomials pk grow, thus each next 1-dimensional curve
will be split into bigger and bigger number of isolated points.

When the entire original supply of 1-dimensional curves will be over,
some 2-dimensional irreducible component should be split, giving rise to
a (very large, since the number of the step is already rather large) number
of 1-dimensional curves. Then, according to our scenario, we must return
to the previous policy of eliminating points and curves, until all of them
disappear. The number of steps required for that will be incomparably
larger than in the first round.

Even without making accurate computations it is clear that this sort
of double induction leads to an overwhelmingly rapidly growing esti-
mates, in fact, to some form of the Ackermann generalized exponential.
Of course, one might ask why the worst scenario leading to Ackermann,
is realizable, but we will refer the reader to the papers by Moreno [14],
where the similar arguments are analyzed for ideals. Moreno proves
that the Ackermann generalized exponential gives a sharp estimate of
the length of an ascending chain, provided that there is no additional
restrictions except for those on the degrees of the polynomials pk. More-
over, a minor modification of the construction from [14] yields the proof
for decreasing chains of varieties.

3.5. Dimension-preserving iterations. The possible additional
property that allows to lift the curse of Ackermann in the problem on
descending chains of varieties, is preservation of dimension by iterations
of the map P .

Definition 3. A polynomial map P : Cn → Cn is dimension-pre-
serving , if the image of any k-dimensional semialgebraic set is again
k-dimensional for any k between 0 and n.

The additional assumption that P is dimension-preserving, together
with the observation from Lemma 4, improves the situation radically:
the up’n’down wanderings on the dimension scale, that led to the
Ackermann-large bound for the length, are no longer possible.

Lemma 5. If P is a dimension-preserving map and {Xk} is a strictly
descending chain constructed as in (3.2), then this chain can be subdi-
vided into � n segments of finite length,
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(3.4) X0 ⊃ X1 ⊃ · · · ⊃ Xkn−1︸ ︷︷ ︸
dim Xk�Xk+1=n−1

⊃ Xkn−1+1 ⊃ · · · ⊃ Xkn−2︸ ︷︷ ︸
dim Xk�Xk+1=n−2

⊃ · · ·

· · · ⊃ Xks+1 ⊃ · · · ⊃ Xks−1︸ ︷︷ ︸
dim Xk�Xk+1=s

⊃ · · · ⊃ Xk1+1 ⊃ · · · ⊃ Xk0︸ ︷︷ ︸
dim Xk�Xk+1=0

such that along sth segment the differences Xk � Xk+1 are exactly s-
dimensional semialgebraic varieties.

The length of each such segment does not exceed the number of s-
dimensional irreducible components in the starting set Xks+1 of this seg-
ment.

This is almost obvious: the dimensions dimXk � Xk+1 must be non-
increasing, hence the chain can be partitioned into segments as required.
Along each segment one has to monitor only s-dimensional irreducible
components, and moreover, their number must strictly decrease on each
step inside the segment. Indeed, inside the sth segment all components
of dimension > s must be preserved, otherwise the difference will be more
than s-dimensional. On the other hand, if all s-dimensional components
are preserved on some step, this means that the difference Xk �Xk+1 is
at most (s− 1)-dimensional, and one starts the next segment.

It remains only to observe that the number of irreducible components
can be estimated by the Bézout theorem, and hence for the lengths
ks − ks−1 we have a recurrent inequality,

(3.5) ks−1 − ks �
(
dks

)n−1
= (dn−1)ks , s = n− 1, . . . , 1, 0, kn = 0.

As a result, we obtain a simple upper bound that is infinitely better
than the Ackermann generalized exponential: the above inequality can
be transformed into ks−1 � (1 + dn−1)ks , which obviously gives a tower
of n exponents after n iterations. In terms of the discrete Risler problem
this result looks as follows.

Theorem 2. If P : Cn → Cn is a dimension-preserving polynomial
map of degree � d then for any algebraic hypersurface X0 of degree � d
and any point x ∈ X0 the P -orbit {P k(x)}∞k=0 either leaves X0 no later
than on the N th step, where

N � AA···
A

︸ ︷︷ ︸
n−1 times

, A = 1 + dn−1,
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or remains on X0 forever.

In other words, the answer is given by the Ackermann function of
rank 4, and this is related to the exponential growth of degrees of pk: if
the degrees were growing linearly with k, then the result would be given
by the Ackermann function of rank 3, or, more exactly, by a double
exponential in n estimate, as in [2]. In this sense all towers of exponents
of some universal height (2, 3 or 1000) all occupy an intermediate place
between the Ackermann functions of ranks 3 and 4, “closer” to the former
one. Thus the difference between the tower of height 4 that occurs
in Theorem 1 and that of height 2 typical for the (continuous) Risler
problem, is “negligeable”.

3.6. Chains of ideals spanned by consecutive derivatives. Now
we briefly describe how the constructions of section 3.5 should be mod-
ified for working with chains of ideals. As before, the main tool is the
irreducible decomposition of polynomial ideals [21]: any polynomial ideal
I ⊆ R admits an irredundant representation I = Q1 ∩ · · · ∩ Qk, where
Qj ⊆ R are primary ideals with pairwise different associated prime ide-
als.

Additional problems arising when replacing varieties by ideals, are of
two kinds. First, the primary decomposition is in general non-unique,
except for primary components of maximal dimension [21]. Second, one
has to take multiplicities into account, since there may occur a strictly
ascending chain of primary ideals with the same associated prime, and
one has to look for a numeric indicator of its ascent. The problem with
defining multiplicities is rather delicate: in particular, we tried to avoid
defining and using the multiplicity for embedded primary components,
i.e. those whose associated prime contains the associated prime(s) of
some other primary components. This difficulty was circumvented by
constructing an arbitrary (not canonically defined) primary decomposi-
tion and deleting out of it all primary components of larger dimensions.

The following proposition is an algebraic analog of Lemma 5.

Lemma 6. If D is a derivation and {Ik} is a strictly ascending chain
constructed as in (2.2), then this chain can be subdivided into � n seg-
ments of finite length,

(3.6) I0 ⊂ I1 ⊂ · · · ⊂ Ikn−1︸ ︷︷ ︸
dim Ik:Ik+1=n−1

⊂ Ikn−1+1 ⊂ · · · ⊂ Ikn−2︸ ︷︷ ︸
dim Ik:Ik+1=n−2

⊂ · · ·

· · · ⊂ Iks+1 ⊂ · · · ⊂ Iks−1︸ ︷︷ ︸
dim Ik:Ik+1=s

⊂ · · · ⊂ Ik1+1 ⊂ · · · ⊂ Ik0︸ ︷︷ ︸
dim Ik:Ik+1=0
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such that along sth segment the colon ratios Ik : Ik+1 are exactly s-
dimensional.

Consider any primary decomposition of Iks+1 and collect the terms in
such a way that Iks+1 = Q′

s∩Q′′
s , where Q′

s is the intersection of primary
components of dimension > s and Q′′

s is the intersection of primary
components of dimensions � s. Then s-dimensional components of Q′′

s

are well defined together with their multiplicities by the choice of Q′′
s , and

the length of the sth segment does not exceed the number of s-dimensional
primary components of Q′′

s , counted with their multiplicities.

Note that the decomposition Iks+1 = Q′
s ∩Q′′

s is not uniquely defined,
however, any such representation can be used to estimate the length of
the sth segment.

Moreover, one has no simple formulas as in Bézout theorem, for the
number of irreducible components. Therefore we had to use an algo-
rithm for the effective primary decomposition of a polynomial ideal, and
analyze its complexity. This subject, covered in a range of recent publi-
cations [5], [6], [10], [11], is still too technical to be included here. What
we need from this highly developed theory is an explicit upper bound for
the degrees of generators and the number of irreducible primary compo-
nents of an ideal given by a system of generators of known degrees. After
this the problem of majorizing multiplicities becomes relatively simple,
and we can write a system of recurrent inequalities majorizing the length
of segments in (3.6).
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